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Abstract

Quantum theory provides the ground for the most significant technological advances of
the twenty-first century. The quantum revolution that is about to happen will bring
us not only quantum computers but also quantum communication between quantum

hardware. The global network of quantumly communicating devices will constitute the so-called
quantum Internet. The promise quantum theory brings us about quantum communication is
higher than the classical level of security and, in some scenarios, even unconditional security.
Namely, there exist protocols for secret key distillation having entangled quantum states as a
resource such that the security of the produced secret key is guaranteed by the laws of physics
and are independent of the (possibly malicious) inner-working of the involved cryptographic
devices. The more bits of the secure key can be distilled, given some entangled resources,
the better the performance of the protocol. In this way, particular protocols constitute the
lower bounds on the key rate achievable in the scenario. On the other hand, determining the
optimal protocol or justification for pursuing it requires knowledge of the upper bounds on the
achievable key rate. Finding the upper bounds on the secure key rate is, therefore, of crucial
importance regarding the construction of quantum communication networks of the future.

In the collection of articles constituting this dissertation, of which I am a coauthor, as
our primary interest, we study the fundamental limitations within the selected quantum and
supra-quantum cryptographic scenarios in the form of upper bounds on the achievable key rates.
We investigate various security paradigms, bipartite and multipartite settings, as well as single-
shot and asymptotic regimes. Specifically, our findings contribute to the secret key agreement
scenario (SKA), device-dependent conference key agreement scenario (DD-CKA) both for
quantum channels and quantum states in one-shot and asymptotic regimes, device-independent
conference key-agreement scenario (DI-CKA) in both asymptotic and one-shot regime, and
non-signaling device-independent secret key agreement scenario (NSDI). Our studies, however,
extend beyond the derivations of the upper bounds on the secret key rates in the mentioned
scenarios. In particular, we propose a novel type of rerouting attack on the quantum Internet
for which we find a countermeasure and benchmark its efficiency. Furthermore, we propose
several upper bounds on the performance of quantum (key) repeaters settings. We derive a
lower bound on the secret key agreement capacity of a quantum network, which we tighten
in an important case of a bidirectional quantum network. The squashed nonlocality derived
here as an upper bound on the secret key rate is a novel non-faithful measure of nonlocality.
Furthermore, the notion of the non-signaling complete extension arising from the complete
extension postulate as a counterpart of purification of a quantum state allows us to study
analogies between non-signaling and quantum key distribution (QKD) scenarios.

From a larger perspective, our results are not only technical ones describing selected
cryptographic tasks. In some cases, our findings confront fundamental questions regarding the
foundations of quantum theory. The frameworks we develop allow to investigate this underlying
subject insightfully both from the inside and outside of the quantum theory.
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Abstrakt

Teoria kwantowa stanowi podwaliny dla najbardziej znaczących osiągnięć technologicznych
dwudziestego pierwszego wieku. Rewolucja kwantowa, która ma się wkrótce wydarzyć,
przyniesie nam nie tylko komputery kwantowe, ale także kwantową komunikację między

urządzeniami nowego typu. Globalna sieć urządzeń porozumiewających się między sobą z
wykorzystaniem kwantowej komunikacji utworzy tzw. Internet kwantowy. Obietnica, jaką daje
nam teoria kwantowa, w zakresie kwantowej komunikacji, gwarantuje poziom który jest wyższy
niż klasyczny poziom bezpieczeństwa, a w niektórych scenariuszach kryptograficznych nawet
bezwarunkowe bezpieczeństwo, niezależne od implementacji urządzeń generujących klucz kryp-
tograficzny. Mianowicie, istnieją protokoły destylacji klucza kryptograficznego używające jako
zasobu splątanych stanów kwantowych, takie że bezpieczeństwo wytworzonego klucza kryp-
tograficznego gwarantowane jest prawami fizyki. Im więcej bitów bezpiecznego klucza można
wydestylować, z określonego stanu kwantowego, tym wyższa wydajność protokołu. W ten sposób
poszczególne protokoły wyznaczają granice dolne na ilość klucza możliwego do wydestylowania
w danym scenariuszu kryptograficznym. Z drugiej strony określenie optymalnego protokołu,
lub uzasadnienie potrzeby dalszego go szukania, wymaga znajomości ograniczeń górnych na
możliwą do uzyskania ilość klucza. Znalezienie ograniczeń górnych na ilość bezpiecznego klucza
kryptograficznego ma zatem istotne znaczenie dla budowy kwantowych sieci komunikacyjnych
przyszłości.

W zbiorze artykułów składających się na niniejszą rozprawę doktorską, których jestem
współautorem, naszym głównym celem jest określenie fundamentalnych ograniczeń górnych
na osiągalną ilość bezpiecznego klucza kryptograficznego w wybranych kwantowych i supra-
kwantowych scenariuszach kryptograficznych. Zostały zbadane różne paradygmaty bezpieczeństwa,
sytuacje dwu i wieloosobowe, a także reżimy jednorazowe i asymptotyczne. W szczególności
nasze rezultaty dotyczą scenariusza uzgadniania klucza sekretnego (ang. secret key agreement
scenario, SKA), scenariusza uzgadniania klucza konferencyjnego zależnego od urządzenia (ang.
device-dependent conference key agreement, DD-CKA) zarówno dla stanów kwantowych jak i
kanałów kwantowych, w reżimach jednorazowych i asymptotycznych, scenariusza uzgadniania
klucza konferencyjnego niezależnego od urządzenia (ang. device-independent conference key
agreement, DI-CKA) zarówno w reżimie jednorazowym jak i asymptotycznym, oraz scenariusza
uzgadniania klucza sekretnego w obecności adwersarza ograniczonego jedynie więzami braku
sygnalizacji (ang. device-independent non-signaling secret key agreement, NSDI). Nasze badania
wykraczają jednak poza wyprowadzenie ograniczeń górnych na ilość klucza kryptograficznego
osiągalnego we wspomnianych scenariuszach. W szczególności proponujemy nowy typ ataku
przekierowującego (ang. rerouting attack) na kwantowy Internet. Dla tego ataku znajdu-
jemy środek zaradczy oraz kwantyfikujemy skuteczność naszego rozwiązania. Proponujemy
kilka ograniczeń górnych na wydajności układów kwantowych powtarzaczy oraz powtarzaczy
klucza kwantowego. Dodatkowo wyprowadzamy ograniczenie dolne na pojemność uzgadni-
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ania sekretnego klucza (ang. secret key agreement capacity) dla sieci kwantowej, które to
ograniczenie to ulepszamy w ważnym przypadku sieci złożonej z dwukierunkowych kanałów
kwantowych (ang. bidirectional quantum channel). Ściśnięta nielokalność (ang. the squashed
nonlocality) wyprowadzona jako ograniczenie górne na ilość klucza kryptograficznego jest w
istocie nową miarą nielokalności. Co więcej, pojęcie niesygnalizującego kompletnego rozszerzenia
(ang. non-signaling complete extension) wynikające z postulatu kompletnego rozszerzenia jako
odpowiednik kwantowej puryfikacji pozwala nam na badanie analogii między niesygnalizującymi
i kwantowymi scenariuszami uzgadniania klucza kryptograficznego.

Patrząc z szerszej perspektywy, nasze wyniki nie są jedynie rezultatami technicznymi,
opisującymi wybrane zadania kryptograficzne. W niektórych przypadkach nasze odkrycia
dotykają fundamentalnych kwesti dotyczących pryncypiów teorii kwantowej. Ramy, które opra-
cowujemy, pozwalają wnikliwie badać ten podstawowy temat zarówno od wewnątrz, jak i od
zewnątrz teorii kwantowej.
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Introduction

The desire to transfer messages in a confidential manner is probably as old as the
history of humankind. It is known that ciphers were known already in ancient times.
The motivations to hide information from untrusted parties vary but were always the

same, ranging from personal to military purposes. In particular, the Caesar cipher owes its
name to the Roman general, statesman, and dictator Gaius Julius Caesar who used it in his
military campaigns [Doo18, Bau21]. The development of methods on how to pass information
secretly led to the establishment of a new area of science called cryptography. The distinctive
feature of cryptography as a field of science and engineering is the fact that one has to confront
an intelligent enemy called the eavesdropper and not only the laws of nature. Up to the
beginning of the twentieth century, cryptography was in the hands of linguists [Bau21], e.g.,
Auguste Kerckhoffs. Next, the engineers got involved, with Gilbert Vernam and his one-time
pad encryption as a prominent example [Bau21]. In fact, one-time pad encryption was originally
invented earlier by Frank Miller in 1882 [Mil82]. The later period belongs to mathematicians,
who, amongst other successes, broke a German cipher device Enigma in the 1930s as the most
famous achievement [Bau21]. In this way, the enormous efforts of Marian Rejewski, Jerzy Różycki,
and Henryk Zygalski, continued by Alan Turing, contributed to the victory of the Allies in the
Second World War. Later, in the 1940s, Claude Shannon [Sha01] heavily developed the theory of
information established by Harry Nyquist and Ralph Hartley in the 1920s [Nyq24, Har28], which
is crucial for modern cryptographic purposes. Besides formalizing the concepts of processing and
transmitting information and introducing the concept of entropy of information, Claude Shannon
proved that the one-time pad encryption scheme is information-theoretically secure [Sha01].
The development of computers and communication between them entailed involvement in
the cryptography of computer scientists in the middle 1970s [Bau21]. The efforts of computer
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CHAPTER 1. INTRODUCTION

scientists allowed for the construction of a global network of communicating electronic devices
called the Internet and gave it its present shape. Finally, in the 1980s, physicists realized that
the quantum theory, studied from the beginning of the twentieth century, has the potential to
be applied in cryptography. Namely, in 1983 Stephen Wiesner proposed the concept of quantum
money resistant to forgery [Wie83]. In fact, he idea of Stephen Wiesner goes back to the 1970s,
but it remained unpublished until 1983. Next, in 1984, Charles Bennett and Gilles Brassard
developed the first quantum communication protocol named BB84 after the authors [BB84],
i.e., based on the formalism of quantum states and indeterminacy in their measurements. The
BB84 protocol, under some assumptions, is provably secure as it produces a secure key ready
for one-time pad encryption. Next, in 1991 Artur Ekert designed the E91 protocol [Eke91], i.e.,
the first quantum cryptography protocol based on the entangled quantum states, that allows
for the detection of the eavesdropper’s presence. From these times, the combined power and
knowledge of scientists from all of the aforementioned fields were used to develop a plethora
of protocols, schemes, scenarios, and security paradigms for quantum, supra-quantum, and
post-quantum cryptography. The ultimate goal of the efforts put into the development of
the field is to establish communication schemes, the security of which is guaranteed by the
laws of physics. In this way, quantum cryptography and recent progress in building quantum
computers give a promise for constructing a quantumly secure Internet in the not-too-distant
future [DBCZ99, MLK+16, ZPD+18, WEH18].

In the past several decades, four major security paradigms were developed for scenarios in
which the cryptographic task of the honest parties is to distill the secret key in the presence
of a malicious eavesdropper. Here, we list them with respect to the increasing power of the
eavesdropper, which also reflects the level of professional paranoia in the number of incorporated
assumptions. Furthermore, in this description, for the sake of its simplicity and conciseness of
the notation, we restrict ourselves to the situation in which there are only two honest parties,
usually called Alice and Bob, and the eavesdropping malicious Eve. The first one is the secret
key agreement scenario (SKA) [CK78, Mau93, GRTZ02, BB84], in which the honest parties
share n-copies of P (AB) which is a marginal of a classical tripartite probability distribution
P (ABE), where A, B, and E are the random variables describing the outputs of Alice, Bob and
Eve, respectively. In order to distill the secret key, the honest parties process their data with
so-called local operations and public communication (LOPC). At the same time, Eve listens to
public communication and is in power to apply any stochastic map to her data. Furthermore,
there are two distinct quantum key distribution (QKD) paradigms. The second paradigm to
be described here is the quantum device-dependent (QDD) [BB84, Eke91, Ben92, ABB+06]
scenario introduced at the beginning of quantum cryptography. In this scenario, the honest
parties share a marginal state ρAB of (in the worst case from their perspective) a tripartite pure
quantum state |ψABE〉, i.e., |ψABE〉 is the purification of ρAB to the eavesdropper’s system E.
Aiming to distill the secret key, the honest parties, Alice and Bob, process their subsystems
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using local quantum operations and classical communication (LOCC). Here, we remark that
another definition based on LOPC is equivalent in the mentioned worst-case. On the other
hand, the malicious Eve is assumed to receive any quantum system discarded by Alice and Bob,
listen to the communication between the honest parties, and be able to perform a quantum
operation on her subsystem. The problem with the QDD scenario is that Alice and Bob have
to trust the inner workings of the device they operate on, used to transfer quantum states
and to produce a classical output. Precisely speaking, the honest parties have to trust the
dimensionality of the quantum state and measurements performed on it. A sophisticated
solution to the drawback mentioned above is provided in the quantum device-independent
(QDI) [Eke91, BCP+14, MY04, AGM06, ABG+07, MPA11, AFRV19] scenario. In the QDI
scenario, Alice and Bob share an untrusted device, described with a conditional probability
distribution P (AB|XY ) originating from local measurements MA|X , MB|Y on a quantum state
ρAB, i.e., P (AB|XY ) ≡ Tr

[
MA|X ⊗MB|Y ρAB

]
. Here, X and Y correspond to the choices of

measurement settings (inputs) of Alice and Bob, respectively, and A and B to outcomes as
before. The eavesdropping Eve is assumed to be restricted by the laws of quantum mechanics,
and in particular, she may hold the purification |ψABE〉 of the bipartite state ρAB. Therefore,
the security in the QDI paradigm is based solely on the input-output statistic of the honest
parties. In the last paradigm, called the non-signaling device-independent secret key agreement
(NSDI) [BHK05, BCK12, SGB+06, AMP06, AGM06, Mas09, HRW10, MRC+14] scenario, the
assumptions on the power of the eavesdropper are even more relaxed than in the QDI scenario.
Namely, the eavesdropper is restricted solely by the non-signaling condition that prevents Eve
from changing the statistics of the honest parties and excludes instantaneous communication.
Furthermore, the NSDI scenario allows the honest parties to share possibly supra-quantum
(stronger than quantum) correlations constrained only by the no-signaling condition [PR94].
Incidentally, the non-signaling conditional probability distributions constitute a generalized
probabilistic theory (GPT) of non-signaling behaviors, wherein they have the role of states, see
Ref. [Bar07] and references therein, and also Refs. [Plá21, Mül21, Lam18] for recent progress in
this direction. Here, the device shared between parties is described as a tripartite conditional
probability distribution P (ABE|XY Z), with E and Z being the output and input of Eve,
respectively, and A, B, X, Y are as before. The honest parties choose their measurement
settings (inputs) and process their output data with LOPC operations. The same as before, the
device is assumed to be provided by Eve, who can listen to public communication and perform
a certain class of operations on her subsystem. Moreover, the tripartite device P (ABE|XY Z)
is assumed to be the worst-case extension of the marginal P (AB|XY ) ≡

∑
e P (ABe|XY z)

shared by the honest parties. Finally, all of the mentioned scenarios have their extensions
to the case of multiple honest parties. The secret key agreement between multiple honest
parties is called the conference key agreement [CL05, AH09b]. Similarly, QDD gives rise to the
device-dependent conference key agreement (DD-CKA) [HHHO09, AH09b], QDI is lifted to
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CHAPTER 1. INTRODUCTION

the device-independent conference key agreement (DI-CKA) [RMW18], and NSDI is naturally
extended to the non-signaling conference key agreement (NS-CKA) [PKBW23]. Additionally, a
modern research subject is to study secret (conference) key agreement capacities of quantum
channels in scenarios that generalize the concept of the use of quantum states.

The most important property that quantifies the performance of the secret key distillation
protocol is the number of bits of the secret key that is produced given some resource state (or
device). The number of bits of the secret key produced in the protocol divided by the number
of copies of the state (or device) used is called the protocol rate. In this way, the rates of
particular protocols constitute the lower bounds on the maximal secret key rate achievable in
the given scenario. The protocols of secret key distillation, and lower bounds on their rates, in
the bipartite SKA [CK78, Mau93], QDD [DW04, KGR05, HHHO05, HHHO09], QDI [VV14,
AFRV19], NSDI [BHK05, AGM06, AMP06, SGB+06, Mas09, HRW10, BCK12, MRC+14], and
multipartite CKA [YHH+09], DD-CKA [AH09b], and DI-CKA [RMW18] scenarios have been
widely studied. The definition of the secret key rate involves a supremum over achievable rates
by any theoretically possible protocols. Therefore, in a generic case, the maximal achievable
secret key rate is unknown, as we usually do not know if the best known protocol is optimal.
The complementary method to study, in a protocol-independent way, secret key rates achievable
in cryptographic scenarios is to determine the upper bounds on them. Furthermore, the
upper bounds can be determined both in the one-shot (single-run) and asymptotic regime.
The one-shot regime refers to the key distillation from a single copy of a quantum state
(or device), and the asymptotic regime considers a situation in which the honest parties
have access to an unlimited number of copies of the resource state (or device). The upper
bounds help to determine whether the known protocol is optimal, assess how much the
protocols can be improved, or decide if the pursuit for a better protocol is still justified.
Moreover, the upper bounds are also important for practical reasons. If an actually implemented
cryptographic device produces more key than is determined by the upper bound, then the
key provided by the device can not be secure. These reasons make finding the upper bounds
an important direction of research. Therefore, not only the lower bounds but also the upper
bounds on the secret key rate in the bipartite SKA [MW99, MW97, RW03, RSW03], QDI
and QDD [Chr02, CEH+07, YHH+09, Wil16, TGW14b, TGW14a, CFH21, AFL21, FBJŁ+21],
NSDI [KWW20] and multipartite CKA [CMS02], DD-CKA [CMG22, AH09b, CMS02] scenarios
have been studied. The same concerns multipartite DD-CKA scenario considering quantum
channels [TGW14b, TGW14a, PLOB17]. However, apart from Ref. [AMP06], only recently the
upper bounds in the DI-CKA [HWD22, PKBW23], NSDI [KWW20, WDH22, CFH21, AFL21],
and NS-CKA [PKBW23] scenarios were studied.

The vast development of cryptography based on the principles of non-classical physical
theories rather than solely on mathematics in the form of number theory, combinatorics, and
linear algebra, is due to the physical phenomena invisible in the classical description of the
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world stemming from intuitive perception. The advantage for the honest parties in secret
key distillation tasks that comes with non-classical resources in the form of entanglement
of quantum states or nonlocal correlations in devices comes with the flip side of the coin.
Namely, the attack strategy of the eavesdropper possibly includes sharing of non-classical
resources with the honest parties. Colloquially speaking, the classical eavesdropper is the
weakest one (SKA), the quantum eavesdropper (QKD) is stronger than the classical, and
the eavesdropper limited solely by the no-signaling principle (NS) is the most powerful one.
Incidentally, the cryptography considering non-signaling adversary (NSDI) is still valid, even
when some future theory will replace quantum theory as the most accurate description of
reality, as long as it will be a non-signaling one, i.e., consistent with the special theory of
relativity. The above hierarchy demonstrates, therefore, that the physical framework we adopt
influences the notion of security and consequently determines the limitations of the physical
theory concerning attainable quantities of secrecy. The converse statement is also true. The
studies on the amounts of secret correlations achievable in different cryptographic paradigms
can bring us new insights into quantum theory or non-signaling theories. In a similar manner,
Peter Rastal [Ras85], Sandu Popescu, and Daniel Rohrlich [PR94] have shown that quantum
theory is not maximally nonlocal, by inverting the logical order and making nonlocality an
axiom. They demonstrated that there might exist theories that preserve relativistic causality
but exhibit nonlocal correlations that violate some Bell inequalities stronger than quantum
theory, for which the limit was proved by Boris Tsirelson [Cir80]. Having the above past example
of indirect investigation in mind, we believe that a research on relations between entanglement,
nonlocality, secrecy, and their quantification can improve the understating of physical reality or
at least develop frameworks to study it.

The articles included in this dissertation [SWRH20, DBWH21, HWD22, WDH22, WDS+18],
contribute to almost all, except until recently untouched NS-CKA scenario, mentioned crypto-
graphic paradigms. Our focus is directed mainly but not solely on the upper bounds on the
maximal secret (conference) key rates (and capacities) achievable within the selected crypto-
graphic scenarios, in some cases both single-shot and asymptotic regimes. The other topics of
our concern are, among others, hacking attacks on the Quantum Internet [Mak09, SNS+21]
and possible countermeasures to them, the upper bounds on the performance of quantum
(key) repeater schemes [BDCZ98, DBCZ99, MATN15, CZC+21], analogies between different
cryptographic paradigms, the GPTs with a particular interest in the connection between the
theory of non-signaling behaviors and NSDI cryptography, or the lower bounds on conference
key agreement of selected quantum network schemes. We believe that the results presented in
this dissertation display a considerably vast landscape of the fundamental limitations concerning
the mentioned cryptographic scenarios, with some extra contributions. Here, we remark that
by the fundamental, we mean limitations that stem solely from the formalism of quantum
mechanics or the no-signaling principle. It is interesting, on its own, why Nature imposes
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CHAPTER 1. INTRODUCTION

constraints on the transmission and processing of information. The main results of the articles
integrated into this dissertation are briefly described in the following paragraphs. We invoke
the published articles [SWRH20, DBWH21, HWD22, WDH22] in the chronological order of
appearance, leaving the unpublished one, i.e., Ref. [WDS+18] preprint, for the end. A detailed
description is left for the next Section.

The first article [SWRH20] in this dissertation considers a quantum network under a threat
of a new type of rerouting attack of our proposal [SNS+21]. The idea of the attack is the use
of malicious software by dishonest end-users that performs entanglement swapping protocol
in the hub node of a quantum network. This attack leads to an unauthorized consumption of
the resources of the network in favor of the malicious end-users that gain shared entangled
states. The example of a quantum network under study exhibits star-like topology with a
single (central) hub node and multiple end-users. The end-users want to exchange only classical
data with the central node, however, in a quantumly secure way. As the main result, we
devise a countermeasure to the proposed attack based on special classes of quantum states
that carry directly accessible (device-dependent) secret key but possess a low repeatable key
rate [BCHW15]. Precisely speaking, the countermeasure proposed by us is based on the fact
that quantum security is not always transitive and employs either different types of the so-called
private states [HHHO05, HHHO09] or positive partial transpose (PPT) states that approximate
the mentioned private stats. We benchmark our solution by quantifying the difference between
the device-dependent secret key and repeatable key rates, i.e., the so-called gap of the scheme,
as well as the amount of quantum memory spent solely for the security of the scheme, i.e.,
the so-called memory overhead of the scheme. This quantification is done by providing upper
bounds on the repeatable key rate for the considered classes of states. At the same time, lower
bounds on the gap of the scheme and memory overhead required us to identify both lower
and upper bounds on the secret key rate. Moreover, we identify a low-dimensional example
of a quantum state for which the scheme employing it exhibits a strict gap between secure
and repeatable key rates [HHHO05, DKDD+11]. Our findings show that the protection of the
scheme against the proposed attack has its cost in the amount of quantum memory required to
be used in the scheme. In this way, our findings contribute to the development of the quantumly
secure schemes of the Internet of the future.

In the second article [DBWH21], we study the upper bounds on the achievable key rates
in the device-dependent conference key agreement (DD-CKA) scenario. The conference key is
the secret key shared by more than two parties. We do so by first introducing the concept of a
multiplex quantum channel and subsequently determining general upper bounds on the device-
dependent secret key agreement capacities of quantum channels in the multipartite scenario. In
principle, the uses of a multiplex quantum channel interleaved with local operations and classical
communication (LOCC) can simulate any conference key distribution protocol. Entanglement
measures based on the notion of the generalized divergence provide case-specific upper bounds
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in terms of various relative entropy functions [Ume62, MLDS+13, Dat09b, Dat09a, MLDS+13,
WWY14, BD10, WR12] on the plethora of secret-key distribution tasks both in asymptotic
and one-shot (single-use) scenarios. In this way, the framework we developed has a unifying
character as it provides a case-specific upper bound for a broad range of different scenarios
within a common structure. We exemplify the use of our results in two specific cases, i.e.,
in measurement-device-independent quantum key distribution (MDI-QKD) [LCQ12, BP12]
scenario and the setup of quantum key repeaters [BDCZ98, DBCZ99, MATN15, CZC+21]. In
the case of the dual-rail scheme [RP10] for the MDI-QKD scenario, our upper bound is tight and
hence outperforms the so-called repeaterless bound (RB). For the setups of quantum repeaters,
the upper bound provided by us is at least comparable with those in Refs. [BCHW15, CF17].
However, in our case, more parameters of the scheme can be incorporated. Additionally, we
provide a non-trivial lower bound on the secret key agreement capacity for a bidirectional
quantum network. Furthermore, we provide upper bounds on the achievable secret key rate
in the scenario employing quantum states. Here, as a byproduct, we obtain an upper bound
on Greenberger-Horne-Zeilinger (GHZ) states distillation in both single-shot and asymptotic
regimes. This result is possible since GHZ states are an example of private states that are ideal
final states of any key distillation LOCC protocol. In order to obtain upper bounds on the rate
of distillation of GHZ states from noisy GHZ and W states, we conduct an extensive numerical
investigation. One of the overcame difficulties is finding biseparable states close enough to GHZ
and W or their noisy versions required for the numerical calculations. In summary, our work
substantially contributes to the development of the field of DD-CKA cryptography, mainly but
not only via providing a unified framework for deriving upper bounds on conference key rates
and capacities for various DD-CKA scenarios.

The third article [HWD22] is devoted to upper bounds on the device-independent conference
key agreement (DI-CKA) rates. We remark here that our paper is the first to consider upper
bounds on DI-CKA rates, as before, only lower bounds on DI-CKA rates had been studied (see
also recent work in Ref. [PKBW23]). We first define the reduced c-squashed entanglement as the
multipartite generalization of cc-squashed entanglement [AFL21, KHD22]. Next, we show that
the reduced c-squashed entanglement upper bounds the device-independent conference key rate
achievable by the standard protocols, i.e., the protocols that use a single input to generate the
key [AFDF+18]. To be precise, we show the above with respect to two definitions of DI-CKA
rates, i.e., the “dev” and the “par” definitions. We note that the independent and identically
distributed (iid) setting is sufficient for our purposes. In the “dev” definition of DI-CKA secret
key rate, the adversary is assumed to mimic the full statistics of the honestly implemented device.
In contrast, in the “par” definition, the adversary has to mimic only some relevant parameters
of the device, such as the level of violation of some Bell inequality or quantum bit error rate
(QBER). Our goal is achieved by generalizing the upper bounds via intrinsic information studied
in Ref. [CEH+07] to the case of an adversary which possibly can hold an infinite dimensional.
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We then compare one of our upper bounds with the lower bound on the DI-CKA secret key
rate in Ref. [RMW18]. Next, we provide a non-trivial upper bound on the device-independent
key rate in the parallel measurement scenario in which all parties simultaneously set all values
of their inputs. Furthermore, we provide a multipartite generalization of the reduced bipartite
entanglement measures [KHD22]. Consequently, we show that the reduced regularized relative
entropy of genuine entanglement [DBWH21] is an upper bound on the DI-CKA secret key
rate. This relation brings us to the discussion on genuine nonlocality [BCP+14] and genuine
entanglement in the context of the DI-CKA scenario [HHHH09]. Finally, we provide proof of
the existence of a strict gap between the rates of the DI-CKA secret key and the DD-CKA
secret key. The proof is constructive, as the gap is inherited from the bipartite case in which
an example of states that exhibits the gap is known [CFH21]. To conclude, we are the first to
provide upper bounds on the secret key rates in the DI-CKA cryptographic paradigm. At the
same time, we provide several upper bounds on different scenarios and regimes.

In the fourth, recently published article [WDH22], we initiate a systematic study of upper
bounds on the secret key rate in the non-signaling device-independent secret key agreement
(NSDI) scenario [BHK05, BCK12, SGB+06, AMP06, AGM06, Mas09, HRW10, MRC+14].
Firstly, we show that the notion of security based on the so-called non-signaling norm (see
also [CT09] in this topic), that we adopt, is equivalent to two security definitions present in
the literature, i.e., to the one in Refs. [MRC+14, Mas09, MPA11] and to the second one in
Refs. [HRW10, HRW13, HR10, Hän10]. To show the above-mentioned equivalence, we derive
an explicit form of the non-signaling norm for the so-called c-d states. Next, we show our main
result, i.e., the squashing procedure. Namely, we show that any secrecy quantifier that is an
upper bound on the secret key rate in the SKA scenario [Mau93, MW99, MW97, RW03, RSW03]
can be lifted to give an upper bound on the secret key rate in the NSDI scenario. The squashing
procedure is based on the notion of the non-signaling complete extension [WDS+18] and on the
suitable optimization over measurements performed by the honest parties and the eavesdropper.
The lift-up of the formalism is possible since we were able to rephrase the definition of the
secret key rate in the SKA scenario in the form known from quantum key distribution scenarios
(QKD). Subsequently, we focus on one of the squashed functions, i.e., the non-signaling squashed
intrinsic information, also called the squashed nonlocality. As we show, the squashed nonlocality
is not only an upper bound on the NSDI secret key rate but also a novel and nonfaithful measure
of nonlocality. Next, we develop the convexification technique that provides even tighter upper
bounds. Namely, in the convexification technique we combine different convex upper bounds to
produce lower convex hull of their plots. The mentioned lower convex hull provides then tighter
upper bound than individual plots on their own. Finally, we perform a numerical investigation
that allowed us to compare our upper bound via the squashed nonlocality with the lower bounds
given by the rates of Hänggi-Renner-Wolf [HRW10] and by Acín-Massar-Pironio [AMP06]
protocols. In summary, we devised a technique that allows constructing upper bounds on the
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secret key rate in the NSDI scenario from the upper bounds on the secret key rate in the SKA
scenario. The upper bound via a nonfaithful measure of nonlocality shows that nonlocality is
not always equivalent to secrecy. Our approach exposes analogies between different security
paradigms. Therefore, our results contribute not only to the NSDI and SKA cryptographic
paradigms but also to the fundamental topic of nonlocality.

In the fifth, recently accepted for publication manuscript [WDS+18], we study the concept
of the complete extension postulate (CEP). We do so in the framework of the so-called
generalized probabilistic theories (GPTs) [Bar07, Plá21, Mül21, Lam18] that allows us to
study candidates for the beyond-quantum theory. By beyond-quantum theory, we mean the
future theory of physics with stronger explanatory power than the quantum theory. As we
discuss, the explanatory power of the quantum theory is limited, Refs. [LS18, SSC21, Nak20,
WvdW22, Har05, Har07, OCB12, CDPV13, AFNB17] in this context. The CEP is devised
to be a relaxation of the purification postulate, i.e., one of the postulates in terms of which
quantum theory can be reformulated [CDP11]. In particular, contrary to the PP, the CEP
does not require the existence, within the theory, of pure extensions for all systems and their
states. Instead, the CEP requires the existence of extensions with the property of generation,
i.e., extensions that can be transformed into any other extension, of the extended system,
with dynamics available within the theory. In the manuscript in Ref. [WDS+18], we study the
properties of GPTs in which the PP is replaced with the CEP. We first show that the PP can
not hold in any discrete convex theory, as within such theories, there are not enough pure states.
On the contrary, the CEP holds both in the quantum theory and the classical probability theory,
while the latter does not satisfy the PP. Next, we show that the property of generation
implies the property of access, i.e., the extending system of a generating extension has access
to all statistical ensembles of the extended system via suitable choices of measurement settings.
We show that replacing the PP with the CEP draws a demarcation line between the results that
require the PP to hold and those for which the CEP is enough. In this context, we show that
the impossibility of bit-commitment cryptographic task [May97, LC98], and its generalization
to integer-commitment [SS18], holds within GPTs which satisfy the CEP. More precisely, we
show that the lower bound on the product of the cheating probabilities of two parties in the
integer-commitment task derived within the framework of quantum theory still holds if we
replace the PP with the CEP. On the other hand, we show that the proof for the no-go for
hyperdecoherence, which relies on the PP, no longer holds when the PP is replaced with the
CEP [LS18]. The above suggests that the CEP might be a valid postulate for theories that
hyperdecohere to the quantum theory. In order to show that the CEP is not an empty postulate
and that complete extensions can actually be constructed outside quantum and classical theory,
as our case study, we choose the theory of non-signaling behaviors [PR94, Bar07]. In this context,
we first show that within the theory of non-signaling behaviors, the properties of access and
generation are equivalent. We then define the non-signaling complete extension (NSCE)
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as an extension in which the extending system has direct access to all minimal ensembles
upon suitable measurement choice. The minimal ensembles are simply ensembles that are not
convex combinations of other ensembles. In fact, due to the dynamics available in the theory,
access to minimal ensembles is equivalent to access to all ensembles by the extending system.
Therefore, in analogy to quantum purifications, NSCEs satisfy both access and generation.
We then explicitly construct NSCEs in some cases. In particular, we show that the NSCE of
maximally mixed behavior with a single binary input and single binary output is the famous
Popescu-Rohrlich (PR) box [PR94]. We notice an analogy between NSCE described above
and Bell’s state, which is the purification of the maximally mixed state of a qubit. We see
the above example as an independent derivation of the PR box in which we do not refer to
any notion of Clauser-Horne-Shimony-Holt (CHSH) or other so-called Bell inequality. We also
derive an upper bound on the dimension of the NSCE of an arbitrary behavior and show it
has the lowest dimension amongst all extensions having the property of acccess. In this way,
we show that the dimension of the NSCE of arbitrary behavior is always finite. This result is
not only interesting on its own but also has consequences in the fields of device-independent
cryptography against a non-signaling adversary [BHK05, Mas06, HRW10, Hän10] and private
randomness [CR12, GMT+13, MGP15, BRG+16, RBH+16]. Namely, the adversary holding
the extending system of NSCE possesses maximal operational power at the lowest memory cost
required for it. To conclude, the CEP is an important relaxation of the PP in the context of
studying possible beyond-quantum theories. Our findings reveal both the possibilities and the
limitations of replacing the PP with the CEP. Our findings contribute not only to the field
of GPTs but also to the field of device-independent cryptography against the non-signaling
adversary.
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Summary of Dissertation

2.1 Preliminaries

In this Section, we would like to provide formal definitions of the selected mathematical objects
appearing in this dissertation. We aim here to provide a possibly high level of completeness of
the descriptions of articles in the forthcoming Sections. Because of its formal and supplemen-
tary character, this Section can be skipped during the first reading of the dissertation. The
descriptions of the articles composed in the dissertation contain suitable references to specific
notions described below.

2.1.1 Private States and Positive Partial Transpose States

In Ref. [HHHO05], it was shown that the distillation of the secret key by two parties, A and B,
that want to communicate secretly is nonequivalent to the distillation of Einstein-Podolsky-
Rosen (EPR) states, i.e., states of the following form

|ψ+〉AB = 1√
2

(|00〉AB + |11〉AB) .(2.1)

Namely, there exist the so-called bound entangled states that can be used to obtain the secret
key. To create a bound entangled state [HHH98], the resource of pure entanglement is required.
However, no pure entanglement can be distilled from bound entangled states. The general
form of quantum states that contain ideal secrecy was found in Ref. [HHHO05]. It was shown
that a quantum state has an ideally secure key if and only if it has the form of the so-called
private state γABA′B′ . Furthermore, private states were used in Ref. [HHHO09] to recast the
theory of privacy, employing the notion of local operations and classical communication in
terms of entanglement theory, where local operations and classical communication (LOCC)
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are a valid set of operations. The LOCC paradigm does not require explicitly considering
the eavesdropper’s presence in the cryptographic scenario. Furthermore, in Ref. [HHHO09],
equivalence between LOPC and LOCC secret key distillation paradigms was proved (see also
Ref. [Hor09]). The above makes private states an important class of states, especially in the
context of device-dependent quantum cryptography (DD-QKD) both in the bipartite and
multipartite settings.

2.1.1.1 Bipartite Private States

In this Subsection, we provide the definitions of the bipartite private states and their special
subclasses. In the definitions, we employ the notation used in Ref. [SWRH20] (see Sec. 2.2)
contained in this dissertation rather than the original one in Refs. [HHHO05, HHHO09].

Definition 1 (Of a private state, cf. Ref. [HHHO09]). A state ρABA′B′ on a Hilbert space
CdA ⊗ CdB ⊗ CdA′ ⊗ CdB′ with dimensions dA = db = dk, and dA′ = dB′ = ds of the form

γdk,ds := 1
dk

dk−1∑
i,j=0

|ii〉〈jj|AB ⊗Xij , Xij := UiσA′B′U †
j ,(2.2)

where the state σA′B′ is an arbitrary state of subsystem A′B′, Ui’s are arbitrary unitary
transformations acting on A′B′ subsystem and BA ≡ {|i〉A}dk−1

i=0 , BB ≡ {|j〉B}dk−1
j=0 are local

(orthonormal) bases on A and B respectively, is called a private state or pdit. In the case of
dk = 2, the state γ2,ds is called - a pbit.

In the above definition, we refer to the subsystem AB as the key part because it contains
directly accessible secret key via measurements in BA and BB bases. Similarly, the subsystem
A′B′ is called the shielding system (the shield part). The shielding system has an important
role in defining the LOCC secret key distillation paradigm. In the LOCC paradigm, it is
assumed that no quantum system is discarded to outside of the laboratories of the honest
parties. Instead, in the key distillation protocol, the shielding system serves as a dumpster,
which is protected from the eavesdropper. The Definition 1, above, is constructed based on
Definition 1 in Ref. [HĆRS18]. Yet, we employ the notation used in Ref. [SWRH20] and restrict
(with respect to Refs. [HHHO05, HHHO09, HĆRS18]) to the case in which subsystems A′ and
B′ are of the same dimension. See Sec. 2.1.1.3 for the most general definition of private states.

We now recall the definitions of special cases of private states. In the places where it does
not lead to any confusion, we omit the subscript of γdk,ds and write simply γ. In the following
definitions KD(ρ) is the secret key rate of state ρ (see Sec. 2.1.2).
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Definition 2 (Of irreducible private state [HHHO09]). Any pdit γ (with dk-dimensional key
part) for which KD(γ) = log2 dk is called irreducible.

Definition 3 (Of key-attacked private states [HĆRS18]). We call states of the following form
key-attacked private states.

γ̂dk,ds := 1
dk

dk−1∑
i=0

|ii〉〈ii| ⊗Xii,(2.3)

where Xii = UiσU
†
i for some state σ of Cds ⊗ Cds and Ui are some unitary transformations.

They are private states which has been measured on their key part AB. We call Xii conditional
states of the shield.

Definition 4 (Of strictly irreducible private state [CF17, HĆRS18]). We say a private state
γdk,ds is strictly irreducible, if its key-attacked version γ̂dk,ds consists of separable states with
respect to the systems on the shield part of the diagonal, i.e., UiσU †

i ∈ SEP. We denote such
states γ〈dk,ds〉, and their attacked versions by γ̂〈dk,ds〉.

We finish this Subsection with the following Remark.

Remark 1. It follows directly from the definitions that KD(γdk,ds) ≥ log2 dk, KD(γ̂dk,ds) = 0,
and KD(γdk,ds) = log2 dk whenever γdk,ds is irreducible.

2.1.1.2 Positive Partial Transpose States

In this Subsection, we introduce the definitions of the operation of partial transposition and
positive partial transpose states (PPT). It follows directly from the definition of private states
that they have negative partial transpose (NPT). In Ref. [HA06] it was shown that all private
states allow for distillation of pure entanglement. On the other hand, all PPT states are bound
entangled [HHH98]. Furthermore, there exist PPT states that are arbitrarily close, in trace
norm, to private states, and they contain almost perfect secret key [HHHO05, HHHO09]. These
feature of PPT states makes them an interesting class of states to study.

Definition 5 (Of partial transpose). Let ρAB = ∑
ijkl ρ

ij
kl |ik〉〈jl|AB be a bipartite quantum

state acting on Hilbert space HA ⊗ HB. The operation of partial transpose ΓB with respect to
the B subsystem is defined as follows

ΓB : ρΓB
AB ≡ (1⊗ ΓB) ρAB =

∑
ijkl

ρijkl |il〉〈jk|AB .(2.4)

Definition 6 (Of positive partial transpose (PPT) states). Let ρAB be a bipartite quantum
state acting on Hilbert space HA ⊗ HB. State ρAB is called positive partial transpose (PPT)
state, if and only if ρΓ

AB has only non-negative eigenvalues, i.e.,

ρΓ
AB ≥ 0,(2.5)

where Γ is a partial transpose operation with respect to arbitrary subsystem.
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2.1.1.3 Multipartite Private States

Private states can also be defined in the multipartite setting and help to define the LOCC
paradigm for conference key agreement (DD-CKA). In this Section, we assimilate the notation
used in Ref. [DBWH21] (see Sec. 2.3). Let us consider M parties A ≡ A1, . . . AM with #»

K ≡
K1, . . .KM key parts and #»

S ≡ S1, . . . SM shielding systems, defined on H ≡ H1 ⊗ · · · HM and
H′ ≡ H′

1 ⊗ · · · ⊗ H′
M , respectively.

In the following definition, ΦGHZ
#»
K

denotes the projection on M -partite Greenberger-Horne-
Zeilinger (GHZ) state, i.e., the state of the following form

~k ≡ k1, . . . , kM : ∀i,j∈[M ] ki = kj ∈ K,(2.6)

|GHZ〉 := 1
K

∑
(2.6)

∣∣∣~k〉 .(2.7)

Here, K corresponds to the alphabet of outcomes for key parts of individual subsystems, and
K ≡ |K| = |Ki| denotes the cardinality of K.

Definition 7 (Of M -partite private state, cf. Refs. [AH09b, DBWH21]). A state γ #    »
SK , with

|Ki| = K for all i ∈ [M ], is called a (M -partite) private state if and only if

γ #    »
SK := U tw

#    »
SK

(
ΦGHZ

#»
K

⊗ ω #»
S

) (
U tw

#    »
SK

)†
,(2.8)

where U tw
#    »
SK

:= ∑
~k∈K×M

∣∣∣~k〉〈~k∣∣∣ #»
K

⊗ U
~k
~S

is called a twisting unitary operator for some unitary

operator U~k~S and ω #»
S is an arbitrary finite-dimensional density operator.

The Definition 7, above, is more general than Definition 1, but also because we do not
assume that different shielding systems are of the same dimension. It follows directly from the
definition that KD(γ #    »

SK) ≥ log2K. We finish with the following remark.

Remark 2. In this place, we remark that the definitions 2, 3 and 4, defining different subclasses
of private states, can be naturally extended to the multipartite case.

2.1.2 Secret Key Agreement Tasks

The secret key agreement is a cryptographic task in which two or more honest allies aim to
distill the secure key that can be used for one-time pad encryption. A scenario that involves
more than two parties is called a conference key agreement. More precisely, the task of the
honest parties is to use resources and operations available in the scenario in order to obtain
perfectly correlated bit strings which remain unknown to the eavesdropper. The sequence of
operations performed by the honest parties, which may also contain communication via an
authenticated but insecure classical channel, is called a protocol. Similarly, the action of the
malicious eavesdropper is called the attack strategy. The particular resources and operations
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available in the cryptographic task depend on the considered cryptographic paradigm (see
Chap. 1). The crucial mathematical objects quantifying the scenario are key rate and security
conditions. The rate of a protocol is, roughly speaking, the number of bits of secret key distilled
in protocol per one copy of the resource (state). The secret key rate is, therefore, the supremum
over rates of all possible protocols. The secret key rate can be defined in both one-shot (single
use) regimes, where the number of copies of the resource state is finite, as well as in the
asymptotic regime, in which we assume that the number of copies of the resource state is
arbitrarily large. The security conditions define what is understood by the secure key. The
key distillation protocol is, therefore, called secure if the correlations shared by the honest
parties at the end of the protocol satisfy the security conditions. The definitions of those are,
again, scenario-dependent. In what follows, we assimilate the so-called “optimistic” definition of
asymptotic key rate in which “lim supn→∞” is used rather than “lim infn→∞”, where n refers
to the number of copies of the resource state, as it is done in, e.g., in Ref. [BCHW15]. For the
discussion about the “optimistic” and the “pessimistic” definitions of the asymptotic key rate,
see Refs. [Ahl06]. See also a different approach to ours in the case of entanglement theory, e.g.,
in [Wil21].

2.1.2.1 Secret Key Rate and Security

We first describe the definition of secret key rate in the secret key agreement scenario
(SKA) [Mau93, MW00]. As described in Chapter 1, the resource states in the SKA scenario are
bipartite probability distributions P (AB), and A and B are random variables in possession of
respective parties. The honest parties, also called A and B, process their marginal probability
distributions using local operations in the form of local stochastic maps and public communica-
tion (LOPC). The eavesdropper E is explicitly present in the scenario and is assumed to share
with the honest parties a tripartite probability distribution P (ABE) that is an extension of
P⊗N (AB), i.e., ∑e P (ABe) = P⊗N (AB). The secret key rate S(A : B||Z) in the SKA scenario
is defined as follows

Definition 8 (Of the SKA secret key rate, cf. Ref. [Mau93, MW00]). The secret key rate of A
and B with respect to E, denoted S(A : B||Z), is the maximal R ≥ 0 such that for every ε > 0
and for all N ≥ N0(ε) there exists a protocol, using public communication over an insecure
but an authenticated channel, such that Alice and Bob , who receive AN = [A1, ..., AN ] and
BN = [B1, ..., BN ], can compute keys SA and SB, respectively, with the following properties.
First, SA = SB hold with probability at least 1 − ε, and second,

1
N
I(SA : CEN ) ≤ ε and 1

N
H(SA) ≥ R− ε(2.9)

hold. Here, C denotes the collection of messages sent over the insecure channel by Alice and
Bob.
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In the Definition 8 above, I(X : Y ) is the classical mutual information function, and H(X)
is the Shannon entropy.

The SKA scenario can be naturally extended to the setting that involves more than
two honest parties, i.e., conference key agreement CKA [YHH+09]. Following the notation
in Ref. [YHH+09], the object shared by the m honest parties ((m)A ≡ A1 . . . Am) is m-
partite probability distribution P(m)A defined on X(m)A ≡ XA1 × · · · × XAm . Here, XAi denotes
the set values of random variable Ai in possession of the i-th party. The n copies of such
distribution belong then to X n

A1
× · · · × X n

Am
≡ X n

(m)A. In analogy to SKA scenario the
extension Pn(m)AE of P⊗n

(m)A to the eavesdropper system is defined as a probability distribution
on X n

(m)AE ≡ X n
A1

× · · · × X n
Am

× XE , where XE is the set of values of random variable E in
possession of the eavesdropper. We first, provide the definition of the LOPC protocol in CKA
scenario

Definition 9 (Of CKA protocol, cf. Ref. [YHH+09]). An LOPC protocol P is a family {Λ}n
of classical channels Λn :

(
X n

(m)AE

)
→ X n

(m)A′E′ which are a finite number of concatenation
of local operations (local channels) and public communications steps (communication between
honest parties via authorised but insecure classical channel).

The secret key rate C(m)
D in the m-partite CKA scenario is then defined as follows

Definition 10 (Of CKA secret key rate, cf. Ref. [YHH+09]). We say that LOPC protocol P is
a classical key distillation protocol for a distribution P(m)A ∈ X(m)A, if

lim
n→∞

∥∥∥Λn ⊗ 1E

(
Pn(m)AE

)
−K ln

(m)AE

∥∥∥
1

= 0,(2.10)

where K ln
(m)AE = 1

ln
(i1 . . . im)δi1,...,im ⊗ PE is the ideal key distribution on X(m)AE, for some

distribution PE of the eavesdropper. The rate of the protocol if given by

R(P) = lim sup
n→∞

log2 ln
n

.(2.11)

The classical distillable key of a distribution P(m)A is defined as supremum of the rates

C
(m)
D (P(m)A) = sup

P
R(P).(2.12)

Definition 8 and Definition 10 are seemingly different. The first one refers to the notion of
mutual information and Shannon Entropy, whereas the second uses trace norm distance ‖·‖1
between the output state of the protocol and the ideal state. In Ref. [WDH22] (see also Sec. 2.5),
the equivalence between the mentioned definitions was proved in the bipartite case.

In the case of the device-dependent quantum key distribution (DD-QKD), the resources
used in the cryptographic tasks are entangled quantum states. The set of operations available to
the honest parties are, basically, transformations of quantum states and measurements on them.
The secret key rate can then be defined both in LOPC and LOCC paradigms [HHHO09]. For
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the sake of this dissertation, we provide the definition of DD-CKA secret key rate referring to
the LOCC paradigm that employs the notion of private states (see Sec. 2.1.1). In the following
definition of device-dependent conference key rate K(m)

D , ρ(m)A is a multipartite quantum state
shared by m-honest parties ((m)A ≡ A1 . . . Am), n copies of which are shared by the honest
parties at the beginning of the conference key distillation protocol.

Definition 11 (Of DD-CKA protocol and conference key rate, cf. Ref. [AH09b, YHH+09]).
For any given state ρ(m)A ∈ B

(
H(m)A

)
let us consider a sequence Pn of LOCC operations such

that Pn
(
ρ⊗n

(m)A

)
= σn. A set of operations P ≡

⋃∞
n=1 {Pn} is called a pdit distillation protocol

of state ρ(m)A if there holds

lim
n→∞

∥∥∥σn − γ
(m)
dn

∥∥∥
1

= 0,(2.13)

where γ(m)
dn

is a multipartite pdit whose key part is of dimension d
(1)
n × · · · × d

(m)
n . For a P, its

rate is given by

R(P) = lim sup
n→∞

log2 dn
n

.(2.14)

The distillable key of state ρ(m)A is given by

K
(m)
D

(
ρ(m)A

)
= sup

P
R(P).(2.15)

Definitions of secret key rate 8, 10 and 11 have an asymptotic character. Namely, they
assume that the available number of copies of the resource state is not limited. Hence, the
supremum over protocols in definitions of the rates also incorporates protocols that require
an arbitrary large number of copies. On the other hand, in practical situations, the number of
copies of the resource state is limited. Therefore, the number of bits of the secret key that can
be distilled (per copy of resource state) from a finite number of copies is an important quantity
to study. The following definition of one-shot (single run) secret key rate in the DD-CKA
scenario corresponds to the one implicitly used in Ref. [DBWH21].

Definition 12 (One-shot secret key rate in DD-CKA scenario, cf. Ref [AH09b, YHH+09]).
For any given state ρ(m)A ∈ B

(
H(m)A

)
let us consider a LOCC operation Λn such that

Λn
(
ρ⊗n

(m)A

)
= σn. We call Λn a ε-secure key distillation protocol from n copies of state ρ(m)A if

there holds

F
(
σn, γ

(m)
dn

)
≥ 1 − ε,(2.16)

where γ(m)
dn

is a multipartite pdit whose key part is of dimension d
(1)
n × · · · × d

(m)
n , and F (·, ·) de-

notes the fidelity between quantum states. For a Λn, its rate is given by

κεn

(
Λn(ρ⊗n

(m)A)
)

:= log2 dn
n

,(2.17)
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and the rate of ε-secure secure key distilled from n copies of state ρ(m)A, by protocols satisfying
the above security condition, is given by

K
(n,ε)
D (ρ(m)A) := sup

Λn∈LOCC
κεn

(
Λn(ρ⊗n

(m)A)
)
.(2.18)

Finally, the one-shot ε-secure secret key is defined as

Ks,ε
D (ρ(m)A) := K

(1,ε)
D (ρ(m)A).(2.19)

Eventually, let us remark that the following relation holds between asymptotic and one-shot
DD-CKA secret key rates, namely

K
(m)
D (ρ) = inf

ε>0
lim sup
n→∞

K
(n,ε)
D (ρ),(2.20)

where m denotes the number of honest parties. The Definition 12 is written in the LOCC
paradigm, and the security condition is based on the fidelity between quantum states. On the
contrary, the Definition 11 is given in the LOPC paradigm where the security condition is based
on the trace norm. The relation in Eq. (2.20) follows from the equivalence between LOCC and
LOPC paradigms [HHHO09] and Fuchs-van de Graaf inequalities [FvdG99].

In the device-independent conference key agreement scenario (DI-CKA), the N honest parties
are assumed to share an untrusted device, described with input-output statistics {p(a|x)}a|x

originating from tensor product POVM (positive operator-valued measure) measurements
M ≡ {Mx1

a1 ⊗ Mx2
a2 ⊗ . . . ⊗ MxN

aN
}a|x on quantum state ρN(A), i.e., a pair (ρN(A),M). Here,

N(A) ≡ A1 . . . AN , where Ai refers to the subsystems of the i-th party, and x := (x1, x2, . . . , xN )
and a := (a1, a2, . . . , aN ) refer to the inputs and outputs of the honest parties, respectively.
The attack strategy of the adversary is to replace a device (ρN(A),M) with another device
(σN(A),N ) which yields the same attack statistics as the honest one. The power of the adversary
is restricted then to the laws of quantum theory, and therefore, the adversary may hold the
purifying system of σN(A), i.e., the E subsystem of the joint state |ψσ〉N(A)E . We further omit
writing subscripts like N(A) in places in which it does not lead to any confusion.

Consider the following relations that are a basis for two different security conditions in the
DI-CKA scenario, i.e., “par” and “dev” definitions.

(ρ,M) ≈ε (σ,N ),(2.21)

ω(ρ,M) ≈ε ω(σ,N ),(2.22)

Perr(ρ,M) ≈ε Perr(σ,M),(2.23)

where ω(ρ,M) is the level of violation of some (chosen by honest parties) multipartite Bell
inequality, and Perr(ρ,M) is quantum bit error rate (QBER). Furthermore, relation in Eq. (2.21)
means that two input-output statistics p and p′ originating from devices (ρ,M) and (σ,N )
respectively, satisfies

(2.24) d(p, p′) = sup
x

∥∥p(·|x) − p′(·|x)
∥∥

1 ≤ ε.
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We restrict ourselves to the definitions of the DI-CKA secret key rates in the independent
and identically distributed (iid) setting. See Definition 12 for the meaning of κεn.

Definition 13 (Of “dev” iid DI-CKA secret key rate, cf. Ref [CFH21]). The (multipartite)
device-independent quantum key distillation rate of a device (ρ,M) with independent and
identically distributed behavior is defined as

(2.25) Kiid
DI,dev(ρ,M) := inf

ε>0
lim sup
n→∞

sup
P̂

inf
(2.21)

κεn

(
P̂
(
(σ,N )⊗n)) ,

where κεn is the rate of a key distillation protocol P̂ producing ε-secure output, acting on n copies
of the state σ, measured with N . Here P̂ is a protocol composed of classical local operations
and public (classical) communication (CLOPC) acting on n identical copies of (σ,N ) which,
composed with the measurement, results in a quantum local operations and public (classical)
communication (QLOPC) protocol.

Definition 14 (Of “par” iid DI-CKA secret key rate, cf. Ref. [AFL21]). The (multipartite)
device-independent quantum key distillation rate of a device (ρ,M) with independent and
identically distributed behavior, Bell inequality violation ω(ρ,M), and QBER Perr(ρ,M) is
defined as

Kiid
DI,par(ρ,M) := inf

ε>0
lim sup
n→∞

sup
P̂

inf
(2.22),(2.23)

κεn

(
P̂
(
(σ,N )⊗n)) .(2.26)

Definition 15 (Of single-shot DI-CKA secret key rate, cf. Ref. [HWD22]). The single-shot
device-independent quantum key distillation rate of a device (ρ,M) with independent and
identically distributed behavior is defined as

(2.27) Ksingle−shot
DI,dev (ρ,M, ε) := sup

P̂
inf

(2.21)
κεn

(
P̂(σ,N )

)
,

where κεn is the quantum key rate achieved for any security parameter ε and measurements N .
Here P̂ is a protocol composed of classical local operations and public (classical) communication
acting on a single copy of (σ,N ) which, composed with the measurement, result in local quantum
operations and public (classical) communication protocol.

Definition 16 (Of the reduced DD-CKA secret key rate, cf. [CFH21, HWD22]). The reduced
device-dependent conference key rate of an N -partite state ρN(A) reads

K↓(ρN(A)) := sup
M

inf
(σN(A)),L)=(ρN(A),M)

KDD(σN(A)).(2.28)

In the Definition 16 above, KDD correspond to K(N)
D in Definition 11. The reduced DD-CKA

secret key rate is an important upper bound on the iid DI-CKA secret key rate [CFH21].
In the non-signaling device-independent secret key agreement scenario (NSDI), the two

honest parties share N copies of the non-signaling probability distribution (non-signaling device)
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P (AB|XY ), being the aforementioned resource, where X and Y denote the inputs and A and
B correspond to outputs of the honest parties. In the NSDI scenario, the eavesdropper is
limited solely with the no-signaling conditions [Bar07] and possesses an extending system of the
device P (AB|XY ). The device shared by all three parties is, therefore, described with tripartite
conditional probability distribution Q(ABE|XY Z), which has N copies of P (AB|XY ) as
its marginal state. Here, E and Z denote the output and input of the system held by the
eavesdropper. Moreover, Q(ABE|XY Z) can exhibit a supra-quantum correlation between its
subsystems [PR94]. In the considerations in Ref. [WDH22], we assume that the extension held
by the eavesdropper is the non-signaling complete extension (NSCE) of N independent and iden-
tically distributed (iid) copies of the device P (AB|XY ), i.e., E(P⊗N )(ABE|XY Z) [WDS+18]
(see also Sec. 2.6). From the perspective of the honest parties, the NSCE is the worst-case
extension the eavesdropper may use. This power is because NSCE allows access to all statistical
ensembles of the extended system via suitable measurement and processing on the extending
system [WDS+18].

We now provide the necessary definitions of MDLOPC operations, secret key distillation
protocol and ideal state, its security condition, and the secret key rate in the iid NSDI scenario.

Definition 17 (Of MDLOPC operations, cf. Ref. [WDH22]). The MDLOPC operation consists
of (i) direct measurement MF

x,y on inputs X and Y of the honest parties, that changes the
device into a probability distribution, followed by (ii) arbitrary bipartite LOPC operations. Direct
measurement is a measurement that does not incorporate any external randomness on the
measured input.

Definition 18 (Of the MDLOPC protocol in the iid NSDI scenario, cf. Refs. [HRW10, WDH22]).
A protocol of key distillation is a sequence of MDLOPC operations Λ ≡ {ΛN}, performed by the
honest parties on N iid copies of the shared devices. Each of this ΛN , consists of a measurement
stage {MN}, followed by post-processing {PN}, on N iid copies of P (AB|XY ). Moreover, for
each consecutive, complete extension of N copies of shared devices E(P⊗N )(ABE|XY Z), the
protocol outputs a probability distribution in part of Alice and Bob and a device in part of Eve,
which is arbitrarily close to an ideal distribution, and satisfies

||Pout − P
(dN )
ideal ||NS ≤ εN

N→∞−→ 0,(2.29)

P
(dN )
ideal (sA, sB, q, e|z) := δsA,sB

|SA|
∑
s′

A,s
′
B

Pout(s′
A, s

′
B, q, e|z).(2.30)

Here, Pout = ΛN
(
E
(
P⊗N

))
, and random variables SA, SB and Q correspond to the keys of

the honest parties and communication respectively. Moreover, A = A1A2 . . . AN , B, X and Y

are similarly defined.

In the Definition 18 above ‖·‖NS denotes the non-signaling norm described in Sec. 2.5 (see
also Ref. [WDH22]).
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Definition 19 (Of the secret key rate in the iid NSDI scenario, cf. Ref. [WDH22]). Given a
bipartite device P ≡ P (AB|XY ) the secret key rate of the protocol of key distillation ΛN , on N

iid copies of the device, denoted by R (Λ|P ) is a number lim supN→∞
log dN
N , where log dN is the

length of a secret key shared between Alice and Bob, with dN = dimA
(
ΛN

(
E
(
P⊗N

)))
≡ |SA|.

The device independent key rate of the iid scenario is given by

K
(iid)
DI (P ) = sup

Λ
R (Λ|P ) ,(2.31)

where the supremum is taken over all MDLOPC protocols {ΛN}.

In Ref. [WDH22], we show that the Definition 19 of the iid NSDI secret key rate is equivalent
in terms of security to the one present in the literature [MRC+14, Mas09, MPA11, HRW13,
HR10, HRW10, Hän10].

2.1.2.2 Key Repeater Rate

Quantum repeaters and quantum key repeaters [BDCZ98, DBCZ99, MATN15, CZC+21] are
devices that allow overcoming attenuation of (e.g., optical) signal, and decoherence of quantum
states, in order to entangle quantum systems separated by arbitrarily large distances. The idea
of quantum repeaters is based on the entanglement swapping protocol [BDCZ98], which is
performed inside a quantum repeater. In the simplest setup with one intermediate station denoted
here H, the joint measurement in “entangled” basis performed in central station H on subsystems
A′E′ of two initially uncorrelated but entangled quantum states ρAA′ and ρEE′ can create
entanglement between subsystems A and E that are spatially separated [BDCZ98, BDSW96].
The measurement outcome at hub station H is then communicated to stations A and E.
Importantly, quantum repeaters can be combined in chains that have an arbitrary number of
hub stations. Consequently, the distance at which entanglement can be created increases. The
idea of quantum key repeaters generalizes the concept of quantum repeaters. The task of a
quantum key repeater is to distill private states (see Sec. 2.1.1.1) between stations A and E

using tripartite LOCC operations among nodes A, E, and H. The communication between the
central station H and stations A and E can be considered both one- and two-way. The rate of
a quantum key repeater is defined as follows
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Definition 20 (Of quantum key repeater rate, cf. Ref. [BCHW15, CF17]). The quantum key
repeater rate with respect to arbitrary tripartite LOCC operations among A, E and H is defined
as follows

RA↔H↔E(ρ, ρ′) := lim
ε→0

lim sup
n→∞

sup
ΛLOCC

n ,γdk,ds

{ log dk
n

: trH ΛLOCC
n ((ρ⊗ ρ′)⊗n) ≈ε γdk,ds

}
,

(2.32)

where Adam and Hub share state ρ while Hub and Eve share ρ′. Λ :=
{

ΛLOCC
n

}
are tripartite

LOCC protocols with two-way classical communication between nodes H, A, and E. In the case
in which communication between central node and A,E systems is restricted to one-way from
H to A and E, we denote this rate with RH→A:E.

In the above definition, γdk,ds refers to a private state distilled in a quantum key repeater
(see Sec. 2.1.1.1).

2.1.3 Quantum Channels

Quantum channels, also known as quantum operations, are the most general form of transfor-
mations between quantum states (see Ref. [NC00] in this context). The (memoryless) quantum
channel can be defined as follows

Definition 21 (Of quantum operations, aka quantum channels, cf. Ref [NC00]). Let D(H)
and D(H′) define the set of density operators acting on two arbitrary Hilbert spaces H and H′,
respectively. Any completely positive and trace preserving (CPTP) linear map Λ : D(H) → D(H′)
is called a quantum operation (quantum channel).

In Ref. [DBWH21] (see also Sec. 2.3), we specify the use of quantum channels in situations
concerning conference key agreement, in which the spatial distribution of the subsystems after
the action of a quantum channel does not correspond to the initial distribution. We distinguish
the roles of the senders and receivers Aa, senders Bb, and receivers Cc. We call such types of
quantum channels multiplex quantum channels. In the following definition, we use a notation
in which #»

X ≡ X1 . . .XK , where K is the number parties of type X ∈ {A,B,C}.

Definition 22 (Of multiplex quantum channel, cf. Ref. [DBWH21]). Consider multipartite
quantum channel N # »

A′ #»
B→ #»

A
#»
C

where each pair A′
a, Aa is held by a respective party Aa and each

Bb, Cc are held by parties Bb,Cc, respectively. While Aa is both sender and receiver to the
channel, Bb is only a sender, and Cc is only a receiver to the channel. Such a quantum channel
is referred to as the multiplex quantum channel. Any two different systems need not be of the
same size in general.
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In principle, multiple uses of multiplex quantum channel interleaved by LOCC can sim-
ulate a wide range of QKD protocols, which are secure in the sense of the device-dependent
paradigm. It is, therefore, useful to quantify conference key agreement rates achievable with
particular multiplex quantum channels. The formal description of LOCC-assisted conference
key agreement protocol over a multiplex quantum channel N # »

A′ #»
B→ #»

A
#»
C

and the definition of
secret-key-agreement capacity P̂LOCC(N ) of quantum channel N # »

A′ #»
B→ #»

A
#»
C

are provided in Sec. 2.3
(see also Ref. [DBWH21]). The same concerns the definition of cppp-assisted (one-shot) secret-
key-agreement capacities P̂ (1,ε)

cppp of multiplex quantum channels. Here, cppp refers to classical
preprocessing and postprocessing, which are operations employed in the protocol.

2.1.4 Entanglement and Genuine Entanglement

The presence of entanglement in quantum theory is one of the basic features that differentiate
quantum theory from the classical theory of Nature. It was already observed by A. Einstein,
B. Podolsky, N. Rosen [EPR35] and E. Schrödinger [Sch35] that systems described with
entangled quantum states exhibit correlations that can not be explained with the classical
theory of probability. The discussion about the meaning of quantum entanglement in modern
physics is beyond the scope of this dissertation (see Ref. [HHHH09]). The entangled quantum
states are defined as states that are not fully separable, i.e.,

Definition 23 (Of fully separable and entangled states, cf., e.g., Ref. [AH09b]). If a N -partite
quantum state ρN(A), where N(A) = A1 . . . AN , can be written as a convex combination of
tensor product of states ρ(i)

Aj
of individual subsystems

ρN(A) =
∑
i

piρ
(i)
A1

⊗ · · · ρ(i)
AN
,(2.33)

then we call it a full separable state. All separable states constitute a set of fully separable states
(FS). All other states are entangled.

We remark here, that operationally entangled quantum states are quantum states that can
not be papered with (multipartite) LOCC operations. In the bipartite setting the set of (fully)
separable states is denoted SEP, and called the set of separable states.

According to Definition 23 a quantum state of the form ρA1 ⊗ σA2A3 is entangled, if and
only if, σA2A3 is entangled. However, system A1 is not entangled with subsystems A2 and A3.
Indeed, it is “biseparable” as it is of product form in (at least) one “cut” between its subsystems.
It is, therefore, convenient, also from the cryptographic perspective, to define quantum states
in which each subsystem Ai is entangled with any other subsystem A 6=i or collection of them
A6=i . . . A

′
6=i.
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Definition 24 (Of biseparable state, cf. Ref. [HHHH09, DBWH21]). If a N -partite quantum
state ρN(A) can be written as a convex combination of N -partite states that are separable with
respect to at least one partition of its subsystems

ρN(A) =
∑
i

piρ
(i)
Ki(A) ⊗ ρ

(i)
Mi(A), Ki +Mi = N,(2.34)

then we call it a biseparable state. All separable states constitute a set of biseparable states (BS).
All other states are genuine entangled (GE).

In the Definition 24, the word genuine emphasizes that the state therein, indeed, can not
be prepared by LOCC without the resource of N -partite entangled pure states. In this place,
we remark that the sets of fully separable (FS) and biseparable (BS) states are convex sets.
However, the set of biseparable states is not closed under the tensor product. The subset of
biseparable states that is closed under the tensor product is called the set of tensor-stable
biseparable states and is defined as follows

Definition 25 (Of tensor-stable biseparable states, cf. Ref. [PdV22, DBWH21]). If any tensor
power of some biseparable sate ρN(A) is a biseparable state, i.e.,

∀n≥1 ρ⊗n
N(A) ∈ BS,(2.35)

we call the state ρN(A) tensor-stable biseparable state.

2.1.5 Nonlocality and Genuine Nonlocality

Nonlocality is a notion that refers to the violation of Bell inequalities by quantum sys-
tems [BCP+14]. In analogy to the case of the theory of entanglement (see Sec. 2.1.4), one
can define the notions of local and genuine nonlocal quantum behaviors within the theory of
nonlocality [BCP+14]. Quantum behaviors P (a|x) are conditional probability distributions
that originate from measurement on quantum states (see Secs. 2.1.2.1 and 2.4 for more details).

Definition 26 (Of behavior local in a “cut”, cf. Ref. [HWD22]). We say that N -partite behavior
P (a|x) is local in a cut (Ai1 . . . Aik) : (Aik+1 . . . AiN ) for some k ∈ {1, . . . , N}, if it can be
written as a product of two behaviors on systems Ai1 ..Aik and Aik+1 . . . AiN , respectively, i.e.,

P (a|x) = P1,k(ai1 . . . aik |xi1 . . . xik) ⊗ Pk+1,N (aik+1 . . . aiN |xik+1 . . . xiN ),(2.36)

for (i1, . . . , iN ) being some permutation of indices (1, . . . , N)

There are various definitions of locality of behaviors in multipartite case [BCP+14]. In
Ref. [HWD22] we use the following definition of locality.

Definition 27 (Of locally quantum behaviors, cf. Ref. [BCP+14, HWD22]). The locally
quantum behaviors are convex mixtures of behaviors that are a product in some cut and both
behaviors in the product have quantum realization.
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The class of locally quantum behaviors in Definition 27 falls between the so-called TOBL
and NSBL classes in Ref. [GWAN12] (see also Ref. [Sve87, BCP+14]). Definition 27 of locally
quantum behaviors induces the following definition of genuinely nonlocal quantum behaviors

Definition 28 (Of genuinely nonlocal quantum behaviors, cf. Ref. [HWD22]). The behavior
P (a|x) is genuinely nonlocal if and only if it is not locally quantum, i.e., it is not a mixture of
behaviors that are a product in at least one cut and have quantum realizations.

2.1.6 Generalized Probabilistic Theories

The framework of generalized probabilistic theories (GPTs) [Har01, Bar07] is a formalism
that describes the operational predictions of essentially arbitrary conceivable physical theories.
In particular, the quantum theory, the classical probabilistic theory, and the theory of non-
signaling behaviors (see Sec. 2.1.6.2) are known examples of theories that can be described and
systematically studied within the framework of GPTs. Each generalized probabilistic theory
(GPT) is defined by some set of postulates, the implications of which can be methodically
investigated within the framework of GPTs. As discussed in Sec. 2.6 here, the framework of
GPTs can help in finding the future theory of Nature that would be more fundamental and
have greater explanatory power than the quantum theory. See Refs. [Plá21, Mül21, Lam18] for
a more insightful introduction to the framework of GPTs.

2.1.6.1 Generalized Probabilistic Theories in a Nutshell

The primitive building blocks of any GPT, G are the systems, denoted A,B, ... ∈ Syst[G], that
are equipped with an associative bilinear composition rule ⊗ : Syst[G] × Syst[G] → Syst[G]
which allow constructing composite systems out of the systems. Each system A is described
as a vector in finite-dimensional real vector space VA. In this place, we note that VA⊗B is not
necessarily equal to VA ⊗ VB. The equality holds only under the assumption of tomographic
locality [Har01]. The convex, compact, and closed set ΩA ⊂ VA describes the state space for
the system A. Moreover, ΩA must have an affine dimension at least one less than the linear
dimension of the vector space such that the affine span of ΩA does not intersect with the origin.
One can also define the convex state cone KA := {rs|r ∈ R

+, s ∈ ΩA} which includes also
subnormalised (r < 1), normalized (r = 1) and supernormalised (r > 1) states.

