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Abstract
In this doctoral thesis we are concerned with the construction and analysis of computational methods for

linear equations, which oscillate with various frequencies. We present our ideas on the example of the linear
Klein-Gordon equation with time- and space-dependent mass, of the form

∂2
t y(x, t) = Dy(x, t) + f (x, t)y(x, t). (3)

The form of the mass function f (x, t) is a particularly interesting issue of this equations, as it can be
characterized by oscillations of various frequencies, from low to extremely high. We assume that it can be
expressed or approximated in the following form

f (x, t) = a(x, t) + Â
|n|N

an(x, t)eiwnt, (4)

where n 2 N, wn 2 R, wmin = minnN |wn| � 1 and wmax = maxnN |wn| < •. Functions a(x, t) and an(x, t),
n  N, do not oscillate in wns (i.e. their time derivatives are bounded independently of wn).

The function f (x, t) can take the form of a non-oscillatory function (e.g. 8n an(x, t) ⌘ 0), a highly-oscillatory
function (e.g. f (x, t) = a2(x, t)ei106t) or a mixed function (e.g. f (x, t) = a(x, t) + a1(x, t)eit + a2(x, t)ei106t). Clas-
sical numerical methods, based on Taylor’s expansion and quadratures, are very effective for non-oscillatory
problems. However, in the presence of oscillations, they require restrictions on the time step size, namely
h < 1/wmax, which has a negative effect on their efficiency and computational cost, especially when the oscil-
lations are very large.

The linear Klein-Gordon equation (3) is a representative model, on which we will propose and discuss
various approaches to the computational analysis of the problem of oscillatory input term f (x, t), including
asymptotic expansion, variation of constants, Magnus expansion and decomposition of the vector field.

The motivation for our research on the equation (3) was the paper [Bader et al., 2019], in which the com-
putational methods for such an equation were presented for the first time. The numerical schemes proposed
there work only in case of the non-oscillatory function f (x, t). The problems of the classical methods and those
presented in the paper [Bader et al., 2019], resulting from the presence of high oscillations in the function f,
seemed very interesting to us, therefore we proposed three other numerical approaches in the presence of
different oscillations in the Klein-Gordon equation (3).

In the first presented method, we assume that the solution of the Klein-Gordon equation (3) may take the
form of an infinite modified Fourier series. As a result we get numerical-asymptotic method, which accuracy
increases with the increasing magnitude of oscillation frequencies wn. The method was designed for the case,
when we have only high frequencies in function f (x, t)

The second method presented in the thesis is a third-order in time method which is equally efficient in
the full range of frequencies, e.g. f (x, t) = a0(x, t), m f (x, t) = a2(x, t)ei106t and f (x, t) = a0(x, t) + a1(x, t)eit +

a2(x, t)ei106t, where the error constant does not grow with the size of wns, and no ratio between time step h
and wmax needs to be imposed. This goal was achieved by rewriting the Klein-Gordon equation (3) in the
form of a non-homogeneous system of ordinary differential equations and by application of the well-known
variation of constants method, also known as Duhamel’s formula. Moreover, the use of the Filon method for
approximation of highly oscillatory integrals, which are part of the numerical scheme, makes the time step
size h independent of the magnitude of oscillations wn. We will present a rigorous proof of convergence, di-
scuss the structure of the error of the method and explain why it is not affected by possibly extremely high
oscillations.

In the third presented numerical method, we use the Magnus expansion and various decompositions of
the vector field, which are well-known methods of approximation of the solution of evolution equations.
Unlike the method based on Duhamel’s formula, we will not prove the global order of convergence, but
will focus on local accuracy by determining the leading error terms appearing during the derivation of the
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method. We will show that the local accuracy of the method is described by the expressions

O(h5 + min{h3,
h2

wmin
, h5w2

max}) for a(x, t) , 0

and

O(min{h3,
h2

wmin
, h5w2

max}) for a(x, t) ⌘ 0,

which depend on the relationship between time step h and wmin, wmax. This method works effectively for all
magnitudes of oscillation in function f (x, t) and shows up the highest accuracy among the methods proposed
so far for the linear Klein-Gordon equation with time- and space-dependent mass.

The methods are described in separate chapters, and each chapter ends with a presentation of the results
of numerical simulations and a comparison to the methods presented before.