Let V ∗
A be the dual vector space to VA, i.e., the vector space of all linear functionals on VA. A

specified proper convex subset EA of V ∗
A, i.e., EA ⊂ V ∗

A, describes the effect space for the system
A. The subset EA is assumed to be full dimensional (with respect to V ∗

A), compact and closed.
The effects e ∈ EA assign probabilities to measurement outcomes whenever the measurement is
performed on an arbitrary state s ∈ ΩA, they, therefore, must satisfy e(s) ∈ [0, 1]. The effect
space EA contains also the unique unit effect uA ∈ EA which is defined as uA(s) = 1 for all
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s ∈ ΩA. The uniqueness of the unit effect is built into the setup of the GPTs framework (see
Ref. [CDP10] for an alternative approach).

In analogy to the case of GPT systems, both state and effect spaces are equipped with
an associative composition rule, ΩA ⊗ ΩB := ΩA⊗B, EA ⊗ EB := EA⊗B and uA ⊗ uB :=
uA⊗B. This composition is assumed to be bilinear, and satisfy e⊗ f(s⊗ t) = e(s)f(t) for all
e ∈ EA, f ∈ EB, s ∈ ΩA and t ∈ ΩB. The conditions above allow unambiguously defining
a kind of “partial trace”. Consequently, they ensure that a GPT satisfies the no-signaling
principle [CDP10, Coe14, KHC17] (see also Sec. 2.1.6.2). We remark here that, in general, ⊗ is
not the tensor product of vector spaces. The symbol “⊗” is used in analogy to the notation of
the tensor product in composing quantum systems.

Given any two GPT systems A and B, there is a space of transformations T B
A from system

A to system B. The space of transformations forms a closed compact and convex set. There are
two associative composition rules for transformations that are relevant (i) parallel composition,
T B
A ⊗ T D

C := T B⊗D
A⊗C , and (ii) sequential composition, T C

B ◦ T B
A := T C

A . Both composition rules
are bilinear and must satisfy the condition that (T1 ⊗ T2) ◦ (T3 ⊗ T4) = (T1 ◦ T3) ⊗ (T2 ◦ T4).
States can be viewed as transformations with the trivial input system, denoted ?, and effect as
transformations with trivial output. The trivial system ? is a unit of system compositions, i.e.,
A⊗ ? = A = ?⊗A. Consequently, one can write that ΩA = T A

? and EA = T ?
A . Finally, there is

also an identity transformation 1A which for every T : A → B must satisfy 1B ◦T = T = T ◦1A.

Withing the framework of GPTs, it is convenient to work with the convention in which
every GPT contains classical systems, denoted ∆I . These systems are used as registers in
which measurement outcomes can be stored, and which control variables of “experiments”
can be encoded [GS18, SSC21]. Let ∆I be a classical system which corresponds to outcome
degree of freedom on some measurement device where I labels the set of possible outcomes.
Then, vector space V∆I

corresponds to the real vector space RI of real-valued functions from
I → R. Consequently, the state space Ω∆I

is the space of probability distributions over I, i.e.,
real-valued functions p : I → R such that p(i) ∈ [0, 1] and ∑i p(i) = 1 for all i ∈ I. In fact,
geometrically Ω∆I

is a simplex in which the elements of I label the vertices. Furthermore,
the vertices correspond to delta function probability distributions δi. The effect space E∆I

is
the vector space dual to V∆I

. However, due to the Riesz representation theorem via the inner
product ∑i∈I f(i)g(i), the effects can be seen as the elements of RI . In this representation, the
effects correspond to functions e : I → R such that e(i) ∈ [0, 1]. Geometrically, the set of such
functions forms a hypercube that contains the simplex of states. In Ref. [WDS+18], we denote
the vertices of the simplex (when interpreted as effects via the Riesz representation theorem)
with εi, then εi(δj) = ∑

k∈I δi(k)δj(k) = δij . The classical systems compose, therefore, via
∆I ⊗ ∆J := ∆I×J . In consequence, the transformations between classical systems are stochastic
linear maps. Moreover, an important property of classical theory is that identity transformations
1∆I

can be expanded as ∑i∈I δi ◦ εi. Consequently, any measurement M : A → ∆I must satisfy
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M = 1∆I
◦M = ∑

i∈I δi ◦ εi ◦M . Now, because, ei := εi ◦M ∈ T ?
A = EA one can reexpress the

above 1∆I
as ∑i∈I δi ◦ ei. Therefore, it is possible to construct an isomorphism between (i)

measurements as a collection of effects and (ii) measurements as transformations to a classical
system.

2.1.6.2 The Theory of Non-Signaling Behaviors

The theory of non-signaling behaviors (aka the Box-world theory) is an instance of a generalized
probabilistic theory (GPT) based on the no-signaling principle wherein the states are multipartite
conditional probability distributions PA|X called behaviors, which satisfy the so-called no-
signaling conditions [Bar07, PR94]. Here, X ≡ X1X2 . . . XN and A ≡ A1A2 . . . AN refer
to the inputs (measurement choices) and outputs (measurement outcomes) of N parties,
respectively. Importantly, not all non-signaling behaviors have quantum realizations. The theory
of non-signaling behaviors exhibits stronger correlations between subsystems than quantum
theory and saturates the algebraic maximum of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [PR94]. The no-signaling principle that prohibits instantaneous communication
(faster-than-light communication, colloquially) between spatially separated subsystems yields
the no-signaling conditions on the behaviors PA|X. In what follows, we refer to the systems
described with the theory of non-signaling behaviors as to the non-signaling devices (see also
Sec. 2.5). In the bipartite setting, the no-signaling conditions and non-signaling behaviors are
defined as follows

Definition 29 (Of bipartite non-signaling behaviors, cf. Ref. [Bar07, BCP+14]). Let PAB|XY

be a behavior describing a bipartite device. If the following so-called no-signaling conditions hold

∀a,x,y,y′ PA|X(a|x) =
∑
b

PAB|XY (ab|xy) =
∑
b

PAB|XY (ab|xy′),(2.37)

∀b,x,x′,y PB|Y (b|y) =
∑
a

PAB|XY (ab|xy) =
∑
a

PAB|XY (ab|x′y),(2.38)

we call PAB|XY a non-signaling behavior, and PA|X(a|x) , PB|Y (b|y) the marginal distributions
of A and B respectively.

The Definition 29 of the no-signaling conditions and non-signaling behaviors can be readily
extended to the multipartite setting.
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Definition 30 (Of N -partite non-signaling behaviors, cf. Ref. [HRW10, HGJ+15]). Let PA|X

be a behavior describing a N -partite device, where A ≡ A1A2 . . . AN and X ≡ X1X2 . . . XN are
the outputs and inputs of N parties, respectively. If the following, condition hold

∀1≤i≤N,a6=i,x6=i∀xi,X′
i
PA6=i|X 6=i(a6=i|x 6=i) =

∑
ai

PA|X(a|x 6=i, xi) =
∑
ai

PA|X(a|x 6=i, x′
i),(2.39)

where a6=i ≡ a1 . . . ai−1ai+1 . . . aN and mutatis mutandis, for A 6=i, x 6=i and X 6=i. We call PA|X

a N-partite non-signaling behavior, and PA 6=i|X6=i(a 6=i|x 6=i) the marginal distribution of A 6=i

subsystem.

The no-signaling condition in Definition 30 above implies that the no-signaling principle is
satisfied between any two subsets of parties sharing a non-signaling device [HRW10].

The state spaces in the theory of non-signaling behaviors are non-signaling polytopes [Bar07].
A polytope is a multidimensional (to dimensions greater than 3) generalization of the notion of
polyhedron. A convex polytope is a convex hull of a finite number of points in some real vector
space. The set of all N -partite non-signaling behaviors {PA|X} with mi being the number
of inputs of i-th party, and vij being the number of outputs for the j-th input, is a proper
subspace of Rt, where t = ∏N

i=1
∑mi
j=1 vij is the total number of outputs in the behavior [Pir05].

Generally, the polytope of N -partite non-signaling behaviors is the set of all behaviors that
satisfy the no-signaling conditions in Definition 30. For the sake of Sec. 2.6 we provide a more
insightful definition of non-signaling polytopes.

Definition 31 (Of non-signaling polytope, cf. Ref. [Pir05, ELS06, WDS+18]). Let x ≡
(pijk)

i=N,j=mi,k=vij

i=1,j=1,k=1 be a vector in a real vector space Rt corresponding to the outputs of some
N -partite behavior PA|X, where mi is the number of inputs of i-th party, and vij is the number
of outputs for the j-th input, and t = ∏N

i=1
∑mi
j=1 vij. The non-signaling polytope B is then a

convex region within Rt, i.e.,

B =
{
x ∈ Rt : Ax ≤ b

}
,(2.40)

where A is an h× t matrix of reals and let b ∈ Rm be a real vector, if and only if A and b encode
(i) probabilistic constraints, i.e., 0 ≤ pijk ≤ 1, (ii) normalization constraints, i.e., ∑vij

k pijk = 1,
(iii) non-signaling constraints (see Definition 30), that all together form h linearly independent
constraints. The dimension dim B of the polytope B is given by [Pir05]

dim B =
n∏
i=1

mi∑
j=1

(vij − 1) + 1

− 1.(2.41)

As it was noted in Ref. [PR94] (see also Refs. [Ras85]) the quantum theory is nonlocal but
not maximally. Namely, there exist non-signaling behaviors that exhibits stronger violations of
CHSH inequalities than allowed by quantum theory [Cir80].
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Definition 32 (Of Popescu-Rohrlich (PR) boxes, see Ref. [PR94]). The Popescu-Rohrlich (PR)
box or PR behavior, and anti-PR behavior PR are bipartite conditional probability distributions
defined as follows

PRAB|XY (ab|xy) =
{

1/2 if a⊕ b = xy

0 otherwise,
,(2.42)

PRAB|XY (ab|xy) =
{

1/2 if a⊕ b = xy ⊕ 1
0 otherwise,

(2.43)

Alternatively, in form of input-output probability tables, the PR and PR are explicitly expressed
as follows

PRAB|XY (ab|xy) =

x 0 1

y
b

a 0 1 0 1

0
0 1

2 0 1
2 0

1 0 1
2 0 1

2

1
0 1

2 0 0 1
2

1 0 1
2

1
2 0

,(2.44)

PRAB|XY (ab|xy) =

x 0 1

y
b

a 0 1 0 1

0
0 0 1

2 0 1
2

1 1
2 0 1

2 0

1
0 0 1

2
1
2 0

1 1
2 0 0 1

2

.(2.45)

The PR and anti-PR boxes in Definition 32 are extreme points in the polytope of bipartite
devices with two binary inputs and two binary outputs (for each input) behaviors, i.e., (2,2,2,2)
behaviors. Furthermore, they reach the algebraic maximum for the CHSH inequality and
consequently do not have quantum realizations [Cir80]. In Ref. [WDH22], we refer to the convex
mixtures of the PR and anti-PR behaviors as to isotropic behaviors.

Definition 33 (Of isotropic non-signaling behaviors, cf. Ref. [BCP+14, WDH22]). The isotropic
behaviors Piso(ε) are defined as probabilistic mixtures, i.e., convex combinations, of PR and PR
behaviors

Piso(ε) := (1 − ε)PR + εPR,(2.46)

for any ε ∈ [0, 1].
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Finally, we remark that the (2,2,2,2) polytope PHRW of bipartite binary input-output
devices [HRW10, Hän10] studied by us in Ref. [WDH22] (see also Sec. 2.6) consists of 24 extremal
behaviors [BLM+05]. Among extremal behaviors, 16 are local or deterministic behaviors, and
the remaining 8 are nonlocal. The local behaviors are given by

Lαβγσ(ab|xy) =
{

1 if a = αx⊕ β, b = γy ⊕ σ

0 otherwise.
(2.47)

where α, β, γ, σ ∈ {0, 1}. And the nonlocal devices are

Brst(ab|xy) =
{

1/2 if a⊕ b = xy ⊕ rx⊕ sy ⊕ t

0 otherwise,
(2.48)

where r, s, t ∈ {0, 1}.
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2.2 Hybrid Quantum Network Design Against Unauthorized
Secret-Key Generation, and Its Memory Cost [A]

In the first article [SWRH20], we notice a possible vulnerability of the future Quantum Internet
designs [DBCZ99, MLK+16, ZPD+18, WEH18] and propose a countermeasure to it. In this
way, we first design a rerouting attack on the classical parts (classical computers) of the devices
that would constitute the Quantum Internet and discuss the possible consequences for the
Quantum Internet service provider [SNS+21]. The introduced countermeasure is based on the
hybrid quantum network design, which employs the fact that quantum security is not always
transitive, i.e., there exist so-called nonrepeatable secure states [BCHW15, CF17]. Namely, our
secure network scheme employs quantum states that possess directly accessible secret key but
small amount of repeatable key, i.e., specific kinds of private and positive partial transpose
(PPT) states (see Sec. 2.1.1). We refer to the difference between the secret and repeatable
keys of a state as to the gap of the scheme for which we find lower bounds. Moreover, we
show an example of a quantum state for which the gap of the scheme is strictly larger than
zero. Application of the countermeasure brings an expense in terms of the required amount of
quantum memory, i.e., the memory overhead. Consequently, we study the performance of our
solution quantitatively in terms of lower bound on the amount of quantum memory needed to
apply the proposed scheme.

In parallel to the advances in quantum computing that is about to enter the so-called
NISQ (noisy intermediate scale quantum) era [Pre18], a great effort has been put into the
development of the so-called Quantum Internet [DBCZ99, MLK+16, ZPD+18, WEH18] in
which qubits rather than the classical bits would be exchanged between NISQ processing
units. The main advantage of the future Quantum Internet would be its inherent security of
the sent signals guaranteed by the laws of physics [Wie83, BB84]. In the first generation of
the Quantum Internet [MLK+16], the security would be based on the quantum correlations
called entanglement and their beneficial property of transitivity. Namely, two disconnected
nodes of the network can obtain a mutual, unconditionally secure connection if only they share
maximally entangled states with a common node. This outcome is achieved via performing the
so-called entanglement swapping protocol [ŻZHE93, BBP+96], which allows for the initially
disconnected nodes to share the maximally entangled state after the protocol is executed. On
the other hand, the monogamy of quantum correlations reflected in the no-cloning theorem
[WZ82] guarantees the secrecy of the newly established link. By these means, an extensive
network of nodes that can perform the entanglement swapping protocol (quantum repeaters
[DBCZ99], see also Sec. 2.1.2.2) connecting the end-nodes (end-users) is about to establish the
first generation of the Quantum Internet in the near future [WEH18].
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Figure 2.1: Design of the hybrid quantum network [SWRH20]. Thin green lines represent the
connections between end-users and the hubs. In these, only classical data can be transferred.
Thick orange lines represent the connection between the hubs being the routing nodes. In
these lines also, quantum states can be transmitted. Shaded green lines connect the hub node
with two end-users communicating classical data with the former. The selected region is the
star-shaped network we focus on in our considerations.

As we discuss in the article, the new quantum technology that would come in the form of the
Quantum Internet would not only allow for new possibilities but would also open new threats
unknown from the era of the classical Internet [SNS+21]. In order to exemplify the possible
danger, we focus on the quantum network with a star-shaped topology, i.e., a single, centrally
placed quantum repeater (the hub node) connected to multiple end-users (end nodes) Ei with
i ∈ [1, 2, ..., N ] (see Fig. 2.1). The secure connections in the network are established due to
entangled states shared between the hub and each end-user. Moreover, the hub is a processing
unit with a classical and possibly a quantum computer inside. The critical observation is that if
the network is based on pure entanglement (e.g., maximally entangled states), then the topology
of the network can be altered by performing the entanglement swapping protocol incorporating
the hub and two end-users (see Fig. 2.2). The described situation realizes the so-called rerouting
attack [SNS+21]. In this manner, we consider a situation in which two malicious end-users, call
them Adam and Eve, perform a Trojan horse attack on the classical computer of the hub by
installing malware (malicious software) on it. In this way, Adam and Eve take control over the
functions of the central (hijacked) node of the network, and, via the entanglement swapping
protocol, they change the topology of the network into a (locally) disconnected graph. Therefore,
Adam and Eve gain access to unconditionally secure communication with each other illegally,
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Figure 2.2: The main idea of the proposed attack [SWRH20]: (a) the hub shares pure entangled
states with end users Ei, Eve and Adam, amongst others. Adam and Eve can attack the hub
via malware which makes the hub perform the entanglement swapping protocol in their favor.
(b) The malicious users share an entangled state after a successful attack.

i.e., without permission and at the cost of the owner of the hub. Another possibility is when
the dishonest administrator of the hub sells the connections by themselves on the expense of
the owner. In both situations, any physical resources needed for the functioning of the hub
(e.g., energy) would be stolen. In the article, we focus on the former situation of the Trojan
horse attack and study cases in which the hijacked node can perform the three-party classical
communication but also when the communication is limited to one-way from the central node
to the hackers.

We further propose a countermeasure to the above threat based on the recently proved
no-go theorem (impossibility) [BCHW15]. Namely, there exist quantum states that allow for
point-to-point security of classical data against a quantum adversary, and in spite of this
fact, they can not be effectively used in quantum key repeaters [BCHW15]. The results in Ref.
[BCHW15] show that quantum security is not always transitive, i.e., for certain states, call
them nonrepeatable secure quantum states when an agent in node A has a secure link (via
state ρ) with an agent in node B, and B has a secure link with an agent in node C, there is no
possibility to (efficiently) create a link with non-negligible security between A and C with the
help of B via three-partite local quantum operations and classical communication (3-LOCC),
that is protected against B as well (see Fig. 2.3). The above feature can be realized with
certain bound entangled states [HHH98] (from which pure entanglement can not be distilled via
local operations and classical communication [BDSW96]). Moreover, highly noisy private states
[HHHO05] also fit the above scheme in the case of 3-way and one-way classical communication
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for node B to nodes A and C (with nodes A and C communicating freely) [BCHW15, CF17]. In
that way, we propose a specially designed hybrid quantum network that is more robust against
the aforementioned kind of attacks than the original design of a quantum network using solely
quantum repeaters. The hybrid design is based on both quantum repeaters, and special relay
stations called here hubs. Our approach applies in the scenario in which

(i) the hub nodes can be connected via quantum repeaters,

(ii) only classical data is transferred between the end nodes and the hub node,

(iii) the distance between the end nodes and the hub node is up to the distance achievable for
repeaterless quantum networks [TGW14a, PLOB17, TLWL18],

(iv) a single instance of the attack incorporates a single hub node and its two adjacent nodes

(v) hackers perform the “honest but curious” attack, which means that only the functioning of
the classical processor is altered by the malware, while the sensitive data remain unread.

The above scheme fits the realistic use of quantum-secure Internet, in which the end-users, as
in the traditional Internet, want to exchange anonymously classical data rather than quantum
states, but in a quantum-secure way. In this scheme, the role of the hub nodes is to provide the
registered users (end-nodes) access to the online services rather than to provide a connection
between the users. The examples of the possible application of the scheme considered in the
paper are online baking, data clouds, access to medical data from medical laboratories, online
shopping, and possibly many other applications in which the hub node takes a role similar to
the server in the traditional Internet.

As it is usually in real life, any good also comes indispensably with a price. In the above
scheme that implements the proposed countermeasure, the price is the number of qubits needed
to be stored and processed in the quantum memory of the nodes. Because, in the NISQ era,
there is no technology to store qubits coherently for a long time, the amount of quantum
memory used in the quantum network architecture is of primary importance. Therefore, in the
paper, we study the lower bounds on the memory cost of the implementation of the hybrid
quantum network in which every link is represented by the same quantum state ρ. Moreover, we
show that it can be realized with quite modest memory requirements. We quantify the memory
needed to realize the proposed scheme Sρ in terms of the memory overhead

(2.49) V (Sρ) := M(ρ)(1 − D(ρ)),

where M(ρ) is the total memory of the scheme based on quantum states ρ, and D(ρ) is the
density of the secure-key (cf. Refs. [BCHW15, HHHO09, BHH+14]), i.e., the ratio between the
distillable key of ρ and the number of qubits (of the memory at the hub-node) needed to store
the state ρ. The efficiency of the scheme is quantified by the difference between the amount of
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Figure 2.3: The main idea of the proposed countermeasure: (a) the connection between the
end-users Ei and the hub is realized with bound entangled states (each having nearly 1 bit of
secret-key at least), in particular, with Eve and Adam (shaded lines). No malware based on
LOCC can efficiently swap the key. (b) Eve and Adam can not share a state with a non-negligible
amount of the key (shaded red line).

the key that can be repeated R and the initial key in the link KD. The repeatable key in our
approach is the hackable one, so we want to diminish its amount while keeping the distillable
key KD possibly large. We call the difference between these two quantities (KD −R ≥ 0) the
gap of the scheme. Furthermore, we say that a scheme is (θ, η)-good when KD ≥ η but R ≤ θ

(assuming η > 0). The above notions were used for the assessment of the performance of the
scheme in terms of the number of qubits (or their percentage) intended in use solely for the
security of the scheme against the considered attack.

In the paper, we recognize that states especially useful for the realization of the scheme
proposed by us are, among others, the so-called private states [HHHO05, HHHO09, HĆRS18].
These states are equipped with secret-key directly accessible via measurement on the key part.
Moreover, private states can also possess a shielding part (shield) that is responsible for their
property of having a low repeatable key [CF17] (see also Secs. 2.1.1 and 2.1.2.2). The shield
protects the key but costs the quantum memory needed to implement it. Additionally, if the
shielding system of a private state does not possess any secrecy content we call such a private
state irreducible private state (denoted γ〈dk,ds〉, see also Sec. 2.1.1.1). Moreover, as we show in
the paper, the states having positive partial transpose (PPT states, see also Sec. 2.1.1.2) that
approximate private states prove their usefulness in the proposed anti-malware solution.

35



CHAPTER 2. SUMMARY OF DISSERTATION

For the quantitative results, we firstly derive a lower bound on the overhead of the (θ, log2 dk)-
good secure network scheme S→

γdk,ds
employing irreducible private states γdk,ds , and one-way

classical communication from the hub to the attacking end-nodes. The lower bound reads
(Theorem 1 in Ref. [SWRH20])

V
(
S→
γdk,ds

)
≥ ∆ log2(dkds)

1 − 1
2 − θ

log2 kk

 ≈θ≈0
1
2M(γdk,ds),(2.50)

where ∆ is the degree of the central node (hub) equal to the number of connections between
the hub and the end nodes. We observe that the requirement for the rate of the repeatable
key to be approximately zero implies that at least half of the memory must be spent on the
shielding system that protects the scheme. A similar result is proved for any quantum states
(Theorem 2 in Ref. [SWRH20]). In the latter case, we observe a general property of secure
schemes in which θ ≈ 0, i.e., at least half of the memory, must be spent to protect the scheme
and does not store the secure-key KD.

In the further part, we develop a lower bound on the memory overhead in the case of a
secure scheme that employs strictly irreducible private states γ〈dk,ds〉 hardly distinguishable
from their attacked versions γ̂〈dk,ds〉 [HĆRS18] (see Sec. 2.1.1.1). The degree to which a strictly
irreducible private state differs from its attacked version is quantified with the aid of the trace
distance for which we assume the following∥∥∥γΓ

〈dk,ds〉 − γ̂Γ
〈dk,ds〉

∥∥∥
1

≤ ε,(2.51)

where Γ stands for partial transpose. In this way, we show that special private states that satisfy
the above, and for which conditional shield states Xii are positive partial transpose operators,
i.e., XΓ

ii ≥ 0, satisfy ds ≥ dk−1
ε (Lemma 1 in Ref. [SWRH20]). Finally, we find a lower bound on

the overhead of the (θ, η)-good scheme (with one-way classical communication) which employs
strictly irreducible private states (Theorem 3 in Ref. [SWRH20]) which satisfy the condition in
Eq. (2.51) with separable conditional shield states (Xii ∈ SEP)

V
(
S→
γ〈dk,ds〉

)
≥ M

(
γ〈dk,ds〉

)(
1 − log2 dk

log2 dk + log2
dk−1
ε

)
≈ε→0 M

(
γ〈dk,ds〉

)
,(2.52)

for θ = 2 log2(1 + ε) ≈ε�1
2

ln 2ε and η = log2 dk. Here, the upper bound θ on the repeatable key
rate is due to Observation 2 in Ref. [SWRH20], and the lower bound η (saturated here) is due
to the properties of the strictly irreducible private states.

We observe that the parameter ε appears both in the formula for the lower bound on the
overhead and the upper bound on the repeater rate (see Eq. (2.52) and lines below it). Therefore,
one can not diminish the repeater rate to zero as desired while keeping the memory overhead
at a considerably low level. Instead, one should decide on an acceptable level of the repeater
rate for which the memory overhead is still reasonable. In this way, we identify low-dimensional
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examples of states for which such a tradeoff is controllable [HHHO05, DKDD+11]. The block
matrix representation of these states reads

Ωds = 1
2


I
d2

s
0 0 F

d2
s

0 0 0 0
0 0 0 0
F
d2

s
0 0 I

d2
s

 ,(2.53)

where F = ∑ds−1
i,j=0 |ij〉〈ji| is a matrix of swap quantum logic gate of dimension d2

s. In this way,
we find the first non-trivial case in which a secure network scheme has an advantage over
malicious parties. Namely, we show that already for ds = 3 case of Ωds , the gap between the
secure-key and repeatable key is strictly larger than zero.

The later results concern secure network schemes that employ positive partial transpose
(PPT) states ρ approximating private states and two-way classical communication. In Theorem 4
of Ref. [SWRH20], we derive a lower bound on the memory overhead in the case of PPT states
approximating strictly irreducible private bit (pbits, dk = 2). Without loss of generality, we
assume PPT states, of dimension d2

k×d2
s, are of the following form ρ = ∑dk−1

i,j,k,l=0 |ij〉 〈kl|⊗Aij,kl,
where Aij,kl are blocks of dimension d2

s. We obtain even more interesting results in the case of
the higher dimensions. Firstly, we show the following implication (Lemma 2 in Ref. [SWRH20])

‖ρ− γdk,ds‖1 ≤ ε =⇒ ds ≥
(
dk − 1
ε

)
(1 − εdk).(2.54)

The above implication has an important corollary, namely

‖ρ− γdk,ds‖1 ≥ dk − 1
ds + dk(dk − 1) .(2.55)

The above inequality not only holds for any dimension but, in the case of dk = 2 is tighter
than the known results [BHH+14, DKDD+11]. The above findings are the basis for our further
developments. In Proposition 2 of Ref. [SWRH20], we show (under some mathematical con-
ditions) an upper bound on the two-way repeater rate for PPT states approximating strictly
irreducible private dit (pdit, dk > 2). Finally, we derive a lower bound on the memory overhead
for a (θ, η)-good secure scheme involving two-way classical communication, and ρ ∈ PPT, such
that ||ρ − γ〈dk,ds〉|| ≤ ε for dk−1

ds+dk(dk−1) ≤ ε < 1
dk

, ∑i 6=j

∥∥∥AΓ
ij,ji

∥∥∥ ≤ ε, and its conditional shield
states are separable (Theorem 5 in Ref. [SWRH20])

V (Sρ) ≥ M(ρ)
(

1 − ε

2 − f(dk, ε)
)
,(2.56)

f(dk, ε) :=
log dk + (1 + ε

2)h(
ε
2

1+ ε
2
)

log dk + log
(
dk−1
ε

)
+ log(1 − εdk)

,(2.57)

with η = log dk − 8ε log dk − 4h(ε) (where h(.) is the binary Shannon entropy), and θ =
2 (

√
ε + ε) log dimH(ρ) + (1 + 2

√
ε + 2ε)h(

√
ε+ε

1
2 +

√
ε+ε). In Fig. 2.4, we illustrate the performance

of the lower bounds in Theorem 5 in Ref. [SWRH20] (here, Eq. (2.56) and lines below it).
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Figure 2.4: Sample results from Theorem 5. in Ref. [SWRH20]. Plots of lower bounds on
the memory overhead (left) and the gap of the (θ, η)-good secure scheme (right) for ρ ∈ PPT
approximating strictly irreducible private dit (pdit) γ〈dk,ds〉, such that

∥∥∥ρ− γ〈dk,ds〉

∥∥∥
1

≤ ε for
dk−1

ds+dk(dk−1) ≤ ε < 1
dk

, ∑i 6=j

∥∥∥AΓ
ij,ji

∥∥∥
1

≤ ε, for different values of the key part, i.e., dk.

All of the above results contribute either directly or indirectly to the analysis of the efficiency
of the hybrid quantum network design, as a countermeasure to the proposed rerouting attack,
in terms of its memory cost. Finally, we note that we close the problem of the threat in the form
of the malware attack proposed by us. Our findings fit the novel field of attacks on quantum
internet [SNS+21] (Ref. [SWRH20] was already cited therein). We believe our results can help
to design and construct the future Quantum-secure Internet that will meet the expectations of
the rapidly developing information-era society.
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2.3 Universal Limitations on Quantum Key Distribution over a
Network [B]

In Ref. [DBWH21], we consider the distribution of secret key over a network both in bipartite
and multipartite (conference) settings. Our primary achievement is establishing a unified
framework capable of providing case-specific upper bounds on the achievable rates in the
asymptotic and single-shot (single-use) regimes of device-dependent conference key agreement
(QDD-CKA). We aim to describe a general network setting. We do this by employing the idea
and framework of quantum channels. In a nutshell, any operation that transforms one quantum
state into another can be considered a quantum channel (see Sec. 2.1.3 for more details), with
unitary evolution or decoherence as prominent examples. In this way, we introduce the notion
of a multiplex quantum channel, which links an arbitrary finite number of honest parties. In a
multiplex quantum channel, each party can have the role of the sender to a channel, a receiver
from a channel, or both sender and receiver. Within this scheme, we define asymptotic and
single-shot (single-use) local operations and classical communication-assisted (LOCC-assisted)
conference key agreement (CKA) secret capacities for multiplex quantum channels. The results
of Ref. [DBWH21] consist of weak and strong converse (upper) bounds on the LOCC-assisted
SKA capacities of quantum channels. To achieve our goal, we first show that any output state
of a multipartite protocol distilling secret key amongst the honest parties must be genuinely
multipartite entangled. The protocols we consider manifest an adaptive strategy to the secret
key and entanglement distillation (in the form of private states and GHZ states, respectively)
over an arbitrary multiplex quantum channel. Therefore, the structure of the protocols we
consider is generic. In particular, our approach allows us to study the performance of quantum
key repeaters, measurement-device-independent quantum key distribution (MDI-QKD) setups,
or teleportation-covariant multiplex quantum channels. For the latter upper bounds on the SKA,
capacities are given in terms of the entanglement measures of their Choi states. The bounds
we provide are given in terms of the generalized relative entropies, the form of which has a
topology-dependent character. Moreover, our approach allows us to obtain upper bounds on the
rates at which tripartite Greenberger-Horne-Zeilinger (GHZ) states [GHZ89] can be distilled
from a limited number of copies of an arbitrary multipartite quantum state. Additionally, we
provide lower bounds on the SKA rate of a multiplex channel achievable in the sense of [DW05]
by classical preprocessing and postprocessing (cppp) as a generalization of [PGPBL09] and
show a non-trivial lower bound for a specific setup of a bidirectional quantum network.

Quantumly secure communication is one of the greatest promises of the Quantum Internet
that is currently in the design phase [DBCZ99, MLK+16, ZPD+18, WEH18, DM03, Kim08,
WEH18]. The formidable task of quantum communication over a network raises both fun-
damental and application-focused questions [BB84, Eke91, DM03, Ren05, CLL+09, VBD+15,
ZXC+18]. The development of the technology [HBD+15, PDK+19, BRA+19, CZC+21] together
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Figure 2.5: Pictorial illustration of multiplex quantum channel in Ref. [DBWH21]. The il-
lustration depicts the universal nature of multiplex quantum channels from which all other
(memoryless) quantum network channels arise. Here, red arrows represent the inputs, and green
arrows represent the outputs to channels. See section IIIB of Ref. [DBWH21] for more details.

with the concerns about privacy [Sho94, ZXC+18] create a need for designing protocols and
determining criteria for secure communication between multiple (trusted) parties in the net-
work [CL05, AH09b]. A complex structure of a quantum network consists of various quantum
channels, with possibly complex spatial alignment, due to environmental conditions. Moreover,
the exponential attenuation of the signal, which can not be amplified by cloning or broadcasting,
along an optical fibre [ATL15] and the difficulties in preserving entanglement for a long time
due to the interaction with the environment [BRA+19] make the task of building a network
even more complicated. On the other hand, the advancements in the technology of quantum
repeaters [BDCZ98, DBCZ99, MATN15, CZC+21] give hope to overcome these issues. Given
broad interest in the application of technologies such as quantum networks, quantum repeaters,
and measurement-device-independent QKD (MDI-QKD) protocol [LCQ12, BP12] makes the
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understanding of the fundamental limitations on the achievable key rates in the mentioned
scenarios an important task. The seminal papers [HHHO05, CW04] on secret key distillation
from states together with results in Refs. [BDSW96, VPRK97, VP98, HHH99, Dat09a] open a
pathway to studies in the mentioned direction, in the case of point-to-point LOCC-assisted
quantum channels [TGW14b, PLOB17, WTB17, CMH17]. Consequently, further progress
has been made in the restricted network settings, for example, the case of quantum re-
peaters [BCHW15, CMH17], between two parties over bidirectional [DBW20, BDW18, Das18],
multiple access, and interference quantum channels [LP17], and networks consisting of point-to-
point [AML16, RKB+18, Pir19] or broadcast channels [BA17].

In Ref. [DBWH21], we focus on providing a unifying framework for obtaining upper bounds
on the conference key rates achievable in the general network setting also in the one-shot
scenario. To achieve this task, we introduce a multiplex quantum channel (see Fig. 2.5) as
the most general form of memoryless transformation between multipartite quantum states,
where each of M honest parties can have a role of the sender (Bob), receiver (Charlie) or both
sender and receiver (Alice). We introduce a concise notation in which systems that are input to
multiplex quantum channel of multiple Alice parties are denoted

# »

A′ := {A′
a}a∈A, and similarly

outputs of multiple Alice parties are denoted by #»

A := {Aa}a∈A. The systems sent to multiplex
quantum channel by multiple Bob parties are denoted by #»

B = {Bb}b∈B, and systems received
from the channel by multiple Charlie parties are denoted #»

C = {Cc}c∈C. The reference systems
kept by Alice, Bob, and Charlie parties are denoted #»

L, #»

R, and #»

P , respectively. Furthermore, we
use : #»

A : to denote the partition with respect to all systems in the set #»

A as spatially separated
parties keep them. For example : #   »

LA : #    »

RB : denotes systems of spatially separated Alice and
Bob parties, for which system La are not separated from Aa, and similarly Rb are not separated
from Bb. Additionally, #»

K = {Ki}Mi=1 denotes the systems holding the secret key at the end
of a protocol, and #»

S = {Si}Mi=1 the shielding (see Sec. 2.1.1 for the definition) systems ( #    »

SK

altogether). Furthermore, we introduce secret key agreement LOCC-assisted protocols over
multiplex quantum channels that provide a unifying framework for many seemingly different
QKD scenarios. The unification is achieved by constructing a multiplex quantum channel in a
way that its uses interleaved by LOCC simulates the protocol. Our upper bounds are based on
entanglement measures called sandwiched Rényi relative entropies [WWY14, MLDS+13], for
which relative entropy is a special case. One of the sandwiched Rényi relative entropies, i.e., the
relative entropy of entanglement and its regularisation, have already proved their usefulness in
providing upper bounds on the secret key rate in the bipartite case [HHHO05]. As we show,
these entanglement measures are topology-dependent, as the upper bound depends on the
partition of roles between the honest parties.

In Ref. [DBWH21] we consider LOCC-assisted conference key agreement protocol amongst
M honest parties employing multiplex quantum channel N # »

A′ #»
B→ #»

A
#»
C

(see Fig. 2.6). We assume
that environmental part E of the isometric extension UN

# »

A′ #»
B→ #»

A
#»
CE

of the quantum channel N is
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Figure 2.6: Illustration in Ref. [DBWH21] of a sample LOCC-assisted conference key agreement
protocol incorporating six parties. Inputs to quantum channel N are represented by red arrows,
outputs are represented by green arrows, and reference systems by black arrows. Alice1 and
Alice2 both send and receive quantum systems from channel N , Bob1 and Bob2 only send their
systems, and Charlie1 and Charlie2 only receive systems as an output of channel N . In the
end, all parties share a six-partite conference key.

accessible to the eavesdropper together with all classical information communicated between the
honest parties while performing LOCC. All other quantum systems that are locally available
to the honest parties are assumed to be secure against the eavesdropper. Fortunately, in
the paradigm based on the private states, we do not need to consider the eavesdropper
explicitly [HHHO05]. In a LOCC-assisted CKA-DD, the uses of a multiplex quantum channel N
are interleaved with the uses of LOCC channels. In the first round, the honest parties perform
LOCC channel L1 to generate a fully separable state ρ1 ∈ FS(:

#                 »

L(1)A(1)′ :
#                »

R(1)B(1) :
#     »

P (1))
that subsequently enter multiplex quantum channel N 1

#        »

A(1)′ #      »

B(1)→
#      »

A(1) #»
C (1)

to yield output state
τ1 := N 1(ρ). Next, the LOCC channel L2 acts on τ1, which enters the multiplex quantum
channel again. After the final (n-th) round, the decoding Ln+1 LOCC channel generates the
final state ω #    »

SK , where Ki and Si denote the key and shielding systems of the honest parties
respectively. It is assumed that the eavesdropper has access to purification ω #    »

SKY n+1En of ω #    »
SK

as it possesses all environmental systems from the isometric extension UN and copies of classical
data Y exchanged among the honest parties. The protocol for which F (γ #    »

SK , ω #    »
SK) ≥ 1 − ε

is called (n,K, ε) LOCC-assisted secret key agreement protocol (see Sec. 2.1.1.3 for more
details upon multipartite private states γ #    »

SK). The rate P of the protocol is equal to the
number of the conference (secret) bit per use of multiplex quantum channel, i.e., P := 1

n log2K

(here, K = dim HKi). A rate P is (weak converse) achievable if for ε ∈ (0, 1), δ > 0, and n
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sufficiently large, there exists an (n, 2n(P−δ), ε) LOCC-assisted secret key agreement protocol.
The supremum over all achievable rates is called the LOCC-assisted secret-key-agreement
capacity P̂LOCC(N ) of a multiplex quantum channel N . Furthermore, a rate P is called a
strong converse rate for LOCC-assisted secret key agreement if for all ε ∈ [0, 1), δ > 0, and
n sufficiently large, there does not exist a (n, 2n(P+δ), ε) LOCC-assisted secret key agreement
protocol. The strong converse LOCC-assisted secret-key-agreement capacity of quantum channel
P̃LOCC(N ) is defined as the infimum of all strong converse rates. It follows directly from the
definitions that

(2.58) P̂LOCC(N ) ≤ P̃LOCC(N ).

Moreover, we call a protocol in which the honest parties are allowed only for classical preprocess-
ing and postprocessing (cppp) communication, i.e., one use of LOCC channel for encoding and
a second for decoding, a cppp-assisted secret key agreement protocol over multiplex quantum N .
The (1,K, ε) LOCC-assisted secret key agreement protocol is identical to (1,K, ε) cppp-assisted
secret key agreement protocol. Moreover, the LOCC-assisted secret-key-agreement capacity
P̂LOCC of the channel N is always greater or equal to P̂cppp

(2.59) P̂cppp(N ) ≤ P̂LOCC(N ).

Finally, let P̂N
cppp(n, ε) denote the maximum rate such that (n, 2nP , ε) cppp-assisted secret key

agreement is achievable, for any given multiplex quantum channel N .
Our first main result has a technical significance and constitutes a background for further

investigation. Here, we focus on the multipartite private states [AH09b] (see Sec. 2.1.1.3) that
constitute the most general class of states that provide quantum conference key directly by
local measurements with no further distillation required

(2.60) γ #    »
SK

:= U tw
#    »
SK

(ΦGHZ
#»
K

⊗ ω #»
S )(U tw

#    »
SK

)†.

Here, #»

K = K1, ...,KN denotes the key part, that is, the systems that the N honest parties have
to measure in order to obtain the conference key, and #»

S = S1, ..., SN denotes the so-called shield
that has to be kept secure from the eavesdropper. Furthermore, each multipartite private state
γ #    »
SK has at least log2K secret bits (key) [HHHO09], where K = dim (Hi), for all i ∈ {1, . . . , N}

. We prove that multipartite private states are necessarily genuine multipartite entangled. To
show this we construct a multipartite privacy test (γ-privacy test), defined as a {Πγ ,1− Πγ}
such that any ε-approximate multipartite private state ρ with fidelity F (ρ, γ) ≥ 1 − ε passes the
test with success probability Tr[Πγρ] ≥ 1 − ε. Consequently, in Theorem 1 of Ref. [DBWH21]
we show that any biseprable state σ #    »

SK ∈ BS(: #    »

SK :) can not pass any multipartite privacy test
with probability greater than 1/K, i.e.,

Tr[Πγ
#    »
SK
σ #    »
SK ] ≤ 1

K
.(2.61)
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The above result is our starting point for showing how achievable rates of quantum channels
capacities can be upper-bounded with various divergence measures.

We observe that interleaving uses of a multiplex quantum channel with LOCC amongst the
honest parties provide the general framework to describe a number of different conference key
agreement protocols. The critical point is the idea that the protocol can be simulated by a suitably
constructed multiplex channel laced with LOCC operations. In this manner, we generalize
the results for point-to-point [PLOB17, WTB17, CMH17] and bidirectional [Das18, DBW20,
BDW18] channels. Namely, we show that secret-key-agreement capacities of multipartite
generalizations of the mentioned channels are upper bounded with divergence-based measures of
entangling abilities of multiplex quantum channels. The measures of entanglement and genuine
entanglement (see Sec. 2.1.4 for details) we provide are of the form

(2.62) Er(N ) := sup
τ∈FS(:

#     »

LA′: #    »
RB:)

Er(:
#   »

LA : #»

R : #»

C :)N (τ).

Here, r = E or r = GE (E and GE denote entanglement and genuine entanglement, respectively),
and FS denotes the set of fully separable states (see Sec. 2.1.4 for more details). Furthermore,
we define the divergence Er form the convex sets SE and SGE of separable and biseparable
states respectively for any partition : #»

X :, measured by some generalized divergence D

(2.63) Er(:
#»

X :)ρ := inf
σ∈Sr(: #»

X:)
D(ρ‖σ).

We call a quantity a generalized divergence if it satisfies the data processing inequality. Namely,
for any channel N the following inequality must hold

(2.64) D(ρ‖σ) ≥ D(N (ρ)‖N (σ)).

The examples of generalized divergence are therefore quantum relative entropy D(ρ‖σ) [Ume62],
the max-relative entropy Dmax(ρ‖σ) [MLDS+13, Dat09b, Dat09a], the sandwiched Rényi rela-
tive entropy D̃α(ρ‖σ) [MLDS+13, WWY14], the ε-hypothesis-testing divergenceDε

h(ρ‖σ) [BD10,
WR12], trace distance ‖ρ− σ‖1 and negative of fidelity of quantum states −F (ρ, σ).

The main results of Ref. [DBWH21] are upper bounds on the secret-key-agreement capacities
of multiplex quantum channels. The upper bounds on these capacities are, therefore, upper
bounds on the maximum rates at which multipartite private states can be distributed amongst
the honest parties by using the multiplex quantum channel as well as free operations of classical
preprocessing and postprocessing (cppp). In the one-shot (single use) case of multiplex quantum
channel N use, for any fixed ε ∈ (0, 1), in Theorem 2 of Ref. [DBWH21], we have the following
weak converse bound on the achievable region of cppp-assisted secret-key-agreement capacity
P̂

(1,ε)
cppp(N ) of N

(2.65) P̂ (1,ε)
cppp(N ) ≤ Eεh,GE(N ).
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Here, Eεh,GE(N ) denotes the ε-hypothesis testing relative entropy of genuine multipartite
entanglement for the multiplex quantum channel. Eεh,GE(N ) is based on the ε-hypothesis testing
divergence [BD10], see Eqs. (2.62) and (2.63). Further, in the case of multiple uses of multiplex
quantum channel interleaved with LOCC operations in Corollary 3 of Ref. [DBWH21] (see
also Theorem 3 therein), we show the following strong converse bound on asymptotic capacity
PLOCC(N ) of multiplex quantum channel N

(2.66) P̃LOCC(N ) ≤ Emax,E(N ).

Here, Emax,E(N ) denotes the max-relative entropy of entanglement of the multiplex channel N .
Emax,E(N ) is based on the max-relative entropy [Dat09a], see Eqs. (2.62) and (2.63). Moreover,
in the case of finite-dimensional Hilbert spaces (associated with subsystems of honest parties)
in Theorem 4 of Ref. [DBWH21], we show another strong converse upper bound in terms of
regularized relative entropy of entanglement

(2.67) P̃LOCC(N ) ≤ E∞
E (N ).

Additionally, we observe that if N # »

A′ #»
B→ #»

A
#»
C

is teleportation-simulable [TGW14b, PLOB17,
TSW16, WTB17, LP17, PBL+18], the upper bounds on PLOCC(N ) are reduced to the relative
entropy of entanglement of the resource state θ #   »

LA
#»
R

#»
C (see Theorems 5-7 and Corollary 5 in

Ref. [DBWH21]).

P̂LOCC(N ) ≤ E∞
GE(: #   »

LA : #»

R : #»

C :)θ,(2.68)

P̃LOCC(N ) ≤ EE(: #   »

LA : #»

R : #»

C :)θ,(2.69)

where E∞
GE is the regularized relative entropy of genuine entanglement and EE is relative entropy

of entanglement. Finally, the derived upper bounds on the secret-key agreement capacities are
also upper bounds on channel capacities, where the goal is to distill GHZ states, because GHZ
state is an example of a multipartite private state [AH09b].

The second main result of Ref. [DBWH21] is the application of the upper bounds described
above to the specific setups. Firstly, we identify protocols like MDI-QKD [BP12, LCQ12,
FYCC15, WZG+16, OLLP19], and quantum key repeaters [BCHW15, CMH17, CF17] are in
fact special cases of LOCC-assisted SKA protocols realized with some particular multiplex
quantum channel. First, we discuss that there are multiple ways in which multiplex quantum
channel can describe quantum key repeater depending on the specific repeater protocol in
use. In the simplest situation two honest parties Alice and Bob, send subsystems of their
locally prepared maximally entangled (singlet) states Φ+

ARA
and Φ+

BRB
via quantum channels

NA→CA
1 , NB→CB

2 to Charlie who is assumed to be cooperative but not trusted. In the next step,
Charlie performs a joint measurement MCACB→XY on CACB subsystems, in this way realizing
a step in entanglement swapping protocol [ŻZHE93], and reports the outcome to Bob who
performs unitary on his reference system RB. This procedure creates entanglement between
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Alice and Bob, which can be used for cryptographic purposes. The net multiplex quantum
channel describing the quantum repeater is therefore

(2.70) N repeater
AB→XY := MCACB→XY ◦ NA→CA

1 ⊗ NB→CB
2 .

We further discuss the possibility in which the channels of Alice and Bob are noisy, and the
scheme requires to incorporate many rounds combined with error correction for entanglement
distillation [BDCZ98, DBCZ99, MATN15]. The schemes which incorporate many relay stations
and allow for distributing entanglement at arbitrarily large distances are also taken into
account [DBCZ99, MATN15] (we refer to these as chain schemes). The upper bounds on the
rates at which the key can be distributed in key repeaters setting were widely studied in the
literature [BCHW15, CMH17, CF17]. Using Theorem 4 in Ref. [DBWH21] (or alternatively
using results in Refs. [DBW20, BDW18, Das18]), we obtain upper bounds on setups considered in
Refs. [BCHW15, CF17] that involve only one-way classical communication from Charlie to Alice
and Bob. Our upper bounds are given by min{Emax,E(N repeater (chain)), E∞

E (N repeater (chain)}.
The new bounds in Ref. [DBWH21] are capable of taking into account imperfect measurements
performed by Charlie or imperfect error correction, which makes it more useful in the description
of practical implementations. Furthermore, in some cases of practical interest, our upper bounds
are comparable and perform better than results in Refs. [BCHW15, CF17].

Let us now describe the results in Ref. [DBWH21] regarding the MDI-QKD protocol (see
Fig. 2.7). The MDI-QKD protocol is a form of QKD in which the honest parties, Alice and Bob,
trust the quantum state they are supplied with but do not trust the detectors (measurements)
[BP12, LCQ12]. The MDI-QKD scheme is important because it solves the problem of imperfect
detectors, which can be attacked [Mak09]. For this reason, MDI-QKD protocol has drawn
enormous theoretical and experimental attention over the last few years [POS+15, FYCC15,
LYDS18, MZZ18, TLWL18, LL18, CYW+19, CAL19, LWW+19, MPR+19, PLG+19, XMZ+20].
In the typical MDI-QKD setup [BP12, LCQ12], the honest parties prepare quantum states,
which are sent to the relay station via quantum channels N 1

A′→A and N 2
B′→B. The relay station

where a joint measurement MAB→x is performed might be in control of eavesdropping Eve
that communicates the outcome of the measurement to Alice and Bob via classical broadcast
channel BX→ZAZB

.

(2.71) N MDI
A′B′→ZAZB

:= BX→ZAZB
◦ MAB→X ◦ N 1

A′→A ⊗ N 2
B′→B,

where ZA and ZB are classical registers of Alice and Bob, respectively. In the virtue of Theorem
3 and Theorem 4 of Ref. [DBWH21] (alternatively, using results in Ref. [DBW20, BDW18,
Das18]), we obtain an upper bound on the achievable key rate in terms of Emax,E(N MDI

A′B′→ZAZB
)

and E∞
E (N MDI

A′B′→ZAZB
) in case of general systems and finite-dimensional systems respectively.

Moreover, we discuss in detail a photon-based prototype of MDI-QKD protocol in the form
of the dual-rail scheme in which qubits are encoded in two orthogonal modes of a single
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Figure 2.7: Graphical illustration of quantum classical multiplex channel N MDI
A′B′→ZAZB

in
Ref. [DBWH21]. The channel N MDI

A′B′→ZAZB
is a composition of three types of elementary

multiplex channels, i.e., a pair of point-to-point channels from Alice to Charlie and from Bob to
Charlie composed with quantum measurement (multiple access quantum to classical channel)
in the hands of Charlie followed by classical broadcast channel back to Alice and Bob. The
red arrows represent the inputs to the channel, and the green arrows represent the outputs.
The green arrows with red boundaries are the outputs of the multiplex channel which are also
inputs to the consecutive channels.

photon [RP10]. For the noise model present in the quantum channel, we chose the pure-loss
bosonic channel with transmissivity η [DKD18]. We observe that in the considered case, the
action of the pure-loss bosonic channel is identical to the erasure channel [GBP97], and therefore
the former channel is tele-covaraint as the latter one is. We further assume that the central
relay station operated by Charlie (or Eve) performs a perfect measurement in the Bell’s basis
with probability q and fails with probability 1 − q of what the honest parties are informed.
Finally, using Theorem 7 in Ref. [DBWH21] we obtain the following capacity for the considered
bipartite prototype of MDI-QKD protocol N MDI,{Ei}2

i=1

(2.72) P̃LOCC(N MDI,{Ei}2
i=1) = qη1η2.

The equality in Eq. (2.72) above is because qη1η2 is known to be an achievable rate for the given
setup (what follows from results in Refs. [GEW16, PLOB17, WTB17]). The direct application
of results from Refs.[GEW16, PLOB17] gives a repeaterless upper bound (RB) on the MDI-
QKD capacity to be min{η1, η2} [CMH17, Pir19] what is never less than qη1η2. See Fig. 2.8
for a comparison between the performance of the RB upper bound and bound derived in
Ref. [DBWH21].
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Figure 2.8: Plot in Ref. [DBWH21] depicting the rate-distance tradeoff comparison between
different upper bound on MDI-QKD scheme for considered photon-based prototype. The values
of parameters chosen are η1 = η2 = exp(−αL), and α = 1

22km . The result of Ref. [DBWH21],
here given by (2.72), are blue, red, yellow, and purple curves (plotted for different values of q),
and the repeaterless bound (RB) is here green curve.

Our next main result concerns upper bounds on the rates of conference key distillation from
quantum states rather than the secret-key-agreement capacity of quantum channels. First, we
state the security condition for the output of (n,K, ε) LOCC-assisted conference key agreement
protocol

(2.73) F (L #      »

A⊗n→ #    »
SK

(ρ⊗n
#»
A

), γ #    »
KS) ≥ 1 − ε,

where L #      »

A⊗n→ #    »
SK

is the LOCC (operation) channel performed by M honest parties. In Theorem 8
of Ref. [DBWH21] we show that the one-shot secret-key distillation rate K(1,ε)

D from a single
copy of multipartite quantum state is upper bounded by

(2.74) K
(1,ε)
D (ρ) ≤ Eεh,GE(: #»

A :)ρ := inf
σ∈BS(: #»

A:)
Dε
h(ρ‖σ).

Further, in Proposition 2 of Ref. [DBWH21] we show that the secret key rate KD [AH09b]
obtained directly from the definition KD(ρ) = infε>0 lim supn→∞

1
nK

(n,ε)
D (ρ⊗n) is upper bounded

with the regularized relative entropy of the genuine entanglement

(2.75) KD(ρ #»
A) ≤ E∞

GE(ρ #»
A).

The above result generalizes Theorem 9 in Ref. [HHHO09]. Moreover, we observe that (see
Corollary 6 in Ref. [DBWH21]) KD(ρ #»

A) = 0 provided ρ #»
A is a tensor-stable biseparable state (see

48



2.3. UNIVERSAL LIMITATIONS ON QUANTUM KEY DISTRIBUTION OVER A
NETWORK [B]

Sec. 2.1.4 for details). In this place, we discuss that already in tripartite setting (M = 3), there
exist two nonequivalent classes of genuinely entangled states, i.e., the ΦGHZ

M class and ΦW
M class

of states [DVC00, BPR+00, HHHH09, AFOV08, HSD15, SdVSK17]. Despite the fact, that
both classes contain the states that are pure entangled they can not be transformed between
each other at unit rate [FL07, FL08, CHL10, VC15, VC19, SME20]. Since ΦGHZ

M has a role of
perfect implementation of CKA protocols, the task of distillation of ΦGHZ

3 from ΦW
3 has been

studied [SVW05, FL07, KT10, CCL11, VC15, VC19]. In particular, it is known that a single
ΦW

3 state can not be transformed into ΦGHZ
3 state even in a probabilistic manner [SVW05]. On

the other hand, a lower bound on the asymptotic conversion rate is known to be ≈ 0.643 (see
Theorem 2 in Ref. [SVW05]). However, as we exemplify, the ΦW

3 to ΦGHZ
3 conversion in the

one-shot regime is still possible. Namely, two ΦW
3 states can be transformed into a single ΦGHZ

3
state with probability arbitrarily close to 2

3 . Since, distillation of ΦGHZ
M is only an instance

of conference key distillation strategy [Cab00, SG01, CL05, AH09b, AH09a, GKB19, VC15,
VC19], and more general scenario incorporates distillation of private states, i.e., twisted ΦGHZ

M

states [HŁPHH08, HHHH09, AH09b, PH10, BA17] Eq. (2.74) (Theorem 8 in Ref. [DBWH21])
constitutes an upper bound on ΦGHZ

M distillation rate. In this way, the lower bound of 2
3 can be

compared with the upper bound in Eq. (2.74). In order to obtain non-trivial upper bounds on
CKA distillation rates from single or multiple copies of noiseless, dephased, and depolarized
ΦGHZ

3 and ΦW
3 we devise two families of biseparable states

πn,MGHZ := 1
M

M∑
i=1

(
S1,i

(
I

2 ⊗ ΦGHZ
M−1

))⊗n
,(2.76)

πn,MW := 1
M

M∑
i=1

(
S1,i

(
|0〉〈0| ⊗ ΦW

M−1

))⊗n
,(2.77)

here the operator S1,i swaps the qubit of the first system (party) with the qubit of the i-th
system. The number-of-copies-sensitive definition of biseparable states πn,MGHZ and πn,MW is due
to non-closure of the set of biseparable states under the tensor product. Interestingly, we point
out that the state π1,3

W devised by us in Ref. [DBWH21] is closer in the Hilbert-Schmidt norm
to ΦW

3 than the state in Ref. [VDM02] that was found to be the closest (in Ref. [VDM02]
alternative definition of biseparability was employed). See Fig. 2.9 for the performance of the
upper bound in Eq. (2.74) (Theorem 8 in Ref. [DBWH21]) employing biseparable states in
Eqs. (2.76) and (2.77). Finally, in Proposition 3 and Corollary 7 of Ref. [DBWH21], we show a
method of constructing a family of (in general) nonequivalent upper bounds on the asymptotic
key rate KD. The method is based on Proposition 2 in Ref. [DBWH21] and the observation that
M − 1-partite key is no less than M -partite key if two parties unite. This fact is a consequence
of the strict inclusion of the set of M -partite LOCC within the set of M − 1-partite LOCC. In
this way, we obtain

KD

(
ΦW

3

)
≤ KD

(
ΦW

2+1

)
≤ E∞

GE

(
ΦW

2+1

)
= h2

(1
3

)
≈ 0.9183 bit,(2.78)
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Figure 2.9: Plots in Ref. [DBWH21] depicting upper bounds in Theorem 8 (see Eq. (2.74)) on
one-shot conference key distillation rates from a single copy of ΦGHZ

3 state (left) and two copies
of ΦW

3 state (right). The dephasing (Dq
deph.(ω) = qω + (1 − q)σzωσz, where σz is the Pauli Z

operator) and depolarizing (Dq
depol.(ω) = qω + (1 − q)12 ) noise act separately on each qubit.

where h2(x) is the binary entropy function, and ΦW
2+1 denotes ΦW

3 state in which arbitrary two
parties united, identical to one of Bell’s states. The above upper bound can be compared with
the lower bound of ≈ 0.643 bit obtained in Ref. [SVW05].

Additionally, as another contribution of Ref. [DBWH21], we provide lower bounds on
the secret-key-agreement rates of multiplex quantum channels that can be achieved with
the assistance of cppp operations. The multipartite protocols we devise are based on the
Devetak-Winter protocol [DW05]. The Devetak-Winter protocol is a point-to-point protocol
that incorporates one-way classical communication from Alice to Bob [DW05]. In this way,
we generalize the lower bound on secret-key-agreement rates for multipartite quantum states
derived in Ref. [AH09b] along with the lower bound for point-to-point quantum channels shown
in Ref. [PGPBL09] to a network of bidirectional quantum channels. The first lower bound we
derive is a direct extension of the result obtained for quantum states in Ref. [AH09b]. Here,
the idea is to choose the so-called distributing party that performs the (directed) Devetak-
Winter protocol with each of the other parties. In this case, the achievable rate is given by the
worst-case Devetak-Winter protocol rate between the distributing party and any other party.
As an enhancement of the lower bound, we maximize over possible choices of the distributing
party. Our second protocol considers a chain of parties in which each party performs the
Devetak-Winter protocol with the subsequent party. The achievable rate is given then by the
lowest Devetak-Winter protocol rate between all links in the chain. In this case, we optimize
with respect to all possible permutations of the parties in the chain. Furthermore, we consider
a bidirectional quantum network, i.e., a network in which each node is connected to all of
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its neighbors via a product of point-to-point quantum channels in opposite directions. Our
technique is based on some facts from the graph theory [Wil96]. In particular, one can represent
a bidirectional quantum network as a weighted, directed multigraph in which nodes represent
parties, and each edge, having some weight, represents a product bidirectional channel. In order
to find the best lower bound, in Ref. [DBWH21], for each spanning tree, we attribute its lowest
rate of Devetak-Winter protocol [Dev05] achieved among any pair of parties connected by an
edge in the tree. We further maximize this rate over all spanning trees. Finally, we exemplify
that the last approach is advantageous with respect to the two described before.

To summarize, by providing universal limitations on the rates at which quantum conference
key can be distributed over multiplex quantum network, we created a unified approach for
the treatment of a diverse class of secure communication setups. In this way, we contributed
to a better understanding of the limitations of the aforementioned class of protocols and,
consequently, to a better understanding of the whole CKA-DD security paradigm. The derived
upper bounds provide benchmarks on the present experimental setups and forthcoming quantum
Internet of the future.
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2.4 Fundamental Limitations on the Device-Independent
Quantum Conference Key Agreement [C]

In Ref. [HWD22], we initiate the study of the upper bounds in the device-independent quantum
conference key agreement (DI-CKA) scenario. We firstly provide a multipartite generalization of
the cc-squashed entanglement introduced in Ref. [AFL21] and further developed in Ref. [KHD22].
With a little abuse of notation, we call the new measure reduced c-squashed entanglement Ecsq,dev.
We show that Ecsq,dev upper bounds the device-independent conference key rate Kiid,x̂

DI,dev achieved
by (standard) protocols (see, e.g., [AFDF+18]) that use a single input x̂ to generate the key.
This relation holds in the independent and identically distributed setting as we aim at the upper
bounds on the rate of DI-CKA (see Sec. 2.1.2.1). Here, the subscript dev refers to the fact that
the adversary mimics the full statistics of the honestly implemented device. We generalize further
the scenario to the case in which the eavesdropper has to mimic only some relevant parameters
of the device. The latter case is denoted with subscript par (e.g., Kiid,x̂

DI,par). To achieve our goal,
we generalize the upper bounds via intrinsic information studied in Ref. [CEH+07] to the case in
which the system of the adversary can be infinite-dimensional. In that way, we closed a possible
loophole in the proofs of Corollary 3 and Corollary 4 of Ref. [KHD22]. Our upper bounds are
then compared with the lower bound on the DI-CKA secret key rate given in Ref. [RMW18]
(see Fig. 2.10). We also provide a non-trivial upper bound on the device-independent key rate
in the parallel measurement scenario in which all parties simultaneously set all values of inputs
xi. Moreover, we generalize reduced bipartite entanglement measures (see Ref. [KHD22]) to the
multipartite case. In this way, we show that the reduced regularized relative entropy of genuine
entanglement [DBWH21] upper bounds the DI-CKA rate for multipartite quantum states. We
also discuss the issue of genuine nonlocality [BCP+14] and genuine entanglement (see Secs. 2.1.4
and 2.1.5) in the context of the DI-CKA [HHHH09]. Finally, we show a strict gap between the
rate of the quantum device-independent conference key KDI and quantum device-dependent
conference key rate KDD. This result is achieved by providing a method to lift the gap in
bipartite case to the multipartite case. In this manner, we construct multipartite states that
exhibit a strict gap using bipartite states for which the gap was proven in Ref. [CFH21].

Building a quantumly secured Internet would provide worldwide information-technologically
secure communication [DM03, WEH18]. Quantum repeaters [DBCZ99, MLK+16, ZXC+18]
give hope that this formidable task will be achieved in the not-too-distant future. Unfortu-
nately, the level of quantum security proposed in the seminal paper of C. H. Bennett and
G. Brassard [BB84] appears to be insufficient. This insufficiency is because, for example, a
malicious eavesdropper can change the inner workings of a quantum device on the way of
the device from the trusted manufacturer to the honest users, making the cryptographic de-
vice totally insecure [PAB+09]. Indeed, attacks on the quantum cryptographic devices and
quantum internet are already considered [BRPB13, Mak09, SWRH20, SNS+21]. Fortunately,
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the idea of device-independent cryptography overcomes this obstacle [Eke91, PAB+09] and
importantly seems to be feasible in practise [ZvLR+22, NDN+22, LZZ+22]. Simultaneously,
the limitations of the device-independent approach in terms of the upper bounds on the
distillable key were considered [KWW20, CFH21, FBJŁ+21, KHD22]. However, present stud-
ies focus on the point-to-point device-independent secure communication. In Ref. [HWD22],
we initiate the study of upper bounds in the device-independent conference key agreement
(DI-CKA) [MGKB20, RMW18], where the task is to distribute the same secure key between
N > 2 honest parties, security of which does not depend on the inner working of the devices of
the honest parties. The key is used later for one-time-pad encryption. A protocol achieving
the DI-CKA task has been shown in [RMW18]. Our considerations set upper bounds on the
performance of any DI-CKA generating protocol, including the mentioned one, in the network
setting.

In the considered setup, N trusted spatially separated allies intend to extract secret-key
against a quantum adversary. Aiming at the upper bounds it is enough to consider that the
honest parties share n identical devices. The honest implementation of the device, which consists
of state and measurement, is denoted (ρ,M). However, the adversary can replace the honest
device, provided by the manufacturer, with a different device (σ,N ), such that it yields the
same input-output statistics as the honest one. The (coarse-grained) statistics tested by the
honest parties are usually the level of violation of some multipartite Bell inequality ω(ρ,M)
(see Refs. [Mer90, Ard92, BK93, SS02, ŻB02, WW01, YCZ+12, HSD15, Luo22])), and the
quantum bit error rate (QBER) Perr(ρ,M). The QBER is the probability that the outputs
of the honest parties’ device are not equal to each other, given that the input for the key
generating round has been chosen. Still, in some cases, the honest parties would like to test
the whole statistics of the (ρ,M) device. The honest measurement is described as a family of
tensor product of POVMs for each of the honest party M ≡ {Mx1

a1 ⊗ Mx2
a2 ⊗ . . . ⊗ MxN

aN
}a|x,

where x := (x1, x2, . . . , xN ) and a := (a1, a2, . . . , aN ) correspond to the settings of inputs and
outputs for some number N ∈ N of the honest parties (denoted N(A) ≡ A1 . . . AN ). The set
{ai}Ni=1 denotes a finite set of measurement outcomes for measurement choices xi. In that way,
the device yields a probability distribution

p(a|x) = Tr[Mx1
a1 ⊗Mx2

a2 ⊗ . . .⊗MxN
aN
ρN(A)],(2.79)

for a measurement M on a N -partite state ρN(A). Provided the statistics {p(a|x)}a|x obtained
from devices (ρ,M) and (σ,N ) are identical, we write (σ,N ) = (ρ,M). Consequently, (σ,N ) =
(ρ,M) implies ω(σ,N ) = ω(ρ,M) and Perr(σ,N ) = Perr(ρ,M). Furthermore, if the statistic p
and p′ corresponding to the devices (σ,N ) and (ρ,M) satisfy

(2.80) d(p, p′) = sup
x

∥∥p(·|x) − p′(·|x)
∥∥

1 ≤ ε,
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we say that (σ,N ) and (ρ,M) are ε-close to each other and denote the ε-proximity by
(σ,N ) ≈ε (ρ,M). In that way, we consider the relations

(ρ,M) ≈ε (σ,N ),(2.81)

ω(ρ,M) ≈ε ω(σ,N ),(2.82)

Perr(ρ,M) ≈ε Perr(σ,M),(2.83)

that are used in the definitions of the DI-CKA key rate. Finally, for the sake of upper bounds,
it is enough to consider the scenario that contains independent and identically distributed (iid)
copies of a device. This simplification is because the iid scenario automatically constitutes an
upper bound on the general scenario [CFH21]. In this, we work with two different notions of
DI-CKA, iid maximal distillation rates for a device (ρ,M), i.e., dev and par key rates (see
Sec. 2.1.2.1)

Kiid
DI,dev(ρ,M) := inf

ε>0
lim sup
n→∞

sup
P̂

inf
(2.81)

κεn

(
P̂
(
(σ,N )⊗n)) ,(2.84)

Kiid
DI,par(ρ,M) := inf

ε>0
lim sup
n→∞

sup
P̂

inf
(2.82),(2.83)

κεn

(
P̂
(
(σ,N )⊗n)) ,(2.85)

where P̂ is a protocol that consists of classical local operations and public (classical) commu-
nication (CLOPC), κεn is the ε-secure key rate of a protocol P̂ achieved for any fixed value
of security parameter ε > 0, number of copies n, and measurements N . Because, Eq. (2.81)
implies Eq. (2.82) and Eq. (2.83) we automatically have Kiid

DI,dev(ρ,M) ≥ Kiid
DI,par(ρ,M). Fur-

thermore, we observe that DI-CKA maximal key distillation rates are upper bounded by the
device-dependent distillation key rates (DD-CKA) and also by the entanglement measures that
upper bound the latter.

In order to obtain our main result, we first generalize the notion of the cc-squashed
entanglement [AFL21, KHD22] to the multipartite setting based on the notion of multipartite
squashed entanglement [YHH+09]. W call the newly introduced quantity the c-squashed
entanglement that reads

Ecsq(ρN(A),M) := inf
Λ: E→E′

I(A1 : . . . : AN |E′)MN(A)⊗Λψρ
N(A)E

.(2.86)

Here, MN(A) ≡ MA1 , . . . ,MAN
is an N -tuple of positive-operator-valued measures (POVMs)

and state
∣∣∣ψρN(A)E

〉
is a purification of ρN(A). Furthermore,

I(A1 : . . . : AN |E)ρN(A) =
N∑
i=1

S(Ai|E)ρN(A) − S(A1, . . . , AN |E)ρN(A) ,(2.87)

where S(Ai|E)ρN(A) = S(AiE)ρN(A) − S(E)ρN(A) is the conditional entropy, with S(AB) :=
− Tr[ρAB log2 ρAB] and S(A) := − Tr[ρA log2 ρA] being von Neumann entropies. Having the
new object defined, we provide the first upper bound (Theorem 1 of Ref. [HWD22])

KDD(MN(A) ⊗ idE ψρN(A)E) ≤ 1
N − 1E

c
sq(ρN(A),MN(A)).(2.88)
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Here, KDD is the quantum device-dependent conference key agreement (DD-CKA) rate, and
idE is the identity channel (quantum operation). The above upper bound is a multipartite
generalization (and improvement) of Theorem 5 in Ref. [KHD22]. The improvement is because
in Ref. [HWD22], we additionally closed the problem of an eavesdropper holding an infinite-
dimensional system. This is achieved directly by allowing the dimension of Eve’s system in
Eq. (2.88) to be infinite dimensional which is natural in the case of nonlocality. We then move
to our main goal, i.e., to study the upper bounds in the DI-CKA scenario. In this case we
concentrate on the standard protocols [AFDF+18] which use a single tuple of measurements
(x̂1, . . . , x̂N ) ≡ x̂ applied to M of a device (ρN(A),M) yielding M(x̂) (Theorem 2 and Theorem
3 in Ref. [HWD22])

Kiid,x̂
DI,dev(ρN(A),M) ≤ Ecsq,dev(ρN(A),M(x̂)) := 1

N − 1 inf
(σN(A),L)≡(ρN(A),M)

Ecsq(σN(A),L(x̂)),

(2.89)

Kiid,x̂
DI,par(ρN(A),M) ≤ Ecsq,par(ρN(A),M(x̂)) := 1

N − 1 inf
ω(σN(A),L)=ω(ρN(A),M)

Perr(σN(A),L)=Perr(ρN(A),M)

Ecsq(σN(A),L(x̂)).

(2.90)

We refer to the quantities in the right hand sides of the Eqns. (2.89) and (2.90) above, as to
the reduced c-squashed entanglement, “dev” and “par” respectively. We then observe that
in the case N = 2, the upper bound in Eq. (2.90) recovers the results from Ref. [KHD22].
Moreover, we notice that in the definition of the reduced c-squashed entanglement Ecsq,par(dev),
one can obtain a weaker upper bound by considering solely classical extensions to Eve’s system
[YHH+09]. In that case a for a single tuple of measurements x̂ the bound reads (Corollary 2 in
Ref. [HWD22])

Kiid,x̂
DI,dev(ρN(A),M) ≤ inf

(σN(A),L)=(ρN(A),M)

1
N − 1I(N(A) ↓ E)P (A1:...:AN |E)

≡ inf
(σN(A),L)=(ρN(A),M)

inf
ΛE→F

1
N − 1I(N(A)|F )P (A1:...:AN |Λ(E)),(2.91)

where measurements L(x̂) performed on the purification of σN(A) yield the distribution P (A1 :
. . . : AN |E). The above is especially useful for numerical investigation. Furthermore, we notice
that the reduced c-squshed entanglement Ecsq can be defined for multiple measurements in
analogy to results in Ref. [KHD22]

Ecsq(ρN(A),M, p(x)) :=
∑

x
p(x)Ecsq(ρN(A),Mx).(2.92)

From the above, we construct an upper bound on the DI-CKA rate for the protocols in which
parties broadcast their inputs (see Proposition 2 in Ref. [HWD22])

Kiid,broad
DI,dev (ρN(A),M, p(x)) ≤ Ecsq,dev(ρN(A),M, p(x))

:= 1
N − 1 inf

(σN(A),N )=(ρN(A),M)
Ecsq(σN(A),N , p(x)).(2.93)
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Figure 2.10: Modified plot from Ref. [HWD22] of upper bounds introduced in Ref. [HWD22]
and lower bounds on the DI-CKA scenario in Ref. [RMW18]. Here, ν is the parameter of the
noise in the depolarizing channel (Ddepol.

ν (ρ) = (1 − ν)ρ + ν 12 ) that acts on each qubit. The
yellow dashed curve represents an upper bound (not fully optimized) on the upper bound

1
N−1I(N(A) ↓ E) from Eq. (2.91) (Corollary 2 in [HWD22]) with eavesdropper post-processing
channel in Eq. (2.98). The red dash-dotted curve is the upper bound obtained in Corollary 6 of
Ref. [HWD22] based on the relative entropy of entanglement bound (1 − ν). The solid blue line
represents a lower bound, i.e., the rate of the protocol in Ref. [RMW18].

The investigation on the upper bounds constructed with the reduced c-squashed entangle-
ment contains two significant technical results. Firstly we show that Ecsq,par is a convex function
with respect to mixtures of quantum states that constitute the device (see Proposition 1 in Ref.
[HWD22]), i.e.,

Ecsq,par(ρ̄,M(x̂)) ≤ p1E
c
sq,par(ρ1,M(x̂)) + p2E

c
sq,par(ρ2,M(x̂)),(2.94)

where ρ̄ = p1ρ1 + p2ρ2 and p1 + p2 = 1 with 0 ≤ p1 ≤ 1. The above results are useful because
of the possible application of the convexification technique [WDH22] when studying numerical
upper bounds. Secondly, we do not restrict the eavesdropper system to be finite-dimensional
(see Lemma 6 in Ref. [HWD22]). This improvement closes a possible loophole in the proofs of
Corollary 3 and Corollary 4 of Ref. [KHD22].

Our second main result is the numerical investigation that compares in the tripartite (N = 3)
setting the upper bound derived by us with the rate of the parity Clauser-Horne-Shimony-Holt
(parity CHSH) based protocol considered in Ref. [RMW18]. We restrict ourselves to the case with
a classical eavesdropper in which the channels acting on Eve’s system have only classical outputs.
In this way, we exemplify the upper bound in Eq. (2.91) (see Corollary 2 in Ref. [HWD22]).
To compare our upper bounds with the known lower bound, we consider the case of tripartite
Greenberger-Horne-Zeilinger (GHZ) state

∣∣∣ΦGHZ
#»3

〉〈
ΦGHZ

#»3

∣∣∣, on which depolarizing noise Ddepol.
ν

57



CHAPTER 2. SUMMARY OF DISSERTATION

parameterized with ν acts locally on each from the three qubits [RMW18]. For such a setting
of the DI-CKA protocol in Ref. [RMW18], the statistics of the honest device reads

Pν(a, b1, b2|x, y1, y2) = Tr
[
Ma|x ⊗Mb1|y1 ⊗Mb2|y2D⊗3

ν (|ΦGHZ
#»3 〉〈ΦGHZ

#»3 |AB1B2)
]

= (1 − ν)3PGHZ(a, b1, b2|x, y1, y2) + (1 − (1 − ν)3)PL
ν (a, b1, b2|x, y1, y2),(2.95)

where the ranges of inputs and outputs are x ∈ {0, 1}, y1 ∈ {0, 1, 2}, y2 ∈ {0, 1}, and
a, b1, b2 ∈ {0, 1}. The setting (x, y1, y2) = (0, 2, 0) in the key-generating round is associated
with measurements of σz observable. Furthermore, PGHZ arises from local measurements on
the GHZ state, and PL

ν arises from the same measurements (for σz observable) on the fully
separable state

χν : = 1
1 − (1 − ν)3

(
(1 − ν)2νκAB1 ⊗ 1B2

2 + (1 − ν)2νκAB2 ⊗ 1B1

2

+(1 − ν)2νκB1B2 ⊗ 1A

2 + (3 − 2ν)ν21AB1B2

2

)
,(2.96)

where κX1X2 = 1
2 (|00〉〈00|X1X2 + |11〉〈11|X1X2). The eavesdropper’s strategy is based on the

fact that PL
ν can be expressed as a convex combination of deterministic behaviors. Therefore,

Eve prepares a convex combination attack [AGM06, AMP06, FBJŁ+21]

PCC
ν (a, b1, b2, e|x, y1, y2) = (1 − ν)3PGHZ(a, b1, b2|x, y1, y2)δe,?

+ [1 − (1 − ν)3]PL
ν (a, b1, b2|x, y1, y2)δe,(a,b1,b2),(2.97)

where the label e =? means that Eve is not correlated to the nonlocal part of the honest parties,
i.e., Alice, Bob1, and Bob2, and δe,(a,b1,b2) means that Eve is correlated to all event associated
with the local device. The above attack does not need to be optimal since it uses a particular
decomposition of Pν . In order to find a better strategy, Eve prepares a channel E → F that
decomposes PL

ν and does not diminish the weight of local behaviors 1 − (1 − ν)3. In analogy to
the attack given in bipartite case in Ref. [FBJŁ+21], we consider only the distribution coming
from a key-generating measurement (see above)

PATTACK
ν (a, b1, b2, f |020) = ΛE→F PCC

ν (a, b1, b2, e|020)

= (1 − ν)3PGHZ(a, b1, b2|020)δf,?
+ (1 − (1 − ν)3)PL

ν (a, b1, b2|020) (δa,b1,b2δf,a + (1 − δa,b1,b2)δf,?) ,(2.98)

where δa,b1,b2 is 1 when a = b1 = b2 and 0 otherwise. The above attack strategy is thus a
tripartite generalization of attack proposed in Ref. [FBJŁ+21] in which the eavesdropper aims
to be correlated only to the a = b1 = b2 events associated with PL

ν behavior. By applying the
above attack, we plot the upper bound on Kiid,x̂

DI,dev(ρN(A),M) in Fig. 2.10 using Eg. (2.91) (see
Corollary 2 in Ref. [HWD22]).
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2.4. FUNDAMENTAL LIMITATIONS ON THE DEVICE-INDEPENDENT QUANTUM
CONFERENCE KEY AGREEMENT [C]

For the third main result, we show that there exists a gap between device-dependent and
device-independent conference key agreement rates. To obtain the result, we first generalize
the reduced device-dependent conference key rate to the multipartite setting. The reduced
device-dependent key agreement rate of state ρN(A) is given by (see also Sec. 2.1.2.1)

K↓(ρN(A)) := sup
M

inf
(σN(A),L)=(ρN(A),M)

KDD(σN(A)),(2.99)

what yields (see Theorem 6 in Ref. [HWD22]) as an analog of Theorem 6 in Ref. [CFH21]

KDI(ρN(A)) ≡ sup
M

KDI(ρN(A),M) ≤ K↓(ρN(A)).(2.100)

To show the existence of the strict gap between KDI and KDD in the multipartite setting
(Theorem 7 in Ref. [HWD22]), we use the fact that there exist bipartite states ρAB for
which K↓(ρAB) < KDD(ρAB) as described in Ref. [CFH21]. Using these states we construct
multipartite states ρN(A) with the analogous property, i.e., KDI(ρN(A)) < KDD(ρN(A)). Our
construction constitutes a path pointed by a chain of states ρA1

k
A2

k
shared between spatially

separated N parties Ak, k ∈ {1, . . . , N − 1}. Here, by the means of notation A1
1 ≡ A1 and

A2
1A

1
2 ≡ A2,. . . , A2

N−1 ≡ AN . In this way, we show in Theorem 7 of Ref. [HWD22] that a
multipartite state

ρ̃N(A) := ρA1
1A

2
1

⊗ ρA1
2A

2
2

⊗ ρA1
3A

2
3

⊗ . . .⊗ ρA1
N−1A

2
N−1

,(2.101)

where ρA1
k
A2

k
= ρAB, k ∈ {1, . . . , N − 1}, satisfies KDI(ρN(A)) < KDD(ρN(A)) as desired,

provided all ρA1
k−1A

2
k−1

exhibit the gap, i.e., KDD(ρA1
k−1A

2
k−1

) −K↓(ρA1
k−1A

2
k−1

) ≥ c > 0. Indeed,
such states do exist [CFH21], and so do ρ̃N(A). We remark here that the proof of Theorem 7 in
Ref. [HWD22] can be relaxed to the case in which at least one state in the chain exhibits a
bipartite gap and the theorem still holds.

Moreover, we discuss the topic of genuine nonlocality in analogy to the notion of genuine
entanglement (see Secs. 2.1.4 and 2.1.5). We first define genuine quantum nonlocality by saying
which devices are local and all that are not local are genuine nonlocal. Specifically, we assume
that local are mixtures of devices that (i) admit quantum realization and (ii) are product in
at least one partition into subsystems. In literature, there are various definitions of locality
in multipartite case. Our class of local devices falls between the so-called TOBL and NSBL
devices in Ref. [GWAN12] (cf. Ref. [Sve87, BCP+14]). In this way, we first say that behavior
P (a|x) is local in a cut (Ai1 . . . Aik) : (Aik+1 . . . AiN ) for some k ∈ {1, . . . , N}, if and only if
it can be written as a product of two behaviors of the systems correspondingly to the cut.
Here, (i1, . . . , iN ) is an arbitrary permutation of indices (1, . . . , N). The set of all behaviors
that are a product in some cut and have quantum realization is denoted by LQ, which means
locally quantum (see Sec. 2.1.5). Furthermore, any distribution that is not locally quantum
can be treated as nonlocal, although other definitions can be found in literature [BCP+14].
Consequently, we say that the behavior P (a|x) is genuinely nonlocal if and only if it is not
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a mixture of behaviors that are local in at least one cut. As discussed, any behavior used by
honest parties to obtain a conference key in a single-shot (single run) must exhibit genuine
nonlocality. We consider a single-shot device-independent key distillation rate obtained by
LOPC post-processing of a distribution obtained from some behavior P (a|x) when all inputs x
of all parties are set simultaneously

Ksingle−shot
DI,dev (ρN(A),M, ε) := sup

P̂
inf

(2.81)
κεn

(
P̂(σN(A),N )

)
.(2.102)

Here, κεn is the quantum key rate achieved for any measurements N and security parameter ε.
In Theorem 8 of Ref. [HWD22] we show that if Ksingle−shot

DI,dev (ρN(A),M, ε) > 0 then behavior
P (a|x) ≡ (ρN(A),M) is not LQ. Furthermore, in Theorem 9 of Ref. [HWD22] we show the
following upper bounds on DI-CKA rates

KDI,dev(ρN(A),M) ≤ inf
(σN(A),L)=(ρ,M)

E∞
GE(σN(A)),(2.103)

KDI,par(ρN(A),M) ≤ inf
ω(σN(A),L)=ω(ρN(A),M)

Perr(σN(A),L)=Perr(ρN(A),M)

E∞
GE(σN(A)).(2.104)

Here, E∞
GE(ς) is the regularized relative entropy of genuine entanglement [DBWH21] for a

state ςA1A2...AN
, with

E∞
GE(ς) = inf

ϕ∈BS(N(A⊗n))
lim
n→∞

1
n
D(ς⊗n‖ϕ),(2.105)

where D(ρ‖σ) = Tr ρ log2 ρ− Tr ρ log2 σ (if supp ρ ⊆ suppσ and ∞ otherwise [Ume62]) is the
relative entropy between two states ρ and σ, and BS denotes the set of biseparable states (see
Sec. 2.1.4 for details) [DBWH21].

To conclude, we have introduced several of upper bounds on the quantum secure conference
key. Some of the introduced upper bounds generalize the relative entropy-based upper bound in
Ref. [KHD22], and the reduced c-squashed entanglement provides another upper bounds as the
generalization of results in Ref. [FBJŁ+21]. Moreover, we have shown constructive proof that a
fundamental gap between the device-dependent and the device-independent key is inherited
from the bipartite setting (see Ref. [AFL21, CFH21]) and holds in a multipartite case. We
remark here, that Ref. [HWD22] is the first published manuscript considering upper bounds on
DI-CKA key rates.

Note: We prove analogous upper bounds based on a different definition of the multipartite
squashed entanglement. We refer to these bounds as dual bounds, as described in Sec. IV
of Ref. [HWD22]. After publishing the paper, it was pointed out by M.E. Shirokov that the
aforementioned definitions are equivalent due to Theorem 7 of Ref. [DSW18]. Therefore, our
dual upper bounds are equivalent as well. The erratum to the article in Ref. [HWD22] has been
published in Ref. [HWD23].
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2.5. LIMITATIONS ON DEVICE-INDEPENDENT KEY SECURE AGAINST
NONSIGNALING ADVERSARY VIA THE SQUASHED NONLOCALITY [D]

2.5 Limitations on Device-Independent Key Secure Against
Nonsignaling Adversary via the Squashed Nonlocality [D]

In the recently published paper, [WDH22], we initiate a systematic study of upper bounds
on the secret key rate in the non-signaling device-independent secret key agreement (NSDI)
scenario [BHK05, BCK12, SGB+06, AMP06, AGM06, Mas09, HRW10, MRC+14]. We begin, by
showing that the security definition, that we adopt, based on the so-called non-signaling norm, is
equivalent to two notions of security already present in the literature in Refs. [MRC+14, Mas09,
MPA11] and Refs. [HRW10, HRW13, HR10, Hän10]. In order to prove the above equivalence,
we derive the explicit form of the non-signaling norm for the so-called c-d states. Our main
result is the so-called squashing procedure. We show any secrecy quantifier that is an upper
bound on the secret key rate in the SKA scenario [Mau93, MW99, MW97, RW03, RSW03]
subjected to the squashing procedure becomes an upper bound on the secret key rate in the
NSDI scenario (see Sec. 2.1.2.1). The squashing procedure is based on two elements, i.e., on
the notion of the non-signaling complete extension [WDS+18] and suitable optimization over
measurements performed by the honest parties and the eavesdropper. Lifting the formalism
by means of the squashing procedure was possible as we rephrased the definition of the secret
key rate in the SKA scenario in the form known from quantum key distribution scenarios
(QKD). Next, we concentrate on one of the squashed upper bounds, i.e., the non-signaling
squashed intrinsic information hereafter called the squashed nonlocality. We prove that the
squashed nonlocality is a novel unfaithful measure of nonlocality to what it owes its name.
Moreover, we develop a convexification technique that allows to combine different upper bounds
into a single tighter one. Finally, we perform a numerical investigation in which we compare
our upper bound via the squashed nonlocality with the lower bounds given by the rates of
Hänggi-Renner-Wolf [HRW10] and by Acín-Massar-Pironio [AMP06] protocols.

The NSDI scenario has the most relaxed assumptions from all security paradigms considered
in this thesis. Here, the eavesdropper is constrained only with the no-signaling conditions that
make it more powerful than the classical or quantum adversary. Similarly, the honest parties can
possibly share supra-quantum correlations constrained only with the no-signaling conditions
as well. In a nutshell, the no-signaling conditions restrict the input-output statistics of the
devices shared between the parties in a manner that excludes the possibility of instantaneous
communication [Bar07]. The possible advantage of the NSDI scenario over other cryptographic
paradigms (e.g., SKA, QDD, QDI) is that it assures security even if a new theory of physics is
established that would replace the Quantum Theory (QT) and allow for stronger violation of
Bell inequalities than QT allows, provided the new theory is non-signaling one as well.

In our considerations, we assume the presence of two honest parties, Alice and Bob, and
malicious Eve being the eavesdropper. The object shared by them is a tripartite non-signaling
device P (ABE|XY Z) (tripartite normalized, conditional probability distribution), with X, Y
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and Z being inputs, A, B and E being outputs, of Alice, Bob and Eve respectively. On the
device, the honest parties perform direct measurements MF

x,y (MD) (X,Y ) and post-process
their output data (A,B) with some local operations and public communication (LOPC) in
order to produce the secure-key. We refer to this class of operations used for the distillation of
the secret-key as to MDLOPC class (see Sec. 2.1.2.1). The device is assumed to be provided
by Eve, who can listen to public communication and is correlated with the subsystem shared
by Alice and Bob as strongly as possible under the considered assumptions. This situation
constitutes the worst-case scenario for the honest parties.

In the context of the NSDI scenario, mainly lower bounds on the secret key rate have
been studied so far [BHK05, AGM06, AMP06, SGB+06, Mas09, HRW10, BCK12, MRC+14].
To our best knowledge, the only upper bound considered so far was in Ref. [AMP06]. This
situation stands in contrast with the SKA [CK78, Mau93], QDD [BB84, Eke91, Ben92, GRTZ02,
ABB+06], and QDI [Eke91, BCP+14, MY04, ABG+07, MPA11, AFRV19] scenarios in which
both lower and upper bounds are known [CK78, Mau93, DW04, KGR05, DW05, CEH+07,
HHHO05, AH09b, HHHO09, Chr02, CEH+07, YHH+09, Wil16, TGW14b, TGW14a, PLOB17,
KWW20, Kau20, CFH21, AFL21, FBJŁ+21, KHD22, HWD22]. Most importantly, for the NSDI
scenario, it was shown that in the presence of a collective eavesdropper’s attack, a non-zero key
rate can be obtained [HRW10, Mas09, MRC+14] under the fully no-signaling constraints. By the
fully no-signaling constraints, one means that none of the 2N+1 subsystems of the device (N for
each of the honest parties and 1 for the eavesdropper) can signal to each other. This assumption
is vital because if the subsystems of an honest party can signal between each other, or the
device has a memory and can perform the so-called forward signaling between the runs, then
no hash function that can achieve privacy amplification against the non-signaling eavesdropper
is known and the standard ones fail the security requirements [HRW13, AFTS12, SW16]. The
fully non-signaling assumption can be achieved in the so-called parallel measurement model in
which measurements on 2N subsystems are performed simultaneously.

Addressing the problem of upper bounds, it is enough to consider that the device shared
between the honest parties consists of N independent and identically distributed (iid) copies of
a non-signaling device P (AB|XY ). The total system of the honest parties and the eavesdropper
is then a tripartite probability distribution Q(ABE|XY Z), that has P⊗N (AB|XY ) as its
marginal after discarding (tracing out) Eve’s subsystem. As we assume the worst-case scenario,
we allow the eavesdropper to have access to all statistical ensembles of the device of the honest
parties. This power is achieved with Eve having access to the non-signaling complete extension
of the device P⊗N (AB|XY ) denoted E(P⊗N )(ABE|XY Z) that is a non-signaling analog of
quantum purification [WDS+18] (for more details see Sec. 2.6). Moreover, unlike the honest
parties, the malicious Eve can perform a generalized measurement MG

z on her subsystem,
allowing for additional local randomness on her input.
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In the QDD and QDI scenarios, some upper bounds are based on the entanglement mea-
sure called “squashed entanglement” [Chr02, CEH+07, YHH+09, Wil16, TGW14b, TGW14a,
CFH21, AFL21, FBJŁ+21]. A welcome feature measure of it is that it is an additive function
of quantum states, as opposed to the relative entropy of entanglement [HHHO09, HHHO05,
AEJ+01, PBL+18, PAB+20], which allows for avoiding the need for its regularization. Although
the nonlocality analog of relative entropy has been constructed [vDGG05, GHH+14], no analog
of the squashed entanglement has been studied until recently [KWW20]. In our approach,
which is guided by the analogies between quantum entanglement and nonlocality, we introduce
(independently of Ref. [KWW20]) a novel nonlocality measure “squashed nonlocality". It is
formulated differently but equivalent to the measure implicitly introduced in Red. [AMP06].
We base our formulation on the non-signaling complete extension that is an analog of quantum
purification employed in the definition of the squashed entanglement. In this way, our findings
contribute to more than just the development of the NSDI scenario but additionally to the
fundamental topic of nonlocality.

As mentioned, our approach bases on the analogies between different cryptographic paradigms.
Firstly, we introduce a novel security criterion for the NSDI key distillation protocols Λ. The
criterion is based on the non-signaling complete extension and the non-signaling norm (cf.
Ref. [CT09]) that plays a role of an operational distance measure between non-signaling devices.
The non-signaling norm reads∥∥P − P ′∥∥

NS := sup
g∈G

1
2
∥∥g(P ) − g(P ′)

∥∥
1,(2.106)

where G is a certain (broad) subset (specified in Ref. [WDH22]) of linear operations L that
map devices into probability distributions. In this way, a sequence of MDLOPC operations
Λ = {ΛN} (the MDLOPC key distillation protocol) performed by the honest parties on N

iid copies of a device P (AB|XY ) is said to be secure if the following condition holds (see
Sec. 2.1.2.1) ∥∥∥Pout − P

(dN )
ideal

∥∥∥
NS

≤ εN
N→∞−→ 0,(2.107)

P
(dN )
ideal (sA, sB, q, e|z) := δsA,sB

|SA|
∑
s′

A,s
′
B

Pout(s′
A, s

′
B, q, e|z),(2.108)

where Pout = ΛN
(
E
(
P⊗N

))
, is the non-signaling complete extension of the N iid copies of the

P (AB|XY ) distribution, and P
(dN )
ideal is the secure (perfect) state in which Eve is uncorrelated

with the honest parties. In Eq. (2.108) sA and sB stand for the output of the honest parties, i.e.,
the secret-key, q represents communication, e and z are input and output of Eve respectively,
finally dN stands for adequate dimension. Security based on the non-signaling norm constitutes
an analogy to the QDD scenario, where security is based on the trace distance between quantum
states. The non-signaling norm in Eq. (2.107) measures the distance between the so-called
classical-device (c-d) states shared at the end of a MDLOPC protocol. In c-d states the classical
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part is shared by Alice and Bob while Eve still holds a device. Furthermore, by showing
an explicit form of the non-signaling norm in the case of c-d states (see Proposition 2 in
Ref. [WDH22]) we prove in Theorem 3 of Ref. [WDH22] that the security criterion adapted by
us (see Eq. (2.107)) is equivalent to the two notions of security already present in the literature
[MRC+14, Mas09, MPA11] and [HRW10, HRW13, HR10, Hän10], respectively. The explicit
form of the non-signaling norm reads∣∣∣∣∣∣P 1

A,E|Z − P 2
A,E|Z

∣∣∣∣∣∣
NS

= 1
2
∑
a

sup
MF

z

∑
e

∣∣∣MF
z

(
P 1
A,E|Z

)
(a, e) − MF

z

(
P 2
A,E|Z

)
(a, e)

∣∣∣ ,(2.109)

where a ∈ A corresponds to multi-variable of outputs of the c part in the c-d distribution,
and MF

z is a direct measurement performed on input Z. By showing the equivalence between
the security criteria based on the non-signaling norm and the one in Refs. [HRW10, HRW13,
HR10, Hän10] (based on the so-called distinguisher) we argue that our notion of security is
restricted composable [BOM04, BOHL+05, Can01], i.e., it is composable provided the device is
not reused (at a risk of the leakage of key generated from the first use, during second use of the
device [BCK12]). Finally, the security definition based on the non-signaling complete extension
guarantees that the memory of the eavesdropper is finite and minimal without compromising
the eavesdropping power of Eve [WDS+18].

Our main goal is to provide upper bounds on the secret-key rate in the NSDI scenario. To
achieve our target, we introduce the so-called squashing procedure. The squashing procedure
establishes an analogy between SKA and NSDI scenarios in the following manner. Suppose
M(A : B||E) is a real-valued, non-negative function in the domain of tripartite probability
distributions P (ABE), that serves as an upper bound on the secret-key rate in the SKA
scenario [Mau93, MW99, MW97, RW03, RSW03], i.e., M(A : B||E) ≥ S(A : B||E). Moreover,
if M(A : B||E) is monotonic with respect to LOPC, then we call it a secrecy monotone.
Considering the above, we construct quantifiers of secret correlations in the NSDI model.
Namely, the squashing procedure “lifts up” secrecy quantifiers M(A : B||E) in the SKA scenario
to give non-signaling secrecy quantifiers of the NSDI scenario M̂(A : B||E) via mapping
tripartite non-signaling devices R(ABE|XY Z) into probability distributions

M̂ (A : B||E)R(ABE|XY Z) := max
x,y

min
z

M (A : B||E)(MF
x,y⊗MG

z )R(ABE|XY Z) ,(2.110)

(MF
x,y ⊗ MG

z′)R(ABE|XY Z) =
∑
z

p(z|z′)R(ABE|X = x, Y = y, Z = z),(2.111)

where bymaxx,y we mean maximization over all possible direct measurements MF
x,y, and by minz

we mean minimization over all possible general measurement MG
z , where optimization over prob-

ability distribution p(Z|Z ′) is implicit. Additionally, if R(ABE|XY Z) is the non-signaling com-
plete extension, i,.e., R(ABE|XY Z) ≡ E(P )(ABE|XY Z), we call M̂ (A : B||E)E(P )(ABE|XY Z)
a non-signaling squashed secrecy quantifier. Furthermore, suppose M̂ (A : B||E)R(ABE|XY Z)
is a secrecy (MDLOPC) monotone. In that case, we call it a non-signaling secrecy quantifier
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n-s secrecy measures 

n-s secrecy quantifier (	I	# A: B !(#$|&'))

n-s squashed secrecy quantifier (	I	# A: B ℰ(*)(#$|&'))

Squashing procedure

n-s squashed secrecy monotone 
(	I	# A: B|E ℰ(*)(#$+|&',), 	I	# A: B ↓ E ℰ(*)(#$+|&',))

n-s squashed secrecy measures 

n-s secrecy monotone (	I	# A: B|E !(#$+|&',), 	I	# A: B ↓ E !(#$+|&',))

𝒩-.

Figure 2.11: The relative hierarchy of non-signaling secrecy quantifiers in Ref. [WDH22].
The grey region represents all non-signaling secrecy quantifiers constructed from secrecy
quantifiers known from the SKA security paradigm. The green region represents non-signaling
secrecy monotones (MDLOPC monotones). The red circle, with the squashed nonlocality as
a distinguished example, corresponds to the nonlocality measures, i.e., MDLOPC monotones
that are non-negative, additive for the tensor product of devices, and zero for the local devices.
Finally, the bluish region corresponds to the non-signaling secrecy quantifies incorporating the
non-signaling complete extension E(P ) of bipartite device P in their construction, whereas Q
stands for any tripartite extension of P . Between brackets, we give examples of non-signaling
secrecy quantifiers belonging to each set.

monotone, and if additionally, R(ABE|XY Z) is the non-signaling complete extension, we call
consistently M̂ (A : B||E)E(P )(ABE|XY Z) non-signaling squashed secrecy monotone. The relation
between “lifted quantifiers” is depicted in Fig. 2.11, where the inclusion between the sets (red,
green, gray) is proved to be strict [WDH22].

Having the squashing procedure defined, we present our main result concerning the upper
bounds on the secret-key rate (Theorem 1 in Ref. [WDH22]). Namely, we show that the rate
of the secret-key K

(iid)
DI (P ) distilled with MDLOPC operations in the non-signaling device-

independent iid scenario (see Sec. 2.1.2.1 for details) is upper bounded with any non-signaling
squashed secrecy quantifier constructed with the squashing procedure

∀P K
(iid)
DI (P ) ≤ M̂ (A : B||E)E(P ) .(2.112)

Here, P (AB|XY ) is a single copy of a bipartite non-signaling device, of which the honest
parties share multiple iid copies. The above result, together with the presence of the squashing
procedure, establishes a direct connection between SKA and NSDI cryptographic scenarios. In
this way, we not only establish a link between two major security paradigms but also open a
possibility for a systematic study of tighter upper bounds on the secret-key rate in the NSDI
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Figure 2.12: Plot of the upper and lower bounds on the secret-key rate K(iid)
DI (P ) in the NSDI

scenario in Ref. [WDH22]. The plot on the left corresponds to the (2,2,2,2) scenario in which the
devices are probabilistic mixtures of PR and anti-PR box, i.e., Piso(ε) = (1 − ε)PR + εPR. The
dashed red line corresponds to the non-signaling squashed mutual information. The straight blue
line represents non-signaling squashed conditional mutual information (equal to the nonlocality
cost [WDH22, EPR92, BCSS11]). The solid orange line represents an upper bound on the
squashed nonlocality obtained with the convexification technique. The dotted magenta curve
(HRW) corresponds to the lower bound obtained from Hänggi, Renner, and Wolf protocol
[HRW10]. The “post-quantum” region corresponds to devices that exhibit supra-quantum
correlations. The plot on the right corresponds to the (3,2,2,2) scenario in which the devices
are given by the PAMP(p) distribution (see Refs. [WDH22, AMP06] for details). The solid
orange line corresponds to an upper bound on the squashed nonlocality obtained with the
convexification technique. The blue dash-dotted line corresponds to the non-signaling squashed
conditional mutual information. The dotted magenta curve is the lower bound by Acín, Massar,
and Pironio (AMP) in Ref. [AMP06]. The purple big-dashed curve is the AMP upper bound
on intrinsic information of the eavesdropping strategy in Ref. [AMP06]. The red dashed line
is a segment of the lower convex hull of the orange and purple curves that illustrates the
convexification technique. The shaded bluish region under orange and red curves represents the
tightest obtained upper bound.

scenario (cf. Ref. [AMP06]). The performance and numerical feasibility of the constructed upper
bounds are thanks to the presence of the non-signaling complete extension in the definition of the
non-signaling quantifiers. The non-signaling complete extension allows for explicit representation
of the eavesdropper system for which the memory is finite (cf. Ref. [WDS+18]).

The proof of general upper bound on the secret-key rate K(iid)
DI (P ) in Eq. (2.112) (presented

in Theorem 1 in Ref. [WDH22]) was obtained thanks to an intermediate technical result
concerning SKA security paradigm. Namely, we show (Theorem 2 in Ref. [WDH22]) that the
following definition of the secret-key rate S(A : B||E) (see Sec. 2.1.2.1) is equivalent to the
definition present in the literature [CK78, Mau93, MW00, CEH+07]

S(A : B||E) = sup
P

lim sup
N→∞

log dimA
(
PN

(
P⊗N (ABE)

))
N

,(2.113)
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NONSIGNALING ADVERSARY VIA THE SQUASHED NONLOCALITY [D]

with a security condition ∥∥∥PN (P⊗N (ABE)
)

− P ideal
N

∥∥∥
1

≤ δN
N→∞−→ 0,(2.114)

P ideal
N (SASBCEN ) :=

(
δsA,sB

|SA|

)
⊗
∑
sA,sB

P out
N (SA = sA, SB = sB, CE

N ),(2.115)

P out
N (SA, SB, CEN ) := PN

(
P⊗N (ABE)

)
.(2.116)

Here, P = ∪∞
N=1{PN} is a LOPC cryptographic protocol, acting on N iid copies of the classical

probability distribution P (ABE), and P ideal
N is a distribution representing ideally secure key.

Moreover, C is a random variable representing public communication in the protocol. The above
technical result is interesting on its own because it rephrases the definition of the secret-key rate
S(A : B||E) in the SKA model into the form that is characteristic for the quantum scenarios.
In this way, as a byproduct, we contribute to the SKA cryptographic paradigm.

Among all non-signaling secrecy quantifiers, we pay special attention to the non-signaling
squashed intrinsic information Nsq(P ), that we call the squashed nonlocality (cf. Ref. [KWW20]
for parallel approach)

Nsq(P ) := max
x,y

min
z

I (A : B ↓ E)(MF
x,y⊗MG

z )E(P)(ABE|XYZ) .(2.117)

We prove that the squashed nonlocality, besides being an upper bound on the secret-key
rate K(iid)

DI (P ), exhibits many important properties. Namely, the squashed nonlocality is (see
Proposition 1 in Ref. [WDH22])

1. Non-negative real-valued function, equal zero for local devices,

2. Monotonic with respect to MDLOPC operations,

3. Convex with respect to mixtures of non-signaling devices,

4. Superadditive over joint non-signaling devices,

5. Additive for product of devices,

6. Subextensive,

7. Non-faithful (proof by inspection).

In consequence, we prove that the squashed nonlocality is a (novel) measure of nonlocal correla-
tion, what makes it a nonlocality analog of the squashed entanglement being an entanglement
measure. Importantly, by inspection, we prove that the squashed nonlocality is non-faithful, i.e.,
there exist bipartite nonlocal devices for which the squashed nonlocality is zero (see Fig. 2.12).
We illustrate the non-faithfulness in the (2,2,2,2) setting (two binary inputs, two binary outputs)
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for the isotropic boxes Piso(ε), i.e., probabilistic mixtures of the PR box and anti-PR box (PR).
The non-faithfulness implies that nonlocality does not imply security for the MDLOPC protocols
(cf. Ref. [AGM06] where a different protocol is considered).

The intrinsic information function and, therefore, also the squashed nonlocality implicitly
contains post-processing of the outputs of the eavesdropper. Therefore, in order to generate
examples of the upper bounds, we perform an extensive numerical investigation that aims to
find possibly optimal post-processing channels. We consider devices with statistics dependent on
some set of parameters (see Fig. 2.12). However, the optimal channel can be different for each set
of values of the parameters. Furthermore, if one finds a post-processing channel that diminishes
the upper bound curve (with respect to the identity channel), proving that it is optimal is a
formidable task. This situation motivated us to develop a convexification technique that has
already proved its usefulness in situations other than the NSDI scenario [KHD22, HWD22].
The convexification technique states that (see Section I of Appendix in Ref. [WDH22]) the
lower convex hull of an arbitrary number of plots, each being an upper bound on the squashed
nonlocality is an upper bound on K

(iid)
DI (P ) itself. This result is possible because the squashed

nonlocality is convex with respect to mixtures of devices. In our investigation, the upper bounds
on the squashed nonlocality are functions (based on the squashed nonlocality) with typically
suboptimal post-processing channels. Using the convexification technique, we obtain the tightest
to our knowledge upper bound (cf. Ref. [AMP06]) on the NSDI secret-key in the (3,2,2,2)
scenario (see Fig. 2.11). We also compare our upper bound with the lower bound obtained
from the protocol of Hänggi, Renner, and Wolf (HRW protocol) [HRW10] in order to see the
proximity of the curves, and therefore the performance of the upper bound. Furthermore, the
convexification technique can be easily generalized and developed for other convex non-signaling
squashed secrecy quantifiers, or different scenarios [KHD22, HWD22].

To conclude, in the described paper [WDH22], we have developed a plethora of analogies
between different security paradigms. The notion of the complete extension (see Sec. 2.6 for
more details) allowed us to develop a number of analogies between the NSDI, SKA and quantum
scenarios. In particular, the non-signaling complete extension allowed us to introduce a family
of the non-signaling squashed secrecy quantifiers being upper bounds on the MDLOPC secret-
key rate in the NSDI scenario. One of the non-signaling squashed secrecy quantifiers, called
the squashed nonlocality, is proved to be a novel and nonfaithful measure of nonlocality (see
Ref. [KWW20] for parallel approach). The convexification technique developed in Ref. [WDH22]
allowed us to find the tightest upper bound in the (3,2,2,2) NSDI scenario. In this way, we
contribute not only to the development of the NSDI or SKA cryptographic paradigms but also
the fundamental topic of nonlocality.
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2.6 Complete Extension: the Non-Signalling Analog of
Quantum Purification [E]

In the recently accepted for publication manuscript [WDS+18], we study a concept of the
complete extension postulate (CEP) in the framework of generalized probabilistic theo-
ries (GPTs) [Bar07, Plá21, Mül21, Lam18]. The CEP is meant to be a relaxation of the
purification postulate (PP) [CDP11], i.e., one of the postulates in terms of which quantum the-
ory can be reformulated. The PP is motivated by quantum purification. Considering relaxations
of postulates, in terms of which quantum theory can be formulated, is a research direction
motivated by the chase for beyond-quantum theory with stronger explanatory power for physical
phenomena than quantum theory. On the contrary to the PP, the CEP does not require the
existence, within a theory, of pure extensions for all systems and their states. Instead, the CEP
requires the existence of extension with the property of generation, i.e., extensions from
which any other extension of the extended system can be prepared using operations available in
theory. We start by discussing the limitations of the purification postulate in terms of the no-go
theorem for hyperdecoherence [LS18], the contradiction between the existence of fundamental
superselection rules and PP [SSC21, Nak20, WvdW22], and quantum gravity in the context
of theories with indefinite casual structure [Har05, Har07, OCB12, CDPV13, AFNB17] and
discrete theories. In particular, we prove a no-go theorem in which we claim that the purification
postulate fails in any discrete convex theory, i.e., in a convex theory in which the number of pure
states is countable. We then formally introduce the complete extension postulate (CEP) and
show that generation property enables access to all probabilistic ensembles of the extended
system via measurements on extending system (access), i.e., generation implies access. As
we discuss, classical probability theory and superselected quantum theory both satisfy CEP.
We then show that in any GPT that satisfies the CEP and the no-restriction hypothesis, the
bit-commitment cryptographic task is impossible, like in quantum theory. On the other hand,
consecutively, we demonstrate that the proof for the no-go theorem for hyperdecoherence of
beyond-quantum theory to quantum theory that holds under the PP does not hold under
the CEP. Subsequently, we case study the theory of non-signaling behaviors and try to bypass
the nonexistence of purifications therein by constructing extensions satisfying access and
generation properties, i.e., the non-signaling complete extensions (NSEAs). In fact, we show
that in the theory of non-signaling behaviors, the access and generation properties are
equivalent. The NSEA of a generic behavior is not a pure state of the theory; still, some NSEAs
are pure. As we show, NSEA of a maximally mixed binary input binary output behavior is the
PR box [PR94]. The above observation can be viewed as an alternative derivation of the PR
box, as it does not refer to any type of Bell inequality. Next, we derive an upper bound on the
dimension of the NSEA as a function of the dimensionality of the extended system. Importantly,
we show that the dimension of NSEA is always finite. We observe that NSEA, contrary to
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quantum purification, does not exhibit a mirror property. Namely, in a generic case, the NSCE,
ρ′
AB of the reduced state σB of the extending system B that is in NSCE, ρAB is not the original

NSCE of state ρA of the system A. Finally, we conduct a numerical investigation in which
we find NSEAs of particular contextual behaviors and behaviors lying on isotropic line (see
Sec. 2.1.6.2).

Whilst the quantum theory is the best-validated description of physical reality, it lacks a
single agreed-on interpretation [Per02], and it cannot explain some observable phenomena such as
gravity. For this reason, a significant research effort has been put into finding a beyond-quantum
theory with stronger explanatory power [PR94, Ber17, Ber18, Har01, Życ08, Smo06]. The sought
theory must rather be some modification of the quantum theory. However, standard axioms of
quantum theory are not independent of each other [Sto32, Gle75, MGM19], and they can not be
individually modified. Therefore, recently, an interest in reformulating quantum theory in terms
of mutually independent postulates occurred. This idea led to quite a number of reformulations
of quantum theory in terms of information-theoretic postulates [DB11, Har01, CDP10, Har11,
CBH03, Goy08, MM11, BMU14, Wil18, Höh17, BR17, SSC21, Tul20, vdW19, Nak20] within
the framework of the so-called generalized probabilistic theories (GPTS) [Plá21, Mül21, Lam18],
[Bar07] and references therein. One such reformulation of quantum theory introduced the
purification postulate (PP) [CDP11], which gives an important insight as it distinguishes
classical probability theory from quantum theory. Substantially, the purification postulate is a
generalization of the notion of purification within the quantum theory to arbitrary GPTs. The PP
already proved its usefulness in proving many results in the fields of pertaining to computation
[LS16b, LS16a, BLS18], cryptography [CDP10, SS18], thermodynamics [CS15, CS17], and
interference [BLSS17]. On the other hand, the PP should be modified, for several reasons, if we
want to find the beyond-quantum theory to be a more fundamental description of nature than
the quantum theory. Firstly, in Ref. [LS18], there is a no-go theory which states that if the
mentioned beyond-quantum theory is causal and reduces to quantum theory via decoherence-
like mechanism (hyperdecoherence), then it does not satisfy the PP. Secondly, the PP is
contradictory with the existence of superselection rules; therefore, if one believes in those,
the PP should be abandoned. Next, in Ref. [AFNB17], it was shown that a purification-like
postulate fails to hold for all quantum process matrices. Therefore, there are doubts if the PP is
suitable for theories that permit indefinite causal structure [Har05, Har07, OCB12, CDPV13],
for example, quantum gravity. Finally, in Refs. [BHZ05, Mül09, Pal20], ideas motivated by
the pursuit of quantum gravity suggest that on the fundamental level, the quantum state
space becomes discrete. We anticipate here a bit, as according to our findings, the PP can not
hold in any discrete theory. All the arguments listed above suggest asking how the PP can be
weakened or replaced by another postulate yielding a theory with more explanatory power. In
Ref. [WDS+18], we propose the complete extension postulate (CEP) as a replacement for PP
and study its implications in various contexts.
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We formulate the complete extension in the language of GPTs by employing the notions of
extensions, ensembles, and properties of access and generation. We restrict ourselves to
the convex theories, i.e., theories in which convex mixtures of states are states as well, as they
seem to be natural candidates for the beyond-quantum fundamental theory. Let s be a vector
in the convex set of states (state space) ΩA of a GPT system A. An ensemble for s, is then a
set of pairs {(pi, si)}i∈I such that si ∈ ΩA and {pi} define a probability distribution (pi ∈ R,
pi ≥ 0, and ∑i pi = 1), satisfying the convex combination

s =
∑
i∈I

pisi.(2.118)

The set of all possible ensembles for a state s is denoted Ens[s]. Next, an extension of a state
s ∈ ΩA of system A is a state σ ∈ ΩA⊗E of a bipartite system A⊗ E for which

s = [1A ⊗ uE ](σ),(2.119)

where uE is the unit effect on system E, and we denote the set of extensions σ, of a state
s, as Ext[s]. Importantly, in general, there will be extensions constructed on many different
extending systems E. If purification exists, it is simply some σ ∈ Ext[s] which is pure, i.e.,
Purif [s] ⊆ Ext[s]. We distinguish a specific class of extensions Extclass[s] in which the
extending system is taken to be classical ∆d for some d ∈ N (see Sec. 2.1.6.1 for details). As we
show (see Proposition 9 in Ref. [WDS+18]) that there is an isomorphism between Extclass[s]
and Ens[s], i.e., Extclass[s] ∼= Ens[s]. Third, an extension σ∗ ∈ Ext[s] with extending system
E∗ is said to be generating (satisfy generation) if and only if for every σ ∈ Ext[s] with
arbitrary extending system E there exists a transformation Tσ : E∗ → E such that:

1A ⊗ Tσ(σ∗) = σ.(2.120)

Furthermore, an extension σ∗ ∈ Ext[s] with extending system E∗ is an extension with access
(satisfies access property) if and only if, for any ensemble σ ∈ Extclass[s] with extending
system ∆I we can find a measurement Mσ : E∗ → ∆I such that:

1A ⊗Mσ(σ∗) = σ.(2.121)

Having the basic notions defined, in Proposition 10 and 11 of Ref. [WDS+18], we prove
that if an extension σ has the property of generation, then it necessarily has the property of
access, but not vice versa. We discuss the above nonequivalence in terms of quantum theory
and GPT, which has the same state space as the quantum theory but restricted dynamics.
Finally, we formulate the complete extension postulate (CEP).
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A GPT G satisfies the Complete Extension Postulate (CEP) iff: for all systems A and all
states s ∈ ΩA, there exists an extension σ∗ ∈ Ext[s] which is generating, that is, which has the
generation property.

The complete extension postulate (CEP) can be compared with the purification
postulate (PP) [CDP10].

A GPT G satisfies the Purification Postulate if and only if for all systems A and all states
ωA ∈ ΩA, there exists purifications (Purif [ωA]) which are essentially unique.

In the above definition, essential uniqueness means that all purifications constructed on the
same extending system can be related via reversible transformation on the purifying system.
As we discuss, the essential uniqueness property of the PP is intuitively very closely related
to the generation property of the CEP. However, an important difference is that essential
uniqueness is a property for purifications of the same extending system, while generation
is a property for extensions on arbitrary extending systems. Derivation of generation from
essential uniqueness requires one more assumption and sets the relation between the CEP
and the PP. As we prove in Proposition 13 of Ref. [WDS+18] for the set of GPTs in which
the product of pure states is pure, the purification postulate implies the complete extension
postulate. Consequently, quantum theory satisfies CEP. Namely, purification |ψ〉 of state ρ
is also its complete extension, as it allows for generation of arbitrary other extensions as
well as access of arbitrary ensembles. Note that the converse statement is not true, i.e., let
ω be arbitrary mixed quantum state, then |ψ〉 ⊗ ω is the complete extension of ρ, but not its
purification. Moreover, as we show, also classical probability theory satisfies CEP. Indeed, the
complete extension of a probability distribution of some random variable X is described by its
copy. Specifically, an extension of a probability distribution p(x) is any probability distribution
q(x, y), such that ∑q q(x, y) = p(x). In this way, pce(x, x′) := p(x)δx,x′ is a complete extension
of p(x), and any other extension can be obtained by applying a stochastic map to x′. The
above results highlight the differences between the PP and the CEP, as the PP does not hold
in classical probability theory. In this way, the CEP seems to be a more natural postulate to
consider than the PP, as it is based on an intuitive property of generation and holds both in
quantum and classical theory.

As our first main result, we prove that there can not exist purification of arbitrary states in
any non-signaling, convex discrete theory [PW13, CHHH17, JGBB11] of finite dimension. This
no-go result was known previously only for the classical theory and the theory of non-signaling
behaviors [CDP10, CDP11]. This result is not directly connected to the CEP. However, as
mentioned before, the no-go theorem described below serves as an argument justifying the need
to replace the PP. More precisely, a GPT G is said to be discrete, if and only if, for each system
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T ∈ Syst[G] there is a discrete number of pure states, that is, where each state space, ΩT , is a
polytope. The proof of Theorem 7 of Ref. [WDS+18], which states that in any discrete theory,
there are no (non-trivial) systems that have purifications for all states, and hence, theories with
purifications can not be discrete, is based on a simple observation. Namely, in Lemma 6, we
observe that in any convex (non-trivial) theory, the cardinality of the set of its states is at least
of power of continuum c. On the other hand, the number f of vertices in any discrete theory
is finite, and f < ℵ0 < c according to a set-theoretic fact [Kur61]. So there are simply not
enough vertices, in theory, to purify all the mixed states of any system. The direct consequence
of Theorem 7 is Proposition 8 [WDS+18], which states that in any theory (with a countable
number of system types), there must be at least one system with a continuum of pure states.

The task of bit-commitment, and its generalization to integer-commitment [May97, LC98,
SS18], is an important two-party cryptographic primitive that can be used to build other
cryptographic protocols such as coin-flipping [Blu81] and zero-knowledge proofs [GMR85]. The
integer-commitment protocol for two parties, Alive and Bob, goes as follows. The task consists
of two phases i) the commit phase, in which Alice chooses from the uniform random distribution
an integer j ∈ {1, ..., n} and "commits" it to Bob by passing him a "token". Here, the "token"
refers to a (sub)system prepared accordingly to the chosen integer. There are two of these
tokens. At this stage, it should be impossible for Alice to change the value of j, as well as
Bob should not be able to learn the value of j. In the reveal phase, ii) Alice communicates the
integer j to Bob and sends him a second token to verify the integer. Finally, Bob should be able
to verify if the integer Alice communicated is the one she drew in the first phase. The security
condition for the protocol is that Alice can not change the value of the integer j after the first
phase, to cheat on Bob, and Bob can not learn the value of the integer j before the second phase
to cheat on Alice. The cheating probabilities p∗

A and p∗
B of Alice and Bob, respectively, quantify

to which extent the two parties can deviate the protocol from the ideal one. Namely, p∗
A is the

maximum probability with which Alice can reveal another integer than the one she committed
to Bob. Similarly, p∗

B is the maximum probability with which Bob can learn the value of j
before the reveal phase. It is known that (perfect realization of) bit-commitment is impossible
both in classical and quantum theory [May97, LC98]. On the other hand, it was shown in
Ref. [BDLT08] that any GPT which is non-classical but does not have entanglement allows for
bit-commitment. It is, therefore, interesting to determine which properties of theories make
the integer-commitment task impossible. In Ref. [CDP10, Corollary 45], the impossibility of
bit-commitment was proved under a set of postulates, including the purification postulate (PP).
Furthermore, in Ref. [SS18] an analytical lower bound on the product of cheating probabilities
p∗
Ap

∗
B, for the integer-commitment task, has been found, again relying on the PP

p∗
A · p∗

B ≥ α

n
>

1
2n,(2.122)

where the perfect protocol would be the one for which p∗
B = p∗

A = 0. As we show in Theorem 7
of Ref. [WDS+18], exactly the same lower bound holds if one replaces the PP with the CEP
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Figure 2.13: Illustration of the relationship between the set of all theories, theories which satisfy
the CEP, and those which satisfy The PP. Hyperdecoherence mechanism (purple arrows) relates
hypothetical beyond quantum theories and quantum theory in analogy to the decoherence
mechanism (blue arrow), which relates quantum and classical theory).

and assumes the no-restriction hypothesis [CDP10]. The proof of Theorem 7 in Ref. [WDS+18]
goes along the lines of the proof in Ref. [SS18], with the same cheating strategies of Alice and
Bob, up to the modification in which essential uniqueness is replaced with the generation
property. The above demonstrates that the impossibility of the integer-commitment is not
restricted to the theories that satisfy the PP, as the CEP suffices. On the other hand, it shows
that the CEP is not an empty postulate as the lower bound in Eq. (2.122) holds. Additionally,
using the CEP, we provide a unified proof applicable to both quantum and classical theory.

Decoherence is a mechanism that shows how quantum states, measurements, and transfor-
mations become effectively classical [CST18, SC17]. Note that the diagonal density operators
are isomorphic to classical probability distributions. In Ref. [LS18], the notion of decoherence
was generalized to the concept of hyperdecoherence, a term coined in [Życ08]. In analogy to
decoherence, hyperdecoherence (see Fig. 2.13) is supposed to be a mechanism that would make
underlying beyond-quantum theory effectively quantum and explain why we do not observe
beyond-quantum effects in all our experimental tests (except the theory of gravity). The basic
idea to describe hyperdecoherence is that for every system A of beyond-quantum theory, there
exists a decoherence process

HA : A → A,(2.123)

which causes that system A to behave effectively as a quantum system. We assume that these
hyperdecoherence processes satisfy the following properties that assure consistency of the
mechanism resulting in valid physical theory
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1. They are unit-effect preserving,

uA ◦ HA = uA,(2.124)

in analogy to the trace-preservation condition for quantum decoherence processes.

2. They are idempotent,

HA ◦ HA = HA,(2.125)

what reflects the fact that once the beyond-quantum features are lost, the processes of
hyperdecoherence do nothing.

3. They must be chosen compositionally, i.e., they are such that

HA⊗B = HA ⊗ HB.(2.126)

In other words, if two systems hyperdecohere independently, then the joint system will
behave effectively as a quantum one as well.

The hyperdecoherence of a beyond-quantum theory is then modeled by replacing the unit
process 1A with hyperdecoherence processes HA. The intuition behind the described model
is that the hyperdecoherence happens at time scales much shorter than those we can probe
experimentally and the systems hyperdecohere before we actually do something. In Ref. [LS18],
it was shown that any beyond-quantum theory that hyperdecoheres to the quantum theory, in
the way described here, must violate either the causality principle or the PP. While abandoning
the PP seems more plausible, the question arises whether the CEP can be satisfied by a
beyond-quantum theory that hyperdecoheres to quantum theory. We examine the proof of the
main theorem in Ref. [LS18] and conclude that one can not derive, using the identical proving
technique, the same no-go result by replacing PP with CEP. Therefore, it remains possible that
there exists a beyond-quantum theory that hyperdocoheres to quantum theory, satisfies CEP,
and does not violate the causality principle.

As a case study, for the application of the CEP, we choose the theory of non-signaling
behaviors [PR94, Bar07]. The states within this theory are multipartite conditional probability
distributions, e.g. PA|X for A = A1, . . . , AN and X = X1, . . . , XN , that satisfy the no-signaling
constraints [Bar07] (see Sec. 2.1.6.2 for more details). The theory of non-signaling behaviors
allows for stronger correlations between subsystems than quantum theory. For example, it
reaches the algebraic maximum of the Clauser-Horne-Shimony-Holt (CHSH) inequality [PR94],
and it violates the Information Casuality Principle [PPK+09]. Furthermore, the theory of
non-signaling behaviors is an example of a discrete theory. Hence, it does not satisfy the PP. In
our case study, we aim to bypass the lack of existence of purifications, for a generic state, with
the counterpart of purifications originating from the CEP, i.e., by constructing non-signaling
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Figure 2.14: Illustration of access and generation properties for the theory of non-signaling
behaviors in Ref. [WDS+18]. a) Using NSCE, one can generate any other extension by means
of randomizing the input and post-processing of output. b) The extending system E of the
NSCE has access to any ensemble {pk(i), P ik(a|x)} of the system A, which is generated upon
measurement z = k performed on the system E.

complete extensions (NSCEs). More precisely, for a given behavior PA, we want to construct its
non-signaling extension PAE , such that it satisfies access and generation properties, with
an analogy to quantum purification which satisfies these. Indeed, we achieve our goal and show
that NSCEs can actually be constructed, and therefore, the theory of non-signaling behaviors
satisfies the CEP. We do so by first defining the overcomplete non-signaling extension with
access (ONSEA) that gives access to all pure members ensembles (PMEs) of the extended
system via a choice of the measurement setting (input) on the extending system. In fact,
ONSEA gives access to all ensembles of extended system, also mixed ones, as those are convex
mixtures of pure members ensembles (see Theorem 21 of Ref. [WDS+18]). Next, in Theorem 16
of Ref. [WDS+18], we show that access to PMEs is equivalent to access to minimal ensembles,
i.e., these ensembles that contain a set of vertices such that any of its proper subsets does not
suffice to construct an ensemble of the extended system. The equivalence comes again due to
dynamics available in the theory for the extending system. This equivalence motivates us to
define non-signaling extension with access (NSEA), namely
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Given a behavior PA : PA(a|x), we say that a behavior PAE : PAE(ae|xz) is its non-signalling
extension with access extended to system E if for any input choice z = k an outcome e = i

occurred in the extending system, there holds

PAE(a, e = i|x, z = k) = P i,kE (a|x)p(e = i|z = k)(2.127)

such, that, for each k, the ensemble
{(
p(e = i|z = k), P i,kE (a|x)

)}
i

is a minimal ensemble of
the behavior PA. Moreover, corresponding to each minimal ensemble of PA, there is exactly one
input z = k, in part of the extending system which generates it.

In Proposition 19 of Ref. [WDS+18], we show that for each behavior PA, its NSEA E(P )AE is
unique up to local relabeling (of inputs and outputs) on the extending system E, what makes
an analogy to essential uniqueness. In virtue of Corollary 22 of Ref. [WDS+18] that follows
from Corollary 20 and Theorem 21 of Ref. [WDS+18], NSEA gives access to all ensembles of the
extended system, and therefore, NSEA satisfies access. Next, in Theorem 23 of Ref. [WDS+18],
we show that in the theory of non-signaling behaviors, the properties of access and gen-
eration are equivalent. Finally, in Corollary 23 of Ref. [WDS+18], we conclude that NSEA
is NSCE as it satisfies access and generation, and therefore, the theory of non-signaling
behaviors satisfies the CEP (see Fig. 2.14). Finally, later, in Proposition 27 of Ref. [WDS+18],
we show that NSEA (or NSCE equivalently), of arbitrary behavior P , has the lowest dimension
amongst all non-signaling behaviors of P having the property of access.

We further give an explicit example of how NSCEs can be constructed in the theory of
non-signaling behaviors. One of the behaviors for which we show the construction of NSCE is
the maximally mixed behavior with a single binary input and single binary output given by

Pm
A(a|x) =

a x 0 1

0 1/2 1/2

1 1/2 1/2

(2.128)

where a is the output and x is the input (measurement setting) of the behavior on system A. As
we show, the behavior given in Eq. (2.128) above provides an interesting example of NSCE. We
start our construction by determining vertices of the polytope, i.e., state space Pm

A belongs to,

P0
E =

a x 0 1

0 1 1

1 0 0

, P1
E =

a x 0 1

0 0 0

1 1 1

, P2
E =

a x 0 1

0 1 0

1 0 1

, P3
E =

a x 0 1

0 0 1

1 1 0

,(2.129)

where the subscript E corresponds to the fact that behaviors above are "extremal" points of the
polytope. We now employ the fact that any point inside a convex polytope can be expressed
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Figure 2.15: Illustrations of purifications of system A to an extended system E in Ref. [WDS+18].
a) The purification of maximally mixed state of qubit 1

2 is a Bell’s state which is maximally
entangled. b) NSCE of a maximally mixed behavior Pm

A (see Eq. (2.128)) is the Popescu-
Rohrlich box which is also pure.

as a convex combination of its vertices. In this way, we find all minimal ensembles of the Pm
A

behavior

M0(PmA ) = {(1/2,P0
E); (1/2,P1

E)}(2.130)

M1(PmA ) = {(1/2,P2
E); (1/2,P3

E)}.(2.131)

Now, using the definition of NSCE (or equivalently NSEA) above, these two minimal ensembles
are obtained on the extended system for two different input choices on the extending system.
We associate now the choice of minimal ensembles M0, M1 in Eqs. (2.130), (2.131), with input
choices on the extending system z = 0, z = 1, respectively. In this way, we obtain the NSCE of
the behavior Pm

A

PPR
AE (ae|xz) =

x 0 1

z e
a 0 1 0 1

0
0 1

2 0 1
2 0

1 0 1
2 0 1

2

1
0 1

2 0 0 1
2

1 0 1
2

1
2 0

.(2.132)

We recognize the NSCE of Pm
A to be the famous Popescu-Rohrlich (PR) box [PR94] (see

Sec. 2.1.6.2 for more details). The PR box is an extreme point in its polytope. In this point, we
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recognize the analogy to the purification of a maximally mixed state of a qubit, i.e., ρ = 1
21, which

purification is maximally entangled Bell’s state (up to local isometry) [HHHH09] (see Fig. 2.15).
As we conclude in Corollary 33 of Ref. [WDS+18], the PR box is a purification of maximally
mixed behavior with a single binary input and a single binary output Pm

A . We also discuss that
observing that PR box is the purification of Pm

A can be seen as a derivation of PR box without
referring to any notion of CHSH or the so-called Bell inequality, in contrast to Ref. [PR94].
In essence, the independence of our derivation relies on the fact that we assume only a) the
structure of single-partite systems and b) that the NSCE of any single-partite system is a valid
state of the theory. However, we do not presuppose: i) that all non-signaling behaviors all valid
states of the theory, ii) a specific composition rule, iii) the no-restriction hypothesis [CDP10].
Furthermore, in section B.1 of the appendix of Ref. [PR94], we show explicit construction of
NSCE for certain single-partite behavior, which is not pure. In section B.3 of the appendix
of Ref. [PR94], we construct NSCE if three-cycle contextual behavior [AB11, AQB+13] (aka
Specker’s triangle [Spe90, LSW11]). Eventually, in section B.4 of the appendix of Ref. [PR94],
we determine all minimal ensembles of bipartite behaviors lying on the isotropic line (see
Sec. 2.1.6.2) that can be readily used to construct NSCEs, and study their properties.

As our next main result, we study the dimension of the non-signaling complete extension
(NSCE). By the dimension of NSCE or any other non-signaling behavior, we understand the
dimension of the polytope (state space) it belongs to. Our purpose is to derive an upper bound
on the dimension of the NSCE of n-partite behavior belonging to polytope B, with mi inputs
for parties, and vij outputs respectively. We denote by B̃ the polytope that contains NSCE of
arbitrary behavior in B. In Theorem 25 of Ref. [WDS+18], we show the following upper bound
on the dimension of polytope B̃

dim B̃ < (dim B + 1)

×
(((2t−bt/2c−dim B

bt/2c
)

+
(3t−bt/2c−(dim B+1)

t−bt/2c−1
)

dim B + 1

)
dim B + 1

)
,(2.133)

where:

dim B =
n∏
i=1

mi∑
j=1

(vij − 1) + 1

− 1, t =
n∏
i=1

mi∑
j=1

vij .(2.134)

In the proof, we base on the formula in Eq. (2.134) [Pir05] (Theorem 1 therein) and some facts
from convex geometry. To find an upper bound on dim B̃, we have to determine upper bounds
on the number of inputs mn+1 and outputs vn+1,j of the extending party. We firstly determine
the maximal number of outputs, for each input generating minimal ensemble, of the extending
party via Carathéodory theorem [Zie95] to be dim B + 1, i.e., vn+1,j ≤ dim B + 1. On the other
hand, the number of inputs of the extending party is equivalent to the number of minimal
ensembles. Assuming V to be the number of vertices in polytope B, and using Carathéodory
theorem again, we obtain mn+1 ≤

( V
dim B+1

)
. Finally, the number of vertices V can be upper
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bounded using McMullen’s Upper Bound Theorem [McM70, Zie95, ELS06] and properties of
non-signaling polytopes

V ≤
(

2t− bt/2c − dim B
bt/2c

)
+
(

3t− bt/2c − (dim B + 1)
t− bt/2c − 1

)
.(2.135)

Combining the above upper bounds yields the formula in Eq. (2.133). An immediate corollary
from Theorem 25 (Corollary 26 in Ref. [WDS+18]) is that the dimension of the NSCE is always
finite. Investigating the dimension of the NSCE is not only interesting on its own. Namely,
access to all possible ensembles of a non-signaling system has been considered operationally the
worst-case extension the extending party might possess in the context of device-independent
cryptography against a non-signaling adversary [BHK05, Mas06, HRW10, Hän10] (see also
Ref. [WDH22] and Sec. 2.5), and also in the context of private randomness [CR12, GMT+13,
MGP15, BRG+16, RBH+16]. The adversary having access to the extending system of NSCE
possesses, therefore, ultimate operational power at the lowest memory cost required for having
access to all ensembles of the extended system.

In summary, in Ref. [WDS+18], we introduce a new concept of the complete extension
postulate (CEP) as a relaxation of the purification postulate (PP). We show that the CEP
postulate is satisfied in classical theory, quantum theory, the theory of non-signaling behaviors,
and, moreover, in any theory in which the product of pure states is pure. We have shown
that the CEP does not allow for the integer-commitment cryptographic task, as well as that
it does not exclude, in contrast to the purification postulate, a beyond-quantum theory that
hyperdecoheres to quantum theory. In this way, the CEP sets a demarcation line between
results that require the PP to hold and those for which the CEP is enough. Our case study in
the theory of non-signaling behaviors presents an alternative derivation of the Popescu-Rohrlich
box as the non-signaling complete extension (NSCE) of maximally mixed behavior with a single
binary input and single binary output. We study the dimension of the NSCE state space. We
showed that the dimension of NSCE is always finite and pointed out important implications for
cryptography against the non-signaling adversary.
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Outlook

The results described in the articles incorporated in this dissertation establish fundamental
limitations of the major quantum and supra-quantum secret key distribution paradigms that
are about to be the main building blocks of the future quantum-secure Internet. The vast
landscape of adamant limitations on the secret key distribution tasks drawn in this dissertation
is, however, a single element of the quantum revolution that is about to happen in the
not-too-distant future. Still, determining the upper bounds is of no lesser importance than
constructing new cryptographic protocols and tasks. This concern is because any newly created
or experimentally applied secret key distribution protocol has to confront the limitations of the
secret key distillation rates. In this context, the upper bounds described in this dissertation
set the aforementioned type of limitations on the several selected secret key distribution
scenarios of crucial importance. Importantly, any violation of the upper bounds on the secret
key rate instantly implies that the produced cryptographic key can not be secure and points out
theoretical shortcomings in the application of the proposed protocol or technological problems
with the devices used for its implementation. Furthermore, if one finds a correct and feasible
protocol for a specific cryptographic task that achieves the corresponding upper bound, then
the search for a better protocol can be completed. This situation can only happen if we have
the upper bounds on the considered scenario or the upper bounds we know they are tight
enough. The findings described in this dissertation open a pathway for further investigations
in the meaningful field of upper bounds on the secret key rates. The techniques developed
here allow both, at least in some cases, for developing tighter upper bounds and extensions to
other cryptographic scenarios. Moreover, apart from the application-directed perspective on
the upper bounds that establish the core of this dissertation, the novel measures of nonlocality
and multipartite entanglement presented here in the context of upper bounds on the secret key
rate, have their reflection in the foundations of the quantum theory. Determining the properties
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of the proposed measures, along with the development of their frameworks, constitute tasks
of no lesser importance than finding their applications in the description of the cryptographic
scenarios. In the forthcoming paragraphs, we sketch possible further progress that can be done
in the direction indicated in this dissertation.

Regarding the results of Ref. [SWRH20] described in Sec. 2.2. The performance of the
countermeasure to the rerouting attack proposed therein is benchmarked with two quantities,
i.e., the gap of the scheme and the percentage of the memory overhead. The definitions of
the gap of the scheme and the memory overhead include the rate of the device-dependent
secret key. It is, therefore, a crucial question if the solution proposed as a countermeasure to
the rerouting attack can be extended to the case of device-independent security of the secret
key while preserving the reasonable gap and memory overhead of the scheme. The change of
the security paradigm in this place is, however, not meaningless regarding the performance of
the scheme. Private states and PPT states approximating them are known to provide a low
rate of device-independent key, significantly lower than in the device-dependent key [CFH21].
This drawback can dramatically diminish the gap of the scheme and significantly increase the
memory overhead resulting in extra low performance of the countermeasure. Determination of
the set of states yielding relatively good performance of the secure hybrid network scheme is,
therefore interesting direction for further investigation.

The upper bounds on the secret key rates derived in Ref. [DBWH21] and described here in
Sec. 2.3 are given by various types of relative entropy functions [Ume62, MLDS+13, Dat09b,
Dat09a, MLDS+13, WWY14, BD10, WR12]. The framework developed in Ref. [DBWH21]
allows for describing a plethora of different scenarios in a unified way. On the other hand,
the squashed entanglement [Chr02, CEH+07] and the c-squashed entanglement [YHH+09]
are known to be entanglement measures that upper bound the bipartite and multipartite
(conference) secret key rates respectively. It is, therefore, an interesting open question if
one can develop a similar unified framework based on a multipartite generalization of the
squashed entanglement rather than the one based on relative entropies originating from the
generalized divergence. Furthermore, as stated in Ref. [DBWH21], the identification of new
information processing tasks and determination of bounds on the achievable rates for the
classical and quantum communication protocols over a multiplex channel (see, for example,
Refs. [Sha61, GK11, BHTW10, WDW17, Das18, LALS20, TR19, DW19]) is undoubtedly an
important future direction of research.

Speaking of the possible future developments of results in Ref. [HWD22], described in
Sec. 2.4, the situation is a mirror reflection to the described in the previous paragraph in the
case of Ref. [DBWH21]. In the Ref. [HWD22], the derived upper bounds on device-independent
conference key rate that are given in terms of the c-squashed entanglement based on the squashed
and cc-squashed entanglement functions [Chr02, CEH+07, YHH+09, AFL21, KHD22]. It is,
therefore, tempting to ask if tighter upper bounds can be derived in terms of the relative
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entropy functions [Ume62, MLDS+13, Dat09b, Dat09a, MLDS+13, WWY14, BD10, WR12]
and in particular in terms of the reduced relative entropy of entanglement in analogy to results
in Ref. [KHD22]. Furthermore, as remarked in Ref. [HWD22] our results hold in the static
scenario of quantum states. A possible further investigation includes a generalization of the
results in Ref. [MLK+16] to the dynamic case of quantum channels by employing and developing
the formalism developed in Ref. [HWD22]. Moreover, determining whether there exists a strict
gap between KDI,dev and KDI,par is an interesting question on its own. Finally, it would be
interesting to determine whether Theorem 8 in Ref. [HWD22] still holds if we consider the
TOBL class of devices instead of the locally quantum class.

In Ref. [WDH22], we developed a method for obtaining upper bounds on the device-
independent secret key secure against a non-signaling adversary (NSDI scenario) by lifting
the upper bounds on the secret key rate in the secret key agreement scenario (SKA). The
upper bound we concentrate on the most in Ref. [WDH22] is the new measure of nonlocality,
i.e., the so-called squashed nonlocality (non-signaling squashed intrinsic information) Nsq that
is based on the intrinsic information function [MW99, MW97]. However, it is known that
reduced intrinsic information [RSW03, RW03] is an example of an upper bound on SKA key
rate that is, for some probability distributions, strictly lower than intrinsic information [RW03].
Therefore, the first step in obtaining tighter upper bounds on the NSDI key rate is to construct
non-signaling squashed reduced intrinsic information and investigate its properties. Furthermore,
it is an important question to answer whether the squashed nonlocality [WDH22] and intrinsic
non-locality developed in Ref. [KWW20] are in fact the same functions. The negative answer
to the aforementioned issue would yield many new questions about the relations between
the squashed nonlocality and intrinsic non-locality. The generalization of the method devel-
oped in Ref. [WDH22] to the multipartite case constitutes a new primary research direction
(cf. Ref. [PKBW23]). Eventually, the study of the properties of the squashed nonlocality and
its generalization is interesting on its own. For instance, the study that proves the asymptotic
continuity property of the squashed nonlocality is currently in an advanced stage of development.

Finally, the investigation conducted in Ref. [WDS+18], and described here in Sec. 2.6,
considers the beyond quantum theory analog of the purification postulate (PP) that holds in
quantum theory, i.e., the so-called complete extension postulate (CEP). Our hitherto research
raises numerous further questions not only about the consequences of the complete extension
postulate (CEP) but also about its best shape. In particular, an interesting further research
direction is highlighted when one considers generalized probabilistic theories (GPTs) in which
GENERATION and ACCESS properties are non-equivalent. In the present shape, the complete
extension postulate is defined to satisfy the GENERATION property by definition. As proved
in Ref. [WDS+18], GENERATION implies ACCESS, but the reverse statement is not true in
the general case. Therefore, replacing the GENERATION property with the ACCESS property
in the definition of the complete extension postulate can supposedly bring a richer and more
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interesting structure of the complete extensions. The existence of a GPT in which the (complete)
extensions allow access to all of the statistical ensembles of the extended system but do not
allow to generate an arbitrary extension (assuming no-restriction hypothesis [CDP10] holds)
is an interesting question about the structure of such a theory. Furthermore, the next step to
develop the framework of CEP would be to consider the possibility of studying its dynamical
counterpart, i.e., a GPT analog of the Stinespring dilation theorem. Finally, there are still some
open questions regarding the non-signaling complete extension (NSCE). One of them is the
lack of the mirror property that holds for quantum purification but does not hold for NSCE
(see Ref. [WDS+18] for more details).

In summary, the articles included in this dissertation [SWRH20, DBWH21, HWD22,
WDS+18] provide many fundamental and application-directed results in the fields of quan-
tum and supra-quantum cryptography. However, as it usually is, the insightful investigations
conducted therein yield even many more interesting questions apart from those already an-
swered and open numerous new research directions. Fortunately, the approaches developed in
Refs. [SWRH20, DBWH21, HWD22, WDS+18] have structures flexible enough to immediately
notice the possible generalizations and further applications of their formalism. We look forward
to the new results in the research areas considered in this dissertation, as well as those connected
to them.
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A significant number of servers that constitute the Internet are to provide private data via private communica-
tion channels to mutually anonymous registered users. Such are the servers of banks, hospitals that provide cloud
storage and many others. Replacing communication channels by maximally entangled states is a promising idea
for the quantum-secured Internet (QI). While it is an important idea for large distances secure communication,
for the case of the mentioned class of servers pure entanglement based solution is not only unnecessary but also
opens a threat. A crack stimulating a node to generate secure connections via entanglement swapping between
two hackers can cause uncontrolled consumption of resources. Turning into positive a recently proven no-go
result by S. Bäuml et al. [Nat. Commun. 6, 6908 (2015)], we propose a natural countermeasure against this
threat. The solution bases on connections between hub-nodes and end-users realized with states that contain
secure key but do not allow for swapping of this key. We then focus on the study of the quantum memory cost of
such a scheme and prove a fundamental lower bound on its memory overhead. In particular, we show that to avoid
the possibility of entanglement swapping, it is necessary to store at least twice as much memory than it is the case
in standard quantum-repeater-based network design. For schemes employing either states with positive partial
transposition that approximates certain privates states or private states hardly distinguishable from their attacked
versions, we derive much tighter lower bounds on required memory. Our considerations yield upper bounds on a
two-way repeater rate for states with positive partial transposition (PPT), which approximates strictly irreducible
private states. As a byproduct, we provide a lower bound on the trace distance between PPT and private states,
shown previously only for private bits.

DOI: 10.1103/PhysRevResearch.2.043022

I. INTRODUCTION

The domain of quantum information processing, which
shows how the rules of quantum mechanics can meet the
needs of information society [1,2], has reached its maturity in
recent years. We are about to enter the NISQ era of quantum
computing with the noisy intermediate scale quantum (NISQ)
devices ahead of us [3]. In parallel, a huge effort has been
done towards building the quantum Internet (QI) [4–6], which
is predicted to be built within several years [7]. It is viewed
as a network of NISQ devices with their memory and the
central processing unit (CPU), which exchange qubits rather
than classical bits between each other.

The main welcome feature of the Qquantum Internet in
comparison with the traditional Internet is its, speaking of the-
ory, the inherent security of sent signals. The first-generation

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

QI [5] bases on the quantum correlations called entanglement
and its advantageous property of transitivity. In theory, a two
otherwise disconnected nodes can obtain mutual uncondition-
ally secure connection if only they share maximally entangled
state (singlet) with a common node, via the entanglement
swapping protocol [8,9]. Due to the high attenuation of quan-
tum signals in optical fiber and impossibility of their ampli-
fication by cloning [10], the number of intermediate nodes
which perform entanglement swapping (quantum repeaters
[4]), needs to be large, and function in high coordination.
Let us recall here that the quantum repeaters protect sent
qubits against eavesdropping because entanglement swapping
uses, in fact, quantum teleportation [9]. Indeed, quantum
teleportation protocol allows for a transfer of data without
any intermediate point in space-time, where it could be
attacked.

While the QI is about to come, a number of serious attacks
on the traditional Internet which is working already for about
a halve a century is being more and more often reported. This
happens in accordance with a growing interest in network
cybersecurity. One of the simplest attacks on the network is
the hijacking of a node, via a malware—a malicious piece
of software which changes its functioning at a wish of a

2643-1564/2020/2(4)/043022(19) 043022-1 Published by the American Physical Society
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hacker. Possible attacks on future quantum Internet has been
recently considered [11,12]: a piece of software infects the
CPU of a quantum device of the node of quantum repeater,
leading, e.g., to local change of topology of the network.
While proposals for overcoming the implications of such an
attack are developed, we focus on a solution which to some
extent, prevents it due to laws of physics.

Hybrid quantum metwork. As it is common in quantum
information theory, a no-go (impossibility) in processing of
quantum data can be exploited as its potential: quantum
no-cloning led to the seminal ideas of quantum money and
quantum cryptography protocols [1,2] while impossibility of
prediction of measurement outcomes (attributing the so-called
hidden variable model) led further to the device independent
quantum security [13,14]. Our countermeasure to hijacking is
also based on a recently found no-go, which can be stated as
follows. There exist quantum states which allow for point-to-
point security of classical data against quantum adversary,
and in spite of this fact can not be effectively used in quantum
key repeaters [15].

The above result shows that quantum security is not always
transitive: for certain states (call them nonrepeatable secure
states ρ), conversely to entanglement swapping, when A has
secure link (possessing ρ) with B and B with C, there is no
possibility for B to help A and C, via a three-partite local quan-
tum operations and classical communication (3-LOCC), to
share a secure link, protected against B as well. Certain bound
entangled states [16] (from which no pure entanglement can
be distilled by local operations and communication [17]) and
highly noisy private states [18], has been recently shown, to fit
the scheme in case of arbitrary 3-way and one-way classical
communication (from the node B to A and C) respectively
[15,19].

In this manuscript, we propose a general idea of physical
protection against malware by presenting a flip side of the
presented limitation on quantum repeaters. It amounts to de-
liberate use of the quantum states which disallow for repeating
of secure key, in order to protect against any unauthorized
network user who wants to perform it for his own purposes.

In the language of computer science, we propose an ar-
chitecture and a model of the physical layer of the quantum
network to exclude the possibility that its local topology is
changed via attacking the network at the application layer.

We show that specially designed hybrid quantum network,
i.e., based on both repeaters and special relay stations called
here hubs, is more robust against special kind of attacks than
original repeaters. We put forward a particular example of an
attack and study properties of its countermeasure. To show
the idea, we focus on a subnetwork of the hybrid quantum
network, whose graph is a star, i.e., with a central hub-node
and several (�) connected end-nodes (see Fig. 1).

Our approach suits the scenario in which (1) the hub-node
can be connected by a quantum repeater with other hub nodes;
(2) only classical data need to be sent between the hub node
and the end-nodes; (3) the distance between the hub-node
and the end-nodes is maximally of metropolitan scale (up
to the distance available for repeaterless quantum networks
[20,21]); (4) only disconnected hub-nodes and their two ad-
jacent end-nodes are attacked at a time; and (5) the attack is
honest but curious: only functioning of the classical processor

FIG. 1. Structure of the proposed hybrid network: thin green
lines connect end-users with hubs; in these, only classical data can
be transferred. Thick orange lines connect hubs being routing nodes
of the network; these connections allow for passing a quantum state.
Shaded lines connect two end-users that communicate securely with
the hub node only classical data. Selected region denotes single hub
of our interest.

is changed by malware, while classical data at the node
remain unread.

The hybrid network is shown in Fig. 3. The above example
fits the real use case, as in the network of the traditional
Internet. Indeed in the Internet, there is quite a number of
nodes representing servers that deliver certain utilities in
the form of classical data, access to which is charged, and
limited to a group of registered users. Moreover, the task
of these nodes is not to connect the users, that are usually
anonymous but to provide them an access to data via private
link. Servers for online banking, access to medical data of a
laboratory, online shops, and last but not least, providers of
the data clouds form far from a complete list of examples
of the latter. In some of these cases, the users are local so
that the assumptions about the distance between end-nodes is
satisfied. We focus on a star-shaped network with central hub
connected to end-users. In this case, the data are generated in
classical form. The distance between the users is usually not
too big. It is also, needless to say, that security is vital since
it is important for end-users, users of the hub, administrators
or the owner of the server. We also focus on the case when
two dishonest users of the network hijack a single node. Their
task is to obtain a free secure connection. In other words
the attack is a theft of processor time and power aimed at
generation of secret-key. The main feature of our solution
is that the topology of the network is naturally, physically
protected against modification.

As it is usual, any good comes at a price. In the above
case, the price will come out in the number of qubits needed
to be stored (or processed) in quantum memory of a node.
In the NISQ era, it is of prime importance to find how
much of quantum memory is necessary in order to realize a
given quantum network architecture. This is because, as of
now, there is no technology to store coherently qubits for a
long time. We therefore study lower bounds on the memory
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cost related to the hybrid quantum network and also show
that this architecture can be realized with relatively modest
quantum memory requirements. In principle, to form the links
of a quantum network, one can take any state containing the
private key. Useful from a cryptographic point of view are
in that respect the so-called private states [18,22] or their
approximate versions with positive partial transposition. The
private states have directly accessible key via measurement
on their subsystems called key parts. However, especially
those having low repeatable key [19], have also the shielding
systems (shields). A shield protects the key but costs quantum
memory. As we will show, these states are not the only ones
that have memory cost.

We therefore first provide lower bounds on the memory
cost of our secure network scheme, which is related to the
density of the secure key in quantum states - a natural quantity
that was implicitly used in Refs. [15,22,23]. To our knowl-
edge, this quantity has not been explicitly studied on its own
so far. We introduce a memory overhead as a measure of the
cost. For a scheme Sρ (that assures security of the hub node),
its overhead is defined as

V (Sρ ) := M(ρ)(1 − D(ρ)), (1)

where D is the density of the key, i.e., ratio of the key to the
dimension of the state, and M(ρ) is the total memory of the
scheme. This intuitive quantity is 0 for maximally entangled
states, as their whole memory has a form of the key. However,
in general case of mixed quantum states, V (Sρ ) is strictly
larger than zero.

We then represent each link in the network by the same
state ρ and study its usefulness in the context of hacking. The
efficiency of a given scheme we quantify by the difference
between the key that can be repeated R and the initial key of
the link KD. We then say that a scheme is (θ, η)-good, when
KD � η but R � θ , along with assumption η > θ . This means
that the link provides security and because it is not realized by
pure state, one can not abuse the link to connect with someone
else in the network.

We prove the general lower bound showing that for any
state serving as reasonable secure network scheme at least
half of the memory qubits (approximately) shall not be used
for key distillation, i.e., V (Sρ ) � 1

2 M(ρ). Different, however
asymptotically equivalent bound we obtain for the private
states [18,22]. For these specific states, we prove that the
shield must be at least the size of the key part to assure the
security of the scheme. We do so by finding explicit formula
for the coherent information of a private state [24,25].

Aiming at set of states for which there are known ex-
amples that assure an ≈ (0, 1)-good scheme, we consider
states that have positive partial transposition (PPT states), and
approximate some private states. More precisely, we provide
lower bounds for the memory cost of our secure network
schemes (hubs) employing PPT states approximating strictly
irreducible private states [26]. As a related problem being of
independent interest, we provide an upper bound on two-way
repeater rate for PPT states. These states (i) approximate
strictly irreducible pdits for any dimension of the key part
dk (ii) satisfy structural constraints on its behavior under
partial transpostion map. For the considered class of states,
the overhead approaches 1 in the limit of large dimensions.

However, the speed of this convergence is rather modest. We
conclude from the formulas, that e.g., for a scheme with 80%
gap, i.e., where θ − η � 8

10 , it suffices to spend eight qubits
on shield for one qubit in the key part. States realizing such
schemes are known [22].

As a byproduct, we prove a lower bound for the trace norm
distance between private states and PPT states approximating
them. So far, only dk = 2 case was known, which we also
tighten. Finally, let us stress that, to our knowledge, the hybrid
architecture of a quantum network proposed here is the first
application of states with low distillable entanglement (or
even bound entangled [16]) in practice.

The paper is organized as follows. In the next section II,
we specify and describe an example of the proposed secure-
network scheme. In Sec. III, we introduce the memory over-
head of the scheme and the density of key. In subsequent
Sec. IV, we provide lower bound on overhead for irreducible
privates states and also a general lower. In Sec. V, we quantify
the scheme that uses private states hardly distinguishable from
their attacked versions, whereas in Sec. VI, we concentrate
on bounds for certain PPT states. Section VII is left for
discussion.

II. STAR-SHAPED NETWORK: THE CASE STUDY
OF THE ATTACK AND COUNTERMEASURE

In this section, we describe in detail the scenario for which,
given quantum Internet happens to be realized in a form
suggested nowadays, an attack via malware could be done.
We then describe countermeasure invoking recent results on
limitations on quantum key repeaters

A. Attack on the star-shaped, pure entanglement based
quantum network.

We focus the following specific example of the above-
explained scenario. The hub shares secure links with many
end-users Ei with i ∈ {1, . . . , n}, in particular with Adam and
Eve [see Fig. 2(a)]. The natural topology of the network of
secure links is the star one (see Fig. 1), so that each end-user
is connected with the hub. The hub network node is assumed
to be a unit with classical and quantum computer inside. The
crucial observation is that if the links are quantum, and based
on pure entanglement, they allow via entanglement swapping
for the change of topology of the network. Indeed, it can
change from star to a disconnected graph of at least two
components: star without some nodes and a pair of end-users
having a secure connection between them and sharing no more
the connection with the hub.

For the above reason, setting up a star network based on
pure entanglement, the hub opens a possibility to provide
security to pairs of end-users [see Fig. 2(b)]. On the other
hand, states allowing quantum communication seem to be an
overkill in the case where the node exchanges with subnodes
inherently classical information like in the mentioned list of
examples of online services. Such an additional side-effect
possibility should be under control of the hub that owns the
subnetwork. A solution would be to designate a person who
sells the connections. If it is not the case, there is a possibility
of two dangers: firstly, the administrators of the hub can sell
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FIG. 2. The main idea of an attack: (a) the hub shares entangled
pairs with end-users Ei, in particular, with Adam and Eve. Adam and
Eve can attack the hub via quantum malware which performs for
them entanglement swapping (b) Adam and Eve share an entangled
pair after successful attack.

the secure links by themselves and earn illegally without
notice of the hub’s owner. Secondly, a more dangerous threat
is possible: two end-users Adam and Eve can hack the system
installing a Trojan quantum software, which serves them as a
source of cheap security. Even more importantly, in this way
energy consumed for performing quantum operations would
be stolen, again, without notice of the hub. Let us note that the
same holds if the hub is one of a number of repeater stations
[4], and the links are improved via entanglement distillation
[9].

We will distinguish here two kinds of attacks: a general
one where the hacked node can perform any three-party
classical communication with two other nodes and one-way
attack where only the central node can communicate classical
information to the hackers.

B. Countermeasure via noisy entangled states

In what follows, we observe, that using appropriate noisy
entangled states solves the mentioned problem in cases of
general (two-way) a nd one-way attack (see Fig. 3).

Recently a fundamental result has been shown in this
context, indicating that for some states (having at least one
separable key attacked state) the rate R of repeated secure key
is strongly related to the so-called distillable entanglement
[9,17,19] by the following result:

RH1H2→A:E
(
γAH1 , γH2E

)
� EH1H2→A:E

D

(
γAH1 ⊗ γH2E

)
, (2)

where → stands for the classical communication restricted to
one-way from the intermediate node H ≡ H1H2 to nodes A
and E , and γAHi denotes a private state [18]–a state possessing
ideal security directly accessible via measuring its subsystem
called key part.

FIG. 3. The main idea of the countermeasure: (a) hub shares
bound entangled states (green lines) with end-users Ei (each having
at least 1 bit of key), in particular, with Adam and Eve (shaded lines).
No LOCC malware can efficiently swap the key. (b) Adam and Eve
can not share a state (shaded red line) with non-negligible amount of
key (compare [15]).

Notation 1. Private state with dk dimensional key part and
ds dimensional shield part per one party, shared between A or
E and H is denoted γdk ,ds .

We present the following countermeasure: instead of
having a star network with the end-users, which is pure
entanglement based, the hub can set a star-shaped network of
point-to-point links based on bound entangled states which
are approximate private states (see Fig. 3). Let us note that
this is legitimate when the hub needs to encrypt only classical
data. Furthermore, if end-users had a quantum connection
with the hub, then we could have a case of hub’s network
abuse. These bound entangled states are weakly transitive.
This means that there does not exist a quantum software that
can be run on the quantum computer of the hub, or even a
quantum tripartite LOCC protocol between Adam, Eve, and
the quantum computer of the hub, to achieve this task. The
no-go is hence turned into a success. The hub employing
the bound entanglement based quantum links keeps secure
communication but needs not to control the setup. There is
no physical map in the considered scenario, that can create a
secure link with a non-negligible amount of secrecy.

Let us note that although we have mentioned here entangle-
ment swapping, in Ref. [15], it is shown that even if the links
with the hub are provided in the form of a private state γ ⊗n

AHi
(or

an approximate private state), the rate of the output secure key
for Adam and Eve is negligible as a function of dimension of
the bound entangled approximate private states. By negligible
amount, we mean the rate which goes to zero with growing
dimension of the shield system of the state γAHi . Hence the
countermeasure works in the asymptotic regime up to the fact
that some small rate of key can be obtained by Adam and
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Eve. Note here that the key of the links is not in the form of
pure entanglement. The states are chosen such that they have
negligible or even zero distillable entanglement. However,
such a choice of states for the links is not a constraint for the
security of the network. This is because we consider only hubs
that send classical data, hence their encryption does not need
to involve pure entanglement. Moreover, the states considered
in our solution, have large enough distillable key.

III. MEMORY OVERHEAD OF THE COUNTERMEASURE

We now focus on the quantum memory cost of implemen-
tation of the proposed countermeasure. We recall first the
definition of the key repeater rate. Let us stress here that
according to our approach, the lower it is, the better for the
security of the node.

We further focus on the scheme represented by a private
state with dk dimensional key-part and ds dimensional shield.
This state reads a form [18]:

Definition 1. Private quantum state

γdk ,ds :=
dk−1∑
i, j=0

1

dk
|ii〉〈 j j| ⊗ Xi j, (3)

where Xi j = UiσU †
j for some state σ of Cds ⊗ Cds and Ui are

some unitary transformations.

Notation 2. We follow the notation in which

‖X‖1 = Tr
√

XX †. (4)

Additionally we skip the subscript, as it doesn’t lead to any
ambiguity.

Remark 1. Through the rest of the paper, we assume that
each considered quantum state ρ acts on HH ⊗ HN being ten-
sor product of subspaces associated with the hub and a node,
and dimHH = dimHN < ∞. What is more, both subspaces
are assumed to be partitioned into key and shield parts (of
dimensions dk and ds, respectively) in the same way at both
sides, unless stated differently.

Notation 3. Here we adapt shortened notation in which
Xi j ≡ Xii, j j . In calculations, we mainly incorporate full nota-
tion. Additionally for i �= j, we define Xi j,i j ≡ 0, as they do
not enter to definition of a private state.

Note that Xii are, in fact, subnormalized states, obtained
on the shield system upon observing key |i〉 on the key part.
We call them conditional states. According to definition,
KD(γdk ,ds ) � log2 dk , while in case of equality, a private state
is called irreducible: its whole secure content is available from
the key part via direct measurement. In the case in which
Xii are additionally separable, we call these states strictly
irreducible private states. In fact, it is conjectured that all
irreducible private states are of the form of strictly irreducible
ones [26], it is so if there do not exist entangled but key-
undistillable states.

Definition 2. The distillable key rate with respect to arbi-
trary LOCC operations is defined as

KD(ρ) := infε>0 lim supn→∞

sup
	LOCC

n ,γdk ,ds

{
log2 dk

n
: 	LOCC

n (ρ⊗n) ≈ε γdk ,ds

}
, (5)

where ρ is a bipartite state shared by the parties. 	 is a LOCC
protocol with two-way classical communication.

Definition 3. The quantum key repeater rate with respect
to arbitrary LOCC operations among A, E , and H is defined
as

RA↔H↔E (ρ, ρ ′) := lim
ε→0

lim
n→∞

sup
	LOCC

n ,γdk ,ds

{
log2 dk

n
: TrH	LOCC

n ((ρ ⊗ ρ ′)⊗n) ≈ε γdk ,ds

}
, (6)

where Adam and Hub share state ρ while Hub and Eve share
ρ ′. 	 := {	LOCC

n } are tripartite LOCC protocols with two-way
classical communication. In the case in which communication
between central node and A, E systems is restricted to one-
way from H to A and E , we denote this rate with RH→A:E .

Notation 4. For the repeater rate in the case in which
ρ = ρ ′, we introduce simplified notation R→(↔)(ρ).

An ultimate goal would be to provide a nonrepeatable key
with the smallest possible memory cost, being a precious re-
source in NISQ era of quantum computing. Our solution to the
problem is represented by a bipartite quantum state ρ shared
between the central node H and one of the end-users (Adam),
however, its specific parameters are important enough to write
them out explicitly. The scheme will be represented by the
following tuple:

S→(↔)
ρ := 〈ρ, log2 dimH (ρ),�, KD(ρ), R→(↔)(ρ)〉. (7)

The arrow(s) in the superscript are dropped if the results
hold for both cases. The state ρHA is shared between the
central node H and a single end-user (Adam). � is the degree
of the node (number of connections).

Definition 4. The scheme Sρ is one-way (two-way) (θ, η)-
good if R→(↔)(ρ) � θ and KD(ρ) � η, and η > θ .

Let us note here, that by definition of the key repeater
rate, KD � R↔ � R→. This means that if R↔ = θ , we have
θ � η. However, since θ is only an upper bound on R↔,
we had to assume in the above definition desired order of
parameters. Moreover we demand strict inequality η > θ ,
since the scheme with η = θ is not “good,” i.e., does not have
any advantage over quantum repeaters design. Indeed, in our
approach, we are interested in the largest possible gap between
KD and R→(↔), while keeping memory overhead considerably
small at the same time. We quantify this gap by its lower
bound defined as a difference η − θ , and call it efficiency of
the scheme.

Definition 5. The overhead of the scheme Sρ is the follow-
ing quantity:

V (Sρ ) := �
(
log2 dimH (ρ) − KD(ρ)

)
, (8)

where ρ is a bipartite state shared between the hub and a
end-user.
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The overhead is the difference between the qubits of mem-
ory at the node: ρ⊗� has

M(ρ) := � log2 dimH (ρ), (9)

of qubits of subsystem H , and the number of bits of security
which the node shares with the other part of the quantum
Internet.

Definition 6. For a scheme that is (θ, η)-good, the differ-
ence η − θ � 0 is the gap of the scheme.

We note here that such defined overhead bares strong
connection with the other, to our knowledge not explicitly
studied notion, which is that of density of the private key.

Definition 7. For a quantum state ρ (dimH (ρ) � 2) shared
between the hub H and Adam A or Eve E , the density of the
private key D reads

D(ρ) := KD(ρ)

log2 dimH (ρ)
. (10)

In the above definition, we have included a restriction
dimH (ρ) � 2 to exclude trivial, not relevant cases. We then
have the dependence

V (Sρ ) = M(ρ)(1 − D(ρ)). (11)

From the above form it is clear to see that the overhead is a
non-negative quantity, as the density is a quantity less than or
equal to 1. In what follows, we provide several lower bounds
on the overhead V of the countermeasure, that satisfies

0 � V (Sρ ) � M(ρ). (12)

The first from the above inequalities follows from the fact
that secure key KD(ρ), can not be larger than memory size
log2 dimH (ρ), and hence � is non-negative. Presenting results
on plots in the next sections, we will concentrate on the
fraction between memory overhead and total memory of the
hub, i.e., the percentage of total memory that is not used for
storing secret-key.

IV. LOWER BOUNDS ON THE OVERHEAD OF THE
SECURE NETWORK SCHEME

Let us first focus on the class of one-way attacks: the
attacked hub node can send data to two receiver nodes owned
by malicious parties that can communicate freely. We begin
with preliminary definitions and facts.

Definition 8. The coherent information of a quantum state
ρAB

Icoh( A〉B) = S(B) − S(AB), (13)

where S(B) is the Von Neumann entropy of state ρB =
TrA(ρAB) and S(AB) is that of state the ρAB.

The key repeater rate is an upper bound on distillable en-
tanglement in each of the two links of the star-shaped network.
We therefore provide a lower bound on one-way distillable
entanglement E→

D (.) of a private state, via the Devetak-Winter
hashing protocol [27].

E→
D (γdk ,ds ) � log2 dk +

∑
i

1

dk
Icoh(A′〉B′)σi , (14)

where Icoh is the coherent information [17], and σi are the con-
ditional states of a private state. We have then the following
observation.

Observation 1. For any private state γdk ,ds , one-way distil-
lable entanglement is lower bounded as follows:

E→
D (γdk ,ds ) � log2 dk +

∑
i

1

dk
Icoh(A′〉B′)σi , (15)

where σi = UiρA′B′U †
i are conditional states.

For the proof of the above observation see Appendix.
Let us note that the above bound is achievable given a

choice ∀iσi = I
ds

, i.e., for pdits with twisted-in maximally
mixed state.

Since coherent information can not be smaller than
− log2 d for a d dimensional state, we have the following
general result.

Corollary 1. For any private state γdk ,ds one-way distillable
entanglement is lower bounded by the following expression:

E→
D

(
γdk ,ds

)
� log2 dk − log2 ds, (16)

where dk and ds, are dimensions of the key part and shield part
respectively.

Proof. It follows from the fact that for any state σi

of dimension d2
s , there is Icoh(A′〉B′)σi � − log2 ds. In-

deed, S(B′) − S(A′B′) = I (A′ : B′) − S(A′) � 0 − log2 |A′| =
− log2 ds, as the entropy is maximally log2 |A′| while I (A′ :
B′) � 0. �

Following the fact that one-way distillable entanglement
constitutes a lower bound on both one-way and two-way
repeater rates, we conclude that in schemes incorporating pri-
vates states, it is reasonable to assume ds � dk . This assump-
tion is a necessary condition for having low repeater rates.

As we have discussed, we obtain the following lower
bound on overhead of schemes based on irreducible private
states.

Theorem 1. If an irreducible private state γdk ,ds serves as
an (θ, log2 dk )-good secure network scheme S→

γdk ,ds
with degree

�, then its overhead satisfies a lower bound:

V
(
S→

γdk ,ds

)
� � log2(dkds)

(
1 − 1

2 − θ
log2 dk

)
(17)

≈θ≈0
1

2
M

(
γdk ,ds

)
. (18)

For the proof of the above theorem see Appendix.
This theorem shows that memory used by a private state

which allows only for θ of repeated key must have at least
as big shield system as its key part, see Fig. 4 for exemplary
lower bounds. The technique used for proving theorem 1
inspired us to find a general lower bound on the overhead of
any scheme, which is presented below.

Theorem 2. Any state ρ that serves as (θ, η)-good secure
network scheme, satisfies

V (Sρ ) � M(ρ)

(
1

2
− θ

log2 dH

)
≈θ≈0

1

2
M(ρ). (19)
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FIG. 4. Plots of lower bounds on percentage of memory over-
head from theorem 1, with different values of dk .

For the proof of the above theorem see Appendix. The
above theorem is based on observation that distillable key
is upper bounded by S(A)/2 if only coherent information is
nonpositive. As we will show below on Fig. 5, this bound
is the only bound on key repeater rate for certain amount of
one-way distillable entanglement.

The bound shown in Fig. 5 as dotted blue line segment
reads

R→(ρ) � R↔(ρ) � KD(ρ)

� Esq(ρ) � S(A)

2
+ E→

D (ρ)

2
. (20)

The inequality in Eq. (20) is a known fact, since one-way
communication from the hub H to hosts A and E can not allow
to repeat more key than in two-way communication setup. The
second inequality comes from the fact that it is not possible to

FIG. 5. Upper bounds on quantum key repeater rates. Dotted
blue line: introduced here in eqn. (20), solid orange line: special
case for Icoh = 0, dashed violet line: [15], and dotted-dashed green
line: only for some states [19]. Shaded region corresponds to a
combination of bounds.

have more of a repeatable key than a distillable key. On the
other hand, it is possible that the quantum key repeater rate
is smaller than the distillable key of a particular state ρ. The
third inequality is true because squashed entanglement is an
upper bound on distillable key [28]. Finally, the last inequality
is the upper bound on R→ observed in this work, which is a
direct consequence from the proof of lemma 18 in Ref. [15].
Similar results on private capacity for quantum channels were
obtained in Ref. [29]. As one can see the result for states
which we prove here is much simpler than the analogous one
proved there for channels.

The dotted-dashed green line segment is the upper bound
on quantum key repeater rate derived in Ref. [19]:

R→(ρ) � 2E→
D (ρ), (21)

which holds for special class of block states. Here the hub can
send messages to Adam and Eve, but not receive from them.
Adam and Eve can communicate in both ways freely.

The dashed violet line segment is the upper bound intro-
duced in Ref. [15]:

RA←H→E (ρ) � E→
D (ρ)

2
+ EC (ρ)

2
. (22)

In this case, only the communication from Hub to Adam is
one-way and between Hub and Eve the communication is one-
way, no other data transfer is allowed.

The solid orange line segment is the upper bound for states
that have Icoh = 0. These states do not have more of distillable
key than EC/2 or S(A)/2.

Even though dotted-dashed green and dashed violet bounds
intersect in E→

D = Ec/3, they are different scenarios in which
the classical communication is not in the same direction.
Therefore, they are incomparable. It is the same for dotted
blue and dashed violet bounds. On the other hand, the di-
rections of classical communication for dotted-dashed green
and dotted blue bounds are the same, so it is possible to
compare them. The upper bound introduced in this work is
more accurate than the bound derived in Ref. [19] starting
from E→

D = S(A)/3.

V. LOWER BOUND ON OVERHEAD FOR PRIVATE STATES
HARDLY DISTINGUISHABLE FROM THEIR

ATTACKED VERSIONS

In this section, we derive lower bounds for the memory
overhead for schemes utilizing private states hardly distin-
guishable from their attacked versions. We first briefly explain
the approach and then formalize the presented idea.

Let us note, that to assure η > 0 in our scheme Sρ , we
need to know how much a given state of it ρ has distill-
able key. A good choice is then a strictly irreducible private
state, as for this state, we know that KD(γ〈dk ,ds〉) = log2 dk ,
however, such γ〈dk ,ds〉 should not be too much distillable, as
R↔ � ED(ρ). Thus, to also have that scheme is (θ, η)-good
for small θ , we need to assure ED(γdk ,ds ) � θ . This can be
done in various ways, including logarithmic negativity bound
ED(ρ) � − log2 ‖ρ
‖ [30]. From Ref. [19], it follows that R→
is small since it is upper bounded by 2E→

D . The next theorem
encapsulates this approach and proves the lower bound on the
memory cost of such a solution.
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We first use the bound that employs measure called log-
negativity [30,31].

Observation 2. For a private state such that Xii ∈ PPT ,
and at least one from its conditional key attacked states is
separable, there is the following bound on the one-way
quantum key repeater rate:

E→
D (γdk ,ds ⊗ γdk ,ds ) � 2 log2

(
1 + ∥∥γ 


dk ,ds
− γ̂ 


ds,dk

∥∥)
, (23)

where γ̂dk ,ds = ∑
i

1
dk

|ii〉〈ii| ⊗ Xii is an irreducible private state
after measurement on the key part (attacked), and 
 is an
operation of partial transposition.

For the proof of the above observation see Appendix.
For technical reasons, we deal more specifically with the

right-hand side of the above inequality, as encapsulated in the
following observation.

Observation 3. The following identity holds:∥∥γ 

dk ,ds

− γ̂ 

dk ,ds

∥∥ =
∑
i �= j

1

dk

∥∥X 

i j

∥∥, (24)

where γ̂ 

dk ,ds

= ∑
i

1
dk

|ii〉〈ii| ⊗ X 

ii is the private state after

measurement on the key part and 
 is the partial transpose
operation.

For the proof of the above observation see Appendix.
In the next lemma, we argue that some private states, that

are hardily distinguishable from their attacked versions, have
large dimension of the shield in relation to the dimension of
the key part.

Lemma 1. For a special private state γdk ,ds , which satisfies
condition X 


ii � 0, and ‖γ 

dk ,ds

− γ̂ 

dk ,ds

‖ � ε, there is

ds �
dk − 1

ε
. (25)

For the proof of the above lemma see Appendix.
The above technical lemma and observation lead us to

the main result of this section. It states that the overhead
in case of private states that are hardly distinguishable from
their attacked versions tends to 1 with the parameter of
distinguishability approaching zero.

Theorem 3. A strictly irreducible private state γ〈dk ,ds〉
(Xii ∈ SEP, dk � 2) satisfying ‖γ 
 〈dk ,ds〉 − γ̂ 


〈dk ,ds〉‖ � ε and
dk−1

ds
� ε serves as (θ, η)-good secure network scheme

scheme with

V
(
S→

γ〈dk ,ds〉

)
� M

(
γ〈dk ,ds〉

)(
1 − log2 dk

log2 dk + log2
dk−1

ε

)
(26)

≈ε→0 M(γ〈dk ,ds〉), (27)

for θ = 2 log2 (1 + ε) ≈ε�1
2

ln 2ε and η = log2 dk .

For the proof of the above theorem see Appendix. For the
performance of lower bound in different dimensions of key
part see Fig. 6, for the behaviour of a gap see Fig. 7.

A. Example of the gap for low dimensional state

In general, one would like to diminish the repeater rate of
the scheme as much as possible. Unfortunately, in theorem 3,

dk=2
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dk=32
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50

60

70
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90
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%

FIG. 6. Plots of lower bounds on percentage of memory over-
head from theorem 3, with different values of dk .

the parameter ε appears both in formula for the repeater
rate and the overhead. This is the reason why one can not
reduce repeater rate to zero keeping the overhead smaller than
total memory cost. In this situation, one should decide on
an acceptable level of repeater rate, for which the overhead
is still reasonable. A small dimensional example of a pbit
state which allows for such a control is known [18,32]. Block
matrix representation of such a pbit is

�ds = 1

2

⎡
⎢⎢⎢⎣

I
d2

s
0 0 F

d2
s

0 0 0 0
0 0 0 0
F
d2

s
0 0 I

d2
s

⎤
⎥⎥⎥⎦, (28)

where F is a matrix of swap quantum logic gate of dimension
d2

s implying ‖�

ds

− �̂

ds
‖ = 1

ds
. We estimate now the size of

the gap for a scheme using this state. Let us assume a scheme
with minimal amount of memory by setting ε = 1

ds
(see that

conditions of lemma 1 and theorem 3 are satisfied). We
obtain a lower bound V (Sγ〈dk ,ds〉 ) � M(γ〈dk ,ds〉)(1 − 1

1+log2 ds
),

for scheme being ( 2
ln 2

1
ds

, 1)-good. For ds = 2, it saturates also
the general lower bound on overhead from theorem 2 with
value of 1

2 , although in this case the rate of repeater R→

is upper bounded with 1
ln 2 ≈ 1.44, what is an unsatisfying

result. The first nontrivial case, in that secure network scheme

dk=4

dk=8

dk=16

dk=32

dk=2

0.0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

5
bits

FIG. 7. Plots of lower bound on gap between η and θ for the
scheme in theorem 3.
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has an advantage over malicious parties, appears for ds = 3,
in which repeatable rate drops to R→ � 2

3 ln 2 ≈ 0.96 being
strictly smaller than key rate K = 1, what follows from its
irreducibly.

VI. LOWER BOUNDS ON OVERHEAD FOR PPT STATES

As it was argued in Ref. [15] (see supplemental material
note 6) the states which are PPT and approximate private bits
are of rather high dimension. This fact can be found as a
consequence of the following earlier statement [23] (see also
Ref. [33]):

∀ρ∈PPT γ∈C2⊗C2⊗Cds ⊗Cds ‖ρ − γ2,ds‖ � 1

2(ds + 1)
. (29)

We conclude that a quantum PPT state close by ε in the trace
norm to strictly irreducible private state γdk ,ds has dimension
of the shield at least ds � 1−2ε

2ε
.

It is known that for two-way repeater rate to be zero,
the state has to be bound entangled [R↔(ρ) � ED(ρ)] [18].
Thus, in this section, we investigate the overhead using such
schemes.

Notation 5. We adopt a notation in which PPT state ρ has
the following form:

ρ :=
dk−1∑

i, j,k,l=0

|i j〉〈kl| ⊗ Ai j,kl , (30)

where come Ai j,kl are blocks of dimension d2
s .

Proposition 1. If ρ is a state with positive partial trans-
pose, that approximates a strictly irreducible private bit ‖ρ −
γ〈2,ds〉‖ � ε for ε � 1

2(ds+1) , ‖A

01,10‖ � ε,and its conditional

shield states are separable, then its two-way repeater rate
R↔(ρ) is upper bounded as follows:

R↔(ρ) � 2

(√
ε + 3

2
ε

)
(1 + log2 ds)

+ (1 + 2
√

ε + 3ε)h

(
2
√

ε + 3ε

1 + 2
√

ε + 3ε

)
. (31)

For the proof of the above proposition see Appendix.
Note that PPT states from proposition 1 above do exist.

One example can be states for which A01,10 = A

00,11. For

upper bounds on key repeater rate from this proposition for
dimensions ds = 2, . . . , ds = 32 see Fig. 8.

Theorem 4. If a state with positive partial transpose ρ

approximates strictly irreducible private bit ‖ρ − γ〈2,ds〉‖ � ε

for 1
2(ds+1) � ε < 1

2 , ‖A

01,10‖ � ε, and its conditional shield

states are separable, then it serves as a two-way (θ, η)-good
secure network scheme Sρ with degree �, and its overhead
satisfies a lower bound:

V (Sρ ) � M(ρ)

⎛
⎝1 −

1+(1+ ε
2 )h

(
ε
2

1+ ε
2

)
1+log2 ( 1−2ε

2ε ) − ε
2

⎞
⎠ (32)

with η = 1 − 8ε − 4h(ε) [where h(.) is the binary
Shannon entropy] and θ = 2(

√
ε + 3

2ε)(1 + log2 ds) +
(1 + 2

√
ε + 3ε)h( 2

√
ε+3ε

1+2
√

ε+3ε
).

ds=2

ds=4

ds=8

ds=16

ds=32

0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

bits

FIG. 8. Upper bounds on key repeater rate from proposition 1.
Domains are constrained with ε � 1

2(ds+1) condition.

For the proof of the above theorem see Appendix. For the
plot of lower bound of percentage of memory overhead from
the above theorem see Fig. 9. The plots of lower bounds on
gap between η and θ in this theorem are depicted in Fig. 10.
From inequality (29), we obtain

log2 ds � log2

(
1 − 2ε

2ε

)
. (33)

We then see that focusing on states which have positive par-
tial transposition and approximate private bits is quite costly:
the overhead approximates the whole memory of the scheme
for small ε. In particular, obtaining a reasonable amount
of key in links ≈ 1 bits for each of � links implies that
the whole memory cost is that of an overhead. However,
an advantage of this scheme is that it is no longer limited
to one-way communication. In this case, there does not ex-
ist any three-partite LOCC protocol which can break the
scheme.

We now generalize the above result for larger dimensions
of the key part than qubit, and study it in case of private
state. In order to achieve this we need a number of technical
observations and lemmas, which we present below.
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20
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FIG. 9. Plot of lower bound on percentage of memory overhead
from theorem 4.
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FIG. 10. Plots of lower bounds on gap between η and θ for the
scheme in theorem 4. The case ds = 64 is a setting with lowest
dimension for obtaining positive lower bound on gap under ε �

1
2(ds+1) condition.

Observation 4. Denoting with Ai j,kl matrices some of them
(Aii, j j) being unnormalized conditional states of the shield
of a state ρ = ∑

i jkl |i j〉〈kl| ⊗ Ai j,kl , we prove the following
relations:

‖ρ − γ ‖ � ε ⇒ ∀i �= j‖Aii, j j‖ � 1

dk
− ε (34)

and

‖ρ − γ ‖ � ε ⇒
∑
i �= j

‖Ai j,i j‖ � ε. (35)

In the following lemma and subsequent corollary, we prove
a general lower bound on the distance between private states
(of any dimension of the key part) from PPT states [23].

Lemma 2. For any state ρ ∈ PPT , there is

‖ρ − γdk ,ds‖ � ε ⇒ ds �
(

dk − 1

ε

)
(1 − εdk ), (36)

where γ is a private state with d2
k dimensional key part and d2

s
dimensional shield subsystem.

Corollary 2. For any state ρ ∈ PPT approximating private
state, the following lower bound holds:

‖ρ − γdk ,ds‖ � dk − 1

ds + dk (dk − 1)
. (37)

The important properties of lower bound presented in
corollary 2 are the fact that it is not trivial for values of dk but
also that it yields tighter bound for dk = 2 known form [23]
[see Eq. (29)]. Concluding as a byproduct, we have found a
nontrivial (nonzero) lower bound on the distance between any
private state and a PPT state in any dimension [23,32].

Corollary 3. For any state ρ ∈ PPT of dimension 2ds ⊗
2ds approximating private bit there is∥∥ρ − γ2,ds

∥∥ � ε ⇒ ∥∥A

01,10

∥∥ � ε

2
. (38)

The upper bound on the norm in Corollary 3 is tighter
than the one in [23]. This is due to modification in the proof
technique. This motivates us to assume

∑
i �= j ‖A


i j, ji‖ � ε,
instead of 2

∑
i �= j ‖A


i j, ji‖ � ε what would be analogous to
assumption in proposition 1.
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FIG. 11. Upper bounds on key repeater rate from proposition 2.
We extract from condition dk−1

ds+dk (dk−1) � ε minimal value of ds =
� dk−1−εdk (dk−1)

ε
� yielding best value for upper bound.

Proposition 2. If ρ is a state with positive partial trans-
pose approximates a strictly irreducible private dit (pdit)
‖ρ − γ〈dk ,ds〉‖ � ε for dk−1

ds+dk (dk−1) � ε,
∑

i �= j ‖A

i j, ji‖ � ε, and

conditional shield states of ρ are separable, then its two-way
repeater rate R↔(ρ) is upper bounded as follows:

R↔(ρ) � 2(
√

ε + ε) log2 dimH (ρ)

+(1 + 2
√

ε + 2ε)h

( √
ε + ε

1
2 + √

ε + ε

)
. (39)

For the proof of the above proposition see Appendix. It is
easy to notice that the upper bound in proposition 2 evaluated
for pbits is tighter than the corresponding one from proposi-
tion 1. This is because with slightly different assumption on
Ai j, ji blocks. For upper bounds on the key repeater rate for
exemplary dimensions of the key part provided in proposition
2, see Fig. 11.

Theorem 5. If a state with positive partial transpose ρ

approximates strictly irreducible private dit (pdit) ‖ρ −
γ〈dk ,ds〉‖ � ε for dk−1

ds+dk (dk−1) � ε < 1
dk

,
∑

i �= j ‖A

i j, ji‖ � ε, and

its conditional shield states are separable, then it serves as a
two-way (θ, η)-good secure network scheme Sρ with degree
�, and its overhead is lower bounded with

V (Sρ ) � M(ρ)
(

1 − ε

2
− f (dk, ε)

)
, (40)

f (dk, ε) :=
log2 dk + (

1 + ε
2

)
h
( ε

2
1+ ε

2

)
log2 dk + log2

( dk−1
ε

) + log2(1 − εdk )
, (41)

with η = log2 dk − 8ε log2 dk − 4h(ε) [where h(.) is the bi-
nary Shannon entropy] and θ = 2(

√
ε + ε) log2 dimH (ρ) +

(1 + 2
√

ε + 2ε)h(
√

ε+ε
1
2 +√

ε+ε
).

For the proof of the above theorem see Appendix. For the
lower bound on percentage of memory overhead from this
theorem for different values of dk see Fig. 12, while lower
bounds on gap between η and θ for the presented scheme are
depicted in Fig. 13.

A. On relaxation of the honest-but-curious attack assumption

In this section, we discuss in more detail a possible re-
laxation of the assumption 5 (about the honest-but-curious
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FIG. 12. Plots of lower bound on percentage of memory over-
head from theorem 5, with different values of dk .

attack). We argue that one can combine our countermeasure
with the protection of the data and/or key of the node.

Indeed, there two major attacks that are in due. The first
aims to learn the key of some of the links of the hub with
end-users. The second concentrates on the direct learning
of classical data stored in the hub’s server. One can also
consider a mixed strategy aiming at learning both types of
data. We note that in order to secure any type of data, one
can perform the quantum one-time-pad [34], i.e., rotate each
qubit randomly by one of the four Pauli operations. However,
this type of encryption does not allow for manipulating the
data by the honest party. It only shifts the problem of hacking
to the place where the keys of the randomness are stored.
A more clever solution involves the so-called homomorphic
encryption [35,36]. This one aims at allowing to execute some
quantum operation on encrypted data without its decryption.
Such a solution can be therefore composed with our coun-
termeasure. In particular the efficiency of our scheme (the
gap between distillable and repeated key) after composition
with the homomorphic encryption stays the same. Indeed,
this encryption can be viewed as a local operation on the
hub, while our scheme is secure against such operations.
In turn, effectiveness against an LOCC protocol (tripartite
or from the hub to the users) does not change. However,
homomorphic encryption costs a non-negligible amount of
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FIG. 13. Plots of lower bounds on gap between η and θ for
the scheme in theorem 5. For obtaining possibly optimal value of
upper bounds we attribute with ds its minimal possible value of
ds = � dk−1−εdk (dk−1)

ε
�.

quantum memory. In the proposed solution for a number of
protected qubits q gets enlarged to a × q where a is a natural
number (constant of the solution). We can still measure the
efficiency of such a complex solution with the introduced
memory overhead. In this case, it reads

V (S′
ρ ) = M ′(ρ)(1 − D′(ρ)), (42)

where M ′(ρ) = �[a(log2 dimH (ρ))], D′(ρ) = KD(ρ)/
[a(log2 dimH (ρ))]. This implies that V (S′

ρ ) − V (Sρ ) =
(a − 1) log2 dimH (ρ). The value of a can vary depending on
a chosen protocol for homomorphic encryption. In Ref. [36],
the value of a is modest, as it equals 3. We note here, that we
count only the quantum memory of this solution, rather than
classical, as the former is hard to be realized experimentally.
In such an approach, the hub has to store classical keys
needed for the homomorphic encryption in some separate
memory, which is inaccessible to the hacker. However, the
quantum part of encryption can be exposed to attacks against
the reading of the data.

Finally, let us note that in the above countermeasure, the
hacker, in spite of the impossibility of reading, can modify the
data. Related countermeasure that can be composed with ours
is the intrusion detection obtained recently via the so-called
trap-codes [37]. In this case, the memory overhead can also
report the cost of relaxation of the security of the data.

VII. CONCLUSIONS

In this manuscript, we have observed a particular attack on
quantum network, and studied the quantum memory cost of its
remedy—the hybrid quantum network. A common approach
in designing quantum-secured Internet is to connect its nodes
via pure entangled states or channels that distribute such
entanglement. In this paper, we observe that this practice is not
needed for a number of nodes of the Internet, and moreover,
would open a threat.

As a case study of such a threat, we consider the possibility
of performing entanglement swapping between the data basis
of the hub and its two end-users Adam and Eve. We imagine
that in future due to development of quantum technologies the
link between each of them and the hub would be a quantum
one. As a countermeasure, we propose to replace these links
with those sharing/distributing bound entangled states which
approximate private states. As for end-users, it is enough to
communicate only classical information with the hub. What is
more a functionality to pass a quantum state seems not only to
be a redundant feature but also opens a gateway for a possible
abuse.

While in the case of a maximally entangled state, one can
generate 1 bit of key per 1 qubit of local memory, this is not the
case for mixed entangled quantum states. We, therefore, study
the memory cost of the proposed solution. We have introduced
two notions: (i) that of a scheme (a choice of states shared by
the node and users) and (ii) that of the memory overhead. The
latter quantity reports how many qubits of the memory are not
directly used up to generate key, but only assures security of
its generation. We then focus on schemes that are represented
by a single quantum state distributed in all the links. As the
quality of the scheme, we propose the gap between the key
that can be obtained from the state and the upper bound on the
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key that can be obtained via hacking. We called it a gap of the
scheme.

We first focus on what is more or less straightforward to
obtain from the well-established facts in entanglement theory
based approach to quantum cryptography. This leads us to two
different but asymptotically equivalent lower bounds for the
memory overhead of the scheme. One is for private states, and
the other for all quantum states. It implies that at least half
of the memory of the scheme need to assist security of the
scheme rather than can be turned to security itself.

We then consider particular bound entangled states as
well as private states for which we know the construction
of our proposal can be realized. These are PPT sates that
approximate private states and that are at the same time highly
indistinguishable by LOPC operations from their attacked
versions, which are separable. Although, in general, the over-
head, in that case, is asymptotically 1, the convergence to 1 is
modest.

The presented results allow to tune the exemplary states to
the size of the gap of the scheme. As a byproduct, we have
both sharpen the lower bounds on the distance between PPT
and private bits and gave the first lower bound on this distance
between PPT states and private dits for arbitrary dimension of
the key part dk . It would be then interesting to find the schemes
based on private dits, rather than those that are based on tensor
products of private bits.

Let us note here that we consider the attack to be honest-
but curious. Both in the case of quantum repeater and the
proposed hybrid repeater, the nodes can be hijacked, and in
principle, the data can be traded via blackmail, and therefore,
as we have discussed, should be kept e.g., homomorphically
encrypted [35,36]. Finding the most effective scheme in terms
of memory is an important open problem.

Finally, we admit, that another simple to consider solution
for the considered threat, is to live with the fact of possibility
of a malware and let every registered user of a node be
connected with any other by quantum switch (no matter what
is the type of the node) and sell e.g. utility. This, however,
would need to be done at a certain price, in similarity to a
utility that any smart phone can be turned into a network
router within the price of the subscription. In general, one can
ask for any other nontransitive property (nonhackable), that
can be incorporated to provide security. That will be studied
elsewhere (see in this context recent Ref. [38]).

While large effort to make QI happen is begin taken [7], it
is also important to know a novel, inherently quantum threats
that can come from the new quantum network design. To our
knowledge this direction of research needs separate attention,
as has not been studied in deep so far [11,12].
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APPENDIX

Proof of Observation 1.

E→
D (γdk ,ds ) � Icoh(AA′〉BB′)γdk ,ds

(A1)

= S(BB′)γdk ,ds
− S(AA′BB′)γdk ,ds

(A2)

= log2 dk +
∑

i

1

dk
S(σiB′ ) − S(ρA′B′ ) (A3)

= log2 dk +
∑

i

1

dk
[S(TrA′UiρA′B′U †

i ) − S(UiρA′B′U †
i )]

(A4)

= log2 dk +
∑

i

1

dk
[S(B′) − S(A′B′)][UiρA′B′U †

i ] (A5)

= log2 dk +
∑

i

1

dk
Icoh(A′〉B′)[UiρA′B′U †

i ] (A6)

= log2 dk +
∑

i

1

dk
Icoh(A′〉B′)σi , (A7)

where σiB′ = TrA′UiρA′B′U †
i .

The first inequality is due to the fact that the one-
way distillable entanglement is lower bounded by the
coherent information. Then the first equality follows
from direct calculation, and the fact that S(

∑
i

1
dk

|i〉〈i| ⊗
TrA′UiρA′B′U †

i ) = log2 dk + ∑
i

1
dk

S(TrA′UiρA′B′U †
i ). Equality

S(AA′BB′) = S(ρA′B′ ) comes from the construction: the pri-
vate state is unitarily equivalent to ψ ⊗ ρ (where ψ is max-
imally entangled state of dimension d2

k ), and the entropy is
invariant under unitary transformations, additive and zero for
pure states. In the equality (A4) we add the unitary transfor-
mations to ρA′B′ which is assured by mentioned property of
entropy: S(ρA′B′ ) = ∑

i
1
dk

S(UiρA′B′U †
i ). We ten observe that

S(B′) − S(A′B′)UiρA′B′U †
i

is nothing but the coherent informa-
tion of σi for each i. Hence the final formula involves average
value of the coherent information evaluated for states σi ≡
UiρA′B′U †

i . �
Proof of theorem 1. Below we present a sequence of in-

equalities, that altogether allow to prove the theorem.

θ � R→(γdk ,ds ) � E→
D (γdk ,ds ) � log2 dk+∑

i

1

dk
Icoh(A′〉B′)σi � log2 dk − log2 ds, (A8)

The first inequality comes from our assumption that γdk ,ds is
an (θ, log2 dk )-good one-way secure network scheme. The
second inequality is supported by the fact, that one can
distill R→(ρ) singlets and use them for teleportation. One
of methods to repeat key is to distill E→

D of pure entangle-
ment between H and A and H and B, respectively. This is
followed by entanglement swapping protocol [8]. The third
inequality comes from Eq. (14). The final inequality is due to
corollary 1.
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Thanks to the above inequality (A8), we can upper bound
the density of the private key as follows:

D(γdk ,ds ) = log2 dk

log2 dimH
= log2 dk

log2 dk + log2 ds
(A9)

� log2 dk

2 log2 dk − θ
= 1

2 − θ
log2dk

. (A10)

From Eq. (11), we have

V
(
Sγdk ,ds

)
� M

(
γdk ,ds

)(
1 − 1

2 − θ
log2 dk

)
(A11)

≈ M
(
γdk ,ds

)(1

2
− θ

4 log2 dk
+ O(θ2)

)
≈θ≈0

1

2
M

(
γdk ,ds

)
,

(A12)

what ends the proof. �
Proof of theorem 2. Because θ � R↔(ρ) � ED(ρ) �

Icoh(H〉A), and it has nonpositive coherent information
Icoh(H〉A) [27], thus distillable key has to fulfill:

KD(ρ) � Esq(ρ) � 1
2 I (ρ) = 1

2 S(H ) + 1
2 Icoh( H〉A)

� 1
2 (log2 dk + log2 ds) + θ, (A13)

where Esq(ρA,B) = infρABE ∈SExt
1
2 I (A; B|E ) is the squashed en-

tanglement [39], and the next inequality is by the definition of
Esq. Owing to the fact that KD(ρ) � η, we obtain

η � 1

2
(log2 dk + log2 ds) + θ, (A14)

D(ρ) � η

log2 dH
�

1
2 log2 dH + θ

log2 dH
= 1

2
+ θ

log2 dH
, (A15)

V (Sρ ) � M(ρ)

(
1

2
− θ

log2 dH

)
≈θ≈0

1

2
M(ρ). (A16)

�
Proof of observation 2. The first inequality comes from

the result of Christandl and Ferrara [19]. There is

R→(γ ) � E→
D (γ ⊗ γ ). (A17)

The distillable entanglement is upper bounded by the log-
negativity:

E→
D (γ ⊗ γ ) � log2 ‖γ 
 ⊗ γ 
‖ = 2 log2 ‖γ 
‖, (A18)

where equality comes from the additivity of the log-negativity.
We upper bound log-negativity as follows:

‖γ 
‖ =
∥∥∥∥∥∥

1

dk

∑
i j

|i j〉〈 ji| ⊗ X 

i j

∥∥∥∥∥∥ (A19)

=
∥∥∥∥∥∥

1

dk

∑
i

|ii〉〈ii| ⊗ X 

ii + 1

dk

∑
i �= j

|i j〉〈 ji| ⊗ X 

i j

∥∥∥∥∥∥
(A20)

�
∥∥∥∥∥ 1

dk

∑
i

|ii〉〈ii| ⊗ X 

ii

∥∥∥∥∥ +
∥∥∥∥∥∥

1

dk

∑
i �= j

|i j〉〈 ji| ⊗ X 

i j

∥∥∥∥∥∥
(A21)

= 1 + ‖γ 
 − γ̂ 
‖. (A22)

The last equality is obtained due to the fact that Xii ∈ PPT .
Finally, because logarithm is strictly increasing, we have
2 log2 ‖γ 
‖ � 2 log2 (1 + ‖γ 
 − γ̂ 
‖), and hence

E→
D (γ ⊗ γ ) � 2 log2 (1 + ‖γ 
 − γ̂ 
‖). (A23)

This implies by virtue of Eq. (A17):

R→(γ ) � 2 log2 (1 + ‖γ 
 − γ̂ 
‖). (A24)

�
Proof of observation 3. By direct calculations we have

‖γ 
 − γ̂ 
‖ (A25)

=
∥∥∥∥ ∑

i, j

1

dk
|i j〉〈i j| ⊗ X 


i j −
∑

i

1

dk
|ii〉〈ii| ⊗ X 


ii

∥∥∥∥ (A26)

=
∥∥∥∥ ∑

i �= j

1

dk
|i j〉〈i j| ⊗ X 


i j

∥∥∥∥ (A27)

=
∑
i �= j

1

dk

∥∥X 

i j

∥∥. (A28)

�
Proof of lemma 1. A pdit γdk ,ds has d2

k − dk off-diagonal
block elements Xi j , and ‖Xi j‖ � 0. From observation 3 we
have that

∑
i �= j

1
dk

‖X 

i j ‖ � ε, for some small ε � ‖γ 


dk ,ds
−

γ̂ 

dk ,ds

‖. Then among those block elements there clearly has
to be a one such that 1

dk
‖X 


i0, j0‖ � ε

d2
k −dk

as a property of mean

value, hence ∥∥X 

i0, j0

∥∥ � εdk

d2
k − dk

= ε

dk − 1
. (A29)

We know from [23], that ‖Xi j‖ � ds‖X 

i j ‖. Hence, for arbi-

trary i and j, we have

ds

∥∥X 

i j

∥∥ � ‖Xi j‖ = ‖UiσU †
j ‖ = ‖σ‖ = 1. (A30)

In particular 1 � ds‖X 

i0, j0‖. Then 1 � ds

ε
dk−1 and finally ds �

dk−1
ε

�
Proof of theorem 3. From observation 2: R→(γ〈dk ,ds〉) �

2 log2 (1 + ε). Further from irreducability of γ〈dk ,ds〉, we have
that KD(γ〈dk ,ds〉) = log2 dk , and the lower bound for V (Sγ〈dk ,ds〉 )
we obtain in the following way

D
(
γ〈dk ,ds〉

) = KD
(
γ〈dk ,ds〉

)
log2 dk + log2 ds

= log2 dk

log2 dk + log2 ds
� log2 dk

log2 dk + log2
dk−1

ε

.

(A31)

Thus

V
(
Sγ〈dk ,ds〉

)
� Mγ〈dk ,ds〉

(
1 − log2 dk

log2 dk + log2
dk−1

ε

)

≈ε=0 M
(
γ〈dk ,ds〉

)
, (A32)

where the first inequality is a consequence of lemma 1. �
Proof of proposition 1. In this proof, partial transposition


 and the operation of diag(·) are assumed to be evaluated
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in computational basis. Furthermore we assume ‖A

01,10‖ � ε.

Using the results in Ref. [23], we know

||ρ − γ〈2,ds〉|| � ε ⇒ ∣∣∣∣A

0011

∣∣∣∣ � ε. (A33)

We define a projection

 := (|00〉〈00| + |11〉〈11|) ⊗ Id2
s
. (A34)

Notice that γ〈2,ds〉 = γ〈2,ds〉, and let us define subnormal-
ized state

ρ

 := ρ
. (A35)

From one of assumptions, we have∥∥ρ

 − diag

(
ρ




)∥∥ = 2
∥∥A


01,10

∥∥ � 2ε, (A36)

where diag(·) refers to an operation that projects the key part
to its diagonal, i.e, it acts in the following way:

diag

⎛
⎝ ∑

i, j,k,l

|i j〉〈kl| ⊗ Ai j,kl

⎞
⎠ :=

∑
i, j,

|i j〉〈i j| ⊗ Ai j,i j . (A37)

We define a CPTP operation φ and corresponding Kraus
operators:

φ(ρ) : =
2∑

i=1

KiρK†
i , (A38)

K1 := |01〉〈01| ⊗ Id2
s
, (A39)

K2 := |10〉〈10| ⊗ Id2
s
. (A40)

We employ the above to upper bound some traces of certain
diagonal block of ρ
 . Since the trace norm is nonincreasing
under CPTP maps and for i �= j, we have Xi j,i j = 0:

ε �
∥∥ρ − γ〈2,ds〉

∥∥ �
∥∥φ(ρ) − φ

(
γ〈2,ds〉

)∥∥ (A41)

= ‖|01〉〈01| ⊗ A01,01 + |10〉〈10| ⊗ A10,10‖ (A42)

= ‖A01,01‖ + ‖A10,10‖ = TrA01,01 + TrA10,10 (A43)

= TrA

01,01 + TrA


10,10, (A44)

where we used a property that the trace of hermitean positive
semidefinite matrix is invariant under partial transpose. We
use now Eqs. (A41)–(A44) to lower bound the following
quantity:

Tr(ρ
) = TrA

00,00 + TrA


11,11 (A45)

= 1 − TrA

01,01 + TrA


10,10 � 1 − ε. (A46)

As a byproduct notice that∥∥ρ



∥∥ = Tr
(
ρ




) ≡ Tr(ρ
) � 1 − ε. (A47)

We employ now the “gentle measurement lemma” [40–42],
saying that for all positive semidefinite operators σ , and 0 �
H � 1, one has

‖σ −
√

Hσ
√

H‖ � 2
√

Tr(σ )
√

Tr(σ (I − H )). (A48)

Since  is a projector, and ρ
 is normalized, from
Eqs. (A45),(A46), and (A48), we find∥∥ρ
 − ρ




∥∥ � 2
√

1 − Tr(ρ
) � 2
√

ε, (A49)

where we used cyclic property of the trace. Using the trian-
gle inequality twice, the fact that ‖ρ


‖ ≡ ‖diag(ρ

)‖, and

inequalities in (A36), (A47), and (A49), we obtain∥∥∥∥ρ
 − diag
(
ρ




)∥∥ρ



∥∥
∥∥∥∥ �

∥∥ρ
 − diag
(
ρ




)∥∥ (A50)

+
∥∥∥∥diag

(
ρ




) − diag
(
ρ




)∥∥ρ



∥∥
∥∥∥∥ (A51)

= ∥∥ρ
 − ρ

 + (

ρ

 − diag

(
ρ




))∥∥ + (
1 − ∥∥ρ




∥∥)
(A52)

�
∥∥ρ
 − ρ




∥∥ + ∥∥ρ

 − diag

(
ρ




)∥∥ + ε (A53)

� 2
√

ε + 2ε + ε = 2

(√
ε + 3

2
ε

)
. (A54)

From the Refs. [15,22], two-way repeater rate is upper
bounded in the following way:

R↔(ρ) � KD(ρ
 ) � Er (ρ
 ). (A55)

While employing asymptotic continuity of the relative entropy
of entanglement Er [43,44], we obtain∣∣∣∣∣Er (ρ
 ) − Er

(
diag

(
ρ




)∥∥ρ



∥∥
)∣∣∣∣∣ � ξ log2 dimH (ρ
 )

+ (1 + ξ )h

(
ξ

1 + ξ

)
(A56)

⇒ Er (ρ
 ) � Er

(
diag

(
ρ




)∥∥ρ



∥∥
)

+ ξ log2 dimH (ρ
 ) + (1 + ξ )h

(
ξ

1 + ξ

)
, (A57)

where ξ = 2(
√

ε + 3
2ε). From Eq. (A55), we have then

R↔(ρ) � Er

(
diag

(
ρ




)∥∥ρ



∥∥
)

+ ξ log2 dimH (ρ
 ) (A58)

+ (1 + ξ )h

(
ξ

1 + ξ

)
. (A59)

Blocks of diag(ρ
 ) are separable by assumption. Since
nonzero blocks of diag(ρ


) are identical to corresponding
blocks of diag(ρ
 ) they are also separable. This implies

that the relative entropy of entanglement of diag(ρ

 )

‖ρ

‖ , from its

definition reads 0. Knowing that dk = 2 and that dimension of
matrix is invariant under partial transpose, we obtain an upper
bound.

R↔(ρ) � 2

(√
ε + 3

2
ε

)
(1 + log2 ds) (A60)

+ (1 + 2
√

ε + 3ε)h

(
2
√

ε + 3ε

1 + 2
√

ε + 3ε

)
. (A61)

�
Proof of theorem 4. We work under an assumption that
1

2(ds+1) � ||ρ − γ〈2,ds〉|| � ε < 1
2 . The first step is to upper

bound key rate with relative entropy (see Ref. [22]):

KD(ρ) � Er (ρ). (A62)
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Then we make use of asymptotic continuity of quantum
relative entropy [43,44].∣∣Er (ρ) − Er

(
γ〈2,ds〉

)∣∣ � ε

2
log2 dimH (ρ)

+
(

1 + ε

2

)
h

( ε
2

1 + ε
2

)
(A63)

⇒ Er (ρ) � Er
(
γ〈2,ds〉

)
+ ε

2
log2 dimH (ρ) +

(
1 + ε

2

)
h

( ε
2

1 + ε
2

)
. (A64)

Since Er (γ〈dk ,ds〉) � log2 dk [22], by combining Eqs. (A62)
and (A64), we have

KD(ρ) � log2 dk + ε

2
log2 dimH ρ +

(
1 + ε

2

)
h

( ε
2

1 + ε
2

)
.

(A65)

From Ref. [23], we know that ||ρ − γ〈2,ds〉|| � 1
2(ds+1) , what

together with the initial condition (ε < 1
2 ) yields

log2 ds � log2

(
1 − 2ε

2ε

)
. (A66)

The overhead of the scheme is then lower bounded

V (ρ) = M(ρ)

(
1 − K→

D (ρ)

log2 dimH (ρ)

)
(A67)

� M(ρ)

⎛
⎝1−

log2 dk + ε
2 log2 dimH (ρ) + (

1 + ε
2

)
h
(

ε
2

1+ ε
2

)
log2 dimH (ρ)

⎞
⎠

(A68)

� M(ρ)

⎛
⎝1 −

log2 dk + (
1 + ε

2

)
h
(

ε
2

1+ ε
2

)
log2 dk + log2

(
1−2ε

2ε

) − ε

2

⎞
⎠ (A69)

= M(ρ)

⎛
⎝1 −

1 + (
1 + ε

2

)
h
(

ε
2

1+ ε
2

)
1 + log2

(
1−2ε

2ε

) − ε

2

⎞
⎠. (A70)

Where we used dimH (ρ) = dimH (γ〈2,ds〉) and dk = 2.
Now we have to design an appropriate lower bound

on KD. Following arguments of Ref. [45], the operation
of privacy squeezing does not increase the trace distance
||ρps − γ

ps
〈2,ds〉|| � ε. Moreover after this operation private

state (strictly irreducible in this case) turns into one of the two
Bell states γ

ps
〈2,ds〉 ≡ ψ . In general, the following inequalities

hold:

K→
D (ρps) � K→

D (ρ) � KD(ρ). (A71)

On the other hand due to lemma V.3. in Ref. [46], both one-
way and two-way key rates are lower bounded with

1 − 8ε log2 dimH
(
γ

ps
〈2,ds〉

) − 4h(ε) � K→
D (ρps). (A72)

From Eqs. (A71) and (A72), and the fact dimH (ρps) = 2, we
obtain

KD(ρ) � η := 1 − 8ε − 4h(ε). (A73)

Form proposition 1, the rate of the repeater is upper bounded
with

R↔(ρ) � θ := 2

(√
ε + 3

2
ε

)
(1 + log2 ds) (A74)

+ (1 + 2
√

ε + 3ε)h

(
2
√

ε + 3ε

1 + 2
√

ε + 3ε

)
. (A75)

�
Notation 6. We denote projectors Pi, j and Pi for i �= j

Pi, j = |ii〉〈ii| + | j j〉〈 j j|, (A76)

Pi = |ii〉〈ii|. (A77)

The following identities hold.
Fact 1. We have the following identities:

(Pi, j ⊗ I )

⎛
⎝∑

i jkl

|i j〉〈kl| ⊗ Ai j,kl

⎞
⎠(Pi, j ⊗ I ) (A78)

= |ii〉〈ii| ⊗ Aii,ii + |ii〉〈 j j| ⊗ Aii, j j (A79)

+| j j〉〈ii| ⊗ Aj j,ii + | j j〉〈 j j| ⊗ Aj j, j j (A80)

and also

(Pi ⊗ I )

⎛
⎝∑

i jkl

|i j〉〈kl| ⊗ Ai j,kl

⎞
⎠(Pi ⊗ I ) (A81)

= |ii〉〈ii| ⊗ Aii,ii. (A82)

Notation 7. For the proofs of observation 4 we abuse the
notation denoting 1

dk
Xii, j j → Xii, j j , Pi, j ⊗ I → Pi, j , and Pi ⊗

I → Pi for conciseness.

Proof of observation 4. We start with proving first inequal-
ity (34). Using the contractivity of the trace norm, we have

‖ρ − γ ‖ � ε ⇒ ‖Pi, jρPi, j − Pi, jγ Pi, j‖ � ε. (A83)

Thus

‖|ii〉〈ii| ⊗ (Aii,ii − Xii,ii ) (A84)

+|ii〉〈 j j| ⊗ (Aii, j j − Xii, j j ) (A85)

+ | j j〉〈ii| ⊗ (Aj j,ii − Xj j,ii )

+| j j〉〈 j j| ⊗ (Aj j, j j − Xj j, j j )‖ � ε. (A86)

Using again the norm contractivity property and projector
Pi, we have

ε � ‖ρ − γ ‖ � ‖PiρPi − Piγ Pi‖ (A87)

=
∑

i

‖Aii,ii − Xii,ii‖ � ‖Aii,ii − Xii,ii‖. (A88)

Now we want to prove that

‖Aii, j j − Xii, j j‖ � ε. (A89)

Let us express the matrix from LHS of (A86) as follows:

M = D + Â, (A90)

where M is a matrix, D are diagonal elements and Â are
antidiagonal elements. Note that ‖D‖ � ε as ‖M‖ � ε.
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We get then

‖M‖ = ‖D + Â‖ � ‖|D‖ − ‖Â‖| (A91)

⇒ ‖Â‖ � ‖M‖ + ‖D‖ � ‖M‖ + ε � 2ε. (A92)

We note then that

‖Â‖ =
∥∥∥∥ 0 Âii, j j

Â†
ii, j j 0

∥∥∥∥ = 2‖Âii, j j‖,

hence

‖Â‖ = 2‖Aii, j j − Xii, j j‖ � 2ε, (A93)

‖Aii, j j − Xii, j j‖ � ε. (A94)

Finally, applying the reverse triangle inequality to
Eq. (A94) and having ‖Xii, j j‖ = 1

dk
,

‖|Aii, j j‖ − 1

dk
| � ε ⇒ ‖Aii, j j‖ � 1

dk
− ε. (A95)

Now we prove the second inequality (35). Consider an incom-
plete von Neumann measurement

{Ki j} = {|i j〉〈i j| ⊗ I}. (A96)

Using ‖ρ − γ ‖ � ε and contractivity of norm, we obtain∥∥∥∥ ∑
i j

Ki jρK†
i j −

∑
i j

Ki jγ K†
i j

∥∥∥∥ � ε, (A97)

∥∥∥∥ ∑
i j

|i j〉〈i j| ⊗ Ai j,i j −
∑

i

|ii〉〈ii| ⊗ Xii,ii

∥∥∥∥ � ε.

(A98)

For i �= j let Xi j,i j = 0, then∥∥∥∥∥∥
∑

i j

|i j〉〈i j| ⊗ Ai j,i j −
∑

i j

|i j〉〈i j| ⊗ Xi j,i j

∥∥∥∥∥∥ � ε, (A99)

∑
i j

‖|i j〉〈i j| ⊗ (Ai j,i j − Xi j,i j )‖ � ε. (A100)

∑
i �= j

‖Ai j,i j − Xi j,i j‖ +
∑

i

‖Aii,ii − Xii,ii‖ � ε. (A101)

Employing the aforementioned condition that Xi j,i j vanish
and non-negativity of the trace norm, we obtain∑

i �= j

‖Ai j,i j‖ � ε. (A102)

�
Proof of lemma 2. We know that ρ
 � 0. Firstly we con-

struct, a projector on certain 2 × ds dimensional subspace of
ρ
 � 0.

0 = (|i j〉〈i j| + | ji〉〈 ji|) ⊗ Id2
s
, i �= j. (A103)

Having in mind that ρ = ∑
i j jkl |i j〉〈kl| ⊗ Ai j,kl , we perform

the projection and obtain

0ρ

0 =

⎡
⎢⎢⎣

A

i j,i j 0 0 A


ii, j j
0 0 0 0
0 0 0 0
A


ii, j j
† 0 0 A


ji, ji

⎤
⎥⎥⎦ � 0, (A104)

where we used that A

j j,ii = (A


ii, j j )
†, what is a consequence of

ρ
 being Hermitian. Indeed 0ρ

0 is positive semidefinite

since 0 is a Kraus operator. In what follows, we construct a
unitary transformation based on singular value decomposition
of A


ii, j j = S�V .

U = |i j〉〈i j| ⊗ S† + | ji〉〈 ji| ⊗ V. (A105)

Note that Tr� = ‖A

ii, j j‖. In the next step, we perform a

specific privacy squeezing operation on ρ
:

ρ

ps. = TrA′B′U0ρ


0U
†. (A106)

What yields following form of a privacy squeezed matrix,
which is positive semidefinite,

ρ

ps. =

⎡
⎢⎢⎣

‖Ai j,i j‖ 0 0
∥∥A


ii, j j

∥∥
0 0 0 0
0 0 0 0∥∥A


ii, j j

∥∥ 0 0 ‖Aji, ji‖

⎤
⎥⎥⎦ � 0. (A107)

Where we used a property of diagonal blocks ‖Ai j,i j‖ =
TrAi j,i j = TrA


i j,i j = ‖A

i j,i j‖. Using a basic fact known for

positive matrices we have the following dependence between
its elements: ∥∥A


ii, j j

∥∥ � ‖Ai j,i j‖ + ‖Aji, ji‖
2

. (A108)

Now we are going to use observation 4. Since the smallest
component of the sum is always smaller than an average, we
have

2ε � 2
∑
i �= j

‖Ai j,i j‖ =
∑
i �= j

(‖Ai j,i j‖ + ‖Aji, ji‖) (A109)

= dk (dk − 1)
∑
i �= j

(‖Ai j,i j‖ + ‖Aji, ji‖)

dk (dk − 1)
(A110)

� dk (dk − 1) min
i �= j

(‖Ai j,i j‖ + ‖Aji, ji‖). (A111)

Since Eq. (A108) is true for all i �= j, we use the smallest
element denoted with i0 �= j0. Hence form (A108),∥∥A


i0i0, j0 j0

∥∥ � ε

dk (dk − 1)
. (A112)

By observation 4, ∀i �= j we have ‖Aii, j j‖ � 1
dk

− ε and
‖A


i0i0, j0 j0‖ � ε

d2
k −dk

. Owing to the fact that under partial trans-

position the trace norm can not increase by more than the
dimension of the matrix (here ds) [23], we have
1

dk
− ε �

∥∥Ai0i0, j0 j0

∥∥ � ds

∥∥A

i0i0, j0 j0

∥∥ � ε

d2
k − dk

ds, (A113)

thus,

1 − εdk � dkε

d2
k − dk

ds = ε

dk − 1
ds, (A114)

and finally,

ds �
(

dk − 1

ε

)
(1 − εdk ). (A115)

�
Proof of corollary 2. The proof is straightforward conse-

quence of lemma 2. Since the implication stated in Lemma
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2 is true for any ε that ε � ‖ρ − γ ‖, we denote with ε0 the
one that saturates it. We have the following implication:

‖ρ − γdk ,ds‖ = ε0 ⇒ ds �
(

dk − 1

ε0

)
(1 − ε0dk ). (A116)

We immediately obtain the following lower bound:

‖ρ − γdk ,ds‖ � dk − 1

ds + dk (dk − 1)
. (A117)

�
Proof of corollary 3. We notice that equation (A112) is

true also for dk = 2. Since in this dimension there is only a
single choice of i0 �= j0 (up to Hermitian conjugate), we have:∥∥A


00,11

∥∥ � ε

dk (dk − 1)
= ε

2
. (A118)

�
Proof of proposition 2. This proof follows the same steps

as the proof of proposition 1. Partial transposition 


and the operation of diag(·) are assumed to be evalu-
ated in computational basis. Futhermore we assume that∑

i �= j ‖A

i j, ji‖ � ε. We work under an assumption that

dk−1
ds+dk (dk−1) � ||ρ − γ〈dk ,ds〉|| � ε < 1

dk
.

We define a projection and subnormalized state ρ

,

 :=
dk−1∑
i=0

|ii〉〈ii| ⊗ Id2
s
, (A119)

ρ

 := ρ
. (A120)

We notice then that∥∥ρ

 − diag

(
ρ




)∥∥ =
∑
i �= j

∥∥A

i j, ji

∥∥ � ε, (A121)

Where operation of diag(·) is defined in Eq. (A37).
We anticipate now and calculate the following quantity

using equation (A102) again:

Tr
(
ρ


) =
dk−1∑
i=0

A

ii,ii (A122)

=
dk−1∑
i=0

Aii,ii = 1 −
∑
i �= j

Ai j,i j � 1 − ε. (A123)

As a byproduct we notice that∥∥ρ



∥∥ = Tr
(
ρ




) = Tr
(
ρ


)
� 1 − ε. (A124)

We employ now the “gentle measurement lemma” [40–42],
saying that for all positive semidefinite operators σ , and 0 �
H � 1, one has∥∥σ −

√
Hσ

√
H

∥∥ � 2
√

Tr(σ )
√

Tr(σ (I − H )). (A125)

Since  is a projector, and ρ
 is normalized, from
Eqs. (A122), (A123), and (A125), we find∥∥ρ
 − ρ




∥∥ � 2
√

1 − Tr(ρ
) � 2
√

ε, (A126)

where we used cyclic property of the trace. Using the trian-
gle inequality twice, the fact that ‖ρ


‖ ≡ ‖diag(ρ

)‖, and

inequalities in Eqs. (A121), (A124), and (A126):

∥∥∥∥ρ
 − diag
(
ρ




)∥∥ρ



∥∥
∥∥∥∥ �

∥∥ρ
 − diag
(
ρ




)∥∥ (A127)

+
∥∥∥∥diag

(
ρ




) − diag
(
ρ




)∥∥ρ



∥∥
∥∥∥∥ (A128)

= ∥∥ρ
 − ρ

 + (

ρ

 − diag

(
ρ




))∥∥ + (
1 − ∥∥ρ




∥∥)
(A129)

�
∥∥ρ
 − ρ




∥∥ + ∥∥ρ

 − diag

(
ρ




)∥∥ + ε (A130)

� 2
√

ε + ε + ε = 2(
√

ε + ε). (A131)

This upper bound is tighter than the corresponding one for a
pbit from proposition 1 due to application of corollary 3.

From the Refs. [15,22], the two-way repeater rate is upper
bounded in the following way:

R↔(ρ) � KD(ρ
 ) � Er (ρ
 ). (A132)

While employing asymptotic continuity of the relative entropy
of entanglement Er [43,44], we obtain∣∣∣∣∣Er (ρ
 ) − Er

(
diag

(
ρ




)∥∥ρ



∥∥
)∣∣∣∣∣ � ξ log2 dimH (ρ
 )

+ (1 + ξ )h

(
ξ

1 + ξ

)
(A133)

⇒ Er (ρ
 ) � Er

(
diag

(
ρ




)∥∥ρ



∥∥
)

+ ξ log2 dimH (ρ
 ) + (1 + ξ )h

(
ξ

1 + ξ

)
, (A134)

where ξ = 2(
√

ε + ε). Since dimension of a matrix is invari-
ant under the partial transpose we have now:

R↔(ρ) � Er

(
diag

(
ρ




)
‖ρ


‖

)
+ ξ log2 dimH (ρ) (A135)

+ (1 + ξ )h

(
ξ

1 + ξ

)
. (A136)

Blocks of diag(ρ
 ) are separable from assumption. Since
nonzero blocks diag(ρ


) are identical to corresponding blocks
of diag(ρ
 ) they are also separable. This implies that the

relative entropy of entanglement of diag(ρ

 )

‖ρ

‖ , from its definition

reads 0, hence

R↔(ρ) � 2(
√

ε + ε) dimH (ρ) (A137)

+ (1 + 2
√

ε + 2ε)h

( √
ε + ε

1
2 + √

ε + ε

)
. (A138)

�
Proof of theorem 5. We work under assumption that
dk−1

ds+dk (dk−1) � ||ρ − γ〈dk ,ds〉|| � ε < 1
dk

.
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The first step is to upper bound key rate with relative
entropy (see Ref. [22]).

KD(ρ) � Er (ρ). (A139)

Then we make use of asymptotic continuity of quantum
relative entropy [43,44].∣∣Er (ρ) − Er

(
γ〈dk ,ds〉

)∣∣ � ε

2
log2 dimH (ρ)

+
(

1 + ε

2

)
h

( ε
2

1 + ε
2

)
(A140)

⇒ Er (ρ) � Er
(
γ〈dk ,ds〉

) + ε

2
log2 dimH (ρ)

+
(

1 + ε

2

)
h

( ε
2

1 + ε
2

)
. (A141)

Since Er (γ〈dk ,ds〉) � log2 dk [22], by combining Eqs. (A139)
and (A141),we have:

KD(ρ) � log2 dk + ε

2
log2 dimH ρ + (1 + ε

2
)h

( ε
2

1 + ε
2

)
.

(A142)

From Lemma 2, we know that ds � ( dk−1
ε

)(1 − εdk ). We
assume RHS to be positive, which together with the initial
condition yields:

log2 ds � log2

(
dk − 1

ε

)
+ log2(1 − εdk ). (A143)

The overhead of the scheme is then lower bounded as follows:

V (ρ)

= M(ρ)

(
1 − KD(ρ)

log2 dimH (ρ)

)
(A144)

� M(ρ)

⎛
⎝1−

log2 dk + ε
2 log2 dimH (ρ) + (

1 + ε
2

)
h
(

ε
2

1+ ε
2

)
log2 dimH (ρ)

⎞
⎠

(A145)

= M(ρ)

⎛
⎝1 −

log2 dk + (
1 + ε

2

)
h
(

ε
2

1+ ε
2

)
log2 dk + log2 ds

− ε

2

⎞
⎠ (A146)

� M(ρ)

⎛
⎝1 −

log2 dk + (
1 + ε

2

)
h
(

ε
2

1+ ε
2

)
log2 dk + log2

( dk−1
ε

) + log2(1 − εdk )
− ε

2

⎞
⎠.

(A147)

Now we have to find an appropriate lower bound on
KD. Following arguments of Ref. [45] the operation of
privacy squeezing does not increase the trace distance
||ρps − γ

ps
〈dk ,ds〉|| � ε, in a similar manner the key rate

K→
D (ρps) � K→

D (ρ). Moreover after this operation private
state (strictly irreducible in that case) turns into maximally
entangled state of dimension d2

k .

K→
D (ρps) � K→

D (ρ) � KD(ρ). (A148)

On the other hand due to results in Ref. [46] and the fact that
K→

D (ρps) = log2 dimH (ρps) both one-way and two-way keys
are lower bounded

log2 dk − 8ε log2 dimH
(
γ

ps
〈dk ,ds〉

) − 4h(ε) � K→
D (ρps).

(A149)

From Eqs. (A148) and (A149), and the fact dimH (γ ps
〈dk ,ds〉) =

dk , we obtain

KD(ρ) � η := log2 dk − 8ε log2 dk − 4h(ε). (A150)

Form proposition 2, the key repeater rate is upper bounded
with

R↔(ρ) � θ := 2(
√

ε + ε) dimH (ρ) (A151)

+ (1 + 2
√

ε + 2ε)h

( √
ε + ε

1
2 + √

ε + ε

)
.

(A152)

�
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We consider the distribution of secret keys, both in a bipartite and a multipartite (conference) setting, via
a quantum network and establish a framework to obtain bounds on the achievable rates. We show that any
multipartite private state—the output of a protocol distilling secret key among the trusted parties—has to be
genuinely multipartite entangled. In order to describe general network settings, we introduce a multiplex
quantum channel, which links an arbitrary number of parties where each party can take the role of sender
only, receiver only, or both sender and receiver. We define asymptotic and nonasymptotic local quantum
operations and classical communication-assisted secret-key-agreement (SKA) capacities for multiplex
quantum channels and provide strong and weak converse bounds. The structure of the protocols we
consider, manifested by an adaptive strategy of secret-key and entanglement [Greenberger–Horne–
Zeilinger (GHZ) state] distillation over an arbitrary multiplex quantum channel, is generic. As a result, our
approach also allows us to study the performance of quantum key repeaters and measurement-device-
independent quantum key distribution (MDI-QKD) setups. For teleportation-covariant multiplex quantum
channels, we get upper bounds on the SKA capacities in terms of the entanglement measures of their Choi
states. We also obtain bounds on the rates at which secret key and GHZ states can be distilled from a finite
number of copies of an arbitrary multipartite quantum state. We are able to determine the capacities for
MDI-QKD setups and rates of GHZ-state distillation for some cases of interest.

DOI: 10.1103/PhysRevX.11.041016 Subject Areas: Atomic and Molecular Physics,
Photonics, Quantum Physics,
Quantum Information

I. INTRODUCTION

Quantum communication over a network is a pertinent
issue from both fundamental and application aspects [1–7].
With technological advancement [8–11], and concerns for
privacy [7,12], there is a need for determining protocols and
criteria for secret communication among multiple trusted
parties in a network. Quantum key distribution (QKD)
provides unconditional security for generating secure,

random bits among trusted parties against a quantum
eavesdropper, i.e., an eavesdropper that is only limited
by the laws of quantum mechanics. Secret key agreement
(SKA) among multiple allies is called conference key
agreement [13,14]. Conference key agreement can be
achieved if all parties involved share a Greenberger–
Horne–Zeilinger (GHZ) state [15]. As in the case of
bipartite QKD, however, there exists a larger class of
states, known as multipartite private states [14], which
can provide conference keys by means of local measure-
ments by the parties.
Given the global efforts towards a so-called quantum

internet [3,16,17], as well as quantum key distribution over
long distances [18,19], it is thus pertinent to establish
security criteria and benchmarks on key distribution and
entanglement generation capabilities over a quantum net-
work. A quantum network is a complex structure as it
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inherits various setups of different quantum channels with
particular alignment due to local environmental conditions.
One of the biggest obstacles in building this structure is the
attenuation of the signal, which cannot be amplified by
cloning or broadcasting because of its inherent quantum
nature. The signal decays exponentiallywith distance over an
optical fiber [20], and also, the interaction with the environ-
ment makes it difficult to preserve entanglement for a long
time [10]. Hence, even obtaining a metropolitan-scale
quantum network remains a challenge. To overcome these
problems, there is a global effort in building technology of
quantum repeaters [11,21–23] that could act as relay stations
for long-distance quantum communication [7,19].
Some of the first protocols to be performed once a

quantum network is available will likely be bipartite as well
as multipartite secret key agreement. Securing the network
is a necessity for these QKD protocols to be free of
loopholes. A number of spectacular attacks on implemen-
tations are based on inaccuracy (inefficiency) of detectors
of polarized light [24–26]. Based on the idea of entangle-
ment swapping, a novel protocol known as measurement-
device-independent QKD (MDI-QKD) [27,28] was intro-
duced, which does not require the honest parties to detect
an incoming quantum signal, thus avoiding the problem of
detector inefficiencies. This idea has drawn enormous
theoretical and experimental attention over the last few
years in terms of analyzing achievable key rates for such a
scheme with various noise models and performing experi-
ments with current technologies [29–39].
Given the broad interest in implementing such technol-

ogies, understanding the fundamental limitations on the key
rates achievable in scenarios such as quantum networks and
quantum repeaters, as well as setups for MDI-QKD, is an
important task. Seminal papers [40,41] on upper bounds on
secret key distillation from states, along with results from
Refs. [42–46], have led to notable recent progress in the
aforementioned direction, for two parties over point-to-
point channels assisted by local quantum operations and
classical communication (LOCC) [47–50]. Building upon
these works, further progress has been made in restricted
network settings, e.g., between two parties over bidirec-
tional [51–53], broadcast [54–56], multiple access, and
interference quantum channels [54], as well as quantum
repeaters [50,57] and networks consisting of point-to-point
[58–60] or broadcast channels [61].
In this work, we aim to provide a unifying framework to

derive upper bounds on the key rates, both in bipartite and
conference settings, achievable in a broad range of different
scenarios, including but not limited to broadcast, multiple
access, interference channels, repeaters, some MDI-QKD
setups, and more general network scenarios. For that
purpose, we introduce a multiplex quantum channel, i.e.,
a multipartite quantum process that connects parties, each
playing one of three possible roles—both sender and
receiver, only sender, or only receiver. A multiplex

quantum channel is the most general form of a memoryless
multipartite quantum channel in a communication network
setting. All other network quantum channels can be seen as
a special case of this channel (see Fig. 1 for certain common
examples). Even the physical setups of MDI-QKD and key
repeaters can be described as special cases of multiplex
quantum channels (see Fig. 2). In general, the input and
output systems on which such a channel acts can be discrete

(a)

(b)

FIG. 1. Pictorial illustration of the universal nature of a
multiplex quantum channel from which all other network quan-
tum channels arise, where red and green arrows show inputs and
outputs to channels, respectively; see Sec. III B for definitions.

FIG. 2. Graphical depiction of a quantum-to-classical multiplex
channel NMDI

A0B0→ZAZB
as a bidirectional channel, which is a

composition of three elementary multiplex channels. We show
a pair of point-to-point channels from Alice to Charlie, and from
Bob to Charlie composed of a multiple access quantum-to-
classical channel (quantum instrument) performed by Charlie,
followed by a broadcast classical channel back to Alice and Bob.
The green arrows with red boundaries are the outputs of one
multiplex channel, which are, at the same time, inputs to the other
channel, hence the coloring.
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(finite-dimensional) or continuous variable (infinite-
dimensional) quantum systems.
Next, we introduce secret-key-distribution protocols over

multiplex quantum channelswith LOCCassistance between
users, as shown in Fig. 3, which provides a unifying
framework to evaluate performances of various seemingly
different QKDprotocols. In particular, we describe a general
paradigm of QKDprotocols where a fixed number of trusted
allies are connected over amultiplex quantum channelN . In
these protocols, the allies are allowed to perform LOCC
between each use ofN to generate, in the end, a key that is
secure against any eavesdropper that satisfies the laws of
quantum mechanics. This so-called quantum eavesdropper
can have access to all environment parts, including the
isometric extension to channel N .
Our main technical result consists of a metaconverse

bound on the one-shot conference key agreement capacity
of a multiplex quantum channel, from which we can obtain
a number of weak as well as strong converse bounds for the
many uses of the multiplex quantum channel, including
adaptive and nonadaptive strategies. As our results work in
the nonasymptotic setting of a finite number of channel
uses, we believe them to be of wide practical interest.
In particular, as an important observation, we show that

key repeater protocols, as well as commonly used setups for
MDI-QKD, are special cases of LOCC-assisted secret key
agreement via a multiplex quantum channel. Whereas
bounds on the key rates in such scenarios can also be
obtained from a number of earlier results—e.g., from
Refs. [50,58,60]—our framework allows for a higher level
of specificity in the setups, e.g., by taking into consid-
eration the lack of quantum memory or a particular kind of
noisy measurement that is performed in the relay station.
Thus, our framework allows us to obtain tighter bounds

than those in Refs. [50,58,60] and even to compute
MDI-QKD capacities of certain photon-based practical
prototypes that use the so-called dual-rail encoding scheme.
This approach provides important tools for benchmarking
the performance of such experimentally relevant protocols.
When considering conference key agreement, the pivotal

observation we arrive at is that multipartite quantum states
with directly accessible secret bits, also called (multipartite)
private states [14,62], are genuinely multipartite entangled.
This fact also allows us to derive nonasymptotic upper
bounds on the secret key distillation from a finite number of
copies of a multipartite quantum state.
Our work showcases the topology-dependent and yet

universal nature of entanglement measures based on sand-
wiched Rényi relative entropies [63,64], of which relative
entropy is a special case. These entanglement measures
provide upper bounds on the secret key rate over an arbitrary
multiplex quantum channel, which was first shown for
bipartite states in Ref. [40]. The entanglement measures
are topology dependent because the upper bound’s argument
depends (only) on the partition of quantum systems held by
trusted allies based on their roles in the network channel. The
results are based on the observation that multipartite private
states are necessarily genuinely multipartite entangled.
The structure of this paper is as follows. We begin with a

brief overview of the main results and briefly mention some
important prior results along the direction of our work in
Sec. II, respectively. We introduce notations and review
basic definitions and relevant prior results in Sec. III. In
Sec. IV, we introduce and discuss the properties of
entanglement measures for the multiplex quantum channel.
We show that genuine multipartite entanglement is a
necessary criterion for secrecy. In Sec. V, we introduce
LOCC-assisted secret-key-agreement protocols over an
arbitrary multiplex quantum channel. We derive upper
bounds on the maximum achievable rate for conference
key agreement over finite uses of multiplex quantum
channels. In Sec. VI, we leverage our bounds to provide
nontrivial upper bounds on other quantum key distribution
schemes such as measurement-device-independent quan-
tum key distribution and quantum key repeaters. In
Sec. VII, we derive lower bounds on the secret-key-
agreement capacity over an arbitrary multiplex quantum
channel. In Sec. VIII, we derive upper bounds on the
number of secret key bits that can be distilled via LOCC
among trusted parties sharing a finite number of copies of
multipartite quantum states. We provide concluding
remarks and open questions in Sec. IX.

II. SUMMARY OF THE MAIN RESULTS

In the following, we provide a brief overview of our main
results. Regarding technique, our focus is on multipartite
private states, which are the most general class of states that
provide the quantum conference key directly (i.e., without

FIG. 3. Example of an LOCC-assisted secret-key-agreement
protocol among six parties—Alice 1, Alice 2, Bob 1, Bob 2,
Charlie 1, and Charlie 2—using the multiplex channel N three
times. Inputs into N are depicted in red, outputs in green, and
reference systems in black. Alice 1 and 2 enter systems into and
receive systems from N , Bob 1 and 2 only enter systems, and
Charlie 1 and 2 only receive systems. In the end, the six parties
obtain a six-partite conference key.
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distillation) by local measurements. Such states are of the
form [14]

γ
SK
⟶ ≔ Utw

SK
⟶ðΦGHZ

K⃗
⊗ ωS⃗ÞðUtw

SK
⟶Þ†; ð1Þ

where K⃗ ¼ K1;…; KN denotes the so-called key part—i.e.,
the systems that the N parties involved have to measure in
order to obtain conference—and S⃗ ¼ S1;…; SN denotes the
so-called shield systems, which the parties have to keep
secure from the eavesdropper. Also, ΦGHZ is an N-partite
GHZ state, ω is some density operator, and Utw is a
specifically constructed bipartite unitary operation known
as twisting.
We show that states of this form are necessarily genu-

inely multipartite entangled (GME); i.e., they cannot be
expressed as a convex sum of product states no matter with
respect to which partition the states are products.
To show this, we define a multipartite privacy test, i.e.,
a dichotomic measurement fΠγ; 1 − Πγg such that any
ϵ-approximate multipartite private state ρ with fidelity
Fðρ; γÞ ≥ 1 − ϵ passes the test with success probability
Tr½Πγρ� ≥ 1 − ϵ. We then show that any biseparable state σ
cannot pass the privacy test with probability larger than
1=K, where logK is the number of conference key bits
obtainable by measuring (the key part of) γ. Namely, we
show that Tr½Πγσ� ≤ 1=K for all biseparable σ.
As a means of distributing bipartite or multipartite private

states among the users, e.g., in a future quantum version of
the internet [3,17], we introduce multiplex quantum chan-
nels that connect a number of parties that have one of three
possible roles—that of only sender, only receiver, or both
sender and receiver. We denote senders as Bob 1,..., Bob k,
and their inputs as B1;…; Bk; receivers as Charlie 1,...,
Charliem, and their inputs asC1;…; Cm; and parties that are
both senders and receivers as Alice 1,..., Alice n, with
respective inputs A0

1;…; A0
n and outputs A1;…; An. See also

Fig. 1. To describe such channels, we use the notation
N

A⃗0 B⃗→A⃗ C⃗
, where, for sake of brevity, we have introduced

A⃗ ≔ A1;…; An, etc. Furthermore, ∶A⃗∶ denotes the partition
A1∶…∶An and ∶A⃗∶B⃗∶ stands forA1∶…∶An∶B1∶…∶Bk, etc.
By interleaving the uses of a multiplex quantum channel

with LOCC among the parties, we provide a general
framework to describe a number of different quantum
protocols. The idea is to construct a multiplex quantum
channel in such a way that its use, interleaved by LOCC,
simulates the protocol. For example, in a MDI-QKD setup,
where Alice 1 and Alice 2 send states to the central
measurement unit using respective channels N 1;2, we can
define a (bipartite) multiplex quantum channel of the form

NMDI
A0
1
A0
2
→A1A2

≔ BX→A1A2
∘MA00

1
A00
2
→X∘N 1

A0
1
→A00

1
⊗ N 2

A0
2
→A00

2
:

ð2Þ

Here, MA00
1
A00
2
→X is the quantum channel performing the

central measurement, and BX→A1A2
is a classical broadcast

channel sending the result back to Alice 1 and Alice 2. Other
examples include multipartite MDI-QKD and secret-key-
agreement protocols over quantum network laced with key
repeaters [50,57].
Generalizing results for point-to-point [48–50] and

bidirectional [51–53] channels, we derive divergence-based
measures for the entangling abilities of multiplex quantum
channels and show that they provide upper bounds on their
secret-key-agreement capacities. The measures we intro-
duce are of the following form:

ErðN Þ ≔ sup
τ∈FSð∶LA0⟶

∶RB
⟶

∶Þ
Erð∶LA

⟶
∶R⃗∶C⃗∶ÞN ðτÞ; ð3Þ

where r ¼ E or r ¼ GE (E and GE denote entanglement
and genuine entanglement, respectively) and FS denotes
the set of fully separable states (see Secs. IVA and IV B).
Here, L⃗; R⃗ denote ancillary systems that are kept by the
respective parties. For any partition ∶X⃗∶, we have defined
Er as the divergence from the convex set SE of fully
separable or the convex set SGE of biseparable states,
measured by some divergence D:

Erð∶X⃗∶Þρ ≔ inf
σ∈Srð∶X⃗∶Þ

DðρkσÞ: ð4Þ

Our main results are the following upper bounds on
secret-key-agreement capacities of a multiplex quantum
channel, i.e., on the maximum rates at which multipartite
private states can be obtained by using the channel as well
as some free operations. In the one-shot case of a multiplex
quantum channel with classical preprocessing and post-
processing (cppp), we have the following weak converse
result: For any fixed ε ∈ ð0; 1Þ, the achievable region of
cppp-assisted secret key agreement over a multiplex chan-
nel N satisfies

Pð1;εÞ
cpppðN Þ ≤ Eε

h;GEðN Þ; ð5Þ

where Eε
h;GEðN Þ is the ε-hypothesis-testing relative entropy

of genuine multipartite entanglement of the multiplex
channel N , which is based on the ε-hypothesis-testing
divergence [65]. In the case of many channel uses,
interleaved by LOCC, we can also show the following
strong converse bound:

PLOCCðN Þ ≤ Emax;EðN Þ; ð6Þ

where Emax;EðN Þ is the max-relative entropy of entangle-
ment of the multiplex channel N , which is based on the
max-relative entropy [46]. In the case of finite-dimensional
Hilbert spaces, we can also get a strong converse result in
terms of the regularized relative entropy,
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PLOCCðN Þ ≤ E∞
R;EðN Þ: ð7Þ

If N is teleportation-simulable [48,66]—i.e., it can be
simulated by a resource state and an LOCC operation—the
bounds on PLOCCðN Þ reduce to the relative entropy of
entanglement of the resource state. Our upper bounds on
the secret-key-agreement capacities are also upper bounds
on the multipartite quantum capacities, where our goal is to
distill GHZ states.
Our technique allows us to compute upper bounds on the

rates achievable in MDI-QKD scenarios. For instance, we
consider a dual-rail scheme based on single photons [67] to
determine bounds on the MDI-QKD rates for two users. In
this case, the channels between the users and the relay
station are describable by erasure channels Ei. We obtain
the MDI-QKD capacity

P̃LOCCðNMDI;E
A⃗→Z⃗

Þ ¼ qη1η2; ð8Þ

where ηi’s are the parameters of the erasure channels
connecting users to the relay station and q is the probability
of success of the Bell measurement at the relay station (see
Sec. VI D for a precise model of the MDI-QKD setup).
Dependence on ηi allows us to consider the rate-distance
trade-off. We also determine upper bounds on the maxi-
mum rates for the MDI-QKD setups, where the quantum
channels from the users to the relay station are depolarizing
and dephasing channels.
We also provide lower bounds on the secret-key-agree-

ment rates of multiplex quantum channels that can be
achieved by cppp. Our protocols are based on Devetak-
Winter (DW) [68] and generalize the lower bound for
multipartite states presented in Ref. [14], as well as the
bound for point-to-point quantum channels presented in
Ref. [69] to multiplex quantum channels. Our first lower
bound is a direct extension of the result for states given in
Ref. [14]. The idea is to choose a so-called distributing
party that performs the (directed) DW protocol with all
remaining parties. The achievable rate is then the worst-
case DW rate achievable between the distributing party and
any other party. Furthermore, we maximize over all choices
for the distributing party. Our second protocol is a variation,
where we have a directed chain of parties in which each
party performs the DW protocol with the next party in the
chain. The obtainable rate is given by the “weakest link,”
i.e., the lowest DW rate, in the chain, and we maximize
over all possible permutations of the parties in the chain.
In the case of a bidirectional network, i.e., a network in

which all nodes are connected with their neighbors by a
product of point-to-point channels in opposite directions,
we provide a tighter bound based on spanning trees. The
idea is to find the lowest DW rate in a spanning tree among
any pair of the parties and maximize this quantity among all
spanning trees. We provide an example where this protocol
achieves a higher rate than the previous ones and show that

the lower bound can be computed with polynomial
complexity.
Finally, we show that the techniques developed in

previous sections can also be applied to upper bound the
rates at which the conference key can be distilled from
multipartite quantum states. In particular, we provide an
upper bound on the one-shot distillable conference key in
terms of the hypothesis-testing relative entropy with respect
to biseparable states. Our bound reads

Kð1;εÞ
D ðρÞ ≤ Eε

h;GEðρÞ: ð9Þ

Using a particular construction of biseparable states, we
provide bounds on this quantity for a number of examples,
such as (multiple copies of) GHZ and W states, as well as
dephased or depolarized GHZ and W states. We also
provide an upper bound on the asymptotic distillable
conference key, which is given by the regularized relative
entropy with respect to biseparable states,

KDðρÞ ≤ E∞
GEðρÞ; ð10Þ

which is a generalization of the bipartite bound given
in Ref. [62].

A. Relation to prior works

We briefly sketch some of the major developments that
provide upper bounds on the key distillation capacities
from states or via an LOCC-assisted secret-key-agreement
protocol over a quantum channel. We then compare our
bounds on the SKA capacities with those mentioned in
prior works.
Conditions and bounds on the distillable key of bipartite

states were provided in Refs. [40,41,62]. The former is in
terms of the relative entropy of entanglement [43,44], and
the latter is in terms of the squashed entanglement [70]
(cf. Refs. [71,72]). These results were generalized to the
conference key in Refs. [14,73], respectively.
For an LOCC-assisted secret-key-agreement protocol

over a point-to-point channel, Ref. [47] provides a weak
converse bound in terms of the squashed entanglement,
which is generalized to the distribution of bipartite and
multipartite private states via broadcast channels in
Ref. [55]. In the case of tele-covariant channels (see
Sec. V C), Ref. [48] provides a weak converse bound
and Ref. [49] a strong converse bound in terms of the
relative entropy of entanglement. This bound has been
generalized to the distribution of multiple pairs of bipartite
private states via broadcast channels [54,56], as well as
multiple-access and interference channels [54].
For arbitrary point-to-point channels, a strong converse

bound in terms of the max-relative entropy of entanglement
[46] is provided in Ref. [50]. Recently, another strong
converse bound in terms of the regularized relative entropy
was provided in Ref. [74]. For bidirectional channels,
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strong converse bounds in terms of the max-relative
entropy of entanglement, which reduce to the relative
entropy of entanglement for tele-covariant channels, have
been provided in Refs. [51–53].
In the case where the bipartite key is distributed between

two parties using a quantum key repeater, bounds have
been provided in Ref. [50] when quantum communication
takes place over a point-to-point channel. Bounds on rates,
at which bipartite and multipartite keys for networks of
point-to-point or broadcast channels can be obtained, have
been provided in Refs. [58–60,75,76] and [61], respec-
tively. Also, bounds on the rates obtainable in key repeaters
that are in terms of entanglement measures of the input
states have been obtained in Refs. [57,77].
In an LOCC-assisted conference key agreement proto-

col, the use of a multiplex quantum channel is interleaved
with LOCC among trusted parties. For this scenario, we
derive strong converse bounds in terms of the max-relative
entropy entanglement for arbitrary multiplex channels. In
the case of finite channel dimensions, we also derive
bounds in terms of the regularized relative entropy of
entanglement. In the case of tele-covariant channels, we
obtain bounds in terms of the relative entropy of entangle-
ment. In general, our bounds are not comparable with the
squashed entanglement bounds provided in Refs. [47,55].
We are able to retain the results of Refs. [48–50,74] when
multiplex channels are assumed to be point-to-point chan-
nels. Our bounds in terms of the max-relative entropy are a
direct generalization of the bounds on bidirectional chan-
nels presented in Refs. [51–53]; thus, we retain those
results. By using the recent results in Ref. [74], we further
provide bounds in terms of the regularized relative entropy
of entanglement, which can provide an improvement.
Concerning quantum key repeaters as well as setups of

MDI-QKD, upper bounds on the achievable key rates can
be obtained from results bounding key rates achievable in
quantum networks, e.g., the one presented in Ref. [60] and
subsequently used in Ref. [78] or the ones presented in
Refs. [50,58]. However, we note that by designing the right
kind of multiplex channel, we can make more specific
assumptions on the operations performed at the relay
stations and thus obtain tighter bounds. For example, we
could design a multiplex channel for a protocol that does
not use a quantum memory at the relay station or that
performs a particular imperfect measurement at the relay
station. The bounds given in Refs. [50,58,60], on the other
hand, would bound the key rates of a repeater or MDI-QKD
setup by finding the weakest link between the nodes, i.e.,
only taking into consideration limitations arising from
imperfect point-to-point channels linking Alice and Bob
with the central relay station, while assuming unlimited
quantum memory at the nodes as well as the possibility to
perform perfect measurements, resulting in looser
bounds. Hence, the bounds given in Refs. [50,58,60]
basically reduce to the minimum of the capacities of the

two point-to-point channels, whereas our bounds represent
the limitation arising from both imperfect channels and
imperfect node operations, which is an important factor
when benchmarking experimental implementations.
As for conference key distillation from multipartite

states, we provide tighter bounds than those presented in
Ref. [14]. As a GHZ state is a special case of a multipartite
private state, our bounds can also be applied to the
distillation of GHZ states from any pure or mixed multi-
partite entangled state, both in the asymptotic and finite
copies regimes. There are a number of results concerned
with computing and bounding rates of multipartite entan-
glement transformation, including those in Refs. [79–87].
As an example, we consider the nonasymptotic distillation
of a tripartite conference key from noisy and noiseless W
states and compare our results with Ref. [80].

III. PRELIMINARIES

In this section, we introduce notations and review basic
concepts and standard definitions to be used frequently in
later sections.

A. Notations and definitions

We consider quantum systems associated with separable
Hilbert spaces. We study both discrete and continuous
variable quantum systems; therefore, the associated
Hilbert spaces can be finite or infinite dimensional. For a
composite quantum system AB in a state ρAB, the reduced
state TrB½ρAB� of system A is denoted as ρA. We denote the

identity operator as 1. Let A⃗0 ≔ fA0
aga∈A, A⃗ ≔ fAaga∈A,

B⃗ ¼ fBbgb∈B, C⃗ ¼ fCcgc∈C, K⃗ ¼ fKigMi¼1 denote sets
(compositions) of quantum systems, whereA, B, C are finite
sets of symbols such that jAj þ jBj þ jCj ¼ M for some
natural number M ≥ 2. We consider M trusted allies

fXigMi¼1 ≔ fAaga∈A ∪ fBbgb∈B ∪ fCcgc∈C. Also, LA
⟶

denotes the set fLaAaga∈A, where La is a reference system

of Aa held byAa, and the same follows for RB
⟶

, PC
⟶

, and SK
⟶

.
A quantum state ρA⃗ denotes a joint state of a system formed

by composition of allAa.We use ∶A⃗∶ to denote partitionwith
respect to each system in the set A⃗ as they are held by separate

entities, and the same follows for ∶LA
⟶

∶RB
⟶

∶. Each separate
element in a set is held by a separate party, in general. For
example, let us consider A⃗ ¼ fA1; A2; A3g for jAj ¼ 3; then,
A⃗ also depicts the composite system A1A2A3, and ∶A⃗∶
denotes the partition A1∶A2∶A3 between each subsystem
Aa of A⃗. In a conference key agreement protocol, each pair
Ki, Si of key and shield systems belongs to the respective
trusted party Xi fully secure from Eve, while all
A0
a; Aa; Bb; Cc; Ki; Si are physically inaccessible to Eve.
Let ΦGHZ

K⃗
denote an M-partite GHZ state and Φþ

L⃗jA⃗ an

Einstein–Podolsky–Rosen (EPR) state [88], also called a
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maximally entangled state, where maximal entanglement is
between L⃗ and A⃗. It should be noted thatΦþ

L⃗jA⃗ ¼ ⊗
a∈A

Φþ
LajAa

,

where

Φþ
LajAa

¼ 1

d

Xd−1
i;j¼0

ji; iihj; jjLaAa
ð11Þ

for an orthonormal basis fjiigi, where d ¼
minfjLaj; jAajg. (Without loss of generality, one may
assume an EPR state of an even-dimensional qudit system
to be a tensor product of EPR states of qubit systems.)
A quantum channel MB→C is a completely positive,

trace-preserving map that acts on trace-class operators
defined on the Hilbert space HB and uniquely maps them
to trace-class operators defined on the Hilbert space HC.
For a channel MA→B with A and B as input and output
systems, its Choi state JMLB is equal to MðΦþ

LAÞ.
A measurement channel MA0→AX is a quantum instru-

ment whose action is expressed as

MA0→AXð·Þ ¼
X
x

Ex
A0→Að·Þ ⊗ jxihxjX; ð12Þ

where each Ex is a completely positive, trace-nonincreasing
map such thatM is a quantum channel and X is a classical
register that stores measurement outcomes. A classical
register (system) X can be represented with a set of
orthogonal quantum states fjxihxjXgx∈X defined on the
Hilbert space HX.
An LOCC channel L

A⃗0→B⃗
can be written asP

x∈X ð⊗y∈Y Ey;x
A0
y→By

Þ, where A⃗0 ¼ fA0
ygy and B⃗ ¼ fBygy

are sets of inputs and outputs, respectively, and fEy;xgx is a
set of completely positive, trace-nonincreasing maps for
each y such that L is a quantum channel (cf. Ref. [89]). A
LOCC channel does not increase the value of entanglement
monotones and is deemed as a free operation in the
resource theory of entanglement [14,62,89].
A quantity is called a generalized divergence [90,91] if it

satisfies the following monotonicity (data-processing)
inequality for all density operators ρ and σ and quantum
channels N :

DðρkσÞ ≥ D(N ðρÞkN ðσÞ): ð13Þ

Examples include the quantum relative entropy [92]

DðρkσÞ ≔ Tr½ρ log2ðρ − σÞ�; ð14Þ

for suppðρÞ ⊆ suppðσÞ—otherwise it is ∞—as well as the
sandwiched Rényi relative entropy [63,64], which is
denoted as D̃αðρkσÞ and defined for states ρ, σ, and ∀ α ∈
ð0; 1Þ ∪ ð1;∞Þ as

D̃αðρkσÞ ≔
1

α − 1
log2Tr½ðσð1−αÞ=2αρσð1−αÞ=2αÞα�; ð15Þ

but it is set to þ∞ for α ∈ ð1;∞Þ if suppðρÞ ⊈ suppðσÞ. In
the limit α → 1, the sandwiched Rényi relative entropy
converges to the quantum relative entropy; in the limit
α → ∞, it converges to the max-relative entropy [64],
which is defined as [46,93]

DmaxðρkσÞ ≔ inffλ ∈ R∶ρ ≤ 2λσg; ð16Þ

and if suppðρÞ ⊈ suppðσÞ, then DmaxðρkσÞ ¼ ∞. Another
generalized divergence is the ε-hypothesis-testing diver-
gence [65,94], defined as

Dε
hðρkσÞ ≔ − log2 inf

Λ∶0≤Λ≤1
fTr½Λσ�∶Tr½Λρ� ≥ 1 − εg;

ð17Þ

for ε ∈ ½0; 1� and density operators ρ, σ. For a more detailed
description and other examples of the generalized diver-
gences like the trace distance kρ − σk1 and negative of
fidelity −Fðρ; σÞ and their properties, see the Appendix A.

B. Multiplex quantum channels

We now formally define a general form of network
channel that encompasses all other known multiplex
quantum channels possible in communication or informa-
tion processing settings [see Fig. 1(a) and Appendix B]. To
the best of our knowledge, there is not such a general form
of network channel in the literature of quantum commu-
nication and computation.
Definition 1: Consider the multipartite quantum chan-

nel N
A⃗0 B⃗→A⃗ C⃗

, where each pair A0
a; Aa is held by a

respective party Aa and each Bb, Cc are held by parties
Bb, Cc, respectively. While Aa is both the sender and
receiver to the channel,Bb is only a sender, andCc is only a
receiver to the channel. Such a quantum channel is referred
to as the multiplex quantum channel. Any two different
systems need not be of the same size, in general. The sets
A, B, or C can be empty in such a way that there is at least
one input to the channel and one output from the channel.
Definition 1 includes all scenarios depicted in Fig. 1 (see

Appendix B). For example, for a point-to-point channel
from Bob to Charlie the setA ¼ ∅ and the sets B and C are
singleton sets.
Also, any physical box with quantum or classical inputs

and quantum or classical outputs is a type of multiplex
quantum channel. We may not have an exact description of
what is going on inside the box except that the undergoing
process is physical, i.e., described by quantum mechanics.
Physical computational devices like a physical black box
(oracle) and quantum circuit [95] are also examples of
multiplex quantum channels.
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C. Conference key and private states

There are two usual approaches to studying secret key
distillation. A direct approach is to consider purifications of
states where the purifying system is accessible to Eve and
all allied parties are allowed to perform local operations and
public communication (LOPC). In this approach, we have
Eve and M allied parties. Another approach is to consider
the private states defined below, where all allied parties
perform LOCC. We need not consider Eve explicitly in the
paradigm of private states, and it is assumed that purifi-
cations of states are accessible to Eve. Both approaches are
known to be equivalent [40]. We discuss the equivalence of
these two approaches in more detail in Sec. V.
We now review the properties of conference key states

discussed in Ref. [14]. Conference key states are a
multipartite generalization of the secret key shared between
two parties.
Definition 2: A conference key state γc

K⃗E
, with jKij ¼ K

for all i ∈ ½M� ≔ 1;…;M, is defined as

DK1
⊗ DK2

⊗ � � � ⊗ DKM
ðγc

K⃗E
Þ

≔
1

K

X
k∈K

jkihkjK1
⊗ jkihkjK2

⊗ � � � ⊗ jkihkjKM
⊗ σE;

ð18Þ

where σE is a state of the system E, which is accessible to
an eavesdropper Eve, Dð·Þ ¼ P

k∈K jkihkjð·Þjkihkj is a
projective measurement channel, and fjkiKi

gk∈K forms
an orthonormal basis for each i ∈ ½M�.
A conference key state γc

K⃗E
has log2K secret bits (key)

that are readily accessible.
A state ρK⃗E is called an ε-approximate conference key

state, for ε ∈ ½0; 1�, if there exists a conference key state γc
K⃗E

such that [14]

Fðγc
K⃗E

; ρK⃗EÞ ≥ 1 − ε: ð19Þ

Definition 3: A state γ
SM
⟶ , with jKij ¼ K for all i ∈ ½M�,

is called a (M-partite) private state if and only if

γ
SK
⟶ ≔ Utw

SK
⟶ðΦGHZ

K⃗
⊗ ωS⃗ÞðUtw

SK
⟶Þ†; ð20Þ

where Utw

SK
⟶ ≔

P
k⃗∈K×M jk⃗ihk⃗jK⃗ ⊗ Uk⃗

S⃗
is called a twisting

unitary operator for some unitary operator Uk⃗
S⃗
and ω is

some density operator [14].
It should be noted that γ

SK
⟶ has at least log2K secret (key)

bits (see Ref. [62] for a discussion of when the private state
has exactly log2K bits). Similar to a conference key state, a
state ρ

SK
⟶ is called an ε-approximate private state for ε ∈

½0; 1� if there exists a private state γ
SK
⟶ such that [14]

Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε: ð21Þ

Any state extension (including purification) γ
SK
⟶

E
of such

a private state (20) necessarily has the following form [14]:

γ
SK
⟶

E
≔ Utw

SK
⟶

E
ðΦK⃗ ⊗ ωS⃗EÞðUtw

SK
⟶

E
Þ†; ð22Þ

where ωS⃗E is a state extension of the density operator ωS⃗.
It follows from Theorem IV.1 of Ref. [14] that

Fðγc
K⃗E

; ρK⃗EÞ ≥ 1 − ε implies Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε, and

the converse is also true; i.e., Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε implies

Fðγc
K⃗E

; ρK⃗EÞ ≥ 1 − ε.
It is known that all perfect private states have nonlocal

correlations [96].

IV. ENTANGLEMENT AND PRIVACY TEST

This section introduces frameworks for the resource
theories of multipartite entanglement for the multipartite
quantum channels (see Refs. [51,53,97,98] for the dis-
cussion on bipartite channels).

A. Multipartite entanglement

Here, we provide a short overview of the relevant
definitions. For a detailed review of the topic, see
Ref. [99]. A pure n-partite state that can be written as a
tensor product jψ1i ⊗ jψ2i ⊗ … ⊗ jψmi is called m-sepa-
rable. Ifm < n, there are partitions of the set of all the parties
into two, with respect to which the state is entangled. If
n ¼ m, the pure state is said to be fully separable. If there is
no bipartition with respect to which the pure state is a
product state, it is called genuinely n-partite entangled.
An arbitrary n-partite state is m-separable if it can be

written as the following convex composition:

ρm−sep ¼
X
x∈X

pXðxÞjψx
1ihψx

1j⊗ jψx
2ihψx

2j⊗…⊗ jψx
mihψx

mj;

ð23Þ
where pXðxÞ is a probability distribution. The m-separable
states form a convex set. Note, however, that the sub-
systems with respect to which the elements of the decom-
position have to be products can differ.
A mixed n-partite state is considered GME if any

decomposition into pure states contains at least one
genuinely n-partite entangled pure state; i.e., the state is
not biseparable. Let a free set Fð∶A⃗∶Þ denote the set of all
fully separable and biseparable states of system A⃗ for F ¼
FS and F ¼ BS, respectively. Both the sets FS and BS are
convex. We note that while FS is preserved under an LOCC
operation and tensor product, BS is preserved under LOCC

but not under the tensor product, i.e., ρðxÞ
AðxÞ
⟶ ∈ BSð∶AðxÞ

⟶

∶Þ
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for x ∈ ½2� but ρð1Þ ⊗ ρð2Þ need not belong to

BSð∶Að1ÞAð2Þ����!
∶Þ. We refer to biseparable quantum states

whose biseparability is preserved under tensor products,

i.e., ρðxÞ
AðxÞ
⟶ ∈ BSð∶AðxÞ

⟶

∶Þ and ρð1Þ ⊗ … ⊗ ρðnÞ ∈

BSð∶Að1Þ…AðnÞ������!
∶Þ for all n ∈ N, as tensor-stable bisepar-

able states.

B. Entanglement measures

It is pertinent to quantify the resourcefulness of states and
channels. The bounds on the capacities that we obtain are in
terms of these quantifiers. It is desirable for entanglement
quantifiers to benon-negative, to attain theirminimumfor the
free states (and separable channels, respectively), and to be
monotone under the action of LOCC.
Definition 4: The generalized divergence of entangle-

ment EE or GME EGE of an arbitrary state ρA⃗ is defined
as [100]

Erð∶A⃗∶Þρ ≔ inf
σ∈Fð∶A⃗∶Þ

DðρA⃗kσA⃗Þ; ð24Þ

when F ¼ FS or F ¼ BS for r ¼ E or r ¼ GE, respec-
tively, where DðρkσÞ denotes the generalized divergence.
The following definition of the entanglement measure of

a multiplex channel generalizes the notion of entangling
power of bipartite quantum channels [101] (see also
Refs. [51,53,102]).
Definition 5: The entangling power of a multiplex

channel N
A⃗0 B⃗→A⃗ C⃗

with respect to entanglement measure
Er [Eq. (24)] is defined as the maximum possible gain in
the entanglementEr when a quantum state is acted upon by
the given channel N ,

Ep
r ðN Þ

≔ sup
ρ
½Erð∶LA

⟶
∶R⃗∶PC

⟶
∶ÞN ðρÞ−Erð∶LA0⟶

∶RB
⟶

∶P⃗∶Þρ�; ð25Þ

where optimization is over all possible input states
ρ
LA0⟶

RB
⟶

P⃗
.

Another way to quantify the entanglement measure of a
multiplex channel is the following (see Ref. [53] for the
bidirectional channel).
Definition 6: The generalized divergence of entangle-

ment EEðN Þ or GME EGEðN Þ of a multiplex channel
N

A⃗0 B⃗→A⃗ C⃗
is

ErðN Þ ≔ sup
ρ∈FSð∶LA0⟶

∶RB
⟶

∶Þ
Erð∶LA

⟶
∶R⃗∶C⃗∶ÞN ðρÞ; ð26Þ

for r ¼ E or r ¼ GE, respectively, where Erð∶A⃗∶Þρ is
defined in Eq. (24) and GME stands for genuinely
multipartite entanglement.

Forr ¼ E,theentanglementmeasure inEq.(24) iscalledε-
hypothesis-testing relative entropy of entanglement Eε

h;E,
max-relative entropy of entanglement Emax;E, sandwiched
Rènyi relative entropy of entanglement Ẽα;E, or relative
entropyofentanglementEEwhenthegeneralizeddivergence
is the ε-hypothesis-testing relative entropy, max-relative
entropy, sandwiched Rényi relative entropy, or relative
entropy, respectively.Forr ¼ GE, theentanglementmeasure
in Eq. (24) is called ε-hypothesis-testing relative entropy of
GME Eε

h;GE, max-relative entropy of GME Emax;GE, sand-
wiched Rènyi relative entropy of GME Ẽα;GE, or relative
entropy of GMEwhen the generalized divergenceEGE is the
ε-hypothesis-testing relative entropy, max-relative entropy,
sandwiched Rényi relative entropy, or relative entropy,
respectively. We follow the same procedure for the nomen-
clature of entanglement measures of channels.
We note that the sets FS;BS are convex. Using the data-

processed triangle inequality [50] and the argument from
the proof of Proposition 2 in Ref. [51], we arrive at the
following lemma.
Lemma 1: The entangling power of a multiplex channel

N
A⃗0 B⃗→A⃗ C⃗

with respect to the max-relative entropy of
entanglement Emax;E is equal to the max-relative entropy
of entanglement of the channel N ,

Ep
max;EðN Þ ¼ Emax;EðN Þ: ð27Þ

Using a recent result on relative entropies [103], we can
also obtain a result for the relative entropy of entanglement.
Let us first define the regularized relative entropy of
entanglement of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
as

E∞
R ðN Þ ≔ inf

Λ∈LOCC
D∞ðN

A⃗0 B⃗→A⃗ C⃗
jjΛ

A⃗0 B⃗→A⃗ C⃗
Þ; ð28Þ

where D∞ðN jjMÞ ≔ limn→∞ð1=nÞDðN⊗njjM⊗nÞ and

DðN jjMÞ≔ max
ϕ
LA0
⟶

RB
⟶

P⃗

DðN
A⃗0 B⃗→A⃗C⃗

ðϕÞjjM
A⃗0 B⃗→A⃗C⃗

ðϕÞÞ; ð29Þ

where L ≃ A0, R ≃ B and P ≃ C. We now show the
following relation between the regularized relative entropy
of entanglement and the relative entropy of entanglement.
Lemma 2: For finite-dimensional Hilbert spaces, the

entangling power of a multiplex channel N
A⃗0 B⃗→A⃗ C⃗

with
respect to the relative entropy of entanglement EE is less
than or equal to the regularized relative entropy of
entanglement of the channel N ,

Ep
EðN Þ ≤ E∞

E ðN Þ: ð30Þ

Proof.—Let ρ
LA0⟶

RB
⟶

P⃗
be a state and let σ0 ∈

FSð∶LA0⟶
∶RB
⟶

∶P⃗∶Þ. Let Λ
A⃗0 B⃗→A⃗ C⃗

be an LOCC channel.
Then, the following inequality holds:

UNIVERSAL LIMITATIONS ON QUANTUM KEY DISTRIBUTION … PHYS. REV. X 11, 041016 (2021)

041016-9



EEð∶LA
⟶

∶R⃗∶PC
⟶

∶ÞN ðρÞ

≤ D

�
N

A⃗0 B⃗→A⃗ C⃗
ðρ

LA0⟶
RB
⟶

P⃗
ÞkΛ

A⃗0 B⃗→A⃗ C⃗
ðσ0

LA0⟶
RB
⟶

P⃗
Þ
�
: ð31Þ

Applying the chain rule from Ref. [103], we find that

D
�
N

A⃗0 B⃗→A⃗ C⃗
ðρ

LA0⟶
RB
⟶

P⃗
ÞkΛ

A⃗0 B⃗→A⃗ C⃗
ðσ0

LA0⟶
RB
⟶

P⃗
Þ
�

≤ D
�
ρ
LA0⟶

RB
⟶

P⃗
kσ0

LA0⟶
RB
⟶

P⃗

�
þD∞ðN

A⃗0 B⃗→A⃗ C⃗
kΛ

A⃗0 B⃗→A⃗ C⃗
Þ:

Since the above holds for arbitrary, fully separable states
σ0
LA0⟶

RB
⟶

P⃗
and arbitrary LOCC channels Λ

A⃗0 B⃗→A⃗ C⃗
, we arrive

at

EEð∶LA
⟶

∶R⃗∶PC
⟶

∶ÞN ðρÞ ≤ EEð∶LA0⟶
∶RB
⟶

∶P⃗∶Þρ þ E∞
E ðN Þ;

ð32Þ

finishing the proof. ▪
Remark 1: It suffices to optimize Eε

h;EðN Þ, Eε
h;GEðN Þ,

Emax;EðN Þ, EE;EðN Þ, and Emax;GEðN Þ of a multiplex

channel N over all pure input states; i.e., ρ ∈

FSð∶LA0⟶
∶RB
⟶

∶Þ is a pure state in Eq. (26) for
Eε
h;EðN Þ; Eε

h;GEðN Þ; Emax;EðN Þ; EE;EðN Þ; Emax;GEðN Þ.
This reduction follows from the quasiconvexity of the max-
relative entropy [93] and ε-hypothesis-testing relative
entropy [104], as well as the convexity of the relative
entropy of entanglement [44]. Namely, the maximum of a
(quasi)convex function over a convex set will be attained on
a boundary point. The boundary points of the set of fully
separable density matrices are given by the fully separable
pure states.

C. Multipartite privacy test

A γ-privacy test corresponding to γ
SK
⟶ is defined as the

dichotomic measurement [49] fΠγ

SK
⟶ ; 1 − Πγ

SK
⟶g, where

Πγ

SK
⟶ ≔ Utw

SK
⟶ðΦK⃗ ⊗ 1S⃗ÞðUtw

SK
⟶Þ†.

Using the properties of fidelity and form of the test
measurement, we arrive at the following proposition.
Proposition 1: If a state ρ

SK
⟶ is ε approximate to

γ
SK
⟶ , i.e., Fðρ

SK
⟶ ; γ

SK
⟶Þ ≥ 1 − ε, then ρ

KS
⟶ passes the

γ-privacy test with success probability 1 − ε, i.e.,

Tr½Πγ

SK
⟶ρ

SK
⟶ � ≥ 1 − ε: ð33Þ

Proof.—

Tr½Πγ

SK
⟶ρ

SK
⟶ �

¼ hΦGHZjK⃗TrS⃗½ðUtw

SK
⟶Þ†ρ

SK
⟶Utw

SK
⟶ �jΦGHZiK⃗ ð34Þ

¼ FðΦGHZ
K⃗

;TrS⃗½ðUtw

SK
⟶Þ†ρ

SK
⟶Utw

K1…KMS1…SM
�Þ ð35Þ

≥ FðΦGHZ
K⃗

⊗ ωS⃗; ðUtw

SK
⟶Þ†ρ

SK
⟶Utw

SK
⟶Þ ð36Þ

¼ FðUtw

SK
⟶ΦGHZ

K⃗
⊗ ωS⃗ðUtw

SK
⟶Þ†; ρ

SK
⟶Þ ð37Þ

¼ Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε: ð38Þ

▪
We employ proof arguments similar to the bipartite case

of Eq. (281) in Ref. [62] to arrive at the following theorem,
which implies that all private states are necessarily GME
states. This is a strict generalization of Eq. (281) in
Ref. [62], as a direct generalization would be the same
statement for fully separable states instead of biseparable
states (cf. Ref. [14]). See Appendix C for the proof.
Theorem 1: A biseparable state σ

SK
⟶ ∈ BSð∶SK⟶∶Þ

can never pass any γ-privacy test with probability greater

than 1=K, i.e.,

Tr½Πγ

SK
⟶σ

SK
⟶ � ≤ 1

K
. ð39Þ

V. CONFERENCE KEY AGREEMENT PROTOCOL

In this section, we give a formal description of a secret-
key-agreement protocol for multiple trusted parties, i.e., a
conference key agreement protocol.
We consider an LOCC-assisted secret-key-agreement

protocol among M trusted allies fXigMi¼1 over a multiplex
quantum channel N

A⃗0 B⃗→A⃗ C⃗
, where each pair A0

a; Aa is held
by trusted party Aa and each Bb, Cc is held by trusted
parties Bb, Cc, respectively. The environment part E of an
isometric extension UN

A⃗0 B⃗→A⃗ C⃗ E
of the channel N is

accessible to Eve, along with all classical information
communicated among Xi while performing LOCC. All
other quantum systems that are locally available to Xi are
said to be secure from Eve; i.e., even if local operations
during LOCC are noisy, purifying quantum systems are still
within labs of trusted allies, which are off limits for Eve.
This assumption is justifiable because Xi’s can always
abandon performing local operations that would leak
information to Eve. In an LOCC-assisted protocol, the
uses of the multiplex channelN are interleaved with LOCC
channels.
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In the first round, allXi perform LOCC L1 to generate a

state ρ1 ∈ FSð∶Lð1ÞAð1Þ0�����!
∶Rð1ÞBð1Þ����!

∶Pð1Þ��!Þ. All Aa and Bb
input respective systems to multiplex channel
N 1

Að1Þ0
⟶

Bð1Þ
⟶

→Cð1Þ
⟶ and let τ1 ≔ N 1ðρÞ be the output state after

the first use N 1 of the multiplex channel. In the second
round, an LOCC L2 is performed on τ1, and then, the
second use N 2 of the multiplex channel is employed on
ρ2 ≔ L2ðτ1Þ. In the third round, an LOCC L3 is performed
on τ2 ≔ N 2ðρ2Þ, and then, the third use N 3 of the
multiplex channel is employed on ρ3 ≔ L3ðτ2Þ.
Successively, we continue this procedure for n rounds,
where an L acts on the output state of the previous round,
after which the multiplex channel is performed on the
resultant state. Finally, after the nth round, an LOCC Lnþ1

is performed as a decoding channel, which generates the
final state ω

SK
⟶ .

It can be concluded from the equivalence between
private states and CK states that any protocol of the above
form can be purified, i.e., by considering isometric exten-
sions of all channels (LOCC and N ) (the proof arguments
are the same as for the purified protocol for LOCC-assisted
secret key agreement [51]). At the end of the purified
protocol, Eve possesses all the environment systems En

from isometric extension UN of each use of the multiplex
channelN along with coherent copies Ynþ1 of the classical
data exchanged among trusted parties Xi during perfor-
mances of nþ 1 LOCC channels, whereas each trusted
partyXi possesses the key system Ki and the shield system
Si, which consist of all local reference systems, after the
action of the decoder. The state at the end of the protocol is
a pure state ω

SK
⟶

Ynþ1En
with Fðγ

SK
⟶ ;ω

SK
⟶Þ ≥ 1 − ε. Such a

protocol is called an ðn;K; εÞ LOCC-assisted secret-key-
agreement protocol. The rate P of a given ðn;K; εÞ protocol
is equal to the number of conference (secret) bits generated
per channel use:

P ≔
1

n
log2K: ð40Þ

A rate P is achievable if for ε ∈ ð0; 1Þ; δ > 0, and
sufficiently large n, there exists an ðn; 2nðP−δÞ; εÞ LOCC-
assisted secret-key-agreement protocol. The LOCC-
assisted secret-key-agreement capacity P̂LOCCðN Þ of a
multiplex quantum channel N is defined as the supremum
of all achievable rates.
A rate P is called a strong converse rate for LOCC-

assisted secret key agreement if for all ε ∈ ½0; 1Þ; δ > 0, and
sufficiently large n, there does not exist an ðn; 2nðPþδÞ; εÞ
LOCC-assisted secret-key-agreement protocol. The strong
converse LOCC-assisted secret-key-agreement capacity

P̃LOCCðN Þ is defined as the infimum of all strong converse
rates.
The following inequality is a direct consequence of the

definitions:

P̂LOCCðN Þ ≤ P̃LOCCðN Þ: ð41Þ

We can also consider the whole development discussed
above for conference key agreement assisted only by cppp
communication; i.e., all parties are allowed only two LOCC
channels, one for encoding and the other for decoding. A
ðn;K; εÞ cppp-assisted secret-key-agreement protocol
over N is the same as a ð1; K; εÞ LOCC-assisted secret-
key-agreement protocol over channel N⊗n, and for n ¼ 1,
both protocols are the same. The cppp-assisted secret-key-
agreement capacity P̂cppp of the channel N is always less
than or equal to P̂LOCC,

P̂cpppðN Þ ≤ P̂LOCCðN Þ: ð42Þ

Let P̂N
cpppðn; εÞ be the maximum rate such that ðn; 2nP; εÞ

cppp-assisted secret key agreement is achievable for any
given N .
Remark 2: It should be noted that the maximum rate at

which secret keys can be distilled using the LOCC- or
cppp-assisted protocol over a multiplex channelN is never
less than the maximum rate at which the GHZ state can be
distilled using the LOCC- or cppp-assisted protocol over a
given channel N , respectively. This statement holds
because the GHZ state is a special private state from which
secret bits are readily accessible to trusted allies.
Remark 3: Different physical constraints can be

invoked in communication protocols to define constrained
protocols and associated capacities. For instance, we can
invoke energy constraints on input states and detectors to
get energy-constrained protocols and respective capacities
(cf. Refs. [105,106]).

A. Privacy from a single use of a multiplex channel

Let P̂N
cpppðn; εÞ denote the maximum rate P such that the

ðn;K; εÞ conference key agreement protocol is achievable
for any N using cppp. The following bound holds for the
one-shot secret-key-agreement rate of a multiplex quantum
channel N (see Appendix D 1 for the proof).
Theorem 2: For any fixed ε ∈ ð0; 1Þ, the achievable

region of cppp-assisted secret key agreement over a single
use of the multiplex channel N

A⃗0 B⃗→A⃗ C⃗
satisfies

P̂N
cpppð1; εÞ ≤ Eε

h;GEðN Þ; ð43Þ

where
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Eε
h;GEðN Þ ≔ sup

ψ∈FSð∶LA0⟶
∶RB
⟶

∶Þ
inf

σ∈BSð∶LA⟶∶R⃗∶C⃗∶Þ
Dε

hðN ðψÞkσÞ

ð44Þ

is the ε-hypothesis-testing relative entropy of genuine
entanglement of the multiplex channel N . It suffices to

optimize over pure input states ψ ∈ FSð∶LA0⟶
∶RB
⟶

∶Þ.
We can conclude from the above theorem that

P̂N
cpppðn; εÞ ≤

1

n
Eε
h;GEðN⊗nÞ; ð45Þ

which leads to the following corollaries.
Corollary 1: A weak converse bound on the cppp-

assisted secret-key-agreement capacity of a multiplex
channel N is given by

P̂cpppðN Þ ¼ inf
ε∈ð0;1Þ

liminf
n→∞

P̂N
cpppðn; εÞ ð46Þ

≤ E∞
GEðN Þ: ð47Þ

Corollary 2: Consider a class of multiplex channels
N

A⃗0 B⃗→A⃗ C⃗
such that for all pure input states

ψ ∈ FSðLA0⟶
∶RB
⟶

∶P⃗Þ, the output states N ðψÞ are tensor-
stable biseparable states with respect to the partition

LA
⟶

∶RB
⟶

∶PC
⟶

. The cppp-assisted secret-key-agreement
capacities for such a class of multiplex channels are zero.

B. Strong converse bounds on LOCC-assisted private
capacity of multiplex channel

We now derive converse and strong converse bounds on
an LOCC-assisted secret-key-agreement protocol over a
multiplex channel N .
For an LOCC-assisted secret-key-agreement protocol,

by employing Theorem 1 and generalizing the proof
arguments of Theorem 2 in Ref. [51] (see also
Ref. [50]) to the multiplex scenario, we get the following
converse bound (proof in Appendix D 2).
Theorem 3: For a fixed n;K ∈ N; ε ∈ ð0; 1Þ, the fol-

lowing bound holds for an ðn;K; εÞ protocol for LOCC-
assisted secret key agreement over a multiplex N

A⃗0 B⃗→A⃗ C⃗
:

1

n
log2K ≤ Emax;EðN Þ þ 1

n
log2

�
1

1 − ε

�
; ð48Þ

where the max-relative entropy of entanglement Emax;EðN Þ
of the multiplex channel N is

Emax;EðN Þ
≔ sup

ψ∈FSð∶LA0⟶
∶RB
⟶

∶Þ
inf

σ∈FSð∶LA⟶∶R⃗∶C⃗∶Þ
DmaxðN ðψÞkσÞ

and it suffices to optimize over pure states ψ .
Remark 4: The bound in Eq. (48) can also be rewritten

as

1 − ε ≤ 2−n(P−Emax;EðN Þ); ð49Þ

where we have P ¼ ð1=nÞlog2K. Thus, if the secret-key-
agreement rate P is strictly greater than the max-relative
entropy of entanglement Emax;EðN Þ of the (multiplex)
channel N , then the fidelity of the distillation (1 − ε)
decays exponentially fast to zero in the number of chan-
nel uses.
An immediate corollary of the above remark is the

following strong converse statement.
Corollary 3: The strong converse LOCC-assisted

secret-key-agreement capacity of a multiplex channel N
is bounded from above by its max-relative entropy of
entanglement:

P̃LOCCðN Þ ≤ Emax;EðN Þ: ð50Þ

We also have another upper bound on the private
capacity of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
with finite-

dimensional input and output systems in terms of the
regularized relative entropy instead of the max-relative
entropy (proof in Appendix D 3).
Theorem 4: For finite Hilbert space dimensions, the

asymptotic LOCC-assisted secret-key-agreement capacity
of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
is bounded by its

regularized relative entropy of entanglement:

P̃LOCCðN Þ ≤ E∞
E ðN Þ: ð51Þ

C. Teleportation-simulable and tele-covariant
multiplex channels

For a class of multipartite quantum channels obeying
certain symmetries, such as teleportation-simulability [66],
the LOCC assistance does not enhance secret-key-agree-
ment capacity, and the original protocol can be reduced to a
cppp-assisted secret-key-agreement protocol. This obser-
vation for secret communication between two parties over
the point-to-point teleportation-simulable channel was first
made in Ref. [48].
Definition 7: Amultipartite quantum channelN

A⃗0 B⃗→A⃗ C⃗
is teleportation simulable with the associated resource state
θ
LA
⟶

R⃗ C⃗
, where Rb ≃ Bb for all b ∈ B and La ≃ A0

a for all

a ∈ A, if for all input states ρ
A⃗0 B⃗ the following identity

holds:
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N
A⃗0 B⃗→A⃗C⃗

ðρ
A⃗0 B⃗Þ¼ T

A0LA��!
BR
!

C⃗→A⃗C⃗
ðρ

A⃗0 B⃗ ⊗ θ
LA
⟶

R⃗C⃗
Þ ð52Þ

for some LOCC channel T with input partition

∶A0LA
���!

∶BR�!∶C⃗∶ and output partition ∶A⃗∶C⃗∶.
Covariant channels.—For each a ∈ A and b ∈ B, let Ga

and Gb be finite groups of respective sizes Ga and Gb with
respective unitary representations ga → UA0

a
ðgaÞ and gb →

UBb
ðgbÞ for all group elements ga and gb. LetW

g⃗
Aa

andWg⃗
Cc

be unitary representations for all a ∈ A and c ∈ C, where
g⃗ ¼ fga; gbga;b. A multiplex quantum channel N

A⃗0 B⃗→A⃗ C⃗
is

covariant with respect to these representations if the
following relation holds for all input states ρ

A⃗0 B⃗ and group
elements ga ∈ Ga and gb ∈ Gb for all a ∈ A and b ∈ B:

N
A⃗0 B⃗→A⃗ C⃗

(ð⊗
a∈A

Uga
A0
a
⊗⊗

b∈B
Ugb
Bb
Þðρ

A⃗0 B⃗Þ)

¼ ð⊗
a∈A

W g⃗
Aa

⊗⊗
c∈C

W g⃗
Cc
Þ(N

A⃗0 B⃗→A⃗ C⃗
ðρ

A⃗0 B⃗Þ); ð53Þ

where we have used the notation Uð·Þ ≔ Uð·ÞU† for
unitaries U.
Definition 24: A quantum channel N

A⃗0 B⃗→A⃗ C⃗
is called

tele-covariant if it is covariant with respect to groups
fGaga∈A and fGbgb∈B that have representations as unitary
one-designs; i.e., for alla ∈ A andb ∈ B aswell as statesρA0

a

and ρBb
, it holds that ð1=GaÞ

P
ga∈Ga

Uga
A0
a
ðρA0

a
Þ ¼ 1=jAaj and

ð1=GbÞ
P

gb∈Gb
Ugb
Bb
ðρBb

Þ ¼ 1=jBbj, respectively.
The following observation follows from the definition of

tele-covariant channels.
Remark 5: Tele-covariance of a channel is with respect

to the groups and their unitary representations on the input
and output Hilbert spaces of the channel. If associated
unitary representations for the tele-covariant channels N 1

and N 2 are, respectively, the same on the output Hilbert
spaces of N 1 that are also the input Hilbert spaces for N 2,
then the composition channel N ¼ N 2∘N 1 is also tele-
covariant.
A quantum channel obtained by the tensor product

(superoperation “⊗,”which physically means parallel uses)
of tele-covariant channels is also a tele-covariant channel.
The following theorem generalizes the developments in

Refs. [51,107–109] (see Appendix D 4 for the proof):
Theorem 5: If a multipartite channel N

A⃗0 B⃗→A⃗ C⃗
is tele-

covariant, then it is teleportation-simulable with resource
state (52) as its Choi state, i.e., θ

LA
⟶

R⃗ C⃗
¼ N ðΦþ

L⃗ R⃗ jA⃗0 B⃗
Þ.

Following the approach in Refs. [48,62], we obtain the
following theorem:
Theorem 6: The LOCC-assisted secret-key-agreement

capacity of a multiplex quantum channel N
A⃗0 B⃗→A⃗ C⃗

, which
is teleportation-simulable with resource state θ

LA
⟶

R⃗ C⃗
, is

upper bounded as

P̂LOCCðN Þ ≤ E∞
GEð∶LA

⟶
∶R⃗∶C⃗∶Þθ; ð54Þ

where E∞ð∶A⃗∶Þρ is the regularized relative entropy of
entanglement of state ρA⃗.
For the proof, see Appendix D 4. Using the above

theorem, we immediately get the following.
Corollary 4: For a multiplex quantum channel

N
A⃗0 B⃗→A⃗ C⃗

, which is teleportation-simulable with a
tensor-stable biseparable resource state, it holds that
P̂LOCCðN Þ ¼ 0.
Let us note that unlike in Refs. [48,62], which deals with

the bipartite relative entropy of entanglement, we do not
trivially get a nonregularized bound, which is due to the
fact that the definition of biseparability is not tensor stable.
If we consider the relative entropy of entanglement with
respect to fully separable states, however, we can employ
the proof argument of Theorem 4 in Ref. [51] and arrive at
the following theorem:
Theorem 7: For a fixed n;K ∈ N; ε ∈ ð0; 1Þ, the

following bound holds for an ðn;M; εÞ protocol for
LOCC-assisted secret key agreement over a multiplex
teleportation-simulable quantum channel N

A⃗0 B⃗→A⃗ C⃗
with

the associated resource state θ
LA
⟶

R⃗ C⃗
, ∀ α > 1,

1

n
log2K ≤ Ẽα;Eð∶LA

⟶
∶R⃗∶C⃗∶Þθ þ

α

nðα − 1Þ log2
�

1

1 − ε

�
:

ð55Þ

For the proof, see Appendix D 4. Setting α ¼
1þ ð1= ffiffiffi

n
p Þ and letting n → ∞, we obtain the following:

Corollary 5: The LOCC-assisted secret-key-agreement
capacity of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
, which is

teleportation-simulable with the resource state θ
LA
⟶

R⃗ C⃗
, is

upper bounded as

P̂LOCCðN Þ ≤ EEð∶LA
⟶

∶R⃗∶C⃗∶Þθ; ð56Þ
where Eð∶A⃗∶Þρ is the relative entropy of entanglement of
state ρA⃗; this bound is also a strong converse bound.

VI. APPLICATION TO OTHER PROTOCOLS

In this section, we exploit the general nature of an
LOCC-assisted secret-key-agreement protocol over a
multiplex quantum channel. We derive upper bounds on
the rates for two-party and conference key distribution for a
number of seemingly different protocols that are of wide
interest. Such seemingly different quantum key distribution
and conference key agreement protocols can be shown to
be special types of LOCC-assisted secret-key-agreement
protocol over some particular multiplex quantum channels.
In particular, we identify protocols like measurement-
device-independent quantum key distribution, both in the
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bipartite [27,28] and conference setting [30,110,111], as
well as for quantum key repeaters, i.e., generalized quan-
tum repeaters with the goal of distributing private states
[50,57,77] to be special types of LOCC-assisted secret-key-
agreement protocol over some particular multiplex quan-
tum channels. We are able to derive upper bounds on the
rates achieved in these protocols by exploiting our results in
the previous section. Furthermore, as EPR or GHZ states
are special cases of bipartite or multipartite private states,
respectively, the same holds for LOCC-assisted quantum
communication protocols, where the goal is to distill EPR
or GHZ states. By providing a unified approach to such a
diverse class of private communication setup, we contribute
to a better understanding of limitations on respective
protocols. These limitations provide benchmarks on exper-
imental realizations of private communication protocols.

A. Measurement-device-independent QKD

Measurement-device-independent (MDI) QKD is a form
of QKD, where the honest parties, Alice and Bob, trust their
state preparation but do not trust the detectors [27,28]. In a
typical setup of MDI-QKD, such as the ones described in
Refs. [27,28], Alice and Bob locally prepare states that they
send to a relay station, which might be in the hands of Eve,
using channels N 1

A0→A and N 2
B0→B. At the relay station, a

joint measurement of the systems AB is performed, e.g.,
in the Bell basis, the results of which are classical values
that are then communicated to Alice and Bob. Alice and
Bob use the relay many times and perform classical
postprocessing.
Away to incorporate such protocols in our scenario is to

identify Alice and Bob as two trusted parties and include
the measurement performed by the relay, as well as
channels N 1;2, into a bipartite quantum-classical (qc)
channel

NMDI
A0B0→ZAZB

≔ BX→ZAZB
∘MAB→X∘N 1

A0→A ⊗ N 2
B0→B; ð57Þ

where MAB→x is the quantum instrument (channel) per-
forming a POVM fΛxgx and writing the output x into a
classical register X and BX→ZAZB

a classical broadcast
channel sending input x to ZA and ZB. Registers ZA and
ZB are received by Alice and Bob, respectively. The
channel NMDI

A0B0→ZAZB
is a multiplex channel that is a

composition of multiplex channels (see Fig. 2).
Application of Theorem 3 for arbitrary systems and

Theorem 4 for finite-dimensional systems (as well as the
results of Ref. [51–53]) then provides bounds on the
achievable key rate in terms of Emax;EðNMDI

A0B0→ZAZB
Þ and

E∞
E ðNMDI

A0B0→ZAZB
Þ, respectively, which can be seen as

measures of the entangling capabilities of the measurement
fΛxgx. The multiplex quantum channel NMDI

A0B0→ZAZB
is tele-

covariant if N 1;2 as well as M are tele-covariant, and the

bound reduces to the relative entropy of entanglement of
the Choi state of NMDI

A0B0→ZAZB
.

B. Measurement-device-independent
conference key agreement

The concept of MDI-QKD has also been generalized to
the multipartite setting [30,110,111]. We assume a setup of
MDI conference agreement, where a number of trusted
parties Ai, for i ∈ ½n�, locally prepare states that they send
to a central relay via channels N 1

A0
1
→A1

;…;N n
A0
n→An

. At the

relay, a joint measurement is performed on A1A2…An, the
result of which is broadcast back to the trusted parties. It is
straightforward to generalize Eq. (57) to the multipartite
case and apply Theorems 3 and 4 (or Theorem 5 for tele-
covariant channels) to obtain bounds on the conference
key rates.

C. Quantum key repeater

Let us now consider the quantum key repeater. In its
simplest setup, there are three parties: Alice, Bob, and
Charlie. Alice and Bob are trusted parties who wish to
establish a cryptographic key, whereas Charlie is assumed
to be cooperative but is not trusted. One could think of
Charlie as a telecom provider. There are two quantum
channels, N A→CA

1 from Alice to Charlie and N B→CB
2 from

Bob to Charlie. Alice and Bob are not connected by a
quantum channel and are assumed not to have any pre-
shared entanglement. Instead, Alice and Bob locally
prepare quantum states, e.g., two singlets Φþ

ARA
and

Φþ
BRB

, and both send a subsystem to Charlie, using the
respective channels. This is then followed by an entangle-
ment swapping operation [112], where Charlie performs a
joint measurement on the CACB subsystem and communi-
cates the result to Bob, who then performs a unitary on his
reference system RB, which should create entanglement
that can be used for a cryptographic key, between Alice and
Bob. The key has to be secure even in the case where
Charlie’s information falls into the hands of Eve.
If the channelsN A→CA

1 andN B→CB
2 are too noisy, it might

be necessary to use them multiple times and perform an
entanglement purification or error-correction protocol
before applying the swapping operation. Whereas early
quantum repeater protocols [21,22] make use of entangle-
ment purification protocols that require two-way classical
communication, between Alice and Charlie and between
Charlie and Bob, it is also possible to use error correction
that only requires one-way classical communication. Such
protocols are known as second- and third-generation
repeater protocols (see Ref. [23] and references therein).
By using a large enough number of repeater stations, the

key can, in principle, be distributed across arbitrarily long
distances. A way to extend a basic three-party repeater
protocol to arbitrarily long repeater chains is known as
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nested purification [22]. More advanced schemes using
error correction and one-way communication have also
been developed [23].
As in Refs. [50,57,77], we want to find upper bounds on

the rates at which the key can be distributed. Depending on
the repeater protocol, there are different ways in which we
can describe a quantum key repeater as a multipartite
channel and use our results to obtain such bounds. We now
describe how a repeater can be described by a bipartite
channel. For an alternative way to describe a repeater, we
refer to Appendix E.
In order to describe a repeater as a bipartite channel, we

consider two trusted parties, Alice and Bob, and a bipartite
quantum-to-classical (qc) channel that takes two quantum
(and possibly also classical) inputs from Alice and Bob and
returns two classical outputs to Alice and Bob, respectively.
Such an operation could include the channels from Alice to
Charlie and from Bob to Charlie, the measurement per-
formed by Bob, as well as classical communication of the
measurement result from Charlie to Alice and Bob. It could
also include an error-correction protocol that uses the
channels from Alice to Charlie and from Bob to Charlie
multiple times and makes use of one-way classical com-
munication from Alice to Charlie and from Bob to Charlie.
It is then followed by Charlie’s measurement and classical
communication to Alice and Bob. Alice and Bob are then
allowed to perform LOCC among them but not including
Charlie. In the case without error correction, we can define

N repeater
AB→XY ≔ MCACB→XY∘N A→CA

1 ⊗ N B→CB
2 ; ð58Þ

where MCACB→XY describes the measurement and sending
of classical messages X and Y to Alice and Bob, respec-
tively. If we add one-way error correction, we get a bipartite
channel of the form

N repeater
AkBkX0Y 0→XY

≔ MC̃AC̃B→XY∘EX0Ak→C̃A
1 ⊗ EY 0Bk→C̃B

2 ; ð59Þ

where EAk→C̃A
1 includes k instances of the channel N A→CA

1 ,
the transmission of the classical data X0 obtained by Alice’s
part of the one-way error-correction protocol to Charlie, as
well as Charlie’s part of the error-correction protocol
(Alice’s part of the one-way error-correction protocol is

included in the LOCC). Note that EY 0Bk→C̃B
2 is defined in the

same way.
By recursively combining the bipartite channelsN repeater,

it is possible to derive a bipartite channel N repeater chain

between Alice and Bob that includes a repeater chain with
an arbitrary amount of repeater stations.
Using the results of Refs. [51–53], or Theorem 4,

we can obtain upper bounds for key repeater protocols
that only involve one-way classical communication from
Charlie to Alice and Bob, as considered in Refs. [57,77].
The bounds are given by minfEmax;EðN repeater ðchainÞÞ;

E∞
E ðN repeater ðchainÞg. By Remark 5, if N 1;2 as well as M

are tele-covariant, so is N repeater ðchainÞ. Hence, by Theorem
5, the bound reduces to the relative entropy of entanglement
of the Choi state of N repeater ðchainÞ. Note that, whereas the
bounds in Refs. [57,77] only depend on the initial states
shared by Alice and Charlie as well as Bob and Charlie, the
formulation in terms of a bipartite channel can provide
bounds that also depend on the measurement performed by
Charlie, as well as operations performed during error
correction. The new bounds take into account imperfect
measurements and error correction, which provide an
additional limitation on the obtainable rate in practical
implementations. Our bounds can at least be shown to be
comparable with the results of Refs. [57,77] under certain
situations of practical interest. For example, our bound is
certainly better when N A→CA

1 and N B→CB
2 are identity

channels, allowing Alice and Charlie as well as Bob and
Charlie to share maximally entangled states, whereas
Charlie’s measurement is noisy.

D. Limitations on some practical prototypes

In this section, we explore fundamental limitations on
some practical prototypes for MDI-QKD protocols
between two trusted parties. We first begin by considering
photon-based prototypes for which a detailed discussion of
the quantum system and transmission noise model can be
found in Ref. [67]. In Appendix F, we consider MDI-QKD
prototypes with qubit systems and transmission noise
models depicted by dephasing or depolarizing channels.
We begin by considering a dual-rail scheme based on

single photons to encode the qubits [113]. The dual-rail
encoding of a qubit in two orthogonal optical modes can be
represented in the computational basis of the qubit
system, where only one of the two modes is occupied by
a single photon and another mode is vacuum. When these
optical modes are two polarization modes—horizontal and
vertical—of the light, then we express eigenstates in the
computational basis as jHi and jVi for horizontal and
vertical polarization. It is also possible to consider fre-
quency-offset modes instead of polarization modes for
dual-rail encodings. We assume a noise model for the
transmission of a photon through the optical fiber to be a
pure-loss bosonic channel with transmissivity η. The inputs
to the optical fiber are restricted to a single-photon sub-
space that is spanned by jHi and jVi. The action of this
pure-loss channel on a qubit encoded with our dual-rail
scheme is identical to an erasure channel [114] E with
erasure parameter 1 − η and erasure state jei, where jei is
the vacuum state, i.e., zero photon in both modes. We note
that an erasure channel is tele-covariant.
Two trusted parties Ai, i ∈ ½2�, use the above-mentioned

polarization-based dual-rail photons to transmit their qubit
systems to Charlie at the measurement-relay station,
through the optical fibers with respective transmissivities
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ηi (see Fig. 4 for MDI-QKD). We make a simplistic noise
model assumption on the measurement channelMC⃗i→X by
Charlie: It can perform perfect qubit Bell measurement for
bipartite MDI-QKD, respectively, with probability q,
whereas with probability 1 − q for the failed measurement,
we assume the relay station signals j⊥ih⊥jX to the users. In
addition, we can safely assume classical communication
X → Z⃗ among all parties to be clean (noiseless) as they do
not require any quantum resource. Finally, for simplicity,
we assume that error-correcting local operations for all
parties can be made perfectly.
To calculate the upper bound on the MDI-QKD

capacity, it suffices to consider the relative entropy of
entanglement of the Choi state of the associated multiplex
channel NMDI;E

A⃗→Z⃗
as it is tele-covariant. Notice that the

action of the erasure channel EAi→Ci
on Di ∈ fjHihHjAi

;
jHihVjAi

; jVihHjAi
; jVihVjAi

g is given as

EAi→Ci
ðDiÞ ¼ ηiDi þ ð1 − ηiÞTr½Di�jeihejCi

: ð60Þ

Then, the Choi state JE
L⃗ C⃗

of ⊗
2

i¼1
EAi→Ci

is

JE
L⃗ C⃗

¼⊗
2

i¼1

�
ηiΦþ

LiCi
þ ð1 − ηiÞ

1Li

2
⊗ jeihejCi

�
: ð61Þ

For the bipartite MDI-QKD,

MC1C2→Xð·Þ ¼ q
X4
j¼1

Tr½ΦðjÞð·ÞΦðjÞ�jjihjjX

þ ð1 − qÞTr½·� ⊗ j⊥ih⊥jX; ð62Þ

where fΦðjÞ
C1C2

g4j¼1 is the Bell measurement, which is a

projective measurement. Here, fΦðjÞ
C1C2

g4j¼1 represents the
set of maximally entangled states fΦþ;Φ−;Ψþ;Ψ−g for
two-qubit systems and j⊥i⊥jji. We note that the Bell
measurement is tele-covariant. Upon action of the

measurement channel MC1C2→X on the state JEL1L2C1C2

[Eq. (61)], the output state is essentially of the form (see
Ref. [67])

qη1η2
1

4

X4
j¼1

ΦðjÞ
L1L2

⊗ jjihjjXþð1−qη1η2Þ
1L1L2

4
⊗ j⊥ih⊥jX;

ð63Þ
which implies that the relative entropy of entanglement of
the Choi state ofNMDI;E

A1A2→Z1Z2
is qη1η2. Employing Theorem

7, the bipartite MDI-QKD capacity for the given MDI-
QKD prototype with erasure channels is

P̃LOCCðNMDI;fEig2i¼1Þ ¼ qη1η2; ð64Þ

as qη1η2 bits is an achievable rate for the given setup (see
Refs. [48,49,105] for the private capacities of EAi→Ci

).
Notice that qη1η2 is a strong converse bound.
For bipartite MDI-QKD (see Fig. 4), using the results

of Ref. [48,105], we get upper bound (RB) on the
bipartite MDI-QKD capacity as minfη1; η2g (e.g., see
Refs. [50,60]). This bound is always looser than our strong
converse upper bound qη1η2 bits, for all practical purposes.
In Fig. 5, we plot the rate-distance trade-off (secret key
capacity versus distance L in km) for our bound in Eq. (64)
when n¼2, η1 ¼ η2 ¼ expð−αLÞ, and α ¼ ð1=22 kmÞ and
compare it with the upper bound (RB) η1 (since η1 ¼ η2).
We note that, whereas there now exist variants of MDI-

QKD schemes or setups that can achieve the repeaterless
bound, e.g., Refs. [31,32,34], the dual-rail protocols we
consider here, while being suboptimal, may be easier to
implement practically. In particular, implementation of a
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FIG. 5. Rate-distance trade-off comparison between our bound
(64) (blue, red, yellow, and purple lines) and the RB bound (green
line) for the MDI-QKD protocol for our photon-based prototype.

FIG. 4. Pictorial illustration of our photon-based MDI-QKD
between two parties using the dual-rail encoding scheme.
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twin-field protocol requires long-distance phase stabiliza-
tion, which can be challenging [115]. We showcase here the
ability to get nontrivial upper bounds for a specific,
suboptimal implementation of QKD schemes. These non-
trivial upper bounds are derived from a universal frame-
work, which illustrates the usefulness of the framework we
have proposed.

VII. LOWER BOUNDS ON PRIVACY

In this section, we derive lower bounds on the secret-
key-agreement rate of a multiplex channel achievable by
means of cppp, in the sense of Ref. [68]. This is a
generalization of the lower bound presented in Ref. [14]
from multipartite states to multiplex channels, as well as a
generalization of the lower bounds on one-to-one channels
presented in Ref. [69] to the multiplex case.
The DW protocol [68], which is considered with

bipartite states, only uses one-way communication from
Alice to Bob. In Ref. [69], which is concerned with one-to-
one channels, direct and reverse scenarios are considered.
The former corresponds to the case where the quantum
channel and the classical communication are oriented in the
same direction. The latter corresponds to the case where
the two are oriented in opposite directions. In Ref. [14], the
DW protocol is generalized to multipartite states by
selecting one distributing party, which performs the DW
protocol with all remaining parties simultaneously.
We now generalize this result to the setting of multiplex

channels. We begin with a fully separable pure state

ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ. Here, the notation Xn

⟶
means

we consider n copies of all subsystems X1;…; XM.
Application of n copies of the isometric extension of the
multiplex channel N

A0B
⟶

→AC
⟶ results in a pure state

ψn

∶AnL
��!

∶R⃗∶CnP
��!

∶En
. Let us now choose one party, Xi,

i ∈ f1;…;Mg, as the distributing party. Party Xi performs
a POVM Q ¼ fQxg with a corresponding random variable
X ¼ fx; pðxÞg on her subsystem, resulting in a classical-
quantum-...-quantum (cq) state

ωcq ¼
X
x

pðxÞjxihxjX ⊗ ωx; ð65Þ

where ωx is the post-measurement state of the remaining
parties and Eve. Party Xi then processes X using classical
channels X → Y and Y → Z, where Y ¼ fy; qðyÞg and Z ¼
fz; rðzÞg are classical random variables. Here, Y is kept by
party Xi (to be used for the key), and Z is broadcast to all
other trusted parties (and Eve). Upon receiving Z, the
other parties then perform their respective POVMs, with the
goal of estimating the key variable Y. Thus, as shown in
Ref. [68], every trusted partyXj, where i ≠ j ∈ f1;…;Mg,
obtains a common key with X at a rate ri→j

n of

ri→j
n ¼ 1

n
(IðY∶XjjZÞω̃cq

− IðY∶EnjZÞω̃cq
); ð66Þ

where, in a slight abuse of notation, we use Xj as a
placeholder for An

jLj, Rj, or Cn
jPj, depending if Xj is in

fAaga, fBbgb, or fCcgc, respectively. The second and
third cases correspond to the reverse and direct scenarios in
Ref. [69], respectively, whereas

ω̃cq ¼
X
xyz

rðzjyÞqðyjxÞpðxÞjxyzihxyzj ⊗ ωx: ð67Þ

Equation (66) has to be maximized over all free input states

ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ, POVMs Q, as well as classical

channels X → Y and Y → Z. As discussed in Ref. [14], a
conference key among all trusted parties can be obtained at
the worst-case rate between any pair ðXi;XjÞ. We also have
the freedom to choose the distributing party. Putting it all
together, we can achieve the following rate of the
conference key:

P̂N
cppp ≥ max

i
min
j

lim
n→∞

max
ϕn;QPOVM
X→Y;Y→Z

ri→j
n ; ð68Þ

with ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ. Note that in the case of a

single-sender–single-receiver channel N ∶B → C, this
reduces to the maximum of the direct and reverse key
rates presented in Ref. [69].
Next, we propose an alternative generalization of the DW

protocol to the case of multipartite states and multiplex
channels. The rough idea is that, instead of performing the
DW protocol simultaneously with all other parties after her
measurement, the distributing party performs a one-way
protocol with a second party, who then performs a one-way
protocol with a third party, and the iteration continues. In
particular, the random variables obtained in all previous
measurements can be passed on in every classical commu-
nication step, so a party can adapt her measurement depend-
ing on all previous measurements instead of the first
measurement as in the protocol described in Ref. [14].
We now describe the protocol in detail: As before,

we begin with a fully separable pure state

ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ and apply n copies of the iso-

metric extension of the multiplex channel N
A0B
⟶

→AC
⟶ ,

resulting in a pure state ψn

∶AnL
��!

∶R⃗∶CnP
��!

∶En
.

Now, assume that we are given some permutation
σ∶f1;…;Mg → fσð1Þ;…; σðMÞg, which determines the
order in which the parties participate in the protocol. Party
Xσð1Þ begins by performing a POVMQð1Þ on her share ofψn,
i.e., on subsystem An

σð1ÞLσð1Þ, Rσð1Þ, orCn
σð1ÞPσð1Þ, depending

on which kind of party Xσð1Þ is. This results in a
random variable Xð1Þ ¼ fp1ðx1Þ; x1g. The corresponding
classical-quantum-...-quantum (cq) state is
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ωð1Þ
cq ¼

X
x1

p1ðx1Þjx1ihx1jXð1Þ ⊗ ωx1 : ð69Þ

Party Xσð1Þ then performs classical channels
Xð1Þ → Yð1Þ → Zð1Þ, keeping the random variable Yð1Þ and
sending Zð1Þ to party Xσð2Þ. The corresponding cq state is
then given by

ω̃ð1Þ
cq ¼

X
x1y1z1

r1ðz1jy1Þq1ðy1jx1Þp1ðx1Þjx1y1z1ihx1y1z1j⊗ωx1 ;

ð70Þ

whereωx1 is the state of the remaining parties and Eve. Next,

party Xσð2Þ performs a POVM Qð2Þ
Zð1Þ on her share of ωx1 ,

which provides the random variable Xð2Þ. Party Xσð2Þ then
performs classical channels Zð1ÞXð2Þ → Yð2Þ → Zð2Þ, keeps
Yð2Þ for herself, and sends Zð2Þ to the next party Xσð3Þ, who
applies the same procedure. The protocol is repeated until
party XσðMÞ receives ZðM−1Þ, followed by her POVM and
postprocessing. The cq after k ∈ f1;…;Mg measurements
and postprocessing steps is given by

ω̃ðkÞ
cq ¼

X
x1…xky1…yk
z1…zk

p̃x1y1z1…xkykzk

× jx1y1z1…xkykzkihx1y1z1…xkykzkj ⊗ ωx1…xk ;

ð71Þ

where we have defined, recursively,

p̃x1y1z1…xkykzk ¼ rkðzkjykÞqkðykjxkzk−1ÞpkðxkÞ
× p̃x1y1z1…xk−1yk−1zk−1 : ð72Þ

Parties XσðkÞ and Xσðkþ1Þ can establish a key rate of [68]

rσðkÞ→σðkþ1Þ ¼ 1

n
ðIðYðkÞ∶Xσðkþ1ÞjZðkÞÞ

ω̃ðkÞ
cq

−IðYðkÞ∶EnjZðkÞÞ
ω̃ðkÞ
cq
Þ: ð73Þ

We can again maximize over all free input states,
POVMs, as well as classical channels and consider the
worst-case rate between any pair ðXi;XjÞ. Furthermore, we
have the freedom to choose the order of the parties. Putting
it all together, we can achieve the following rate of the
conference key:

P̂N
cppp ≥ max

σ∈perm
min
k

lim
n→∞

max
ϕn;Qð1Þ ;…;QðkÞPOVM

Xð1Þ→Yð1Þ→Zð1Þ ;
Xð2ÞZð1Þ→Yð2Þ→Zð2Þ ;…;
XðkÞZðk−1Þ→YðkÞ→ZðkÞ

rσðkÞ→σðkþ1Þ; ð74Þ

with ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ.

A. Lower bound for bidirectional network
via spanning tree

In this section, we observe that one can tighten the lower
bounds presented in the previous section for a particular
multiplex channel called the bidirectional network (BN). In
the BN, each of the nodes is connected with its neighbors
by product bidirectional channels, which are specific
bidirectional channels that is a tensor product of two
point-to-point channels directed in opposite ways from
each other.
We first observe that BN is a particular case of a

multiplex channel (call it N ). Indeed, in this case, all
the parties are of type A; i.e., they can read and write. The
rule is that each party represented in the network as a vertex
v has deg(v) of neighbors (see Ref. [116] for an introduc-
tion to graph theory). Each party is assumed to write to her
neighbors and also receive from these neighbors some
quantum data. We now present a tighter bound on the
private capacity ofN based on the above exemplary graph.
To be more specific, the BN can be represented by a

weighted, directed multigraph G ¼ ðE;VÞ in which each
edge eij ¼ ðvi; vjÞ ∈ E represents a product bidirectional
channel Λij ¼ Λi→j ⊗ Λj→i with weight W∶E ↦ Rþ such
that WðeijÞ ¼ WðejiÞ ¼ PðΛi→jÞ ¼ PðΛj→iÞ (this edge
can be represented by two directed edges: one from vi
to vj and the other vice versa; hence, the structure is
directed multigraph). Each product bidirectional channel
has in both directions the same private capacity (that,
however, may differ for different channels). By convention,
we consider edges with index i > j only. The number of
nodes in the network is denoted as jVj ≔ n and the number
of edges as jEj ≔ m.

(a)

(b)

FIG. 6. (a) Exemplary graph. Red edges correspond to private
capacity 1 and blue to private capacity 2. The first strategy for
obtaining the conference key uses a vertex connected to all others
and reaches the suboptimal rate minfwðeijÞ∶ðv1; v6Þ; ðv1; v5Þ;
ðv1; v4Þ; ðv1; v3Þ; ðv1; v2Þg ¼ 1. The same happens for any path,
which inevitably has to pass through some red edge. The solution
is a tree, which is a spanning tree of this graph, and it contains no
red edge (b). Traversing the edges of this tree is equivalent to the
breadth-first search.
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As a motivation for the next consideration, for such
multiplex channels, the bounds given in inequalities (68)
and (74) above are not tight. We exemplify this on the graph
presented in Fig. 6(a). Namely, we assume that each red
edge of the graph G depicted there represents a (bidirec-
tional) channel with private capacity 1, while each blue
edge is with capacity equal to 2. We do not depict all other
edges (connections) as they have zero private capacity by
assumption. We now make two observations: (i) The
approach of inequality (68) would yield overall secret
key agreement at rate 1, as the only node connected to all
others in G (v1) contains (in fact, more than one) red edge.
(ii) We observe, by direct inspection, that every path
connecting all vertices also contains at least one red edge.

On the other hand, there is a set of vertices [depicted
with edges in Fig. 6(b)] that forms the so-called spanning
tree T ≔ ðVT; ETÞ ⊂ G of the graph G. The spanning
tree is an acyclic connected subgraph of G, and the word
“spanning” refers to the fact that all the vertices of the graph
G belong to VT . It is easy to see that starting from
any vertex of this tree, by the breadth-first search algorithm,
one can visit all its edges, and one can obtain the conference
key at rate 2 (see Ref. [117] for an introduction to
algorithms).
As a generalization of this idea, one easily comes up with

the following lower bound, which is the main result of this
section:

P̂N
cppp ≥ max

T⊆G
min

t∈VT;t0∈N½t�
lim
n→∞

max
ϕn;Qð1Þ ;…;QðjVT jÞPOVM
Xðv1Þ→Yðv1Þ→Zðv1Þ ;

XðN½v1 �ÞZðv1Þ→YðN½v1 �Þ→ðZðN½v1 �ÞÞjdeg≥2 ;
XðN2 ½v1 �ÞZðN½v1 �Þ→YðN2 ½v1 �Þ→ðZðN2 ½v1 �ÞÞjdeg≥2 ;…;

XNl ½v1 �ZNl ½v1 �→YNl ½v1 �

rσðtÞ→σðt0Þ; ð75Þ

where 1 ≤ l ≤ n is an index that counts howmany times the
breadth-first search needs to be invoked in order to traverse
all the edges of the spanning tree T. For ease of notation, T
is meant to be a rooted, without loss of generality, at vertex
v1. By N½v�, we mean the proper neighborhood of the node
v (i.e., the set of all vertices that are connected by a single
edge with v). In a rooted tree, every vertex is reachable
from the root vertex by a path. By Ni½v1�, we mean the set
of vertices reachable from vertex v1 by a path of length i.
Owing to this notation, N½v1�≡ N1½v1�, while all vertices
achievable from v1 by traversing two edges belong to
N2½v1� and so on.
The first inner maximization needs to be understood

inductively. The first step is obvious: We begin with an
arbitrary vertex v1 ∈ VT . The party Xv1 who is at node v1
performs a POVM Q1, which produces a random variable
Xðv1Þ. She processes this variable further to obtain Yðv1Þ and
sends a communication in the form of a variable Zðv1Þ. The
latter variable is broadcast to all the next neighbors of v1,
i.e., N½v1�nfv1g. Furthermore, if at step m − 1 the form of
operations and communication between the nodes has
concise notation XSmZSm−1 → YSm → ZSm jdeg≥2, then the
next level of nesting, i.e.,

XN½Sm�ZSm → YN½Sm� → ðZN½Sm�Þjdeg≥2; ð76Þ

has to be understood as a short notation of the following
postprocessing at a number of nodes from the set N½Sm� ¼
fs1;…; srg with r ¼ jN½Sm�j:

∀ si∈N½Sm�∶ degðsiÞ ≥ 2X
ðsiÞZN½si �∩pðsiÞ→YðsiÞ→ZðsiÞ

∀ si∈N½Sm�∶ degðsiÞ ¼ 1X
ðsiÞZN½si �∩pðsiÞ→YðsiÞ ;

where pðsiÞ denotes the parent vertex of the vertex si, that
is, the unique vertex belonging to the neighborhood that is
the closest to the root v1 in terms of traversed edges.
The above description means that if some vertex of the

tree is of degree equal to 1, it has no further children in the
tree to pass useful information contained in the Z-type
variable, while all vertices with larger degree than 1 need to
broadcast appropriate data to their further neighbors in
the tree.
We exemplify the lower bound given in inequality (75)

with the broadcast network depicted on Fig. 6. Let us first
focus on involved sets of vertices in the process of the
breadth-first search over the tree T. The set of vertices of
the spanning tree T reads fv1;…; v6g. As the root vertex,
we choose v1. Next, N1½v1� ¼ fv2g, N2½v1� ¼ fv3; v6g and
N3½v1� ¼ fv4; v5g. In this case, the presented lower bound
reads

P̂N
cppp ≥ max

T⊆G
min

t∈VT;t0∈N½t�
lim
n→∞

max
ϕn;Qð1Þ ;…;Qð6ÞPOVM
Xðv1Þ→Yðv1Þ→Zðv1Þ ;

Xðv2ÞZðv1Þ→Yðv2Þ→Zðv2Þ ;
Xðv3ÞZðv2Þ→Yðv3Þ→Zðv3Þ ;

Xðv6ÞZðv2Þ→Yðv6Þ ;
Xðv5ÞZðv3Þ→Yðv5Þ ;
Xðv4ÞZðv3Þ→Yðv4Þ

rσðtÞ→σðt0Þ:

ð77Þ

In Appendix G, we briefly comment on the complexity
of finding a subgraph, which allows us to realize the
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conference key agreement with the capacity indicated by
the inequality (75).

VIII. KEY DISTILLATION FROM STATES

In this section, we concentrate on the subject of the
distillation of secret keys from quantum states. An ðn;K; εÞ
LOCC conference key distillation begins withM partiesAi
for i ∈ ½M� sharing n copies of theM-partite quantum state
ρA⃗, to which they apply an LOCC channel L

A⊗n
��!

→SK
⟶ . The

resulting output state satisfies the following condition:

FðL
A⊗n
��!

→SK
⟶ðρ⊗n

A⃗
Þ; γ

KS
⟶Þ ≥ 1 − ε: ð78Þ

The one-shot secret-key-distillation rate from a single copy

of a multipartite quantum state Kð1;εÞ
D is upper bounded as

follows (cf. Sec. V).
Theorem 8: For any fixed ε ∈ ð0; 1Þ, the achievable

region of secret key agreement from a single copy of an
arbitrary multipartite quantum state ρA⃗ satisfies

Kð1;εÞ
D ðρÞ ≤ Eε

h;GEð∶A⃗∶Þρ; ð79Þ

where

Eε
h;GEð∶A⃗∶Þρ ≔ inf

σ∈BSð∶A⃗∶Þ
Dε

hðρkσÞ ð80Þ

is the ε-hypothesis-testing relative entropy of genuine
entanglement of multipartite state ρA⃗.
Proof.—The proof argument is the same as that of

Theorem 2, so we omit the proof here. ▪
In the asymptotic limit, the rate Kðn;εÞ

D satisfies

inf
ε>0

limsup
n→∞

1

n
Kðn;εÞ

D ðρ⊗nÞ ¼ KDðρÞ; ð81Þ

which follows directly from the definition of the secret key
rate KD [14].
Using the same argument as in the proof of Theorem 6 in

Sec. V C, we can also get the following asymptotic bound,
which is generalized in Theorem 9 of Ref. [62]:
Proposition 2: For an m-partite state ρA⃗, it holds

that

KDðρA⃗Þ ≤ E∞
GEðρA⃗Þ: ð82Þ

In general, to share the conference key, it is necessary
for the honest parties to distill genuine multipartite
entanglement.
Corollary 6: For a tensor-stable biseparable state ρA⃗, it

holds that KDðρA⃗Þ ¼ 0.
The above Corollary of Theorem 8 is precisely due to the

infimum over biseparable states. However, already in the

tripartite setting, there are two nonequivalent families of
three-partite genuinely entangled states, that is, ΦGHZ

M -type
andΦW

M-type states [79,85,118–121]. Both families of states
contain states that are maximally entangled; however, they
cannot be transformed with LOCC one into another at unit
rate [81,84,86,87,122,123]. As the perfect ΦGHZ

M state plays
a role of the honest (or perfect) implementation of
conference quantum key agreement protocols, the distilla-
tion of ΦGHZ

3 states from ΦW
3 states has been intensively

studied [80–84,86]. In particular, recalling Example 11 of
Ref. [80], it is known that one cannot transform a singleΦW

3

state into a ΦGHZ
3 state even in a probabilistic manner.

However, according to Theorem 2 of Ref. [80], the calcu-
lated asymptotic rate for conversion fromΦW

3 toΦGHZ
3 due to

certain protocols is approximately 0.643 (per copy), which
constitutes a lower bound for the general case. Another
complementary lower bound has been provided in Ref. [86].
Surprisingly, in the one-shot regime, distillation of ΦGHZ

3

states fromΦW
3 states, and therefore of the secret key, is still

possible. To accomplish this task, it is sufficient to consider
the initial state as being made up of two copies of the ΦW

3

state. Then, using results in Ref. [81], it follows that we can
obtain twoΦþ

2 states in two distinct bipartite systems with a
probability that is arbitrarily close to 2

3
; having this in

mind, one can obtain ΦGHZ
3 by employing ancilla and the

entanglement swapping protocol [112]. In this way, we
calculate a lower bound on the distillation of ΦGHZ

3 states
from two copies of the ΦW

3 state in a one-shot regime (one
ΦGHZ

3 state with probability 2
3
from two ΦW

3 states). This
lower bound can be compared with the upper bound in
Theorem 8 given above.
Nevertheless, distillation ofΦGHZ

M states is only an example
of a key distillation technique [13,14,84,86,124–127]. A
more general conference key agreement scenario of our
interest incorporates distillation of twisted ΦGHZ

M states (see
Definition 3) [14,61,119,128,129]. In that case, an approach
for upper bounding conference key rates that is different than
the estimation of ΦW

M to ΦGHZ
M conversion rates is required.

This approach corresponds to a possible gap between rates of
ΦGHZ

M (that can be distilled) and secret key distillation. Since
theΦGHZ

M state is an instance of a private state, an upper bound
on the conference key rate is also an upper bound on the
distillation rate from any state. For plotting our numerical
results, we concentrate on secret key distillation fromn copies
of the ΦW

M state in order to compare with other limitations
discussed in this section.
The upper bound in Theorem 8 has optimization over all

possible biseparable states. Computation of the exact value
of the bound given in Eq. (79) need not be feasible in
general. As we take the infimum in Eq. (80), we can obtain
non-trivial upper bounds on the upper bound given in
Eq. (79) by considering optimization over suitable subsets
of biseparable states. We make an educated guess for the
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form of biseparable state to yield a non-trivial upper bound.
We remark here that the set of biseparable states is not
closed under a tensor product, so we have to find different
states for any tensor power n of ΦW

M or ΦGHZ
M states. We

devise two families of biseparable states, πn;MW and πn;MGHZ,
adjusted to both number of copies, n, and number of
parties, M,

πn;MGHZ ≔
1

M

XM
i¼1

[S1;i

�
I
2
⊗ ΦGHZ

M−1

�
]
⊗n

; ð83Þ

πn;MW ≔
1

M

XM
i¼1

(S1;iðj0ih0j ⊗ ΦW
M−1Þ)⊗n; ð84Þ

where the operator S1;i swaps the qubit of the first party

with the qubit of the ith party. The choice of πn;MGHZ and π
n;M
W

states is motivated by keeping the correlation between
M − 1 parties most similar to those in ΦGHZ

M or ΦW
M states

while keeping one party explicitly separated. Additionally,
πn;MGHZ and πn;MW states, by definition, are symmetric with
respect to permutation of parties because of permutations
with S1;i.
We would like to point out that the π1;3W presented here is

closer to the ΦW
3 state in the Hilbert-Schmidt norm than the

state (let us call it ϒ) in Ref. [130], even though the state
constructed there was supposed to be the biseparable state
closest to ΦW

3 in the Hilbert-Schmidt norm. This result is
due to different definitions of biseparability; the state in
Ref. [130] is a tensor product with respect to one of the
cuts, whereas we make use of the convexity of the set of
biseparable states. Indeed, our states are biseparable by
construction (see Sec. IVA).
The upper bound on the asymptotic secret key rate can be

compared with the lower bound on asymptotic ΦGHZ
3 states

from ΦW
3 state distillation [80] in the following way. First,

we notice that if two parties unite, then the M − 1-partite
key is no less than the initial M-partite key because the set
of operations of the M-partite LOCC protocol is a strict
subset of the set of operations for the case in which two
parties, i and j, are in the same laboratory. We have the
following Proposition:
Proposition 3: For any M-partite state ρ½M�, the asymp-

totic secret-key-agreement rate satisfies the following
inequality:

max
k

KDðρ½Mþ1�kÞ ≤ KDðρ½M�Þ ≤ min
i;j

KDðρ½M−1�ijÞ; ð85Þ

where ½M� ¼ ½1;…;M� and ½M − 1�ij ¼ ½1;…; i − 1;
ði; jÞ; iþ 1;…; j − 1; jþ 1;…;M� indicate a state ρ½M−1�
in which subsystems i and j are merged. Analogously,
½Mþ1�k¼½1;…;k−1;k1;k2;kþ1;…;Mþ1� indicates the
state in which subsystem k is split into systems k1 and k2.

Proof.—It is enough to notice that the class of LOCC
protocols involved in the definition of KDðρ½M�Þ is strictly
contained in the class of protocols involved in the definition
of KDðρ½M−1�ijÞ. Indeed, the merged parties can still
simulate any operation from the former class; however,
together, they can perform many more operations, includ-
ing global quantum operations on all merged subsystems
together. Since KD is defined as the supremum of the key
rate over such protocols, the upper bound follows. For the
lower bound, it is enough to notice that by splitting
subsystem(s) of ρ, we restrict the class of operations that
can be used to distill the key. ▪
We immediately observe that Proposition 3 provides a

whole family of nonequivalent upper bounds. To see this,
one can consider a state that is not invariant under
permutations. What is more, one can continue merging
as long as there is still two or more subsystems left.
Corollary 7: For anyM-partite state ρ½M� defined on the

Hilbert space H, the asymptotic secret-key-agreement rate
satisfies the following inequality:

max
L

KDðρ½L�Þ ≤ KDðρ½M�Þ ≤ min
N

KDðρ½N�Þ; ð86Þ

where the state ρ½L� is obtained from the state
ρ½M� by splitting its subsystems so that L ≥ log dimðHÞ.
Analogously, the state ρ½N� is obtained via any merging of
subsystems of ρ½M�, such that ρ½N� has at least two subsystems.
Hence, in the particular case of theΦW

3 state, we can also
skip minimization with respect to i, j since the state is
symmetric. Using properties of entanglement measures
[131–133], we have

KDðΦW
3 Þ ≤ KDðΦW

2þ1Þ ≤ E∞
r ðΦW

2þ1Þ ð87Þ

¼ h2

�
1

3

�
≈ 0.9183 bit; ð88Þ

where h2ðxÞ is the binary entropy function.
The asymptotic key rate and bounds on it are usually

noninteger real numbers. In the one-shot regime, express-
ing these quantities in a similar manner, instead of integers
obtained with floor or ceiling functions, is no less mean-
ingful because the amount of secret key and the value of
bounds are functions of privacy test parameter ε, which can
vary, yielding, in general, different values of these quan-
tities. Therefore, dependence of the scenario on the privacy
parameter ε is interesting on its own. See Appendix H and
Ref. [134].
Remark 6: It is natural that the analogies of Proposition

3 and Corollary 7 hold for the multiplex quantum channel
N . The upper bound on the M-partite multiplex quantum
channel takes the form of the M − 1-partite multiplex
channel, where the new party’s type is determined accord-
ing to the following rule: If the two parties are of the same
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type (say, B), then the new type is the same (B in that case).
If the types are different, then the new type always becomes
A because, e.g., when B and C are merged, they have the
ability to both read and write.

IX. DISCUSSION

We have provided universal limits on the rates at which
one can distribute the conference key over a quantum
network described by a multiplex quantum channel. We
have shown that multipartite private states are necessarily
genuine multipartite entangled. As a consequence, it is not
possible to distill multipartite private states from tensor-
stable biseparable states. We have obtained an upper bound
on the single-shot, classical preprocessing and postprocess-
ing assisted secret-key-agreement capacity. The bound is in
terms of the hypothesis-testing divergence with respect to
biseparable states of the output state of the multiplex
channel, maximized over all fully separable input states.
We have further provided strong-converse bounds on the
LOCC-assisted private capacity of multiplex channels that
are in terms of the max-relative entropy of entanglement as
well as the regularized relative entropy of entanglement. In
the case of tele-covariant multiplex channels, we have also
obtained bounds in terms of the relative entropy of entan-
glement of the resource state. We have shown the versatility
of our bounds by applying it to several communication
scenarios, including measurement-device-independent QKD
and conference key agreement as well as quantum key
repeaters. In addition to our upper bounds, we have also
provided lower bounds on asymptotic conference key rates,
which are asymptotically achievable in Devetak-Winter-like
protocols. We also derived an upper bound on the secret key
that can be distilled from finite copies of multipartite states
via LOCC, and we showed some numerical examples. The
task of distillation ofΦGHZ

3 fromΦW
3 was extensively studied

in the literature [81,122,123]. Here, we initiate the study on
the distillation of the key rather than ΦGHZ

3 distillation from
the ΦW

3 state. This is the rate of the distillation of “twisted”
ΦGHZ

3 being private states—a class to which ΦGHZ
3 belongs.

It would be interesting to find if the distillation of the key
from ΦW

3 is just equivalent to the distillation of ΦGHZ
3 (see

recent result on this topic [127]).
Distillation of the secret key allows trusted parties to

access private random bits. Our lower bound on an asymp-
totic LOCC-assisted secret-key-agreement capacity over a
multiplex channel also provides an asymptotic achievable
rate of private random bits for trusted parties over a multiplex
channel with classical preprocessing and postprocessing.
Our work also provides frameworks for the resource

theories of multipartite entanglement for quantum multi-
partite channels (analogous to bipartite channels as dis-
cussed in Refs. [51,53,97,98]). In this context, it is natural
to extend the results of Ref. [135], where the so-called
layered QKD is considered, to the noisy case of multipartite
private states. It would be interesting to systematically

consider other frameworks in the resource theory of
multipartite entanglement. An important future direction
for application purposes is to identify new information
processing tasks and determine bounds on the rate regions
of classical and quantum communication protocols over a
multiplex channel (e.g., see Refs. [53,136–142]).
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APPENDIX A: GENERALIZED DIVERGENCES
AND THEIR PROPERTIES

Any generalized divergence Dð·k·Þ satisfies the follow-
ing two properties for an isometry U and a state τ [63]:

DðρkσÞ ¼ DðUρU†kUσU†Þ; ðA1Þ

DðρkσÞ ¼ Dðρ ⊗ τkσ ⊗ τÞ: ðA2Þ

The sandwiched Rényi relative entropy obeys the fol-
lowing “monotonicity in α” inequality [64]:
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D̃αðρkσÞ≤ D̃βðρkσÞ if α≤ β; for α;β∈ ð0;1Þ∪ ð1;∞Þ:
ðA3Þ

The following inequality states that the sandwiched Rényi
relative entropy D̃αðρkσÞ between states ρ, σ is a particular
generalized divergence for certain values of α [143,144].
For a quantum channel N ,

D̃αðρkσÞ ≥ D̃α(N ðρÞkN ðσÞ); ∀ α ∈ ½1=2; 1Þ ∪ ð1;∞Þ:
ðA4Þ

In the limit α → 1, the sandwiched Rényi relative
entropy D̃αðρkσÞ between quantum states ρ, σ converges
to the quantum relative entropy [63,64]:

lim
α→1

D̃αðρkσÞ ¼ DðρkσÞ; ðA5Þ

and the quantum relative entropy [92] between states is

DðρkσÞ ≔ Tr½ρ log2ðρ − σÞ� ðA6Þ

for suppðρÞ ⊆ suppðσÞ and otherwise it is ∞.
In the limit α → 1=2, the sandwiched Rényi relative

entropy D̃αðρkσÞ converges to − log2 Fðρ; σÞ, where
Fðρ; σÞ is the fidelity between ρ, σ defined as

Fðρ; σÞ ≔
h
Tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
p

ρ
ffiffiffi
σ

pq ii2
: ðA7Þ

The following inequality relatesDε
hðρkσÞ to D̃αðρkσÞ for

density operators ρ, σ, α ∈ ð1;∞Þ and ε ∈ ð0; 1Þ (see
Refs. [145–147] and Lemma 5 in Ref. [148]):

Dε
hðρkσÞ ≤ D̃αðρkσÞ þ

α

α − 1
log

�
1

1 − ε

�
: ðA8Þ

The following inequality also holds [94]:

Dε
hðρkσÞ ≤

1

1 − ε
(DðρkσÞ þ h2ðεÞ); ðA9Þ

where h2ðεÞ ≔ −ε log2 ε − ð1 − εÞ log2ð1 − εÞ is the binary
entropy function.
In a specific case, ε-hypothesis-testing relative entropy

can be calculated exactly.
Lemma 3: If ρ is a pure state and it is one of the

eigenvectors of σ, i.e., there exists decomposition
σ ¼ p0ρþ

P
i¼1 piγ

⊥
i , with

P
i¼0 pi ¼ 1, 0 ≤ pi ≤ 1,

p0 ≠ 0 and states γ⊥i orthogonal to ρ, then for any ϵ ∈ ½0; 1�,

Dε
hðρkσÞ ¼ − log2 Tr½Ωσ�; ðA10Þ

with Ω ¼ ð1 − εÞρ.

APPENDIX B: MULTIPLEX QUANTUM
CHANNELS

All network channels that are possible in a communi-
cation setting are special cases of multiplex quantum
channels N

A⃗0 B⃗→A⃗ C⃗
(see Fig. 1):

(1) Point-to-point quantum channel: This is a quantum
channel of the formN Bb→Cc

with a single sender and a
single receiver. When a multiplex quantum channel
has the formN Bb→Cc

thenA ¼ ∅ and jBj ¼ 1 ¼ jCj.
This is arguably thesimplest formofacommunication
(network) channel as it involves only two parties with
one party sending input to the channel and the other
receiving the output from the channel.

(2) Bidirectional quantum channel: This is a multiplex
quantum channel of the form N A0

1
A0
2
→A1A2

with two
parties who are both senders and receivers, i.e.,
jAj ¼ 2 and B ¼ ∅ ¼ C (cf. Refs. [53,101]).

(3) Quantum interference channel: This is a bipartite
quantum channel of the form N B1B2→C1C2

with two
senders and two receivers (cf. Ref. [149]). We may
also call N B⃗→C⃗, with an equal number of senders
and receivers, as the quantum interference channel.

(4) Broadcast quantum channel: This is a multipartite
quantum channel of the form N Bb→C⃗ with a single
sender and multiple receivers (cf. Refs. [150,151]). We
may also call N B⃗→C⃗ as a broadcast channel if the
number of senders is less than the number of receivers.

(5) Multiple access quantum channel: This is a multi-
partite quantum channel of the form N B⃗→Cc

with
multiple senders and a single receiver (cf. Ref. [152]).
We may also callN B⃗→C⃗ as a multiple access channel
if the number of senders is more than the number of
receivers.

(6) Physical box: Any physical box with quantum or
classical inputs and quantum or classical outputs.

(7) Network quantum channels of types N
A⃗0→A⃗ C⃗

and
N

A⃗0 B⃗→A⃗
.

If inputs and outputs to a multiplex channel are classical
systems and underlying processes are governed by classical
physics, then the channel is called a classical multiplex
channel (see Ref. [137] for examples of such network
channels). If inputs and outputs to the channel are quantum
and classical systems, respectively, then the channel is called
a quantum-to-classical channel. If inputs and outputs to the
channel are classical and quantum systems, respectively,
then the channel is called a classical to a quantum channel.

APPENDIX C: PRIVACY TEST

Recall the definition of the twisting operation

Utw

KS
⟶ ¼

XK−1
i1;…;iM¼0

ji1…iMihi1…iMjK⃗ ⊗Uði1…iMÞ
S⃗

ðC1Þ
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and a privacy test as

Πγ;K

KS
⟶ ¼ Utw

KS
⟶ðΦGHZ

K⃗
⊗ 1S⃗ÞUtw†

KS
⟶ ðC2Þ

¼ 1

K

XK−1
i;k¼0

ðjiihkjÞ⊗M
K⃗

⊗ UðiMÞ
S⃗

UðkMÞ†
S⃗

; ðC3Þ

where we have defined the notation iM ≔ i…i|{z}
Mtimes

. We now

provide the proof of Theorem 1:
Proof of Theorem 1.—We begin by showing the bound

for pure biseparable states jφi
KS
⟶ . For such a state, there

exists a bipartition of the parties, defined by nonempty
index sets I ⊂ f1;…;Mg and J ¼ f1;…;MgnI, such that
the state is a product with respect to that bipartition.
Namely, jφi

KS
⟶ ¼ jφ̃iSIKI

⊗ jφ̄iSJKJ
, where we have

defined HSIKI
¼ ⊗

i∈I
HSiKi

and HSJKJ
¼ ⊗

j∈J
HSjKj

. Let us

also define m ≔ jIj and n ≔ jJj and note that M ¼ mþ n.
We can expand

jφ̃iSIKI
¼

XK−1
i1;…;im¼0

α̃i1…im ji1…imiKI
⊗ jϕ̃i1…imiSI ; ðC4Þ

jφ̄iSJKJ
¼

XK−1
j1;…;jn¼0

ᾱj1…jn jj1…jniKJ
⊗ jϕ̄j1…jniSJ : ðC5Þ

Here, α̃i1…im ∈ C such that
P

K−1
i1;…;im¼0 jα̃i1…im j2 ¼ 1 and

ᾱj1…jn ∈ C such that
P

K−1
j1;…;jn¼0 jᾱj1…jn j2 ¼ 1.

Furthermore, it holds that

Tr½Πγ;K

KS
⟶ φ

KS
⟶ � ¼ Tr

��
1

K

XK−1
i;k¼0

ðjiihkjÞ⊗M
K⃗

⊗ UðiMÞ
S⃗

UðkMÞ†
S⃗

�
φ̃KISI ⊗ φ̄KJSJ

	
ðC6Þ

¼ 1

K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�Tr½UðiMÞ†jϕ̃imihϕ̃km jSI ⊗ jϕ̄inihϕ̄kn jSJUðkMÞ� ðC7Þ

¼ 1

K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�hζkjjζii; ðC8Þ

where we have defined the state

jζiiS⃗ ≔ UðiMÞ†jϕ̃imiSI ⊗ jϕ̄iniSJ : ðC9Þ

We note that Eq. (C8) is a probability; in particular, it is real
and non-negative. Hence, it holds that

1

K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�hζkjjζii ðC10Þ

¼




 1K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�hζkjjζii




 ðC11Þ

≤
1

K

XK−1
i;k¼0

jα̃im jjᾱin jjα̃km jjᾱkn jjhζkjjζiij; ðC12Þ

where in the first inequality, we have used the subadditivity
and multiplicity of the absolute value of complex numbers.
We note that for all i, k in the sum, jhζkjjζiij ≤ 1. Let us
define pi ¼ jα̃im j2 and note that pi ≥ 0 and

P
K−1
i¼0 pi ≤ 1.

Let us also define qi ¼ jᾱin j2 and note that qi ≥ 0 and

P
K−1
i¼0 qi ≤ 1. Hence, there exist respective probability

distributions fp̂ig and fq̂ig over f0;…; K − 1g such that
pi ≤ p̂i and qi ≤ q̂i for all i ¼ 0;…; K − 1. We then obtain

1

K

XK−1
i;k¼0

jα̃im jjᾱin jjα̃km jjᾱkn jjhζkjjζiij ðC13Þ

≤
1

K

XK−1
i;k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piqipkqk

p ¼ 1

K

�XK−1
i¼0

ffiffiffiffiffiffiffiffiffi
piqi

p 	2
ðC14Þ

≤
1

K

�XK−1
i¼0

ffiffiffiffiffiffiffiffiffi
p̂iq̂i

p 	2
≤

1

K
; ðC15Þ

where we have used the fact that the classical fidelity
between two probability distributions is upper bounded by
1. This establishes the theorem for pure biseparable states
with respect to arbitrary bipartitions. Noting that every

mixed biseparable state σ
KS
⟶ ∈ BSð∶KS⟶

∶Þ can be expressed
as a convex sum of pure biseparable states finishes the
proof. ▪
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APPENDIX D: UPPER BOUNDS ON THE CKA
RATES OF MULTIPLEX CHANNELS

1. Proof of Theorem 2

Proof.—Let us consider any cppp-assisted protocol that

achieves a rate P̂N
cppp ≡ P̂. Let ρð1Þ ∈ FSð∶LA0⟶

∶RB
⟶

∶P⃗∶Þ be
a fully separable state generated by the first use of LOCC
among all spatially separated allies. Let

τð1Þ
LA
⟶

R⃗ PC
⟶ ≔ N ðρð1Þ

LA
⟶

RB
⟶

P⃗
Þ: ðD1Þ

We note that τð1Þ is a separable state with respect to

bipartition LA
⟶

R⃗ C⃗ ∶P⃗. The action of the decoder channel

D ≔ Lð2Þ
LA
⟶

R⃗ PC
⟶

→SK
⟶ on τð1Þ yields the state

ω
SK
⟶ ≔ Lð2Þðτð1Þ

LA
⟶

R⃗ PC
⟶ Þ: ðD2Þ

By assumption, we have that

Fðγ
SK
⟶ ;ω

SK
⟶Þ ≥ 1 − ε; ðD3Þ

for some (M-partite) private state γ, which implies that
there exists a projector Πγ

SK
⟶ corresponding to a γ-privacy

test such that (see Proposition 1)

Tr½Πγ

SK
⟶ω

SK
⟶ � ≥ 1 − ε: ðD4Þ

From Theorem 1,

Tr½Πγ

SK
⟶σ0

SK
⟶ � ≤ 1

K
¼ 2−P̂; ðD5Þ

for any σ0 ∈ BSð∶SK⟶∶Þ.
Let us suppose a state σ

LA
⟶

R⃗ PC
⟶ ∈ BSð∶LA⟶∶R⃗∶PC

⟶
∶Þ of

the form σ
LA
⟶

R⃗ PC
⟶ ¼ σ

LA
⟶

R⃗ C⃗
⊗ σP⃗, where σ

LA
⟶

R⃗ C⃗
is arbi-

trary. It holds that σ
SK
⟶ ≔ Lð2Þðσ

LA
⟶

R⃗ PC
⟶ Þ ∈ BSð∶SK⟶∶Þ.

Thus, the privacy test is feasible for Dε
hðωkσÞ, and we

find that

P̂ ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ ðD6Þ

≤ Dε
hðτð1Þ

LA
⟶

R⃗ PC
⟶ Þkσ

LA
⟶

R⃗ PC
⟶ Þ ðD7Þ

≤ sup
ψ∈FSðLA0⟶

∶RB
⟶

∶P⃗Þ
Dε

hðN ðψ
LA0⟶

∶RB
⟶

∶P⃗
Þkσ

LA
⟶

R⃗ PC
⟶ Þ ðD8Þ

¼ sup
ψ∈FSðLA0⟶

∶RB
⟶Þ

Dε
hðN ðψ

LA0⟶
∶RB
⟶Þkσ

LA
⟶

R⃗ C⃗
Þ: ðD9Þ

The second inequality follows from the data-processing
inequality. The third inequality follows from the quasicon-
vexity of Dε

h. The equality follows from Eq. (A2) and a
suitable choice of σP⃗ that always exists because, for any

pure state ψ ∈ FSðLA0⟶
∶RB
⟶

∶P⃗Þ, the output state N ðψÞ is

separable with respect to the bipartition LA
⟶

R⃗ C⃗ ∶P⃗.
Since inequality (D9) also holds for an arbitrary

σ ∈ BSð∶LA⟶∶R⃗∶C⃗∶Þ, we can conclude that

P̂ ≤ Eε
h;GEðN Þ: ðD10Þ

▪

2. Proof of Theorem 3

Proof.—The following inequality holds for an ðn;K; εÞ
LOCC-assisted secret-key-agreement protocol over a
multiplex channel N :

Fðω
SK
⟶ ; γ

SK
⟶Þ ≥ 1 − ε: ðD11Þ

For any σ
SK
⟶ ∈ FSð∶SK

⟶
∶Þ, we have the following bound

due to inequality (D11) and Theorem 1:

log2K ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ: ðD12Þ

Employing inequality (A8) in the limit α → þ∞, we obtain

log2 K ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ ðD13Þ

≤ DmaxðωSK
⟶kσ

SK
⟶Þ þ log2

�
1

1 − ε

�
: ðD14Þ

The above inequality holds for arbitrary σ ∈ FSð∶SK⟶∶Þ;
therefore,

log2K ≤ Emax;Eð∶SK
⟶

∶Þω þ log2

�
1

1 − ε

�
; ðD15Þ

where Emax;Eð∶SK
⟶

∶Þω is the max-relative entropy of
entanglement of the state ω

SK
⟶ .

The max-relative entropy of entanglement Emax;E of a
state is monotonically nonincreasing under the action of
LOCC channels, and it is zero for states that are fully
separable. Using these facts, we get that
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Emax;Eð∶SK
⟶

∶Þω
≤ Emax;Eð∶LðnÞAðnÞ�����!

∶RðnÞ��!
∶PðnÞCðnÞ�����!

∶Þτn ðD16Þ

¼ Emax;Eð∶LðnÞAðnÞ�����!
∶RðnÞ��!

∶PðnÞCðnÞ�����!
∶Þτn

− Emax;Eð∶Lð1ÞAð1Þ0�����!
∶Rð1ÞBð1Þ����!

∶Pð1Þ��!
∶Þρ1 ðD17Þ

¼ Emax;Eð∶LðnÞAðnÞ�����!
∶RðnÞ��!

∶PðnÞCðnÞ�����!
∶Þτn

þ
�Xn
i¼2

Emax;Eð∶LðiÞAðiÞ0����!
∶RðiÞBðiÞ����!

∶PðiÞ�!
∶Þρi

−
Xn
i¼2

Emax;Eð∶LðiÞAðiÞ0����!
∶RðiÞBðiÞ����!

∶PðiÞ�!
∶Þρi

	

− Emax;Eð∶Lð1ÞAð1Þ0�����!
∶Rð1ÞBð1Þ����!

∶Pð1Þ��!
∶Þρ1 ðD18Þ

≤
Xn
i¼1

½Emax;Eð∶LðiÞAðiÞ����!
∶RðiÞ�!

∶PðiÞCðiÞ����!
∶Þτi

− Emax;Eð∶LðiÞAðiÞ0����!
∶RðiÞBðiÞ����!

∶PðiÞ�!
∶Þρi � ðD19Þ

≤ nEmax;EðN Þ: ðD20Þ

The first equality follows because Emax;Eð∶Lð1ÞAð1Þ0�����!
∶

Rð1ÞBð1Þ����!
∶Pð1Þ��!

∶Þρ1 ¼ 0. The second inequality follows
because Emax;GE is monotone under LOCC channels and
ρi ¼ Liðτi−1Þ for all i ∈ f2; 3;…; ng. The final inequality
follows from Lemma 1.
From inequalities (D15) and (D20), we conclude that

log2K ≤ nEmax;EðN Þ þ log2

�
1

1 − ε

�
: ðD21Þ

▪

3. Proof of Theorem 4

Proof.—For an ðn;K; εÞ LOCC-assisted secret-key-
agreement protocol over a multiplex channel N , such that
Fðω

SK
⟶ ; γ

SK
⟶Þ ≥ 1 − ε, due to inequality (D11) and Theorem

1, it holds for any σ
SK
⟶ ∈ FSð∶SK⟶∶Þ: that

log2K ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ: ðD22Þ

Using the fact that [94]

Dε
hðωSK

⟶kσ
SK
⟶Þ≤ 1

1− ε

�
Dðω

SK
⟶kσ

SK
⟶ÞþhðεÞ

	
; ðD23Þ

where h is the binary entropy function, and that the bound

(D22) holds for arbitrary σ ∈ FSð∶SK⟶∶Þ, we obtain

log2K ≤
1

1 − ε
½EEð∶SK

⟶
∶Þω þ hðεÞ�: ðD24Þ

As the relative entropy of entanglement of a state is mono-
tonically nonincreasing under the action of LOCC channels
and vanishes for states that are fully separable, we can repeat
the argument in inequalities (D16)–(D20) and obtain

EEð∶SK
⟶

∶Þω ≤ nEp
EðN Þ ≤ nE∞

E ðN Þ; ðD25Þ

where the second inequality follows from Lemma 2. Taking
the limits ε → 0 and n → ∞, we obtain

P̂LOCCðN Þ ≤ E∞
E ðN Þ; ðD26Þ

showing the converse. As for the strong converse, we follow
the argument used in Ref. [49]: From inequalities (D22) and
(A8), we obtain

log2 K ≤ Ẽα;Eð∶SK
⟶

∶Þω þ α

α − 1
log2

�
1

1 − ε

�
; ðD27Þ

where α ∈ ð1;∞Þ and Ẽα;Eð∶SK
⟶

∶Þω is the sandwiched
Rényi relative entropy of entanglement of the state ω

SK
⟶ .

Rewriting inequality (D27), we obtain

ϵ ≥ 1 − 2
−nα−1α

�
log2K

n −1
nẼα;Eð∶SK

⟶
∶Þω

�
: ðD28Þ

Assuming that the rate log2K=n exceeds E∞
E ðN Þ,

by inequality (D25), it will be larger than

ð1=nÞEEð∶SK
⟶

∶Þω. Hence, there exists an α > 1, such that

ðlog2K=nÞ − ð1=nÞẼα;Eð∶SK
⟶

∶Þω > 0, and the error
increases to 1 exponentially. ▪

4. Proof of Theorem 5

Let N
A⃗0 B⃗→A⃗ C⃗

be a multipartite quantum channel that is
tele-covariant with respect to groups fGaga∈A and fGbgb∈B
as defined in Sec. V C. By definition, for all a ∈ A and
b ∈ B, we have

1

Ga

X
ga

Uga
A00
a
ðΦþ

A00
aLa

Þ ¼ 1A00
a

jA00
aj
⊗

1La

jLaj
; ðD29Þ

1

Gb

X
gb

Ugb
B0
b
ðΦþ

B0
bRb

Þ ¼ 1B0
b

jB0
bj
⊗

1Rb

jRbj
; ðD30Þ
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respectively, where A00
a ≃ La, B0

b ≃ Rb, and Φþ denotes an
EPR state. Note that in order for each fUga

A00
a
g and fUgb

B0
b
g to

be one-designs, it is necessary that jA00
aj2 ≤ Ga and jB0

bj2 ≤
Gb [153].
For every a ∈ A and every b ∈ B, we can now define

fEga
A00
aLa

gga and fEgb
B0
bRb

ggb , with respective elements

defined as

Ega
A00
aLa

≔
jA0

aj2
Ga

Uga
A00
a
Φþ

A00
aLa

ðUga
A00
a
Þ†; ðD31Þ

Egb
B0
bRb

≔
jBbj2
Gb

Ugb
B0
b
Φþ

B0
bRb

ðUgb
B0
b
Þ†; ðD32Þ

where A0
a ≃ A00

a and Bb ≃ B0
b. It follows from the fact that

jA0
aj2 ≤ Ga and jBbj2 ≤ Gb as well as Eqs. (D29) and (D30)

that fEga
A00
aLa

gga and fEgb
B0
bRb

ggb are valid POVMs for all a ∈
A and b ∈ B.
The simulation of the channelN

A⃗0 B⃗→A⃗ C⃗
via teleportation

begins with a state ρ
A⃗00 B⃗0 and a shared resource

θ
LA
⟶

R⃗ C⃗
¼ N

A⃗0 B⃗→A⃗ C⃗
ðΦþ

L⃗ R⃗ jA⃗0 B⃗
Þ. The desired outcome is for

the receivers to receive the state N ðρ
A⃗00 B⃗0 Þ and for the

protocol to work independently of the input state ρ
A⃗00 B⃗0 .

The first step is for senders Aa and Bb to locally perform
the measurement f⊗a∈AE

ga
A00
aLa

⊗⊗b∈BE
gb
B0
bRb

g
g⃗
and then

send the outcomes g⃗ to the receivers. Based on the outcomes

g⃗, the receivers Aa and Cc then perform Wg⃗
Aa

and Wg⃗
Cc
,

respectively. The following analysis demonstrates that this
protocol works by simplifying the form of the postmeasure-
ment state:

�Y
a∈A

Ga

Y
b∈B

Gb

�
Tr

A00L
⟶

B0R
⟶

��
⊗
a∈A

Ega
A00
aLa

⊗⊗
b∈B

Egb
B0
bRb

��
ρ
A⃗ B⃗0 ⊗ θ

LA
⟶

R⃗ C⃗

�	

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
Tr

A00L
⟶

B0R
⟶

nh
⊗
a∈A

Uga
A00
a
Φþ

A00
aLa

Uga
A00
a

† ⊗⊗
b∈B

Ugb
B0
b
Φþ

B0
bRb

Ugb
B0
b

†
	
ðρ

A⃗ B⃗0 ⊗ θ
LA
⟶

R⃗ C⃗

�o
ðD33Þ

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
hΦþj

A00⟶
B0⟶

jL⃗ R⃗

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�†
ρ
A⃗ B0⟶ ⊗ θ

LA
⟶

R⃗ C⃗

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�
jΦþi

A00⟶
B0⟶

jL⃗ R⃗
ðD34Þ

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
hΦþj

A00⟶
B⃗0 jL⃗ R⃗

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�†
ρ
A⃗ B0⟶

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�
⊗ θ

LA
⟶

R⃗ C⃗
jΦþi

A00⟶
B0⟶

jL⃗ R⃗
ðD35Þ

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
hΦþj

A00⟶
B0⟶

jL⃗ R⃗

h�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�†
ρL⃗ R⃗

�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�i�
θ
LA
⟶

R⃗ C⃗
jΦþi

A00⟶
B0⟶

jL⃗ R⃗
: ðD36Þ

The first three equalities follow by substitution and some rewriting. The fourth equality follows from the fact that

hΦjA0AMA0 ¼ hΦjA0AM
�
A ðD37Þ

for any operator M, where � denotes the complex conjugate, taken with respect to the basis in which jΦiA0A is defined.
Continuing, we have that

Eq: ðD36Þ ¼
�Y

a∈A




A0
a




Y
b∈B




Bb




�TrL⃗ R⃗

nh�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�†
ρL⃗ R⃗

�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�i�
N

A0⟶
B⃗→A⃗ C⃗

�
Φþ

L⃗ R⃗ jA0⟶
B⃗

�o
ðD38Þ

¼
�Y

a∈A




A0
a




Y
b∈B




Bb




�TrL⃗ R⃗

�
N

A⃗0 B⃗→A⃗ C⃗

��
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

�†
ρ
A⃗0 B⃗

�
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

�
Φþ

L⃗ R⃗ jA0⟶
B⃗

�	
ðD39Þ

¼ N
A0⟶

B⃗→A⃗ C⃗

��
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

�†
ρ
A0⟶

B⃗

�
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

��
ðD40Þ

¼
�
⊗
a∈A

Wg⃗
Aa

⊗⊗
c∈C

Wg⃗
Cc

�†
N

A0⟶
B⃗→A⃗ C⃗

�
ρ
A0⟶

B⃗

��
⊗
a∈A

Wg⃗
Aa

⊗⊗
c∈C

Wg⃗
Cc

�
: ðD41Þ

The first equality follows because jAjhΦjA0Að1A0 ⊗ MABÞjΦiA0A ¼ TrAfMABg for any operator MAB. The second equality
follows by applying the conjugate transpose of Eq. (D37). The final equality follows from the covariance property of the
channel.
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Thus, if the receivers finally perform the unitaries

⊗
a∈A

Wg⃗
Aa

⊗⊗
c∈C

Wg⃗
Cc

upon receiving g⃗ via a classical channel

from the senders, then the output of the protocol is
N

A⃗0 B⃗→A⃗ C⃗
ðρ

A⃗0 B⃗Þ, so this protocol simulates the action of
the multipartite channel N on the state ρ. ▪

5. Proof of Theorem 6

Before proving Theorem 6, we need the following
lemma, which generalizes Lemma 7 in Ref. [62]:
Lemma 4: Let T ¼ fUtw†ρ

SK
⟶Utw∶ρ

SK
⟶ ∈ BSð∶SK⟶∶Þg

be the set of twisted biseparable states. Then, for any
σ
SK
⟶ ∈ T , it holds that

DðΦK⃗jjσK⃗Þ ≥ logK: ðD42Þ
Proof.—Let σ

SK
⟶ ∈ T , i.e., σ

SK
⟶ ¼ Utw†ρ

SK
⟶Utw for some

twisting unitaryUtw and biseparable ρ
SK
⟶ . Here,Utw defines

a privacy testΠγ

SK
⟶ ¼ UtwðΦK⃗ ⊗ 1S⃗ÞUtw†. By Theorem 6, it

then holds that

Tr½ΦK⃗σK⃗� ¼ Tr½Πγ

SK
⟶ρ

SK
⟶ � ≤ 1

K
: ðD43Þ

By the concavity of the logarithm, it then holds that

DðΦK⃗jjσK⃗Þ ¼ −SðΦK⃗Þ − Tr½ΦK⃗ log σK⃗� ðD44Þ

≥ − log Tr½ΦK⃗σK⃗� ðD45Þ

≥ logK; ðD46Þ

finishing the proof. ▪
Now, we can follow Ref. [48] to prove Theorem 6:
Proof of Theorem 6.—Let ϵ > 0 and n ∈ N. We begin by

noting that in the case of teleportation-simulable
multiplex channels, LOCC assistance does not enhance
secret-key-agreement capacity, and the original protocol
can be reduced to a cppp-assisted secret-key-agreement
protocol [48]. Namely, in every round 1 ≤ i ≤ n, it
holds that

ρi¼LiðτiÞ¼Li(N
A0ði−1Þ���!

Bði−1Þ���!
→Aði−1Þ���!

Cði−1Þ���!ðρi−1Þ)

ðD47Þ

¼Li(T
A0ði−1ÞLA
������!

Bði−1ÞR
����!

C
⟶

→Aði−1Þ���!
Cði−1Þ���!ðθ

LA
⟶

R⃗C⃗
⊗ρi−1Þ);

ðD48Þ

where Li and T are LOCC. As the initial state ρ0 is
assumed to be fully separable, we find that the final state

ω
SK
⟶ ¼ ρn of an adaptive LOCC CKA protocol, involving

n uses of the teleportation-simulable multiplex channel
N

A⃗0 B⃗→A⃗ C⃗
, can be expressed as

ω
SK
⟶ ¼ L

LnAn���!
Rn�!

Cn�!
→SK

⟶ðθ⊗n

LA
⟶

R⃗ C⃗
Þ; ðD49Þ

where L is an LOCC operation with respect to the

partition ∶LnAn���!∶ Rn�!∶Cn�!∶. By assumption, it holds
that kω

SK
⟶ − γ

KS
⟶k1 ≤ ϵ for some m-partite private

state γ
KS
⟶ ¼ UtwðΦK⃗ ⊗ τS⃗ÞUtw†, where m is the number

of parties. Let σ̃
LnAn���!

Rn�!
Cn�! ∈ BSð∶LnAn���!∶ Rn�!∶Cn�!∶Þ.

Following the proof of Theorem 9 in Ref. [62],
we obtain

Dðθ⊗n

LA
⟶

R⃗ C⃗
jjσ̃Þ

≥ D(ω
SK
⟶ jjLðσ̃

LnAn���!
Rn�!

Cn�!Þ) ðD50Þ

¼D(Utw†ω
SK
⟶UtwjjUtw†Lðσ̃

LnAn���!
Rn�!

Cn�!ÞUtw) ðD51Þ

≥ inf
σ
SK
⟶∈T

DðTrS⃗½Utw†ω
SK
⟶Utw�jjσK⃗Þ ðD52Þ

≥ inf
σ
SK
⟶∈T

DðΦK⃗jjσK⃗Þ − 4mϵ logK − hðϵÞ ðD53Þ

≥ ð1 − 4mϵÞ logK − hðϵÞ; ðD54Þ

where, in the last two inequalities, we have used the
asymptotic continuity of the relative entropy and
Lemma 4, respectively. Letting n → ∞ and ϵ → 0, we
finish the proof. ▪

6. Proof of Theorem 7

As in the proof of Theorem 6, we have

ω
SK
⟶ ¼ L

LnAn���!
Rn�!

Cn�!
→SK

⟶ðθ⊗n

LA
⟶

R⃗ C⃗
Þ; ðD55Þ

where L is an LOCC operation with respect to the partition

∶LnAn���!∶ Rn�!∶Cn�!∶. Now, following the proof of Theorem 2,
we have that

Fðγ
SK
⟶ ;ω

SK
⟶Þ ≥ 1 − ε; ðD56Þ

for some private state γ; hence, there exists a projector
Πγ

SK
⟶ corresponding to a γ-privacy test such that (see

Proposition 1)

Tr½Πγ

SK
⟶ω

SK
⟶ � ≥ 1 − ε: ðD57Þ

On the other hand, from Theorem 1, we have
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Tr½Πγ

SK
⟶σ

SK
⟶ � ≤ 1

K
; ðD58Þ

for any σ ∈ FSð∶SK⟶∶Þ. Let us suppose a state

σ0
LA
⟶

R⃗ C⃗
∈ FSð∶LA⟶∶R⃗∶C⃗∶Þ, and let us define σ

SK
⟶ ¼

L
LnAn���!

Rn�!
Cn�!

→SK
⟶ðσ0⊗n

LA
⟶

R⃗ C⃗
Þ, which is in FSð∶SK⟶∶Þ.

Hence, for all α > 1, it holds that

log2K ≤ Dε
h

�
ω
SK
⟶

���σ
SK
⟶

�
ðD59Þ

≤ Dε
h

�
θ⊗n

LA
⟶

R⃗ C⃗

���σ0⊗n

LA
⟶

R⃗ C⃗

�
ðD60Þ

≤D̃α

�
θ⊗n

LA
⟶

R⃗C⃗

���σ0⊗n

LA
⟶

R⃗C⃗

�
þ α

α−1
log2

�
1

1−ϵ

�
ðD61Þ

¼nD̃α

�
θ
LA
⟶

R⃗C⃗

���σ0
LA
⟶

R⃗C⃗

�
þ α

α−1
log2

�
1

1−ϵ

�
:

ðD62Þ

The first inequality holds for any σ ∈ FSðSK
⟶

Þ. The second
inequality follows from the data-processing inequality. The
third inequality follows from Eq. (A8). The equality is due
to the additivity of D̃α [64]. As the above holds for any

σ0
LA
⟶

R⃗ C⃗
∈ FSð∶LA⟶∶R⃗∶C⃗∶Þ, we obtain Theorem 7.

APPENDIX E: REPEATER
AS A MULTIPARTITE CHANNEL

In order to provide bounds for more repeater protocols
that involve two-way communication between Alice and
Charlie or between Bob and Charlie before Charlie’s
measurement, we have to slightly generalize our results
in Sec. V. Namely, in addition to trusted parties
fXigMi¼1 ¼ fAaga ∪ fBbgb ∪ fCcgc, we can add a number
of cooperative but untrusted parties fX̃igM̃i¼1 ≔
fÃãgã∈Ã ∪ fB̃b̃∈B̃gb̃ ∪ fC̃c̃∈C̃gc̃. Let us denote the quan-
tum systems hold by respective untrusted parties aseA0

ã; L̃ã; Ãã; B̃b̃; R̃b̃; C̃c̃; P̃c̃ and redefine

A⃗0 ≔ fA0
aga∈A ∪ feA0

ãgã∈Ã; A⃗ ≔ fAaga∈A ∪ fÃãgã∈Ã;
L⃗ ≔ fLaga∈A ∪ fL̃ãgã∈Ã;
B⃗ ≔ fBbgb∈B ∪ fB̃b̃gb̃∈B̃; R⃗ ≔ fRbgb∈B ∪ fR̃b̃gb̃∈B̃;
C⃗ ≔ fCcgc∈C ∪ fC̃c̃gc̃∈C̃; P⃗ ≔ fPcgc∈B ∪ fP̃c̃gc̃∈C̃;

while keeping the old definitions for K⃗ and S⃗. We then
assume that we have a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
and

LOCC operations Li, for i ¼ 1;…; n, among trusted and

untrusted parties. However, we assume that as part of the
last round of LOCC, Lnþ1, all subsystems belonging to
untrusted parties are traced out, resulting in a state ω

SK
⟶

among the trusted parties only. It is now easy to show that
the proofs of Theorems 3 and 4 also go through in this
slightly generalized scenario. Namely, tracing out parties in
a fully separable state results in a fully separable state on
the remaining parties, and by the monotonicity of the
generalized divergences, inequalities (D16) and (D25) also
hold if we trace out the untrusted parties in order to obtain
ω. Note that the same does not hold true in the case of
Theorem 2, where we have the distance to the set of
biseparable states, which is not preserved under the
trace-out.
Returning to the quantum key repeater, we can now

identify Alice and Bob as two trusted parties and Charlie as
an untrusted party and define a multiplex channel as the
tensor product of the two channels from Alice to Charlie
and Bob to Charlie, namely,N repeater

AB→C ≔ N 1
A→CA

⊗ N 2
B→CB

,
with C ≔ CACB. We include the local state preparation by
Alice and Bob; the LOCC performed by Alice, Charlie, and
Bob during key distillation protocols; and Bob’s entangle-
ment-swapping measurement and subsequent classical
communication into the LOCC operations that interleave
the uses of N repeater

AB→C . Crucially, the final LOCC operation
has to include the trace-out of Charlie’s system, as he is an
untrusted party. Application of the generalized versions of
Theorem 3 or Theorem 4 then provides us with an
upper bound on the achievable key rate in terms of
minfEmax;EðN repeater

AB→C Þ; E∞
E ðN repeater

AB→C Þg. As has been shown
in Ref. [74], there are examples of channels acting on finite-
dimensional systems where the regularized relative entropy
of entanglement is strictly less than max-relative entropy of
entanglement, in which case, Theorem 4 provides tighter
bounds than the ones provided in Ref. [50]. For tele-
covariant channels, we can invoke Remark 5 and Theorem
5 to obtain bounds in terms of the relative entropy of
entanglement.
Let us now consider repeater chains with more than a

single repeater station. We assume a protocol where each
channel has to be used the same number of times to get the
desired fidelity. We consider Alice and Bob as trusted
parties and the repeater stations C1;…; Cl as coopera-
tive but untrusted parties. Defining a multiplex
channelN repeater chain

AC0
1
;…;C0

l→C1;…;ClB
≔ N 1

A→C1
⊗ N 2

C0
1
→C2

⊗ … ⊗

N l
C0
l−1→C0

l
⊗ N lþ1

C0
l→B and including entanglement purifica-

tion and swapping operations of all nesting levels into the
LOCC operations, we then apply Theorem 3 or Theorem 4
to bound the achievable key rate between Alice and Bob by
minfEmax;EðN repeater chainÞ; E∞

E ðN repeater chainÞg. If involved
channels are tele-covariant, then we obtain bounds in terms
of the relative entropy of entanglement.
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APPENDIX F: LIMITATIONS ON SOME
MDI-QKD PROTOTYPES

Following the discussion in Sec. VI D, let us now
consider MDI-QKD settings with the noise model for
transmission of qubit systems from both Aa1 and Aa2 to
Charlie through qubit channels given by either the depola-
rizing channel Dl

Ai→Ci
or the dephasing channel Ds

Ai→Ci
:

Dl
Ai→Ci

ðρAi
Þ ¼ λlρCi

þ 1 − λl
2

1Ci
; ðF1Þ

Ds
Ai→Ci

ðρAi
Þ ¼ λsρCi

þ ð1 − λsÞẐρCi
Ẑ†; ðF2Þ

where

−
1

3
≤ λl ≤ 1; 0 ≤ λs ≤ 1; ðF3Þ

Ẑ is a Pauli-Z operator, and ρ is an arbitrary input state.
Like the MDI-QKD setup with erasure channels discussed
earlier, we assume that Charlie can perform a perfect Bell
measurement MC⃗→X with probability q and failure prob-
ability 1 − q. We notice that the multiplex channels

NMDI;Dl

A⃗→Z⃗
;NMDI;Ds

A⃗→Z⃗
for these MDI-QKD prototypes are also

tele-covariant, which implies that the MDI-QKD capacities
for respective MDI-QKD settings, i.e., with depolarizing
channels and dephasing channels, are upper bounded
as (see following subsections for proofs and plots
(Figs. 7 and 8) for some values of q:
(1) MDI-QKDwith depolarizing channelsDl [Eq. (F2)],

where − 1
3
≤ λl ≤ 1,

P̃LOCCðNMDI;DlÞ ≤ q

�
1 − h2

�
3

4
λ2l þ

1

4

�	
ðF4Þ

for 1ffiffi
3

p < λl ≤ 1, and 0 otherwise.

(2) MDI-QKD with dephasing channels Ds [Eq. (F1)],
where 0 ≤ λs ≤ 1,

P̃LOCCðNMDI;DsÞ

≤

8>>><
>>>:

q(1 − h2ð12p−ðλsÞ) for λs > 3
4

0 for 1
4
≤ λs ≤ 3

4

q(1 − h2ð12p−ð1 − λsÞ) for λs < 1
4
;

ðF5Þ
where p−ðxÞ ≔ 4x2 − 3xþ 1.

1. MDI-QKD via depolarizing channels

In this section, we show a bound on MDI-QKD (or,
equivalently, on a particular type of quantum repeater). In the
latter setup, there are three stations: A,B, and an intermediate
one C≡ CACB. We consider the links ACA and CBB to be
depolarizing channels Ds, both with the same parameter λl
[see Eq. (F2)]. We also consider that the Bell measurement,
followed by communication of the results to both the parties,
happens only with probability q. With probability (1 − q),
the state of C is just traced out. We call the multiplex channel
for a given MDI-QKD setup composed of depolarizing
channels Dl with Bell measurement, which happens with
probability q in total, a q-depolarizing-MDIQKD channel.
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FIG. 7. Upper bounds [Eq. (F4)] on the secret key capacities for
the MDI-QKD protocol with depolarizing channels for different
values of parameters q and λl, in comparison to the RB
bound [48].
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FIG. 8. Upper bounds [Eq. (F5)] on the secret key capacities for
the MDI-QKD protocol with dephasing channels for different
values of parameters q and λs, in comparison to the RB
bound [48].
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The upper bound that we derive below quantitatively
demonstrates that the operation of distillation of entangle-
ment along the links does not commute with the operation of
entanglement swapping. Indeed, even for q ¼ 1, if one does
the Bell measurement first, the output key is zero for
λl ≤ ð1= ffiffiffi

3
p Þ.

We are interested in the Choi-Jamiolkowski state of the
q-depolarizing-MDIQKD channel, which we obtain from
the Choi states (up to local unitary as the input state is
Ψ−) of the two depolarizing channels. The latter
two states read λlΨ− þ ð1 − λlÞ 14. The Choi state ρoutAB
reads

ρoutAB ≔
λ2l q
4

½Ψ−
AB ⊗ j00ih00jIAIB þΨþ

AB ⊗ j11ih11jIAIB
þΦ−

AB ⊗ j22ih22jIAIB þΦþ
AB ⊗ j33ih33jIAIB �

⊗ j00ih00jI0AI0B

þ ð1 − λ2l Þq
1AB
4

⊗
1

4

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B

þ ð1 − qÞ 1AB
4

⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B : ðF6Þ

Let us examine this case. First, with probability (1 − q),
the parties are left with the initial state on AB, which is 1

4
,

and the “flag” j11ih11jI0AI0B reporting error in the Bell
measurement. With probability q, they obtain a flag
j00ih00jI0AI0B , which informs us that the Bell measurement
was successful. They also receive the classical result of the
Bell measurement: fjiiihiijIAIBg3i¼0. Only with probability
λ2l does this measurement result in the output of
the appropriate Bell state on AB. With probability
ð1 − λ2l Þ ¼ ð1 − λlÞλl þ λlð1 − λlÞ þ ð1 − λlÞ2, we have
one of three possibilities with respective probabilities:
(i) teleportation of 1CB

=2 from CA to A with probability
λlð1 − λlÞ, (ii) teleportation of 1CA

=2 from CB to B with
probability ð1 − λlÞλl, and (iii) a Bell measurement on
systems CACB of the state ð1ACA

=4Þ ⊗ ð1CBB=4Þ followed
by communication of the outcomes [with probability
ð1 − λlÞ2]. As one can check by inspection, all three
operations result in the state 1

4
on system AB.

The relative entropy of ρoutAB reads

ERðρoutABÞ ≤ qERðρoutABj00Þ þ ð1 − qÞERðρoutABj11Þ ðF7Þ

¼ qERðρoutABj00Þ; ðF8Þ

where ρoutABj11 ¼ ð1AB=4Þ ⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B and
ρoutABj00 is such that ð1 − qÞρABj11 þ qρABj00 ¼ ρAB. We
have used the convexity of the relative entropy and the

fact that it is zero for a maximally mixed state. We then
observe that

ERðρoutABj00Þ ¼ ER(
�X3

i¼0

λ2l jψ iihψ ijAB þ ð1 − λ2l Þ
1AB
4

�

⊗ jiiihiijIAIB ⊗ j00ih00jI0AI0B); ðF9Þ

where jψ iihψ ij are the Bell states. Next, we use the fact that
for each i, the state λ2l jψ iihψ ijAB þ ð1 − λ2l Þ 14 is a Bell
diagonal state. A Bell diagonal state of the formP

j pjjψ jihψ jj has ER equal to 1 − hðpmaxÞ, where pmax ¼
maxj pj is the maximal of the weights of the Bell state
jψ jihψ jj in the mixture, or 0 if pmax ≤ 1

2
. In our case,

pmax ¼ λ2l þ ð1 − λ2l Þ=4. Thus, via convexity and Eq. (F8),
we obtain that

ERðρoutABÞ ≤ q

�
1 − h2

�
λ2l þ

ð1 − λ2l Þ
4

�	
ðF10Þ

for λ2l þ ð1 − λ2l Þ=4 > 1=2, and 0 otherwise. The condition
λ2l þ ð1 − λ2l Þ=4 > 1=2 on λl is equivalent to λl > ð1= ffiffiffi

3
p Þ.

This implies that for q ¼ 1, the bound is zero for
λl ∈ ð1

3
; ð1= ffiffiffi

3
p Þ�, for which the depolarizing channel is

nonzero, and hence, its private capacity is nonzero as well.
We interpret this as the noncommutativity of the indepen-
dent and identically distributed (i.i.d.) Bell measurement
and entanglement distillation. Indeed, for this range of λl,
given access to an isotropic state ρðλlÞ, one can distill
ED(ρðλlÞ) ¼ (1 − h2ðλlÞ) of entanglement, and hence, the
quantum capacity QðDlÞ ¼ 1 − h2ðλlÞ (or zero for
λl ≤ 1=3). On the other hand, this amount of key becomes
inaccessible when the Bell measurement is done first.

2. MDI-QKD via dephasing channels

In this section, we consider two dephasing channels
[Eq. (F1)] between Alice and Charlie and Bob and
Charlie. We again observe that the operation of distil-
lation and i.i.d. entanglement swapping via the Bell
measurement do not commute. Altering them leads to
different amounts of key in the output. We use the fact
that MDI-QKD via the dephasing channel is teleportation
covariant.
Note that the Choi-Jamiolkowski state (up to local unitary

operations as the input state isΨ−) of the dephasing channel
equals λsΨ− þ ð1 − λsÞΨþ ¼ ð2λs − 1ÞΨ− þ ð2 − 2λsÞρcl,
with ρcl ¼ 1

2
ðj01ih01j þ j10ih10jÞ. Hence, the Choi-

Jamiolkowski state of the dephasing-MDIQKD channel
reads
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ρoutAB ≔ ð2λs − 1Þ2qΨ−
AB ⊗

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B
þ ð2 − 2λsÞð2λs − 1ÞqρABcl

⊗
1

4

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B

þ ð2 − 2λsÞq
1AB
4

⊗
1

4

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B

þ ð1 − qÞ 1AB
4

⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B ; ðF11Þ

given that Alice has performed the control-Pauli operations
on her systemsAIA. We can safely assume that this decoding
has been done because the local unitary operation does not
change the relative entropy of entanglement. The first case is
a straightforward result of correct entanglement swapping.
Regarding the next term, with probability ð2 − 2λsÞ×
ð2λs − 1Þ, a subsystem CA of the state ρcl gets correctly
teleported toA, and hence, finally, ρABcl is shared byAlice and
Bob. However, with probability ð2 − 2λsÞ ¼ ð2 − 2λsÞ2þ

ð2 − 2λsÞð2λs − 1Þ, the resulting state is maximally mixed
because, with probability ð2 − 2λsÞ2, the state on systemC is
traced out; hence, a product of subsystems of ρABcl is an
output. On the other hand, with probability ð2 − 2λsÞ×
ð2λs − 1Þ, subsystem CB of the state ρcl is teleported to
Bob; however, Bob does not do the decoding. It is then
straightforward to check that 1

4

P
1
i¼0 σ

B
i ⊗ 1AρABcl σ̂

B
i ⊗ 1A,

with σ̂i being Pauli operators, is themaximallymixed state of
two qubits.
The relative entropy of ρoutAB reads

ERðρoutABÞ ≤ qERðρoutABj00Þ þ ð1 − qÞERðρoutABj11Þ ðF12Þ

¼ qERðρoutABj00Þ; ðF13Þ

where ρoutABj11 ¼ ð1AB=4Þ ⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B and

ρoutABj00 is such that ð1 − qÞρABj11 þ qρABj00 ¼ ρAB. We have

again used the convexity of the relative entropy and the fact
that it is zero for a maximally mixed state. We then
observe that

ERðρoutABj00Þ ¼ ER(ð2λs − 1Þ2jΨ−ihΨ−jAB þ ð2 − 2λsÞð2λs − 1ÞρABcl þ ð2 − 2λsÞ
1AB
4 ); ðF14Þ

where we have neglected systems IAIB and I0AI
0
B due to

subadditivity of ER and the fact that it is zero for both the
states

P
3
i¼0 jiiihiijIAIB and j00ih00jI0AI0B . The resulting state is

Bell diagonal [note that ρABcl ¼ 1
2
ðjΨ−ihΨ−j þ jΨþihΨþjÞ];

it is thus sufficient to find the largest weight of a Bell state to
compute its relative entropy. Bell diagonal states are sepa-
rable if the largest weight is less than or equal to half, i.e.,
when none of the Bell states (Φþ;Φ−;Ψþ;Ψ−) has weight
greater than 1=2.
For the case λs ≥ 1

2
, the state jΨ−ihΨ−j is in the mixed

state ρoutABj00 with probability ð2λs−1Þ2þð2−2λsÞð2λs−1Þþ
ð2−2λsÞ=4¼1

2
ð4λ2s−3λsþ1Þ.

Thus, keeping the structure of the Choi state of the
dephasing channel inmind,we arrive at the following bound:

ERðρoutABÞ ≤

8>>><
>>>:

q(1 − h2ð12p−ðλsÞ) for λs > 3
4

0 for 1
4
≤ λs ≤ 3

4

q(1 − h2ð12p−ð1 − λsÞ) for λs <
1
4
;

ðF15Þ

where p−ðxÞ ≔ 4x2 − 3xþ 1.

APPENDIX G: COMPLEXITY OF FINDING
LOWER BOUNDS OF THE SKA RATE FOR THE

BIDIRECTIONAL NETWORK

Here, we briefly comment on the complexity of finding a
subgraph, which allows us to realize the conference key
agreement with the capacity indicated by the inequality
(75). As we show, the complexity is a polynomial of low
degreeOðn2Þ. In what follows, a minimum spanning tree is
a tree with a minimal sum of the weights of its edges. A
minimum bottleneck spanning tree is the one in which the
edge with the highest weight has the lowest possible value
for the considered graph.
The algorithm of finding the maximal of the minimal

edges over all spanning trees of the graph is as follows.
(1) Find the maximal weight of the edges of G (denoted

as M).
(2) Find the minimum spanning tree TMST in the graph

G0 ¼ ðVG; EGÞ, which is the same as G but with the
weights of the edges changed from wðeÞ to
M − wðeÞ, where M ≡maxe0∈EG

wðe0Þ.
(3) Find the minimal weight of the edges in T, denoted

wmin. Return M − wmin.
The correctness of this algorithm follows from the fact that

every minimum spanning tree is a minimal bottleneck
spanning tree. Finding the highest weight of the edges of
this tree that is as low as possible is the opposite task from
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ours. Indeed, we aim at finding trees with the lowest
weight over its edges to be as high as possible, which is
why we search for the minimal spanning tree in the graph
with converted edges toM≡maxe0∈EG

wðe0Þ − wðeÞ. Next,
we use the fact that minT⊆Gmaxe∈ET

½M − wðeÞ� ¼
M −maxT⊆G mine∈ET

wðeÞ, so M − wmin is the solution.
The overall time complexity of this algorithm is
Oðmþ n log nÞ. Indeed, the first step takes OðmÞ time.
The next two take Oðmþ n lognÞ, where finding the
minimum spanning tree is via Prim’s algorithm based on
the data structure called the Fibonacci heap [117]. The final
step takes Oðn log nÞ, which is the time for sorting the
weights of edges (e.g., by the QuickSort algorithm). Taking
into account that m scales pessimistically as n2, we obtain
Oðn2Þ as the worst-case complexity.
To summarize, the value of the lower bound can be found

efficiently on a classical computer, given that all the
capacities describing the bidirectional network are known
and represented in the form of a graph.

APPENDIX H: KEY DISTILLATION FROM
STATES—PLOTS

To calculate our upper bounds, we utilize the technique
of semidefinite programming (SDP) with MATLAB (version)
library “SDPT3 4.0” [154], see Ref. [134]. We calculate
upper bounds for several cases, incorporating both ΦGHZ

M
states andΦW

M states. First, we vary the number of copies of
the state that enter the protocol; second, we make calcu-
lations for multipartite states with the number of parties
exceeding three. Finally, we extend our consideration to
states subjected to dephasing or depolarizing noises char-
acterized in Eq. (H1) (each qubit is subjected to noise
separately). We investigate the effect of noise in the case of
a different number of copies and different number of
parties:

ρnoisy ¼ D⊗MðρÞ; ðH1Þ

for D given by

Dq
dephðωÞ ¼ qωþ ð1 − qÞσzωσz; ðH2Þ

Dq
depolðωÞ ¼ qωþ ð1 − qÞ 1

2
; ðH3Þ

where σz is the Pauli Z matrix and q is the noise parameter.
We present the plots for the upper bound on the key rate

distilled from both ΦGHZ
M and ΦW

M states and tensor powers
of them. The plots are a function of the ε parameter
controlling the fidelity of the target state ρA⃗ with respect
to a private state.
We compare the performance of our upper bound and

choice of biseparable states for a tripartite single copy state
in Figs. 9 and 10. In the control plot in Fig. 9, for the

noiseless ΦGHZ
M state, the upper bound, as expected,

exhibits the value to be just above 1 for the chosen range
of ε, which indicates that the ε-hypothesis-testing upper
bound is not too loose. For the single copy tripartite ΦW

M
state, the value of the upper bound in Fig. 10 for ε ≈ 0 is
below 0.6, which is below the value of the rate of the
optimal LOCC asymptotic protocol, approximately
0.643 per copy [80]. In the case of two copies of bipartite
ΦW

M in Fig. 11, we obtain an upper bound that for ε ≈ 0 has
a value of around 1.18, which is significantly above the 2

3

achieved by the protocol described earlier in this Appendix,
and 1.286, which is an asymptotic limit for the state being
two copies of the ΦW

M state (Theorem 2 in Ref. [80]). Both
of these results are in agreement with the fact that single-
copy and two-copy one-shot protocols constitute a very
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FIG. 9. Plot of ε-hypothesis-testing upper bound on conference
key rate for a single copy of the ΦGHZ

3 state, for noiseless,
dephased, and depolarized cases.
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FIG. 10. Plot of ε-hypothesis-testing upper bound on the
conference key rate for a single copy of the ΦW

3 state, for
noiseless, dephased, and depolarized cases.
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limited class of protocols compared to those available for
calculating the asymptotic limit. For two copies of the ΦW

M
state, the large gap between our upper bound for the
conference key rate and the rate of the ΦGHZ

M state
distillation protocol makes us think that, indeed, the former
is larger than the latter. However, a formal proof is still
missing. Moreover, we notice that the optimal protocol ΦW

M
to ΦGHZ

M conversion has to incorporate at least three copies
of the ΦW

M state because our ε-hypothesis-testing upper
bound is smaller than the asymptotic limit for ΦGHZ

M
distillation.
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We provide several general upper bounds on the rate of a key secure against a quantum adversary in
the device-independent conference key agreement (DI-CKA) scenario. They include bounds by reduced
entanglement measures and those based on multipartite secrecy monotones such as a multipartite squashed
entanglement-based measure, which we refer to as reduced c-squashed entanglement. We compare the
latter bound with the known lower bound for the protocol of conference key distillation based on the
parity Clauser-Horne-Shimony-Holt game. We also show that the gap between the DI-CKA rate and the
device-dependent rate is inherited from the bipartite gap between device-independent and device-dependent key
rates, giving examples that exhibit the strict gap.

DOI: 10.1103/PhysRevA.105.022604

I. INTRODUCTION

Building a quantum secure internet is one of the most im-
portant challenges in the field of quantum technologies [1,2].
It would ensure worldwide information-theoretically secure
communication. The idea of quantum repeaters [3–5] gives
hope that this dream will come true. However, the level of
quantum security proposed originally in a seminal article by
Bennett and Brassard [6] seems to be insufficient due to the
fact that on the way between an honest manufacturer and
an honest user, an active hacker can change with the inner
workings of a quantum device, making it totally insecure [7].
Indeed, the hardware Trojan-horse attacks on random number
generators are known [8], and the active hacking on quantum
devices became a standard testing approach since the seminal
attack by Makarov [9]. The idea of device-independent (DI)
security overcomes this obstacle [7,10] (see also [11] and
references therein). Although difficult to be done in practice,
it has been demonstrated quite recently in several recent ex-
periments [12–14].

In parallel, the study of the limitations of this approach
in terms of upper bounds on the distillable key has been put
forward [15–18]. However, these approaches focus on point-
to-point quantum device-independent secure communication.
In this paper we introduce the upper bounds on the perfor-
mance of the device-independent conference key agreement
(DI-CKA) [19,20]. The task of the conference agreement is
to distribute to N > 2 honest parties the same secure key for
one-time-pad encryption. A protocol achieving this task in a
device-independent manner has been shown in Ref. [20]. We

set an upper bound on the performance of such protocols in a
network setting.

We focus on physical behaviors with N users (for arbi-
trary N > 2), where each user is both the sender and receiver
of the behavior treated as a black box. This situation is
a special case of a network describable with a multiplex
quantum channel where inputs and outputs are classical with
quantum phenomena going inside the physical behavior [21].
All N trusted parties have the role of both the sender to
and receiver from the channel and their goal is to obtain a
secret key in a device-independent way against a quantum
adversary. Aiming at upper bounds on the device-independent
key, we narrow the consideration to the independent and iden-
tically distributed case. In this scenario, the honest parties
share n identical devices. All the N parties set (classical)
inputs x = (x1, . . . , xN ) to each of the n shared devices P(a|x)
and receive (classical) outputs a = (a1, . . . , aN ) from each of
them. We restrict our consideration to quantum devices. Such
devices are realized by certain measurements M ≡ ⊗N

i=1Mxi
ai

on quantum states ρA1,...,AN ≡ ρN (A). We define these devices
(ρN (A),M) = Tr[ρN (A) ⊗N

i=1 Mxi
ai

].
In this work we provide upper bounds on the device-

independent conference key distillation rates for arbitrary
multipartite states. As the first main result, we introduce a
multipartite generalization of the cc-squashed entanglement
provided in Ref. [22] and developed in Ref. [18]. With a little
abuse of notation with respect to that used in Refs. [16,18], for
the sake of the reader, we will omit the fact that the measure
is multipartite as well as reduce the abbreviation cc in its
name and here call it just reduced c-squashed entanglement,
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FIG. 1. Depiction of a construction of a tripartite state ρA(B1B2 )C

with a gap KDI(ρA(B1B2 )C ) < KDD(ρA(B1B2 )C ) from a state ρAB1 (blue
dotted line) satisfying K↓(ρAB1 ) < KDD(ρAB1 ) (provided in Ref. [16])
and any state ρB2C (green solid line) satisfying KDD(ρB2C ) �
KDD(ρAB1 ), e.g., the singlet state.

denoting it by Ec
sq,dev. We show that Ec

sq,dev upper bounds the
device-independent key rate in the independent and identi-
cally distributed setting, achieved by protocols which use a
single input to generate the key x̂, denoted by K iid,x̂

DI,dev. The
subscript dev in the notation refers to the fact that the adver-
sary has to mimic the statistics of the honestly implemented
device. We then generalize this to the case when only some
parameters of the device have to be reproduced by the attack
and refer to quantities with the subscript par. Typical param-
eters are the level of violation of a Bell inequality and the
quantum bit error rate. In the above finding, we use the notion
of multipartite squashed entanglement given in Ref. [23] as
well as the dual one also studied in Ref. [24]. Therein, the
abbreviation c stands for classical, as the systems of the honest
parties are classical due to the measurement accordingly to the
definition. The bound reads

K iid,x̂
DI,dev(ρN (A),M) � Ec

sq,dev(ρN (A),M)

≡ inf
(σ,N )=(ρN (A),M)

1

N − 1
I (A1 : . . . : AN ↓ E )N (x̂)⊗1σ . (1)

In the above ↓ denotes the action of any channel trans-
forming E to some system E ′ and I (A1 : . . . : AN |E )σ =∑N

i=1 S(Ai|E )σ − S(A1, . . . , AN |E )σ , with S(X |Y )σ the con-
ditional von Neumann entropy of the state σX,Y . The quantity
I (A1 : . . . : AN |E ′) (after the action of the channel on E )
is evaluated on the classical-quantum state emerging from
the measurement Nx̂

a corresponding to input x̂ of the device
(σ,N ), on systems A1, . . . , AN . Let us note here that, due to
the findings of Ref. [18], for N = 2 and the case when the
system E ′, as the output of a channel, is classical, the above
bound is equal to the intrinsic information given in Ref. [17]
for the case of a single measurement generating the key.

Our technique is based on the approach of Ref. [25],
where the upper bounds on a key distillable against a
quantum adversary via local operations and public communi-
cation (LOPC) were studied. To achieve this, we generalize
the upper bound via (quantum) intrinsic information to the
case in which the adversary’s system can be of infinite di-
mension. This technical contribution is necessary, as in the
case of a device-independent attack, the dimension of the
attacking state can be infinite. Indeed, while measurements x
produce from the attacking state σ finite-dimensional results
a yielding a quantum behavior P(a|x) = Tr[σMx

a], the system

FIG. 2. Plot of upper and lower bounds on the DI-CKA of
Ref. [20]. The yellow dashed line represents an upper bound (not
optimized) on the upper bound 1

N−1 I (N (A) ↓ E ) from Eq. (40) with
the attack strategy in Eq. (68). The green dotted line represents an
upper bound (not optimized) on DN (N (A) ↓ E ) from Corollary 3.
The red dash-dotted curve is the trivial upper bound obtained in
Corollary 6 via the relative entropy of entanglement bound (1 − ν).
The blue solid line represents the lower bound from Ref. [20].

of the adversary, which may hold purification of the state σ ,
can still be of infinite dimension.1

We then compare the obtained upper bounds with the lower
bound on the DI-CKA provided in Ref. [20] (see Fig. 2). We
obtain the plots by considering simplification of the reduced
c-squashed entanglement and its dual measure. Namely, the
extension to the adversarial system of the state attacking the
honest parties device is classical, i.e., diagonal in the computa-
tional basis. For that reason, the bound which we use is in fact
a secrecy monotone, called (multipartite) intrinsic information
[26], and its dual.

As the second main result, we show how to construct
multipartite states with a strict gap between the rate of the
quantum device-independent conference key rates KDI and
quantum device-dependent conference key rates KDD. As a
proxy, we use a bipartite state that satisfies KDD > K↓, where
K↓ is the reduced distillable key introduced in Ref. [16]. The
reduced distillable key of ρN (A) is the maximum value of the
choice of measurements M of the distillable key of the adver-
sarial state σ minimized over the choices of the state σ and
measurements N so that the device (σ,N ) ≡ Tr[σ ⊗N

i=1 Nxi
ai

]
is equal to the honestly implemented device (ρ,M). The
mentioned gap between KDI and KDD means that also in a
multipartite case for some states ρA1,...,AN (and any N > 2),
there is neither a Bell-like inequality that can be used for
testing nor a distillation protocol based on LOPC that can
achieve KDI(ρA1,...,AN ) = KDD(ρA1,...,AN ). See Fig. 1.

Finally, we discuss the issue of genuine nonlocality [11]
and genuine entanglement in the context of the DI-CKA
[27]. As the third main result, we provide a nontrivial bound

1In that we have filled in the gap in the proofs of Corollaries 3 and
4 of Ref. [18], where implicit assumption of the adversary holding
finite-dimensional state has been made.
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on the device-independent key achievable in a parallel mea-
surement scenario, when all the parties set all values of the
inputs xi in parallel. Furthermore, generalizing reduced bi-
partite entanglement measures in Ref. [18] to multipartite
entanglement measures, we show that the reduced regularized
relative entropy of genuine entanglement [21] upper bounds
the DI-CKA rate of multipartite quantum states. We further
focus on the performance of protocols using a single input for
key generation, as using such protocols is standard practice
(see, e.g., [28]).

The remainder of this paper is organized as follows.
Section II is devoted to basic facts and provides bounds on
the DI conference key via entanglement measures. In Sec. III,
we develop an upper bound on the DI-CKA via reduced
c-squashed entanglement. In Sec. IV, we develop an upper
bound via a dual version of reduced c-squashed entanglement.
In Sec. V, we provide particular examples for the performance
of upper bounds considered in the paper. In Sec. VI, we
provide examples of multipartite states which exhibit a funda-
mental gap between the device-dependent and -independent
secure key rates. Section VII discusses the connection be-
tween genuine nonlocality, entanglement, and DI-CKA. We
conclude in Sec. VIII with a summary and some directions for
future study.

II. BOUNDS ON DEVICE-INDEPENDENT KEY
DISTILLATION RATE OF STATES

In this section, we introduce the scenario of device-
independent conference key distillation from n identical
devices, each shared by N honest users. We then introduce
definitions and facts used in subsequent sections.

Consider a setup wherein N multiple trusted spatially sepa-
rated users (allies) have to extract a secret key, i.e., conference
key, against the quantum adversary. Since we aim at upper
bounds on the device-independent conference key, we assume
that the parties share n identical devices. The device has its
honest implementation, which is reflected by the state and
measurement, denoted by (ρ,M), that were intended to be
delivered by a provider. The adversary may replace this honest
implementation with a different device (σ,N ), however, such
that it yields the same input-output statistics as the honest one.
Typically, the statistics tested by the allies are the level of vio-
lation of some Bell inequality and the quantum bit error rate,
i.e., the probability that the outputs of the honest parties are
not equal to each other given the raw key has been generated.
In some cases, we will also consider the full statistics reflected
by the pair (ρ,M). We note here that the state σ can be finite
or infinite dimensional, as we do not restrict the strategies of
the adversary in that respect.

The honest device is given by M ≡ {Mx1
a1

⊗
Mx2

a2
⊗ . . . ⊗ MxN

aN
}a|x, where x := (x1, x2, . . . , xN ) and

a := (a1, a2, . . . , aN ) for some N ∈ N. For each
i ∈ [N] := {1, 2, . . . , N}, the set {ai} denotes the finite
set of measurement outcomes for measurement choices xi.
The measurement outcomes, i.e., outputs of the device, are
secure from the adversary and assumed to be in the possession
of the receivers (allies). The joint probability distribution is

given as

p(a|x) = Tr
[
Mx1

a1
⊗ Mx2

a2
⊗ . . . ⊗ MxN

aN
ρA1A2···AN

]
(2)

for measurement M on N-partite state ρN (A) defined on
the separable Hilbert space HA1 ⊗ HA2 ⊗ . . . ⊗ HAN ;
in what follows we will use N (A) ≡ A1 . . . AN for
the ease of notation. The tuple {ρ, M}, where M :=
({Mx1

a1
}x1 , {Mx2

a2
}x2 , . . . , {MxN

aN
}xN ), is called the quantum

strategy of the distribution. The number of inputs {xi} and
corresponding possible outputs {ai} of the local measurement
at Ai are arbitrarily finite in general. We denote the identity
superoperator by id and the identity operator by 1.

Let ω(ρ,M) denote the violation of the given multipar-
tite Bell-type inequality B by state ρ when the measurement
settings are given by M. We note that by multipartite Bell-
type inequality we mean any inequality derived using locally
realistic hidden variable (LRHV) theories (see, e.g., [29–37])
such that any violation of a given inequality by a density
operator implies the nonexistence of an LRHV model for
the device represented by this state and some measurements.
There are families of Bell-type inequalities directly based on
the joint probability distribution of local measurements that
get violated by all pure multipartite (genuinely) entangled
states [35,36]. On the other hand, there are Bell-type inequal-
ities based on correlation functions of local measurements for
which some families of pure multipartite (genuinely) entan-
gled states satisfy the inequalities [38].

Let Perr(ρ,M) denote the expected quantum bit error rate
(QBER). Both the Bell violation and the QBER are functions
of the probability distribution of the behavior. In addition,
�GHZ

�N := |�GHZ
�N 〉〈�GHZ

�N | defines the N-partite Greenberger-
Horne-Zeilinger (GHZ)w state.

∣∣�GHZ
�N

〉 = 1√
d

d−1∑
i=0

|i〉A1 ⊗ |i〉A2 ⊗ . . . ⊗ |i〉AN (3)

for d = mini dim(HAi ). For N = 2, �GHZ
�2 is a maximally en-

tangled (Bell) state ��2.
If {p(a|x)}a|x obtained from (ρ,M) and another pair of

states and measurements (σ,N ) are the same, we write
(σ,N ) = (ρ,M). In most DI-CKA protocols, instead of
using the statistics of the full correlation, we use the
Bell violation and the QBER to test the level of secu-
rity of the observed statistics. In this way, for practical
reasons, the protocols coarse grain the statistics and we
only use partial information of the full statistics to extract
the device-independent key. In this context, the notation
(σ,N ) = (ρ,M) also implies that ω(σ,N ) = ω(ρ,M) and
Perr(σ,N ) = Perr(ρ,M). When conditional probabilities as-
sociated with (ρ,M) and (σ,N ) are ε-close to each other,
then we write (ρ,M) ≈ε (σ,N ). For our purpose, it suffices
to consider the distance

d (p, p′) = sup
x

‖p(·|x) − p′(·|x)‖1 � ε. (4)

The device-independent distillable key rate of a device is
informally defined as the supremum of the finite key rates
κ achievable by the best protocol on any device compatible
with (ρ,M), within an appropriate asymptotic block length
limit and security parameter. Another approach taken is to
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minimize the key rate of the statistics compatible with the Bell
parameter and a QBER (see, e.g., [22]). For our purpose, we
constrain ourselves to the situation when the compatible de-
vices are supposedly independent and identically distributed.
This constraint is because, as noted in Ref. [16], the upper
bound on the key in the independent and identically dis-
tributed scenario is automatically the upper bound on the
device-independent conference key in the general scenario
since the independent and identically distributed attack is just
one of the possible attacks in the general device-independent
scenario.

An ideal conference key state τ (K ), with log2 K
secret key bits for N allies, is

τ
(K )
N (A)E := 1

K

K−1∑
k=0

|k〉〈k|A1 ⊗ |k〉〈k|A2 ⊗ · · · ⊗ |k〉〈k|AN ⊗ σE ,

(5)

where σE is a state of the only system E accessible to an
adversary, i.e., the adversary is uncorrelated with trusted users
and gets no information about their secret bits. Consider the
relations

(ρ,M) ≈ε (σ,N ), (6)

ω(ρ,M) ≈ε ω(σ,N ), (7)

Perr(ρ,M) ≈ε Perr(σ,M), (8)

where Eq. (6) implies Eqs. (7) and (8). Formally, the definition
of device-independent quantum key distillation rate in the
independent and identically distributed scenario is given as
follows.

Definition 1 (cf. [16]). The maximum device-independent
quantum key distillation rate of a device (ρ,M) with inde-
pendent and identically distributed behavior is defined as

K iid
DI,dev(ρ,M) := inf

ε>0
lim sup

n→∞
sup
P̂

inf
(6)

κε
n (P̂ ((σ,N )⊗n)), (9)

where κε
n is the quantum key rate achieved for any security

parameter ε, block length or number of copies n, and measure-
ments N . Here P̂ is a protocol composed of classical local
operations and public (classical) communication (CLOPC)
acting on n identical copies of (σ,N ) which, composed with
the measurement, results in a quantum local operations and
public (classical) communication (QLOPC) protocol.

The following lemma follows from the definition of K iid
DI

(generalizing statements from bipartite DI quantum key dis-
tillation in Refs. [16,18] to the DI-CKA).

Lemma 1. The maximum device-independent quantum key
distillation rate K iid

DI of a device (ρ,M) is equal to the max-
imum device-independent quantum key distillation rate of a
device (σ,N ) when (ρ,M) = (σ,N ):

(ρ,M) = (σ,N ) ⇒ K iid
DI,dev(ρ,M) = K iid

DI,dev(σ,N ). (10)

The maximal DI-CKA rate KDI,dev(ρ,M) for the device
(ρ,M) is upper bounded by the maximal device-dependent
conference key agreement (DD-CKA) rate KDD(σ ) for all
(σ,N ) such that (σ,N ) = (ρ,M) (cf. [16]), i.e.,

KDI,dev(ρ,M) � inf
(σ,N )=(ρ,M)

KDD(σ ). (11)

The device-dependent quantum key distillation rate
KDD(ρ) (cf. [25]) is the maximum secret key (against
quantum eavesdropper) that can be distilled between allies
using local operations and classical communication (LOCC)
(see, e.g., [21]),

KDD(ρ) := inf
ε>0

lim
n→∞ sup

�∈QLOPC

{
log2 dn

n

∣∣∣∣�(ρ⊗n) ≈ε τ (dn )

}
,

(12)

where ρ ≈ε σ ⇐⇒ 1
2‖ρ − σ‖1 � ε.

Corollary 1. For entanglement measures Ent which upper
bound the maximum device-dependent key distillation rate,
i.e., KDD(ρ) � Ent(ρ) for a density operator ρ, we have

KDI,dev(ρ,M) � inf
(σ,N )=(ρ,M)

KDD(σ ) (13)

� inf
(σ,N )=(ρ,M)

Ent(σ ). (14)

Remark 1. We do not make any assumption about the
dimension of the Hilbert space on which the state σ

(Definitions 1–3) is defined as the systems can be finite di-
mensional or infinite dimensional. We only assume that the
systems Ai accessible by the allies for key distillation upon
measurement are finite dimensional in an honest setting. The
systems E accessible to an adversary can be finite dimensional
or infinite dimensional, depending on the cheating strategy
(see Lemma 7, Appendix B).

As discussed above, a large class of device-independent
quantum key distillation protocols relies on the Bell violation
and the QBER of the device p(a|x). For such protocols, we
can define the device-independent key distillation protocol as
follows.

Definition 2 (cf. [22]). The maximal device-independent
quantum key distillation rate of a device (ρ,M) with inde-
pendent and identically distributed behavior, Bell violation
ω(ρ,M), and QBER Perr(ρ,M) is defined as

K iid
DI,par(ρ,M) := inf

ε>0
lim sup

n→∞
sup
P̂

inf
(7),(8)

κε
n (P̂ ((σ,N )⊗n)).

(15)

Remark 2. As Eq. (6) implies Eqs. (7) and (8), it follows
from the definitions of K iid

DI (ρ,M) and K iid
DI,par(ρ,M) that

K iid
DI,par(ρ,M) � K iid

DI,dev(ρ,M).
Definition 3. The maximum device-independent quantum

key distillation rate K iid
DI of a bipartite state ρAB is given by

K iid
DI,dev(par)(ρ) = sup

M
K iid

DI,dev(par)(ρ,M). (16)

Remark 3 (cf. [11]). We note that there may exist states ρ

for which K iid
DI (ρ) = 0 but K iid

DI (ρ⊗k ) > 0 for some k ∈ N.

III. REDUCED C-SQUASHED ENTANGLEMENT BOUND

In this section we generalize the notion of the cc-squashed
entanglement [18,22] to the multipartite form. Next we prove
that the properly scaled reduced c-squashed entanglement
serves as an upper bound on the device-dependent conference
key of the classical-quantum state. Furthermore, via Lemma
2 and Proposition 1 we prove that the reduced c-squashed
entanglement is convex. This result may be further applied
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to generate numeric upper bounds with the convexification
technique [18,39]. Then we prove the main result of this
section. Namely, we prove that the independent and identi-
cally distributed quantum device-independent conference key
is upper bounded by the reduced c-squashed entanglement.
Finally, we show that similar results hold when the honest par-
ties broadcast the inputs to their devices so that the adversary
can learn them.

In what follows, we first prove that the “measured” ver-
sion of the multipartite squashed entanglement Eq

sq defined in
Ref. [23], if properly scaled, upper bounds the conference key
secure against the quantum adversary. Let us first recall facts
and definitions. The multipartite conditional mutual informa-
tion of a state ρA1,...,AN E reads [40]

I (A1 : . . . : AN |E )ρ =
N∑

i=1

S(Ai|E )ρ − S(A1, . . . , AN |E )ρ.

(17)

Here, the conditional entropy S(Ai|E )ρ = S(AiE )ρ − S(E )ρ ,
with S(AB) := Tr[ρAB log2 ρAB] and S(A) := Tr[ρA log2 ρA]
being von Neumann entropies. The von Neumann entropy
reduces to the Shannon entropy H(X) for classical register X ,
H (X ) = ∑

x p(x) log2 p(x), where {p(x)}x is the probability
distribution associated with the random variable X . It will be
crucial to note that the following identity holds [23]:

I (A1 : . . . : AN |E )ρ

= I (A1 : A2|E )ρ + I (A3 : A1A2|E )ρ

+ I (A4 : A1A2A3|E )ρ + · · · + I (AN : A1 · · · AN−1|E )ρ.
(18)

Here I (A : B|C)ρ = S(AC)ρ + S(BC)ρ − S(C)ρ − S(ABC)ρ
is the conditional mutual information.

Remark 4. Let � be any permutation of indices 1, . . . , N .
Then

I (A1 : . . . : AN |E )ρ

= I (A�(1) : . . . : A�(N )|E )ρ

= I (A�(1) : A�(2)|E )ρ + I (A�(3) : A�(1)A�(2)|E )ρ

+ I (A�(4) : A�(1)A�(2)A�(3)|E )ρ

+ . . . + I (A�(N ) : A�(1) . . . A�(N−1)|E )ρ. (19)

Further, the multipartite squashed entanglement of a quan-
tum state ρA1,...,AN is defined as follows (Definition 3 of
Ref. [23]).

Definition 4 (from [23]). For an N-partite state ρA1,...,AN ,

Eq
sq(ρA1,...,AN ) := inf

σ
I (A1 : A2 :, . . . , : AN |E )σ , (20)

where the infimum is taken over states σA1,...,AN E that are
extensions of ρA1,...,AN , i.e., TrE [σA1,...,AN E ] = ρA1,...,AN .

We will need to generalize the notion of the cc-squashed
entanglement [18,22] to the multipartite form.

Definition 5. A reduced c-squashed entanglement of a state
ρA1,...,AN is defined as

Ec
sq(ρ, M) := inf

�: E→E ′
I (A1 : . . . : AN |E ′)MN (A)⊗�ψ

ρ
N (A)E

, (21)

where MN (A) is an N-tuple of positive-operator-valued mea-
sures (POVMs) MA1 , . . . , MAN and state |ψρ

N (A)E 〉 is a purifica-
tion of ρN (A).

The first theorem comes with the following fact, which is
a multipartite generalization of Theorem 5 from Ref. [18],
where N = 2. Namely, the device-dependent conference key
of the classical-quantum state is upper bounded by the
properly scaled reduced c-squashed entanglement. We are
ready to state a theorem that shows that the c-squashed
entanglement, when properly scaled, upper bounds the
device-dependent key.

Theorem 1. For an N-partite state ρN (A), its purification ψρ ,
and an N-tuple of POVMs MN (A), there is

KDD(MN (A) ⊗ idE ψρ ) � 1

N − 1
Ec

sq(ρN (A), MN (A) ). (22)

Proof. We closely follow the proof of Theorem 3.5 of
Ref. [25], however, based not on Theorem 3.1 of Ref. [25], but
its generalization to the case where system E need not be finite
(see Lemma 7, Appendix B). Namely, any function which sat-
isfies (i) monotonicity under LOPC, (ii) asymptotic continuity,
(iii) normalization, and (iv) subadditivity is, after regulariza-
tion, an upper bound on the distillable key secure against the
quantum adversary (KDD).

We first show the monotonicity. The LOPC consist of lo-
cal operation and public communication. A local operation
consists of adding a local ancilla, performing a unitary trans-
formation, and a partial trace. It is easy to see that adding
a local ancilla at one system does not alter this quantity.
The same holds for the unitary transformation. The partial
trace does not increase it as it can be rewritten in terms of
the conditional mutual information terms as in Eq. (18). Then
the same argument as in the proof of Theorem 3.5 of Ref. [25]
[see Eq. (57) therein] applies.

Finally, for classical communication, we use the form
given in Eq. (18) to verify the inequality stated below for
the case when Ai produces locally the variable Ci and then
broadcasts it to all the parties in the form of Cj for j �= i and
to the adversary in the form of CN+1 (note that broadcasting
followed by a partial trace, if needed, can simulate any classi-
cal communication among N parties):

I (A1 : . . . : AiCi : . . . : AN |E )ρ (23)

(I)= I (AiCi : A2 : . . . : Ai−1 : A1 : Ai+1 : . . . : AN |E )ρ (24)

= I (AiCi : A2|E )ρ + I (A3 : AiCiA2|E )ρ

+ I (A4 : AiCiA2A3|E )ρ + . . .

+ I (AN : AiCi . . . AN−1|E )ρ (25)

(II)
� I (AiCi : A2C2|ECN+1)ρ

+ I (A3C3 : AiCiA2C2|ECN+1)ρ

+ I (A4C4 : AiCiA2C2A3C3|ECN+1)ρ + . . .

+ I (ANCN : AiCi . . . AN−1CN−1|ECN+1)ρ (26)
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= I (A1C1 : . . . : AiCi : . . . : ANCN |ECN+1)ρ. (27)

In Eq. (23) [step (I)], we transposed the labels i and 1 (see
Remark 4), and step (II) [inequality (25)] follows (termwise)
from the monotonicity of the (three-partite) mutual informa-
tion function proved in Ref. [25] (see the proof of Theorem
3.5 therein).

Regarding asymptotic continuity, we consider two states
ρN (A) and σN (A) such that ‖ρN (A) − σN (A)‖1 � ε. Then, as
in the proof of Theorem 3.5 of Ref. [25], for any map
� : E → E ′ there is ‖ρ ′

N (A) − σ ′
N (A)‖1 � ε, where ρ ′

N (A) :=
idN (A) ⊗�(ρN (A) ) and σ ′

N (A) := idN (A) ⊗�(σN (A) ). Then, by
the expansion Eq. (18) we obtain

|I (Ai : A1 . . . Ai−1|E ′)ρ − I (Ai : A1 . . . Ai−1|E ′)σ |
� 2ε log2 dAi + 2g(ε), (28)

with dAi := dim(HAi ) and g(ε) := (1 + ε) log2(1 + ε) −
ε log2 ε, where we use Lemma 5 from Appendix A, provided
in Ref. [41]. Hence, in total we get

|I (A1 : . . . : AN |E ′)ρ − I (A1 : . . . : AN |E ′)σ |

� 2ε

N−1∑
i=1

log2 dAi + (N − 1)2g(ε)

� (N − 1)[2ε max
i∈{1,...,N}

log2 dAi + 2g(ε)]. (29)

For a finite natural N , the right-hand side of the above ap-
proaches 0, with ε → 0.

The subadditivity follows again from the fact that we can
split the term I (A1 : . . . : AN |E ) into N − 1 terms of the form
I (Ai : A1 . . . Ai−1|E ). Further treating A1 . . . Ai−1 together as
Bi (equivalent of B in the proof of Theorem 3.5 in Ref. [25]),
we can prove the additivity of the form

I (AiA
′
i : BiB

′
i|EE ′) = I (Ai : Bi|E ) + I (A′

i : B′
i|E ′) (30)

for each term and notice the subadditivity from the fact that
in the infimum in the definition of Ec

sq(ρ, M ) there are product
channels; hence in general the formula can be lower than the
above.

Finally, we consider normalization. It is straight-
forward to see that, assuming dAi = dA for each i ∈
{1, . . . , N}, on the state representing the ideal key τN (A)E =
1

dA

∑dA−1
i1=0 |ii . . . i〉〈ii . . . i| ⊗ ρE [Eq. (5)] there is Ec

sq(τ, M) =
(N − 1) log2 dA, by noticing that on the product state I (Ai :
A1 . . . Ai−1|E ) = I (Ai : A1 . . . Ai−1) = log2 dA, and there are
N − 1 of such terms in the definition of Ec

sq. We assume here
also that the measurement M is generating the key in the
computational basis.

We have further an analog of Observation 4 of Ref. [18].
Its proof goes along similar lines. Indeed, it does not depend
on either the type of objective function that is minimized or
the number of parties; hence we omit it here.

Observation 1. For an N-partite state ρN (A) and a POVM
MN (A) = MA1 , . . . , MAN there is

Ec
sq(ρ, M) = inf

ρN (A)E =Ext(ρN (A) )
I (A1 : . . . : AN |E )MN (A)⊗1E (ρN (A)E ),

(31)

where Ext(ρN(A)) stands for the state extension of ρN (A), i.e.,
ρN (A)E is a density operator such that TrE[ρN(A)E] = ρNA.

Owing to Observation 1, we can obtain the analog of
Lemma 6 of Ref. [18], which states that Ec

sq is convex.

Lemma 2. For a tuple of POMVs MN (A), two states ρ
(1)
N (A)

and ρ
(2)
N (A), and 0 < p < 1, there is

Ec
sq(ρ̄N (A) ) � pEc

sq

(
ρ

(1)
N (A)

) + (1 − p)Ec
sq

(
ρ

(2)
N (A)

)
, (32)

where ρ̄N (A) = pρ (1)
N (A) + (1 − p)ρ (2)

N (A).
Proof. The proof is due to the fact that the function

Ec
sq(ρ̄N (A) ) is upper bounded by I (A1 : . . . : AN |EF ) evalu-

ated on a state ρABEF = MN (A) ⊗ idE (pρ (1) ⊗ |0〉〈0|F + (1 −
p)ρ (2) ⊗ |1〉〈1|F ). Further, by Eq. (18) there is

I (A1 : . . . : AN |EF )ρ

= pI (A1 : . . . : AN |E )MN (A)⊗idE ρ
(1)
N (A)E

+ (1 − p)I (A1 : . . . : AN |E )MN (A)⊗idE ρ
(2)
N (A)E

. (33)

Since the states ρ (1) and ρ (2) were arbitrary, we get the
thesis.

We further note that switching from a bipartite key distil-
lation task to the conference key distillation does not alter the
formulation or the proof of Lemma 7 of Ref. [18]. We state it
below for the sake of the completeness of the further proofs.

Lemma 3. The independent and identically distributed
quantum device-independent key achieved by protocols us-
ing (for generating the key) a single tuple of measurements
(x̂1, . . . , x̂N ) ≡ x̂ applied to M of a device (ρN (A),M) is
upper bounded as

K iid,(x̂)
DI,dev(ρN (A),M)

:= inf
ε>0

lim sup
n

sup
P∈LOPC

inf
(σN (A),L)≈ε (ρN (A),M)

κε,(x̂)
n (P̂ (L(σ )⊗n))

� inf
(σN (A),L)=(ρN (A),M)

KDD(L(x̂) ⊗ idE (ψσ )), (34)

where L ≡ L(x̂) is a single pair of measurements induced by
inputs (x̂) on L and κε,(x̂)

n is the rate of the ε-perfect con-
ference key achieved and classical labels from local classical
operations in P̂ ∈ CLOPC are possessed by the allies holding
systems Ai for i ∈ {1, . . . , N}.

Combining Theorem 1 with Lemma 3, we obtain the main
result of this section. This is a bound by the reduced reduced
c-squashed entanglement.

Theorem 2. The independent and identically distributed
quantum device-independent conference key achieved by pro-
tocols using a single tuple of measurements (x̂1, . . . , x̂N ) ≡ x̂
applied to M of a device (ρN (A),M) is upper bounded as

K iid,x̂
DI,dev(ρN (A),M)

� 1

N − 1
inf

(σN (A),N )≡(ρN (A),M)
Ec

sq(σN (A),L(x̂)) (35)

=: Ec
sq,dev(ρN (A),M(x̂)). (36)

We have an analogous result for a key which is a function
only of the tested parameters, that of Bell inequality violation
and the quantum bit error rate.

Theorem 3. The independent and identically distributed
quantum device-independent key achieved by protocols using
(for generating the key) a single tuple of measurements x̂
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applied to M of a device (ρN (A),M) is upper bounded as

K iid,x̂
DI,par(ρN (A),M)

:= inf
ε>0

lim sup
n

sup
P∈LOPC

inf
ω(σN (A),L)≈εω(ρN (A),M)
Perr (σN (A) ,L)≈ε Perr (ρN (A) ,M)

κε,x̂
n (P (L(σ)⊗n))

(37)

� 1

N − 1
inf

ω(σN (A),L)=ω(ρN (A),M)
Perr (σ,L)=Perr (ρ,M)

Ec
sq(σN (A), L)

=: Ec
sq,par(ρN (A),M(x̂)), (38)

where L = L(x̂) is a single tuple of measurements induced by
inputs (x̂) on L.

For N = 2, the above bound recovers the result of
Ref. [18].

In the definition of Ec
sq,par(dev), one can take the infimum

only over the classical extensions to Eve [23]. In that case, for
a single input x̂ this bound reads 1

N−1 I (N (A) ↓ E ), as given
in Ref. [23] (see Ref. [25] for the bipartite case). We have the
following immediate corollary.

Corollary 2. The independent and identically distributed
quantum device-independent key achieved by protocols using
a tuple of measurements x̂ applied to a device (ρN (A),M) is
upper bounded as

K iid,x̂
DI,dev(ρN (A),M)

� inf
(σN (A),L)=(ρN (A),M)

1

N − 1
I (N (A) ↓ E )P(A1:...:AN |E ) (39)

≡ inf
(σN (A),L)=(ρN (A),M)

inf
�E→F

1

N − 1
I (N (A)|F )P(A1:...:AN |�(E )),

(40)

where P(A1 : . . . : AN |E ) is a distribution coming from mea-
surement L(x̂) on purification of σN (A) to system E and
the infimum is taken over classical channels transforming
a random variable E to a random variable F .

We will exemplify Corollary 2 for N = 3 parties and the
scenario considered in Ref. [20]. For the results, see Fig. 2. Let
us also note that when one restricts the infimum in Eq. (40),
the channel � : E → F has only a classical output and the
above bound is a multipartite generalization of the intrinsic

information bound given in Ref. [17]. An analogous corollary
holds for the case of K iid,x̂

DI,par.
We finally note that Ec

sq,par is convex also, in the multipar-
tite case. This may prove important when one finds upper
bounds, as any convexification of two plots obtained from
optimization of Ec

sq,par is then an upper bound on Kc
DI,par, as

it was used in Ref. [18]. We state it below following Lemma
8 of Ref. [18].

Proposition 1. The Ec
sq,par is convex, i.e., for every device

(ρ̄,M) and an input tuple x̂ there is

Ec
sq,par(ρ̄,M(x̂))

� p1Ec
sq,par(ρ1,M(x̂)) + p2Ec

sq,par(ρ2,M(x̂)), (41)

where ρ̄ = p1ρ1 + p2ρ2 and p1 + p2 = 1 with 0 � p1 � 1.
Proof. The proof goes the same way as that for the bipartite

case of Lemma 8 in Ref. [18], with the only change that we
base it on the convexity of its multipartite version Ec

sq, i.e.,
Lemma 2 here, and the fact that

I (A1A′
1 : · · · : AN A′

N |E )
[
ρA1···AN ⊗ |i · · · i〉〈i · · · i|A′

1···A′
N

]
= I (A1 : · · · : AN |E )

[
ρA1···AN

]
, (42)

where i ∈ {0, 1}, ρA1,...,AN is arbitrary state of systems
A1 . . . AN , and we define I (A1 : . . . : AN |E )[ρ] ≡ I (A1 : . . . :
AN |E )ρ . This is because a pure product state alters neither the
entropy of marginals nor the global entropy of the state.

We note that the multipartite function Ec
sq can be defined

for multiple measurements as in Ref. [18] and the analogous
results (e.g., Corollary 6 of Ref. [18]) to the bipartite case
would hold for the multipartite case.

Definition 6. The reduced c-squashed entanglement of the
collection of measurements M with probability distribution
p(x) of the input reads

Ec
sq(ρN (A),M, p(x)) :=

∑
x

p(x)Ec
sq(ρN (A), Mx). (43)

Usually, the parties broadcast their inputs used to generate
the key during the protocol. One can therefore consider a
version of the distillable device-independent key achieved by
such protocols which do this broadcasting. We then consider
the quantum device-independent key rate

κ iid,broad
DI,dev (ρ,M, p(x)) := inf

ε>0
lim sup

n
sup

P̂∈LOPC

inf
(σ,N )≈ε (ρ,M)

κε
n

(
P̂

(( ∑
x

p(x)Nx ⊗ idE (|ψσ 〉〈ψσ | ⊗ |x〉〈x|Ex )

)⊗n))
, (44)

where by broad we mean that x := (x1, . . . , xN ) are broadcasted and we make it explicit by adding classical registers Ex :=
Ex1 , . . . , ExN held by Eve. We have then a generalization of Theorem of 2 to the case of more measurements that are revealed
during the protocol of key distillation.

Proposition 2. The independent and identically distributed quantum device-independent key achieved by protocols using
measurements of a device (ρN (A),M) with probability p(x) is upper bounded as

K iid,broad
DI,dev (ρ,M, p(x)) ≡ inf

ε>0
lim sup

n
sup

P̂∈LOPC

inf
(σ,N )≈ε (ρ,M)

κε
n

(
P̂

(( ∑
x

p(x)Nx ⊗ idE (|ψσ 〉〈ψσ | ⊗ |x〉〈x|Ex )

)⊗n))
(45)

� 1

N − 1
inf

(σ,N )=(ρ,M)
Ec

sq(σ,N , p(x)) (46)

=: Ec
sq,dev(ρ,M, p(x)), (47)

where Nx are measurements induced by x on N .
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Proof. The proof follows straightforwardly from general-
ization of Lemma 10 and Theorem 10 from Ref. [18] for the
case of Ec

sq, taking as the argument the measurements as in
Eq. (43), composed with a broadcast map which for the choice
of inputs x creates systems Ex in state |x〉〈x|.

IV. DUAL BOUND

In this section, we develop a bound analogous to that given
in Theorems 2 and 3, however based on a different multipar-
tite squashed entanglement, denoted in Ref. [24] by Ẽsq. It
originates from a quantifier of correlations denoted by SN in
Ref. [23], which is one of the so-called secrecy monotones
introduced in Ref. [26]. Although the Esq and Ẽsq are shown in
Ref. [24] to be equal on pure states, they may lead to incompa-
rable upper bounds for mixed states. The bounds derived from
these quantities are compared in the case N = 3 in Fig. 2.

Let us first recall the definition of SN . In what follows we
will denote it by DN so that it is not confused with the von
Neumann entropy:

DN (ρN (A)E )

:= I (A1 : A2 · · · AN |E )ρN (A)E + I (A2 : A3 · · · AN |A1E )ρN (A)E

+ I (A3 : A4 · · · AN |A1A2E )ρN (A)E + · · ·
+ I (AN−1 : AN |A1 · · · AN−2E )ρN (A)E . (48)

We similarly define DN (ρN (A) ) as in the above, omitting con-
ditioning on the system E . Based on this quantity, one defines
an entanglement measure, which in Ref. [24] (see also [23])
reads as follows.

Definition 7. For an N-partite state ρA1,...,AN ,

Ẽsq(ρN (A) ) := inf DN (σN (A)E ), (49)

where the infimum is taken over states σN (A)E that are exten-
sions of ρN (A), i.e., TrE [σN (A)E ] = ρN (A).

We will refer to it as dual squashed entanglement due to
the fact noted in Ref. [23] that for any N-partite state ρ the
two squashed entanglement functions are dual:

DN (ρ) + I (A1 : . . . : AN )ρ

=
N∑

i=1

I (Ai : A1 . . . Ai−1Ai+1 · · · AN )ρ. (50)

Based on Ẽsq, we define a quantity, called the dual c-squashed
entanglement. It is a function of a pair: state ρN (A) of N parties
and an N-partite measurement MN (A). The conditional mutual
information in its definition is computed on the extension of
the state ρN (A), measured by MN (A). When proper we will de-
note DN (ρ) by D(N (A))ρ . Similarly, D(N (A)|E )ρ will denote
DN (ρN (A)E ) when convenient. In cases when ρN (A)E forms a
classical probability distribution, we will denote this function
also by DN (N (A)|E )P(A1:···:AN |E ).

Definition 8. A dual c-squashed entanglement of a state
ρA1,...,AN is defined as

Ẽ c
sq(ρ, M) := inf

�: E→E ′
D(N (A)|E ′)MN (A)⊗�ψ

ρ
N (A)E

, (51)

where MN (A) is an N-tuple of POVMs MA1 , . . . , MAN and the
state |ψρ

N (A)E 〉 is a purification of ρN (A).

We note that a different formulation of the dual c-squashed
entanglement is in analogy to Observation 1.

Observation 2. For an N-partite state ρN (A) and a POVM
MN (A) = MA1 , . . . , MAN there is

Ẽ c
sq(ρ, M) = inf

ρN (A)E =Ext(ρN (A) )
D(N (A)|E )MN (A)⊗1E ρN (A)E

. (52)

Proof. The proof is analogous to the proof of Observation
4 in [18].

Based on Theorem 1, we can have an analogous fact,
claimed in Refs. [23,24]. We state the sketch of the proof for
the sake of completeness of the presentation.

Theorem 4. For an N-partite state ρN (A), its purification ψρ ,
and an N-tuple of POVMs MN (A) there is

KDD(MN (A) ⊗ idE ψρ ) � Ẽ c
sq(ρ, M). (53)

Proof. In this proof we follow the argument made for Ec
sq.

We will prove several properties of Ẽ c
sq, which ensure the

upper bound for the key due to a multipartite version of
Theorem 3.1 of Ref. [25] (see Lemma 7 in Appendix B).

To see the monotonicity of Ẽ c
sq under LOCC, we first note

the fact that this quantity does not increase under local op-
erations (see Proposition 2 of Ref. [23]). Regarding public
communication, we note, as in the proof of Theorem 1, that
first when AN is broadcasting information CN to all the parties
Ai �=N and E there is

I (A1 : A2 · · · ANCN |E ) + I (A2 : A3 · · · ANCN |A1E ) + · · ·
+ I (AN−1 : ANCN |A1 · · · AN−2E )

� I (A1C1 : A2C2 · · · ANCN |ECN+1)

+ I (A2C2 : A3C3 · · · ANCN |A1C1ECN+1) + · · ·
+ I (AN−1CN−1 : ANCN |A1C1 · · · AN−2CN−2ECN+1)

(54)

termwise: I (Ai : Ai−1 · · · ANCN |A1 · · · Ai−2E ) � I (AiCi :
Ai−1Ci−1 · · · ANCN |A1C1 · · · Ai−2Ci−2ECN+1). Indeed, this
inequality coincides with the one proved in Ref. [25] (see the
proof of Theorem 3.5 therein), where we identify Ai with B,
Ai−1 · · · AN with A, and E with E ′. For the case when another
party Ai �=N is broadcasting, we swap (by symmetry of the
formula of DN ) the Ai with AN and follow the same argument
as explained above.

Asymptotic continuity of the Ẽ c
sq follows from the fact that

it consists of conditional information terms, each of which
is asymptotically continuous due to Lemma 5 (note that we
allow system E to be infinite dimensional).

The argument for the subadditivity of this function follows
from the fact that DN is a product of tensor products (see
Ref. [23] for the case of N = 3).

Regarding normalization, for the state containing an ideal
key τN (A)E [Eq. (5)] there is Ẽsq(τ, M) = log2 dA, where we
assume log2 di = log2 dA for all i ∈ {1, . . . , N}. Indeed, as it
is argued in Ref. [23], the first term in (48) equals log2 dA,
while the remaining ones are equal to 0.

Combining Lemma 3 and Theorem 4, we obtain an analog
of Theorem 2.

Theorem 5. The independent and identically distributed
quantum device-independent conference key achieved by pro-
tocols using a single tuple of measurements (x̂1, . . . , x̂N ) ≡ x̂
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applied to M of a device (ρN (A),M) is upper bounded as

K iid,x̂
DI,dev(ρN (A),M)

� inf
(σN (A),N )≡(ρN (A),M)

Ẽ c
sq(σN (A),L(x̂)) (55)

=: Ẽ c
sq,dev(ρN (A),M(x̂)). (56)

We also note that a bound analogous to the above holds for
K iid,x

DI,par. Due to Theorem 5, we get an analog of Corollary 2.
Corollary 3. The independent and identically distributed

quantum device-independent key achieved by protocols using
a tuple of measurements x̂ applied to a device (ρN (A),M) is
upper bounded as

K iid,x̂
DI,dev(ρN (A),M)

� inf
(σN (A),L)=(ρN (A),M)

DN (N (A) ↓ E )P(A1:···:AN |E )

≡ inf
(σN (A),L)=(ρN (A),M)

inf
�E→F

DN (N (A)|F )P(A1:···:AN |�(E )), (57)

where P(A1 : · · · : AN |E ) is a distribution coming from mea-
surement L(x̂) on purification of σN (A) to system E and
the infimum is taken over classical channels transforming a
random variable E to a random variable F .

V. BOUND ON THE RATE OF A PARITY CHSH–BASED
PROTOCOL BY THE REDUCED c-SQUASHED

ENTANGLEMENT

In this section we consider the scenario of N = 3 par-
ties and compare the known lower bound on the conference
key rate [20] with the upper bounds introduced in previous
sections.

Below we exemplify the use of the bound by the reduced
c-squashed entanglement Ec

sq in the case with classical Eve,
that is, when the infimum in its definition runs over the ex-
tensions of the form

∑
i piρ

i
A(N ) ⊗ |i〉〈i|E (or equivalently the

channels acting on system E have only classical outputs). We
restrict ourselves to the standard protocols with a single pair of
inputs generating the key [17]. We exemplify the bound given
in Corollary 2 by means of I (N (A) ↓ E ). It then is in essence
a matter of checking the value of the multipartite intrinsic
information measure of a distribution which is the output of
a key-generating measurement on the attacking state (as it is
done in the bipartite case in Ref. [17]). We also provide the
dual upper bound originating from Corollary 3.

To compare the introduced upper bounds with the known
lower bound, for the honest implementation, we focus on
the GHZ state, on which depolarizing noise acts locally on
three qubits [20]. Having this state and playing a tripartite
game on it [11], called the parity Clauser-Horne-Shimony-
Holt (CHSH) game, one can obtain (in the low-noise regime) a
secure conference key. More precisely, we have the following.

Definition 9 (parity CHSH game [20]). The parity CHSH
inequality extends the CHSH inequality to N parties as fol-
lows. Let Alice and Bob1, . . . , BobN−1 be the N players of
the following game (the parity CHSH game). Alice and Bob1

are asked uniformly random binary questions x ∈ {0, 1} and
y ∈ {0, 1}, respectively. The other Bobs are each asked a
fixed question, e.g., always equal to 1. Alice will answer bit
a, and for all t ∈ {1, . . . , N − 1}, Bobi answers bit bi. We

denote by b̄ := ⊗
2�i�N−1 bi the parity of all the answers of

Bob2, . . . , BobN−1. The players win if and only if

a + b1 = x(y + b̄) mod 2.

As for the CHSH inequality, classical strategies for the
parity CHSH game must satisfy

Pparity CHSH
win � 3

4 . (58)

The above inequality can be violated with the �GHZ
�3 state, with

the maximal (quantum) value of 1
2 + 1

2
√

2
.

We adopt the same model of noise as in Ref. [20], which
is represented by qubit depolarizing channels acting the same
way on each qubit of the GHZ state:

Dν (ρ) = (1 − ν)ρ + ν
1

2
. (59)

Below we explain the result of applying this global channel to
the GHZ state |�GHZ

�N 〉〈�GHZ
�N | in the case of N = 3.

Observation 3. The GHZ state after the action of depolar-
izing noise on each qubit reads

Dν ⊗ 1B1B2

(∣∣�GHZ
�3

〉〈
�GHZ

�3
∣∣
AB1B2

)
= (1 − ν)

∣∣�GHZ
�3

〉〈
�GHZ

�3
∣∣
AB1B2

+ ν
1A

2
⊗ κB1B2 , (60)

where the κB1B2 = 1
2 (|00〉〈00| + |11〉〈11|) state is separable.

Remark 5. The fully separable state originating from a
depolarizing channel (single party), i.e., 1A

2 ⊗ κB1B2 , cannot
violate the parity CHSH inequality.

After applications of the depolarizing channel to each of
three qubits we obtain the following.

Corollary 4. We have

D⊗3
ν

(∣∣�GHZ
�3

〉〈
�GHZ

�3
∣∣
AB1B2

)
= (1 − ν)3

∣∣�GHZ
�3

〉〈
�GHZ

�3
∣∣
AB1B2

+ [1 − (1 − ν)3]χν, (61)

where χν is a fully separable state which reads

χν := 1

1 − (1 − ν)3

×
(

(1 − ν)2νκAB1 ⊗ 1B2

2
+ (1 − ν)2νκAB2 ⊗ 1B1

2

+ (1 − ν)2νκB1B2 ⊗ 1A

2
+ (3 − 2ν)ν2 1AB1B2

2

)
. (62)

In Ref. [20], the expected winning probability for the parity
CHSH game (with respect to the depolarizing noise parame-
ter) is calculated:

pexp :=
[

1

2
+ (1 − ν)N

2
√

2
+ (1 − ν)2(1 − (1 − ν)N−2)

8
√

2

]
.

(63)

From the above equality for N = 3, the state in Eq. (61)
violates the classical bound of 3

4 for 0 � ν < νcrit , where
νcrit ≈ 0.1189.

In this place, we start the construction of the eavesdropper
strategy. According to the DI-CKA protocol in Ref. [20], the
ranges of inputs and outputs are x ∈ {0, 1}, y1 ∈ {0, 1, 2}, y2 ∈
{0, 1}, and a, b1, b2 ∈ {0, 1}. The setting (x, y1, y2) = (0, 2, 0)
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associated with measurements of σz observable is the key-
generating round:

Pν (a, b1, b2|x, y1, y2)

= Tr
[
Ma|x ⊗ Mb1|y1 ⊗ Mb2|y2D⊗3

ν

(∣∣�GHZ
�3

〉〈
�GHZ

�3
∣∣
AB1B2

)
]

(64)

= (1 − ν)3Tr
[
Ma|x ⊗ Mb1|y1 ⊗ Mb2|y2

∣∣�GHZ
�3

〉〈
�GHZ

�3
∣∣
AB1B2

]
+ [1 − (1 − ν)3]Tr

[
Ma|x ⊗ Mb1|y1 ⊗ Mb2|y2χν

]
(65)

= (1 − ν)3PGHZ(a, b1, b2|x, y1, y2)

+ [1 − (1 − ν)3]PL
ν (a, b1, b2|x, y1, y2). (66)

Here the behavior PGHZ arises from measurements of the
GHZ state (which allows us to violate the classical bound
maximally). The local behavior PL

ν arises from the same mea-
surements (σz observable) for biseparable state and therefore
can be expressed as a convex combination of deterministic
behaviors.

Eve prepares a convex combination attack [42,43]

PCC
ν (a, b1, b2, e|x, y1, y2)

= (1 − ν)3PGHZ(a, b1, b2|x, y1, y2)δe,?

+ [1 − (1 − ν)3]PL
ν (a, b1, b2|x, y1, y2)δe,(a,b1,b2 ). (67)

This attack might not be optimal as it uses a particular de-
composition of Pν . In order to optimize the attack, Eve should
find a decomposition with a maximal weight of local behavior
[1 − (1 − ν)3 here].

We now consider a particular strategy of postprocessing the
data which is in Eve’s possession, represented by a channel
E → F in Corollary 2. Following Ref. [17], we consider only
the distribution coming from a key-generating measurement,
which according to the protocol of Ref. [20] is X = 0 for Alice
and B1 = 2 and B2 = 0 for the Bobs in the case of N = 3,

Pattack
ν (a, b1, b2, f |020)

= �E→F PCC
ν (a, b1, b2, e|020)

= (1 − ν)3PGHZ(a, b1, b2|x, y1, y2)δe,?

+ [1 − (1 − ν)3]PL
ν (a, b1, b2|x, y1, y2)δe,(a,b1,b2 )

× [δa,b,cδ f ,a + (1 − δa,b,c)δ f ,?], (68)

where δa,b,c is 1 if all three indices have the same value and
0 otherwise. The above attack strategy is therefore a direct
three-partite generalization of strategy proposed in Ref. [17].
The eavesdropper aims to be correlated only with the events
(a, b1, b2) = (0, 0, 0) or (a, b1, b2) = (1, 1, 1), which mimic
outputs of the honest strategy of the GHZ state. By applying
the above attack strategy, we are ready to plot an upper bound
on the reduced cc-squashed entanglement Corollary 2.

VI. GAP BETWEEN DI-CKA AND DD-CKA

In this section we provide a bound on the conference key
agreement of N parties in terms of the bounds for groupings
of these parties into groups of fewer than N users. We further
show that there is a gap between the device-independent and
device-dependent conference key agreement rates. This gap

implies that there are states for which there are no mea-
surements used for testing and no CLOPC protocol that can
achieve the same number of keys as in the device-dependent
case. The gap is inherited from the analogous gap shown for
the bipartite case [16].

In what follows, by a (nontrivial) partition P of the set of
systems {A1, . . . , AN }, we mean any grouping of the systems
into at least two but no more than N − 1 subsets such that each
Ai belongs to exactly one subset and each of them belongs to
some subset.

Let us now generalize the definition of the reduced device-
dependent key to the case of the conference key agreement.
We will further also show the fact that the latter quantity
bounds the device-independent conference key (i.e., Theorem
6 of Ref. [16]).

Definition 10. The reduced device-dependent conference
key rate of an N-partite state ρN (A) reads

K↓(ρN (A) ) := sup
M

inf
(σN (A) ),L)=(ρN (A),M)

KDD(σN (A) ). (69)

A direct analog of Theorem 6 of Ref. [16] (with an analo-
gous proof which we omit here) states that the reduced device-
dependent key upper bounds the device-independent key.

Theorem 6. For any N-partite state ρN (A) and any M,
there is

KDI(ρN (A),M) � inf
(σN (A),L)=(ρN (A),M)

KDD(ρN (A) ) (70)

and in particular

KDI(ρN (A) ) ≡ sup
M

KDI(ρN (A),M) � K↓(ρN (A) ). (71)

We first observe the following bound.
Proposition 3. For any N-partite quantum behavior

(ρN (A),M) there is

K iid
DI,dev(ρN (A),M)

� min
{

min
P

K iid
DI,dev(ρP (N (A)))

× min
P

inf
(σP (N (A)),L)=(ρP (M(A)),M)

KDD(σP (N (A)))
}
, (72)

where P is any nontrivial partition of the set of systems
A1, . . . , AN .

Proof. The proof of the bound by K iid
DI,dev(ρP (N (A))) follows

from the fact that any protocol of distillation of the DI con-
ference key from the N-partite state is a special case of a
protocol that distills the DI conference key from a nontrivial
partition P . This is because the class of LOPC protocols in
these two scenarios is in relation to LOPC(A1, . . . , AN ) �

LOPC(P (A1, . . . , AN )). The other bound follows from the
fact that for any grouping P , by Theorem 6 above,

K iid
DI,dev(ρP (N (A)),M) � inf

(σP (N (A)),L)=(ρP (M(A)),M)
KDD(σP (N (A))).

(73)

An analogous fact to the above holds for K iid
DI,par as well.

Following Ref. [16], we show now that there is a
gap between the numbers of conference keys and device-
independent conference keys. We will use the fact that there
it has been proven that there are states with K↓(ρAB) <

KDD(ρAB). From such state ρAB we construct a multipartite
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state with the property that KDI(ρN (A) ) < KDD(ρN (A) ), as it is
described in the proof of the following theorem.

Theorem 7. Let ρAB ∈ B(HA ⊗ B), where dim(HA) = dA

and dim(HB) = dB, be a bipartite state which admits a gap
KDD(ρAB) − K↓(ρAB) � c > 0 for some constant c. Then for
any N there is a multipartite state ρN (A) with local dimensions
at most dA × dB with KDD(ρN (A) ) − KDI(ρN (A) ) � c.

Proof. Consider a state ρN (A) constructed as a path made of
state ρAB (as, e.g., in a line of a quantum repeater):

ρ̃N (A) := ρA1
1A2

1
⊗ ρA1

2A2
2
⊗ ρA1

3A2
3
⊗ · · · ⊗ ρA1

N−1A2
N−1

. (74)

Here ρA1
1A2

1
= ρA1

2A2
2
= · · · = ρA1

N−1A2
N−1

= ρAB and by the way

of notation we have A1
1 ≡ A1 and A2

1A1
2 ≡ A2, . . . , A2

N−1 ≡
AN . That is, the first party has only system A1

1 and the last only
system A2

N−1, while the ith party for 1 < i < N has systems
A2

i−1A1
i at hand.

Since the states ρA1
i A2

i
form a spanning tree of a graph of N

systems (in fact a path), we can follow the lower bound given
in Sec. VI A of Ref. [21] and note that

KDD(ρ̃N (A) ) � min
i

KDD(ρA1
i A2

i
) = KDD(ρAB). (75)

Indeed, the parties can first distill a key at rate KDD(ρAB)
along the edges of the path. Denote such distilled keys by
ki j between nodes i and j. Further, A1 can XOR her key k12

with a locally generated private random bit string r of length
KDD(ρAB) and send k12 ⊕ r to A2; further, A2 can obtain r =
k12 ⊕ (k12 ⊕ r) and send it to the next party by XORing it with
the key k23. This process repeated N − 1 times, leaves all the
parties knowing r, which remained secret due to one-time pad
encryption by the keys k12, k23, . . . , kN−1,N . It then suffices to
note that, by Proposition 3,

KDI(ρ̃N (A),M)

� inf
(σA1

1:(A2
1 ,A1

2 ,...,AN ),L)=(ρA1
1:(A2

1 ,A1
2 ,...,AN ),M)

KDD
(
σA1

1:(A1
2,...,AN )

)
(76)

� inf
(σA1

1:A2
1
,L)=(ρA1

1:A2
1
,M)

KDD
(
σA1

1:A1
2

)
. (77)

This is because there are no more conference keys than the
number of device-dependent keys distilled in the cut A1

1 :
(A2

1, . . . , A2
N−1). The latter is also upper bounded by the key

distilled between systems A1
1 and A2

1. This is due to the fact
that any distillation protocol between A1

1 and (A2
1, . . . , AN ) is

a particular protocol distilling key between systems A1
1 and A2

1.
Taking the supremum over M on both sides of the inequal-

ity (77), we obtain

KDI(ρ̃N (A) ) ≡ sup
M

KDI(ρ̃N (A),M)

� K↓(
ρA1

1:A1
2

) ≡ sup
M

inf
(σA1

1:A2
1
,L)=(ρA1

1:A2
1
,M)

KDD
(
σA1

1:A2
1

)
= K↓(ρAB). (78)

Hence we get KDI(ρN (A) ) � K↓(ρAB). This fact, by Eq. (75),
and the fact that by assumption KDD(ρAB) − K↓(ρAB) � c > 0
imply the following chain of inequalities:

KDD(ρ̃N (A) ) � KDD(ρAB) > K↓(ρAB) � KDI(ρ̃N (A) ). (79)

The above implies then the desired gap KDD(ρ̃N (A) ) −
KDI(ρ̃N (A) ) > 0. Moreover, this gap is as large as c > 0 due

to the assumption that KDD(ρAB) − KDI(ρAB) � c > 0. The
claim about dimensions follows from the form of the state
given in Eq. (74).

From Ref. [16] we have the immediate corollary that there
is a gap between the DI-CKA and DD-CKA.

Corollary 5. For any N there is a state ρ̃N (A) for which
there is

K iid
DI,dev(ρ̃N (A) ) < KDD(ρ̃N (A) ). (80)

Proof. Reference [16] shows an example of a bipartite
state ρAB with the gap K↓(ρAB) < KDD(ρAB). The construction
given in Eq. (74) based on this ρAB proves the thesis via
Theorem 7.

We note also that a bound similar to that in the above
corollary holds for K iid

DI,par and KDI itself due to the fact that
K iid

DI � KDI by definition [16]. We can modify the proof tech-
nique shown above to see the following general remark.

Remark 6. In the above construction one need not use only
the state ρ⊗k

A1
1A2

1
having K↓(ρA1

1A2
1
) < KDD(ρA1

1A2
1
). In fact, the

state on systems A1
2A2

2 · · · A1
N−1A2

N−1 can be an arbitrary state
having KDD(ρA1

2A2
2···A1

N−1A2
N−1

) � KDD(ρA1
1A2

1
). It can be even a

�GHZ
�N state of arbitrary large local dimension. This is with no

change in the above proof if only ρA1
1A2

1
is on systems A1

1A2
1

with the gap we have mentioned. See Fig. 1 for the tripartite
example.

VII. DI-CKA VERSUS GENUINE NONLOCALITY
AND ENTANGLEMENT

We now discuss the topic of genuine nonlocality and entan-
glement in the context of the DI-CKA, introducing the notion
of quantum locality.

We say that a behavior P(a|x) is local in a cut (Ai1 . . . Aik ) :
(Aik+1 . . . AN ) if it can be written as a product of two behav-
iors on systems Ai1 . . . Aik and Aik+1 . . . AN , respectively. The
behavior P(a|x) is genuinely nonlocal if and only if it is not a
mixture of behaviors that are a product in at least one cut.

We show that any behavior from which the parties draw
the conference key in a single-shot (single run) must exhibit
genuine nonlocality. The scenario of a single run was consid-
ered in the context of a nonsignaling adversary [44,45]. For
that reason, we depart from the traditional definition of DI
quantum key distillation rate by considering a single-shot DI
quantum key distillation rate obtained by an LOPC postpro-
cessing of a distribution obtained from some behavior P(a|x)
when all the parties measure all the inputs x in parallel at the
same time.

For the purpose of Theorem 8 below, by a “local” set we
will mean the set of behaviors that are convex mixtures of
behaviors that are a product in some cut and both behaviors
in the product have quantum realization. We will denote this
set by LQ (locally quantum). Any distribution which is not in
LQ can be treated as genuinely nonlocal, although other def-
initions are adopted in the literature [11]. Exemplary extreme
behavior in this set is a product of the Tsirelson behav-
ior P(a1, a2|x1, x2) = Tr[|��2〉〈��2|Mx1

a1
⊗ Mx2

a2
] with M0

a1
=

σz, M1
a1

= σx, M0
a2

= (σx+σz )√
2

, M1
a2

= (σz−σx )√
2

(σx and σz being
Pauli-X and Pauli-Z operators, respectively), and a determin-
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istic local behavior P(a3|x3): P(a1, a2|x1, x2)P(a3|x3). The
theorem which we show below applies to the scenario where
all the parties share a single copy of a device and mea-
sure the inputs in parallel to ensure nonsignaling. We give
the definition of the key rate obtained in this setup in full
analogy to Definition 1 as follows.

Definition 11. The maximum single-shot device-
independent quantum key distillation rate of a device (ρ,M)
with independent and identically distributed behavior is
defined as

K single-shot
DI,dev (ρ,M) := inf

ε>0
sup
P̂

inf
(6)

κε
n (P̂ (σ,N )), (81)

where κε
n is the quantum key rate achieved for any security

parameter ε and measurements N .
Here P̂ is a protocol composed of classical local operations

and public (classical) communication acting on a single copy
of (σ,N ) which, composed with the measurement, results in
a quantum local operations and public (classical) communica-
tion protocol.

We are ready to state the following theorem.
Theorem 8. If a behavior P(a|x) satisfies

K single-shot
DI,dev (P(a|x)) > 0 then it is not in LQ.

Proof. The proof goes by contradiction. Suppose the be-
havior P(a|x) is not genuinely nonlocal. That is, it can
be expressed as a convex combination of behaviors which
are a product in at least one cut denoted by (A(i)

j1
. . . A(i)

jk
) :

(A(i)
jk+1

. . . A(i)
iN

) for the ith behavior in the combination. We
express this as

∑
i

piPi(a|x)(A(i)
j1

···A(i)
jk

):(A(i)
jk+1

···A(i)
jN

), (82)

where Pi(a|x) are some quantum behaviors. Consider then a
device Pi as a bipartite one, with parties (A(i)

j1
. . . A(i)

jk
) together

forming A′ and (A(i)
jk+1

. . . A(i)
jN

) forming A′′. Such a device has
zero bipartite DI quantum keys, as it is a product in cut A′ : A′′.
By virtue of purification, Eve can have access to the mixture
(82), knowing which of the mixing terms i happened. By
Theorem 3 we have that from any of such terms, one cannot
draw a conference key, as Eve has a local hidden variable
model for it. Indeed, the right-hand side of (72) is then 0,
as Eve can adopt an attack which, e.g., makes zero reduced

c-squashed entanglements [18]. We thus obtained the desired
contradiction.

Let us now recall the notion of genuine entanglement.
We say that a multipartite state ρA1A2...AN is separable in a
cut (Ai1 . . . Aik ) : (Aik+1 . . . AN ) if it can be written as convex
mixtures of product states between systems Ai1 . . . Aik and
Aik+1 · · · AN . If a multipartite state ρA1A2···AN can be written as a
mixture of separable states that are product in at least one cut
then it is called biseparable. We say that ρA1A2···AN is genuinely
entangled if and only if it is not a mixture of separable states
that are a product in at least one cut. It was shown in Ref. [46]
that there exist N-partite states for all N > 2 where some
genuinely entangled states admit a fully LRHV model, i.e.,
where all parties are separated.

Let GE(N (A)), BS(N (A)), and FS(N (A)) denote the set
of all N-partite states ρA1A2···AN that are genuinely entangled,
biseparable, and fully separable, respectively (see Ref. [21]).
For n copies of N-partite state, when we consider parti-
tion across designated N parties, we denote local groupings
by N (A⊗n).

Remark 7. It is necessary to consider a single-shot DI key
in Theorem 8 because the set of LQ behaviors is not closed
under tensor product. This is for the same reason that the set
of biseparable states is not closed under a tensor product.

The following theorem follows from Observation 1 as well
as Proposition 2 of Ref. [21].

Theorem 9. The maximum device-independent conference
key agreement rates of a device (ρ,M) are upper bounded by

KDI,dev(ρN (A),M) � inf
(σN (A),L)=(ρ,M)

E∞
GE(σ ), (83)

KDI,par(ρ,M) � inf
ω(σN (A),L)=ω(ρN (A),M)

Perr (σ,L)=Perr (ρ,M)

E∞
GE(σ ), (84)

where E∞
GE(ς ) is the regularized relative entropy of genuine

entanglement [21] of a state ςA1A2···AN , with

E∞
GE(ς ) = inf

ϕ∈BS(N (A⊗n ))
lim

n→∞
1

n
D(ς⊗n‖ϕ), (85)

where D(ρ‖σ ) is the relative entropy between two states ρ

and σ , with D(ρ‖σ ) = Tr[ρ(log2 ρ − log2 σ )] if supp ρ ⊆
supp σ ; otherwise it is ∞ [47].

We note here that there is a trivial bound that can be
obtained from Theorem 9 above, which is encapsulated in the
following corollary.

Corollary 6. For any state ρN (A) with mini∈{1,...,N} dAi =: d
there is

KDI(ρN (A) ) ≡ sup
M

KDI(ρ,M)

� min{p log2 d : p ∈ [0, 1], ρ = pρ ′ + (1 − p)ρfs, ρfs ∈ FS}. (86)

Proof. Given any decomposition of a state ρN (A) into ρ =
pρ ′ + (1 − p)ρfs, where the state ρfs is a fully separable state,
we have

KDI(ρ) � sup
M

K iid
DI,dev(ρ,M)

� sup
M

inf
(σ,L)=(ρ,M)

E∞
GE(σ ) � sup

M
ER(ρ)

� pER(ρ ′) � p min
i

log2 dAi , (87)

where we have used Theorem 9 (also see Corollary 6 of
[21]) and the fact that ER(ρ) = infκ∈FS D(ρ‖κ ) is (i) convex,
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(ii) zero on fully separable states, and (iii) does not exceed the
minimum logarithm of dimensions of the input state, which
can be proved by noticing that ER(ρ) � D(ρ‖ρAi ⊗ ρA�=i ) =
I (Ai : A�=i ) � log2 d where Ai has minimal dimension among
systems A1, . . . , AN .

We presented this bound in Fig. 2 in Sec. V and we saw
that it is indeed above the upper bounds which we derive in
Secs. III and IV.

VIII. CONCLUSION

We have demonstrated a number of upper bounds on the
quantum secure conference key, generalizing (i) the results of
Ref. [18] regarding a relative entropy based bound and (ii) the
results of Ref. [17] regarding the reduced c-squashed entan-
glement. More precisely, we based our demonstration on two
secrecy monotones which generalize intrinsic information to
the multipartite case, following Ref. [23]. Although, as shown
in Ref. [24], the quantities I (A1 : . . . : A2) and SN (A1 : . . . :
AN ) (referred to as DN ) coincide for pure states, they are not
comparable for mixed states and Ec

sq based on I (A1 : . . . : AN )
performs better as an upper bound. It is however an open
problem if one can establish an inequality between the two
reduced c-squashed entanglements.

Interestingly, the approach of Ref. [17] does not result in
zero keys in any noise regimes for the parity CHSH game of
Ref. [20]. It would be important to see if this can be improved
by changing Eve’s strategy or the bound needs to be changed.

We have also shown that the fundamental gap between
device-independent and device-dependent keys also holds in
the multipartite case. We have given an exemplary state which
is based directly on the bipartite states given in Ref. [16]. It is
interesting if such a state exists in lower dimensions or even
possibly on N qubits.

Finally, our results hold for the static case of quantum
states. The next step would be to generalize the results of
Ref. [18] for the dynamic case of quantum channels to the
multipartite scenario.

Note added. The topic of upper bounds on the DI-CKA is
also studied in the parallel work of [48]. Comparison between
basic approaches (i.e., for the DI quantum key distribution
between two honest parties) used in Ref. [48] and in this paper
to get upper bounds on DI-CKA is discussed in Ref. [18].

ACKNOWLEDGMENTS

We acknowledge partial support by the Foundation for
Polish Science (IRAP Project ICTQT, Contract No.
MAB/2018/5, cofinanced by EU within Smart Growth
Operational Programme). The International Centre for
Theory of Quantum Technologies project (Contract No.
MAB/2018/5) is carried out within the International
Research Agendas Programme of the Foundation for
Polish Science cofinanced by the European Union from
the funds of the Smart Growth Operational Programme,
axis IV: Increasing the research potential (Measure
4.3). M.W. acknowledges grant Sonata Bis 5 (Grant No.
2015/18/E/ST2/00327) from the National Science Center.
S.D. acknowledges Individual Fellowships at Université libre
de Bruxelles; this project received funding from the European

Union’s Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie Grant Agreement No.
801505. S.D. also thanks Harish-Chandra Research Institute,
Prayagraj (Allahabad, India) for hospitality during his visit
where part of this work was done.

APPENDIX A: CONTINUITY STATEMENTS

We have the following lemmas.
Lemma 4 (Alicki-Fannes-Winter continuity bounds [49]).

For states ρAB and σAB, if 1
2‖ρ − σ‖1 � ε � 1, then

|S(A|B)ρ − S(A|B)σ | � 2ε log2 d + g(ε), (A1)

where d = dim(HA) < ∞ and g(ε) := (1 + ε) log2(1 + ε) −
ε log2 ε.

Lemma 5 (from [41]). If d = min{dim(HA), dim(HB)} <

+∞, then

|I (A; B|C)ρ − I (A; B|C)σ | � 2ε log2 d + 2g(ε) (A2)

for any states ρABC and σABC , where ε = 1
2‖ρ − σ‖1.

APPENDIX B: SECRECY MONOTONES

In this Appendix we revisit Theorem 3.1 of Ref. [25] and
generalize the result by relaxing the constraints on the Hilbert
spaces in the following way. First, we prove an analogy to
Lemma A.1 of Ref. [25].

Lemma 6 (cf. [25]). The maximization in the definition of
KDD (12) can be restricted to protocols that use communi-
cation at most linear in the number of copies of ρABE . The
eavesdropper system is not necessarily restricted to a finite
dimension.

Proof. The proof of Lemma 6 goes along the lines of the
proof of Lemma A.1 in Ref. [25]. The change that is necessary
to allow the eavesdropper to hold the system of infinite di-
mension is the use of asymptotic continuity of the conditional
mutual information of Ref. [41] (see Lemma 5 herein) instead
of the Alicki-Fannes inequality. This results in

I (A : B)σ − I (A : E )σ � ln0 (1 − 4ε) − 4g(ε), (B1)

where ln0 is the length of the output of a distillation protocol
using n0 copies of the input state. The state σ is the output
of the latter protocol. The overall key rate of the modified
protocol which has linear communication admits then a lower
bound

R̃ � (1 − 4ε)(R − ε) − 4g(ε)

n0
. (B2)

The other parts of the proof are not altered.
Lemma 7 (cf. [25]). Let E (ρ) be a function mapping a

tripartite quantum state ρABE into positive numbers such that
the following hold: (a) monotonicity, i.e., E (�(ρ)) � E (ρ)
for any LOPC �; (b) asymptotic continuity, i.e., for any states
ρn and σ n on HA ⊗ HB ⊗ HE , the condition ‖ρn − σ n‖1 →
0 implies 1

log2 rn
|E (ρn) − E (σ n)| → 0, where rn = dim(Hn

A);

and (c) normalization, i.e., E (τ (l ) ) = l . Then the regulariza-
tion of the function E given by E∞(ρ) = lim supn→∞

M(ρ⊗n )
n

is an upper bound on the device-dependent key distillation rate
KDD, i.e., E∞(ρABE ) � KDD(ρABE ) for all ρABE with dimA <
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∞, if in addition E satisfies (d) subadditivity on tensor prod-
ucts: E (ρ⊗n) � nE (ρ); then E is an upper bound on KDD.

Proof. The proof arguments are same as those stated in
Ref. [25] with relaxation on the Hilbert space of E . We ob-

serve that the proof arguments hold even when there is no
restriction on the dim(HE ), i.e., E can be finite dimensional
or infinite dimensional. It suffices to have dim(HA) be finite
dimensional.
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We recently learned that the bound presented in Sec. IV of our paper is redundant. This fact motivated us, apart from
describing which parts should be disregarded (see below), to also revise some of the text. It is important to note that there
is no change with respect to the results and proofs of the original version of our paper. We describe below essential changes.

We have learned that the two measures of multipartite entanglement–multipartite squashed entanglement Esq and its dual Ẽsq

in our paper are, in fact, equal to each other. The equality follows from Theorem 7 in Ref. [1]. Precisely the two definitions given
in our paper below are equivalent [1].

Definition 4 [from Ref. [23] (of the original paper)]. “For an N-partite state ρA1,...,AN ,

Eq
sq

(
ρA1,...,AN

)
:= inf

σ
I (A1:A2: . . . :AN |E )σ , (20)

where the infimum is taken over states σA1,...,AN E that are extensions of ρA1,...,AN , i.e., TrE [σA1,...,AN E ] = ρA1,...,AN .”
and

Definition 7. “For an N-partite state ρA1,...,AN ,

Ẽsq(ρN (A) ) := inf DN (σN (A)E ), (49)

where the infimum is taken over states σN (A)E that are extensions of ρN (A), i.e., TrE [σN (A)E ] = ρN (A).”
Here,

I (A1: . . . : :N |E )ρ =
N∑

i=1

S(Ai|E )ρ − S(A1, . . . , AN |E )ρ.

and

DN (ρN (A)E ) := I (A1:A2 · · · AN |E )ρN (A)E + I (A2:A3 · · · AN |A1E )ρN (A)E + I (A3 : A4 · · · AN |A1A2E )ρN (A)E

+ · · · + I (AN−1:AN |A1 · · · AN−2E )ρN (A)E .

In turn, our upper bounds on the device-independent (DI) key based on the dual measure given in Theorem 5 and
Corollary 3 in Sec. IV of the paper equals the multipartite reduced c-squashed entanglement bounds given in Theorems 2
and Corollary 2 in Sec. III of our paper, respectively. For this reason, any reference to the dual function, including these in the
discussion section, should be skipped in reading. As a result, Fig. 2 also should not contain the plot of a dual bound, which
appeared to be not equal to the c-squashed due to lack of optimization. Figure 2 should look like Fig. 2 here.

We have also noted typographical errors that could make unclear Eq. (68) and text around it. The new text reflects the numerics
that was actually performed in our paper, hence, the modification presented below does not affect the plot given in Fig. 2 there.
It was

“Pattack
ν (a, b1, b2, f |020) = �E→F PCC

ν (a, b1, b2, e|020)

= (1 − ν)3PGHZ(a, b1, b2|x, y1, y2)δe,? + [1 − (1 − ν)3]PL
ν (a, b1, b2|x, y1, y2)

× δe,(a,b1,b2 )[δa,b,cδ f ,a + (1 − δa,b,c)δ f ,?], (68)

where δa,b,c is 1 if all three indices have the same value and 0 otherwise. The above attack strategy is, therefore, a direct
three-partite generalization of strategy proposed in Ref. [17]. The eavesdropper aims to be correlated only with the events
(a, b1, b2) = (0, 0, 0) or (a, b1, b2) = (1, 1, 1), which mimic outputs of the honest strategy of the Greenberger- Horne-Zeilinger
(GHZ) state. By applying the above attack strategy, we are ready to plot an upper bound on the reduced cc-squashed entanglement
Corollary 2.”

2469-9926/2023/107(2)/029902(3) 029902-1 ©2023 American Physical Society



ERRATA PHYSICAL REVIEW A 107, 029902(E) (2023)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
�

0.2

0.4

0.6

0.8

1.0
KDI

FIG. 2. Plot of upper and lower bounds on the device-independent conference key agreement (DI-CKA) of Ref. [2]. The yellow dashed
line represents an upper bound (not fully optimized) on the upper bound 1

N−1 I[N (A) ↓ E ] from Eq. (39) with the attack strategy in Eq. (68).
The red dashed-dot curve is the trivial upper bound obtained in Corollary 5 via the relative entropy of entanglement bound (1 − ν). The blue
solid line represents the lower bound from Ref. [2].

It should be now as follows:

“Pattack
ν (a, b1, b2, f |020) = �E→F PCC

ν (a, b1, b2, e|020)

= (1− ν)3PGHZ(a, b1, b2|020)δ f ,? + [1 − (1 − ν)3]PL
ν (a, b1, b2|020)

[
δa,b1,b2δ f ,a + (

1 − δa,b1,b2

)
δ f ,?

]
,

(68)

where δa,b1,b2 is 1 if all three indices have the same value and 0 otherwise. The above attack strategy is, therefore, a direct three-
partite generalization of strategy proposed in Ref. [3]. The eavesdropper aims to be correlated only with the events (a, b1, b2) =
(0, 0, 0) or (a, b1, b2) = (1, 1, 1), whenever they originate from the local behavior PL

ν , and maps all other events to f =?. By
applying the above attack strategy, we are ready to plot an upper bound on the reduced c-squashed entanglement shown in
Corollary 2. The latter bound is a multipartite version of the intrinsic information [4,5], used first for the bipartite case in Ref. [6]
against a nonsignaling adversary (see in this context Refs. [7–9]). Here, the strategy of Eve to process her classical variable E to
F is based on Ref. [3] as shown above.”

Proposition 3 originally read as follows:
Proposition 3. “For any N-partite quantum behavior (ρN (A),M) there is

K iid
DI,dev(ρN (A),M) � min

{
min
P

K iid
DI,dev(ρP (N (A)) ) min

P
inf

(σP (N (A)),L)=(ρP (M(A)),M)
KDD(σP (N (A)) )

}
, (72)

where P is any nontrivial partition of the set of systems A1, . . . , AN .”
It should now be as follows (sign × exhanged for the comma and without a bracket ]):

Proposition 3. “For any N-partite quantum behavior (ρN (A),M) there is

K iid
DI,dev(ρN (A),M) � min

{
min
P

K iid
DI,dev(ρP (N (A)) ), min

P
inf

{σP (N (A)),L}={ρP (M(A)),M}
KDD(σP (N (A)) )

}
, (72)

where P is any nontrivial partition of the set of systems A1, . . . , AN .”
The errors listed here, and corrected typographical errors, do not affect the results and proofs in our paper. An updated version

has been made available [10].

S.D. acknowledges M. E. Shirokov for pointing out that the dual bound is redundant.
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We initiate a systematic study to provide upper bounds on device-independent keys, secure against a nonsignal-
ing adversary (NSDI). We employ the idea of “squashing” on the secrecy monotones and show that squashed
secrecy monotones are the upper bounds on the NSDI key. Our technique for obtaining upper bounds is based on
the nonsignaling analog of quantum purification: the complete extension. As an important instance of an upper
bound, we construct a measure of nonlocality called “squashed nonlocality.” Using this bound, we identify
numerically a certain domain of two binary inputs and two binary outputs of nonlocal devices for which the
squashed nonlocality is zero. Therefore one can not distill a secure key from these nonlocal devices via a
considered (standard) class of operations. Showing a connection of our approach to the one in New J. Phys. 8,
126 (2006), we provide, to our knowledge, the tightest known upper bound in the (3,2,2,2) scenario. Moreover,
we formulate a security condition, equivalent to known ones, for the considered class of protocols. To achieve
this, we introduce a nonsignaling norm that constitutes an analogy to the trace norm used in the security condition
of the quantum key distribution.

DOI: 10.1103/PhysRevA.106.052612

I. INTRODUCTION

Secure key distribution is a process of generation of se-
cret key bits between two distant parties, in presence of an
eavesdropper [1–3]. There are four major cryptographic se-
curity paradigms developed in the last several decades that
provide a background for our investigation. These are (i)
a secret-key agreement scenario (SKA) [1,2], (ii) device-
dependent security against a quantum adversary (QDD) [3–7],
(iii) device-independent security against a quantum adversary
(QDI) [5,8–12], and (iv) device-independent security against a
nonsignaling adversary (NSDI) [13–17]. We have enumerated
them in order of increasing power of the eavesdropper. In
what follows, we are going to use concepts of SKA paradigm
to place upper bounds on the secret-key rate in the NSDI
scenario in a manner that is known from the QDD paradigm.
Let us then begin with a short reminder of the main ideas
behind the aforementioned cryptographic setups.

In the SKA scenario, the parties share marginals of a classi-
cal probability distribution P(ABE ), respectively. The honest
parties (often called Alice and Bob) can process their data
by the so-called local operations and public communication
(LOPC). At the same time, the eavesdropper Eve can listen to
public communication and can apply any stochastic map on
her data [1,2]. This paradigm is of special interest in context
of security of the wireless communication.

*Corresponding author: marek.winczewski@ug.edu.pl

The QDD scenario, originating conceptually from the
SKA, was introduced at the early stage of quantum cryp-
tography [4,5]. In this paradigm, the three parties share (in
the worst case) a subsystem of a joined pure quantum state
|�ABE 〉. Alice and Bob can process this state by Local quan-
tum operations and Classical communication (LOCC). At the
same time, Eve obtains any system which is discarded by
Alice and Bob and can perform any quantum operation on her
subsystem [18–20]. This scenario has a drawback that Alice
and Bob have to trust the inner working of their device: the
dimensionality of the state and operations of measurement
performed by the device. This problem has been resolved in
a much more sophisticated approach of the QDI, quantum
device-independent scenario. In this paradigm, the honest par-
ties share an untrusted device, described by a joint conditional
probability distribution P(AB|XY ) originating from a mea-
surement on a quantum state ρAB: P(AB|XY ) = Tr(MA|X ⊗
MB|Y ρAB). Security in this scenario is based solely on statistics
of the inputs X, Y and outputs A, B of the device. An eaves-
dropper is assumed to be restricted by the laws of quantum
mechanics. She is therefore bound to hold a purifying system
of a ρAB, i.e., the system E of such a pure state |ψABE 〉, that
TrE |ψ〉〈ψ |ABE = ρAB.

A. Nonsignaling adversary scenario

In this manuscript, we focus on another branch of key
distribution that has emerged in the last two decades,
which is the nonsignaling device-independent (NSDI) sce-
nario [13–17,21–23]. This scenario has even more relaxed

2469-9926/2022/106(5)/052612(48) 052612-1 ©2022 American Physical Society
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assumptions than QDI. Here, the eavesdropper is restricted
only by the nonsignaling condition, i.e., she can not influ-
ence statistics of the honest parties in a faster than light
manner. Similarly the honest parties can share a possibly
supraquantum correlation only constrained by the nonsignal-
ing condition. The advantage of NSDI approach over SKA,
QDD, and QDI scenarios is the fact that it assures security
even if a new theory replacing quantum mechanics became
established, as long as it is nonsignaling. The object shared
by Alice, Bob, and Eve is a tripartite nonsignaling device,
P(ABE |XY Z ), with Z and E being the input and output re-
spectively of Eve’s part of the device. On this device, the
parties perform some measurements (X,Y ) and post-process
their output data (A, B) by some LOPC operations, to produce
the secure key. This device is assumed to be (in a worst case)
created by the eavesdropper who can listen to the public com-
munication, and perform certain operations on her subsystem.

The first NSDI protocol, whose security was proven, was
given by Barrett, Hardy, and Kent [13]. The protocol results in
a single key bit in the noiseless scenario. Later, lower bounds
on the key rate have been derived in Refs. [14,16,22], via
several key distillation protocols, under the assumption that
eavesdropper attacks each of the subsystems separately. In the
presence of a collective eavesdropping attack, it was shown
in Refs. [15,17,23], that one can obtain a nonzero key rate
under the fully nonsignaling constraint. By fully nonsignal-
ing, we mean that none of the subsystems of a device can
signal to each other. More precisely, a device with 2N + 1
inputs and 2N + 1 outputs (N for each of the honest parties
and one for the eavesdropper) is understood to have 2N + 1
subsystems none subset k of which can signal to the remaining
2N + 1 − k.1 This assumptions is vital, because if the device
can perform signaling between its subsystems (of one party)
[24], then no hash function is known to achieve privacy ampli-
fication against the nonsignaling eavesdropper. Moreover, if
the device has a memory [25,26], or can signal forward (from
one run2 of the protocol to the next one) [27], then a wide class
of hash functions can be attacked by a nonsignaling Eve. The
assumption of full nonsignaling can be achieved by perform-
ing measurements in parallel on all of the 2N subsystems. We
refer to this approach as to parallel measurement model.

The nonsignaling paradigm that allows defining the NSDI
scenario became an active field of research since the seminal
papers of Rastall [28], Khalfin, and Tsirelson [29] as well
as Popescu and Rohrlich [30] (for a recent review on Bell
nonlocality see [8]). Our findings will contribute not only to
the aforementioned cryptographic scenarios (NSDI and SKA)
but also to the domain of Bell nonlocality. This is because
some of the functions that serve as upper bounds on the key
rate that we establish in the NSDI scenario, are alternative
measures of nonlocality.

1In what follows, by “device” we mean a single-use device. A de-
vice can be used by measuring its input. A single-use device can not
be measured more than once. If there is a need to perform multiple
measurements on a device, then it will be assumed as a composite
device consists of multiple single-use devices.

2By one single run of the protocol, we mean one use of a particular
single use device.

B. Motivation

In the NSDI scenario described above, mainly the lower
bounds on the key rate has been considered [13–17,21–23].
For the upper after seminal result given in Ref. [16] based
on intrinsic information, upper bounds were not studied sys-
tematically until recently (an upper bound based on intrinsic
information has been proposed in parallel to the approach pre-
sented in this work in Ref. [31]). In contrast, if one considers
the QDD scenario, both lower bounds [18,32–34], and upper
bounds on the secure key rate are well known. Indeed, the
upper bounds in this scenario where studied both in the con-
text of quantum states [19,20,34–38] and quantum channels
[39–41] (see also Refs. [42–46] in this context). Similarly
in the case of QDI scenario, after seminal upper bound of
Refs. [31,47], a sequence of other proposals were provided
recently [48–52]. Some of the upper bounds in QDD and QDI
scenario [34,36–40,48–50] are based on the entanglement
measure called “squashed entanglement” [34]. A welcome
feature of this measure is that it is an additive function, i.e.,
one avoids regularization like it is the case for the relative
entropy of entanglement [19,20,45,46,53]. We aim at both
constructing upper bounds in the NSDI scenario and introduc-
ing alternative measures of nonlocality. Although the analog
of relative entropy—the “strength of nonlocality proof” [54]
(also called relative entropy of nonlocality [55]) has been
constructed, no analog of squashed entanglement was known
in the realm of nonlocality (for the parallel, and different ap-
proach see Ref. [31]). In our approach to the problem, we are
guided by an analogy between entanglement and nonlocality.
Interestingly the measure which we construct is, up to maxi-
mization over the inputs of the honest parties, equal to the one
implicitly considered in Ref. [16]. It is however differently
formulated, as we use the notion of a complete extension
[56] to formalize it. Moreover, we prove that our measure is
a convex function of the devices of the honest parties, what
allows for the use of the convexification technique (that we
formulate) for finding the numerical upper bound. We will see
that this reformulation is fruitful for studying properties of this
upper bound, which we call here “the squashed nonlocality.”

II. MAIN RESULTS

In this manuscript, we construct upper bounds on the NSDI
key rate, distillable via (i) direct measurement, changing de-
vice into a distribution followed by (ii) Local operations and
Public communication (denoted together as MDLOPC op-
erations). Aiming at upper bounds, we study the scenario
in which the shared device consists of N independent and
identically distributed (iid) copies of a nonsignaling device
P(AB|XY ). We define a wide class of secrecy quantifiers taken
from the so-called SKA (secure key agreement) model [2].
One such quantifier, we call the squashed nonlocality, as we
define it in analogy to squashed entanglement [34], however,
in the realm of nonsignaling devices. We then show that the
squashed nonlocality serves as an upper bound on the key
distilled by MDLOPC operations. It is important to note that
almost all of the secure key distillation protocols in QDI
and NSDI, proposed so far, belong to the MDLOPC class of
operations (see however recent proposal [57]). Therefore our
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bounds, on the amount of key, bound from above the key rate
achieved by a wide class of practical protocols.

A. Family of nonlocality measures as upper bounds

One of our achievements is a construction of upper bound
on the secret key in the NSDI scenario that is in an addition a
(nonfaithful) measure of nonlocality. Informally, the squashed
nonlocality Nsq(P), of a bipartite nonsignaling device P :=
P(AB|XY ) is given by

Nsq(P) := Î(A : B ↓ E )E (P)(ABE |XY Z )

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE|XYZ), (1)

where E (P)(ABE |XY Z ) is the complete extension of the de-
vice P [56] and I (A : B ↓ E )P(ABE ) is the intrinsic information
of a distribution P(ABE ) [58,59]. Furthermore, the honest par-
ties choose inputs x, y (for a full direct measurement MF

x,y),
while the eavesdropper is allowed to perform a more gen-
eral measurement MG

z that contains in particular probabilistic
mixing of input choices.

The squashed nonlocality, as we prove, possesses many
properties of those desired for a measure of nonlocality such
as convexity and additivity. As we show the above function
is only an example of an upper bound that can be introduced
using our approach. The other function that we study in this
paper to be lifted from the SKA to the NSDI scenario are
mutual information and conditional mutual information.

We note, however, that the above function can be equiva-
lently formulated in a way considered implicitly in Ref. [16]
by A. Acin, S. Massar, and S. Pironio (AMP). Consider a
function IAMP,(x,y):

IAMP,(x,y)(P(AB|X = x,Y = y)

:= inf
{p(E=e),P(ABE=e|X=x,Y =y)}

I(A : B ↓ E )P(ABE |XY ), (2)

where P(ABE |XY ) = p(E = e)P(AB, E = e|XY ), and the
infimum is taken over all ensembles {p(E = e), P(AB, E =
e|XY )} of the device P(AB|X,Y ) = ∑

e P(E = e)P(AB, E =
e|X,Y ). The equivalence can be establish as follows for a
device P ≡ P(AB|XY ):

max
(x,y)

IAMP,(x,y)(P) = Nsq(P). (3)

This fact, along with our proof of the convexity of Nsq leads
to the tightest known bound in the scenario (3,2,2,2) (see
Fig. 5), i.e., with three inputs for one party, binary inputs for
the other and binary outputs for both (for the proof of Eq. (3)
and consequences of it see Sec. VI).

We provide a method of generating tighter (though possi-
bly harder to compute) upper bounds. Indeed, in defining the
squashed nonlocality, we used the secrecy monotone called
intrinsic information. The nonfaithfulness3 of the squashed
nonlocality is therefore due to the property inherited from the
classical intrinsic information that can be zero for correlated
distribution. One can, however, use some other quantifiers of

3The property of nonfaithfulness of a measure of nonlocality means
that the measure is zero for some nonlocal behaviors.

FIG. 1. Plot of several secrecy quantifiers M̂(A : B||E ), as an
upper bound on K (iid)

DI , for a bipartite binary input-output device
lying on the isotropic line. The dashed red line represents squashed
mutual information Î(A : B)Piso . The straight blue line represents the
nonlocality cost, as well as the squashed conditional mutual entropy
Î(A : B|E )E (Piso ), over the complete extension E (Piso ) of the given
device Piso. The solid orange line represents the upper bound on
the squashed nonlocality Nsq, which is the lower convex hull of the
several other upper bounds on Nsq. The dotted pink curve (HRW)
corresponds to the lower bound achieved by Hänggi, Renner, and
Wolf’s protocol [17].

secret correlations, e.g., the so-called reduced intrinsic mutual
information, which also leads to an upper bound. Due to an
analogy between the entanglement and nonlocality, the upper
bounds we provide here are also measures of nonlocality, and
as such, can be studied independently.

Furthermore, we notice that our approach can be readily
modified in order to construct upper bounds for a wider class
of protocols in which one of the inputs of the honest par-
ties is not announced [14]. This can be done by changing
maxx,y minz to maxy minz maxx in Eq. (1), what reflects the
action of the parties in the latter scenario (only Bob announces
his inputs).

B. MDLOPC-bound nonlocality

Using the bound, we then obtain numerically a region of
nonlocal two binary input and two binary output, (2,2,2,2)
devices, from which no key can be distilled via MDLOPC
operations. These are the “isotropic” mixtures of the devices,
namely, the Popescu-Rohrlich (PR) box and the box comple-
mentarity to it, the anti-PR box when the admixture of the
PR box is less than 80%. Notably, this result implies that in
parallel measurement model, when the same measurement on
each device is performed, nonlocality does not imply secrecy.
Indeed, quantum devices with mixture of PR box more than
75% exhibit nonlocality, that is, they violate the CHSH in-
equality [60], while as we show, all the devices below 80%
have zero key distillable by MDLOPC protocols. We compare
also the upper bound via nonsignaling squashed nonlocality
for isotropic devices with the lower bound on the key rate
taken from [17] (see Fig. 1). The lower and the upper bounds
come pretty close for the state close to the PR box.

We note here that in Ref. [14] a protocol for distillation
of private key from isotropic devices were given which is out
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of MDLOPC class: one of the parties do not announce the
input from used to generate the key. There also it was shown
that the so called intrinsic information is zero when both the
parties announce their inputs after measurements. Our bound
does not extends straightforwardly to this scenario, as in our
case, Eve knows that Alice and Bob draw key from single pair
of inputs. However it indicates that keeping one of the inputs
used for generating key secret, is crucial for nonzero key rate
in the nonsignaling adversary scenario.

This indication is confirmed by recent result given in
Ref. [50] for the case of device-independent quantum key
distribution with quantum adversary. There, a broader notion
of protocols is considered, also called “standard.” These are
protocols during which for generation of the key each device
is measured by a pair of inputs (X = x, Y = y) with prob-
ability p(x, y) drawn in i.i.d manner, an announced before
post-processing the output key rate. It is shown there, that
such protocols admits an upper bound

∑1,1
x=0,y=0 p(x, y)I (A :

B ↓ E , xy), i.e., the intrinsic information [58,59] averaged
over choices of the inputs. Moreover it is argued, that there
exist nonlocal devices (violating CHSH inequality) for which
the latter upper bound is zero. This implies that no such a
“standard” protocol is able to achieve nonzero key rate in the
case of quantum adversary.

In a similar way, we show the MDLOPC-bound nonlocal-
ity in the (3,2,2,2) scenario [5,16]. In the latter, one party
has inputs x ∈ {0, 1, 2} and the other y ∈ {0, 1}. The inputs
x �= 0, y are used for testing the value of the CHSH inequality
[60], while the pair x = 0, y = 0 is used for generation of the
raw key. The fact that distributions with isotropic parameters
p ∈ [0.7071, 0.8284] are nonlocal but no key can be distilled
from them in the latter scenario was left open in Ref. [16].
Showing the equivalence given in Eq. (3) and the fact that
Nsq upper bounds the distillable key, we close the mentioned
open problem, by confirming that no key can be obtained
by a protocol drawing key from a single pair of settings
x = 0 and y = 0. The obtained results are shown in Fig. 5.

C. Analogies between different cryptographic paradigms

We finally compare the proposed security criteria with the
previously known ones [15,17,23,24,63,64], and prove their
equivalence. In the case of quantum mechanics, the power
of eavesdropper is fully described by system of the hon-
est parties through the so-called purification. However, it is
known that there is no analog of the quantum purification in
the realm of devices [65,66]. To overcome this problem, we
have used a recently introduced notion of complete extension
[56], to describe eavesdropper’s power. The complete exten-
sion, E (P)(ABE |XY Z ), of the shared device P(AB|XY ), is
the worst-case extension that Eve can share with the honest
parties. It is the worst case in the sense that it gives the
eavesdropper an ultimate power as compared to quantum
purification does in QDD and QDI scenarios. Indeed, the
complete extension gives access to all possible ensembles of
the device of the honest parties, when randomizing input and
post-processing channel is applied on the extended part. It
implies, as we show in detail, that this structural approach is
equivalent to the one proposed in Ref. [17].

FIG. 2. Summary of part of the results which contribute to the
analogy between security paradigms: SKA scenario where distribu-
tions are processed, and one of the upper bounds is the intrinsic
information I (A : B ↓ E ), QDD protocol, where the shared pure
state is processed, and distillable key KD is upper bounded (among
others) by the measure “squashed entanglement” Isq [61,62]. We
reformulate NSDI paradigm so that it bases on the complete exten-
sion, E (P(AB|XY )), of a device (conditional distribution) P(AB|XY ),
introduce an analog of intrinsic information and squashed entangle-
ment called “squashed nonlocality.”

We have further introduced amother criterion of security,
based on an operational distance measure between nonsignal-
ing devices—the nonsignaling norm (NS norm) analogous to
the trace norm in quantum mechanics (related to the one given
in Ref. [67]). We have also proved equivalence between our
criteria and the two proposed so far in Refs. [11,15,23] and
[17,24,63,64], respectively. As a byproduct, we have shown
that the latter two definitions are equivalent. By proving equiv-
alence of our definition based on ||.||NS norm to the definition
of Refs. [17,24,63,64], we have shown that the former is com-
posable, in a sense given there.4 A visualization of some of the
main results that contribute to developing a structural analogy
between SKA, QDD, and NSDI are presented in Fig. 2.

III. SECURITY DEFINITION IN THE IID SCENARIO

In every DI secure key distillation protocol, the honest
parties perform several numbers of test runs to estimate the
nonlocal correlation present in the system and a (larger) num-
ber of key generation runs to generate the raw key. The raw
key is further processed to yield the final key only if the
device has passed the test run, i.e., the data are compatible
with a sufficiently nonlocal device. Aiming at upper bounds,
we study only the performance of the key generation runs. We,
therefore, assume that, on the N iid (identical, independently
distributed)5 copies of the shared device P(AB|XY )⊗N , the
honest parties perform full direct measurement [MF

x,y]⊗N , by

4Naturally however, the device can not be reused in composing the
protocols due to the threat of the memory attack [68].

5For QDI, it is known that any arbitrary device can not be expressed
in terms of the IID single use device, but the security proof for
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setting X = x (Alice) and Y = y (Bob) at their choice, fol-
lowed by any composition of classical post-processing of the
distribution P(AB|xy), and public communication (denoted
as Q). These operations result in a pair of random variables
(SA, SB) that represents the key. That is, on the outputs of
the measured device, the honest parties perform an LOPC
protocol. An operation performed on a device, that is a com-
position of the direct measurements and an LOPC operations
we call Measurement on device local operation and public
communication operation (MDLOPC).

In NSDI scenario Eve collects all the public commu-
nication Q, and then post-process her data represented by
P̃(E |Z, Q). She can also perform a wider class of operations
than the honest parties, including the general measurement
MG

z′ = ∑
z p(z|z′)MF

z . This is equivalent to a probabilistic
choice of the inputs for direct measurements. She can do so
by the general measurement MG

z′ , by wiring the output of
her local auxiliary device (a dice), that generates a random
conditional probability distribution p(z|z′), to the input of her
part of the device, i.e., Z of P̃(E |Z, Q). However, the ultimate
power of eavesdropping in this scenario is fixed by definition
of the class of operations that a hypothetical agent called
distinguisher could perform. It is assumed that distinghuisher
has access to both the output of the protocol (i.e., the keys
of the honest parties) and the Eve’s device P̃(E |Z, Q). By
his operations, distinguisher should be almost not able to tell
apart this so-called “real” device Preal(SA, SB, Q, E |Z ) from an
“ideal” one, i.e., containing perfectly uniform and correlated
keys, product with Eve’s system.

We can specify now what the key distillation protocol is.
A protocol of key distillation is a sequence of MDLOPC
operations � = {�N }, performed by the honest parties on N
iid copies of the shared devices. Each of this �N , consists
of a measurement stage {MN }, followed by post-processing
{PN }, on N iid copies of P(AB|XY ). Moreover, for each con-
secutive, complete extension of N copies of shared devices
E (P⊗N )(ABE |XY Z ), the protocol outputs a probability dis-
tribution in part of Alice and Bob and a device in part of Eve,
which is arbitrarily close to an ideal distribution, satisfies∣∣∣∣Pout − P(dN )

ideal

∣∣∣∣
NS � εN

N→∞−→ 0. (4)

Here Pout = �N (E (P⊗N )). Moreover A = A1A2 . . . AN , B, X
and Y are similarly defined.

The definition of the secret-key rate, based on the notion of
the (i) complete extension and (ii) the key distillation protocol,
satisfying the proximity in the NS norm security criterion
according to the Eq. (15), is given below.

Definition 1. Given a bipartite device P ≡ P(AB|XY ) the
secret-key rate of the protocol of key distillation �N , on
N iid copies of the device, denoted by R(�|P ) is a num-
ber lim supN→∞

log2 dN

N , where log2 dN is the length of a
secret key shared between Alice and Bob, with dN =
dimA[�N (E (P⊗N ))] ≡ |SA|. The device independent key rate

a broad range of cryptographic protocols can be performed via a
reduction to IID [69].

of the iid scenario is given by

K (iid)
DI (P) = sup

�

R(�|P ), (5)

where the supremum is taken over all MDLOPC protocols
{�}.

Later in this manuscript, we argue that the above definition
is equivalent in terms of security to the one adopted earlier
[11,15,17,23,24,63,64], which allows us to compare some of
the existing lower bounds with the upper bounds that we
provide.

IV. SQUASHING PROCEDURE

Let us suppose that M(A : B||E ) is a real-valued and
non-negative function, with domain in the set of tripartite
probability distributions P(ABE ), which is an upper bound on
secret-key rate S(A : B||E ) in SKA cryptographic paradigm
[2], i.e., ∀P(ABE ), M(A : B||E ) � S(A : B||E ). We will refer
to M(A : B||E ) as to secrecy quantifier. Additionally, if M(A :
B||E ) is monotonic with respect to LOPC and zero for prod-
uct distributions, we call it a secrecy monotone. Squashing
a secrecy monotone will not yield an MDLOPC monotonic
quantifier in general. The quantifiers of secret correlations in
the NSDI model can be constructed by mapping the tripartite
nonsignaling device R(ABE |XY Z ) to a joint probability dis-
tribution, as given in the definition.

Definition 2. Corresponding to each secrecy quantifiers in
SKA model M(A : B||E ), we associate a nonsignaling secrecy
quantifier M̂(A : B||E ) acting on the tripartite nonsignaling
devices:

M̂(A : B||E )R(ABE |XY Z )

:= max
x,y

min
z

M(A : B||E )(MF
x,y⊗MG

z )R(ABE |XY Z ), (6)

where (
MF

x,y ⊗ MG
z′
)
R(ABE |XY Z )

=
∑

z

p(z|z′)R(ABE |X = x,Y = y, Z = z). (7)

If R(ABE |XY Z ) ≡ E (P)(ABE |XY Z ) is the complete ex-
tension of a bipartite device P(AB|XY ), we call M̂(A :
B||E )E (P)(ABE |XY Z ) the nonsignaling squashed secrecy quan-
tifier. If M(A : B||E )R(ABE |XY Z ) is a secrecy monotone, we
call M̂(A : B||E )R(ABE |XY Z ) a nonsignaling secrecy monotone.
Additionally if R(ABE |XY Z ) is a complete extension, we call
it a nonsignaling squashed monotone.

Here, by maxx,y, we mean the maximization over all pos-
sible direct measurements, MF

x,y ≡ MF
x ⊗ MF

y by the honest
parties, whereas the minz implies that the eavesdropper will
try to minimize the function over all possible choices of
measurements, direct and general. Optimization over direct
measurements involves a fixed input choice, whereas for gen-
eral measurement, one needs to perform optimization over
all possible conditional probability distributions p(z|z′). In
our MDLOPC key distillation protocol, the eavesdropper
can choose her measurement adaptively, based on the public
communication variable Q. Hence the causal order of the op-
timization on the secrecy quantifier is that Alice and Bob first
choose their optimal measurements, and then Eve performs
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her part. This gives her the maximal operational power to
reduce the correlations between the honest parties.6

The motivation to use the term “squashed” in the above
measures, comes from the fact that the definition of squashed
entanglement, of an arbitrary quantum state ρAB, contains
an optimization over all possible extensions ρABE , where
trE (ρABE ) = ρAB. This arbitrary extension ρABE can be ob-
tained from the purification |ψ〉ABE of the quantum state [62].
In the analogy of these, here we use the complete extension
E (P), the nonsignaling equivalent of quantum purification,
which is the key ingredient to perform an optimization over
all possible nonsignaling extensions [56] of a given device
P. The secrecy quantifiers, we have used for squashing, are
the mutual information I(A : B), the conditional mutual in-
formation I(A : B|E ), the intrinsic information I(A : B ↓ E )
[58] and the reduced intrinsic information I(A : B ↓↓ E ) [70].
Among them, I(A : B|E ), I(A : B ↓ E ) and I(A : B ↓↓ E ) are
secrecy monotones. Hence Î(A : B|E ), Î(A : B ↓ E ) and Î(A :
B ↓↓ E ) are nonsignaling squashed secrecy monotones while
Î(A : B) is an example of a nonsignaling squashed secrecy
quantifier.

The inclusions between gray, green, and orange sets in
Fig. 3 follow directly from the definition of different classes
of functions. Namely, all n-s secrecy measures are necessarily
n-s secrecy monotones, and all n-s secrecy monotones are
necessarily n-s secrecy quantifiers, but not vice versa. The
strictness of the inclusions follows from a trivial example
of n-s mutual information (gray area), n-s intrinsic informa-
tion (orange area), and n-s intrinsic information shifted by
a nonzero constant (green area). Analogous relation is true
for the squashed version of the aforementioned functions.
Nevertheless, the squashing procedure does not imply that
the resulting function is automatically a secrecy measure or a
secrecy monotone; therefore, the representatives of squashed
functions are present in all three sets.

V. GENERIC UPPER BOUND AND
THE SQUASHED NONLOCALITY

Below, we use the aforementioned idea of squashing for
upper-bounding the secret key in the NSDI scenario with
MDLOPC operations.

Theorem 1. The secret-key rate, in the nonsignaling
device-independent iid scenario achieved with MDLOPC op-
erations, K (iid)

DI , from a device P, is upper bounded by any
nonsignaling squashed secrecy quantifier evaluated for the
complete extension of P:

∀P K (iid)
DI (P) � M̂(A : B||E )E (P), (8)

where P ≡ P(AB|XY ) is a single copy of a bipartite
nonsignaling device shared by the honest parties, and E (P) ≡
E (P)(ABE |XY Z ) is its complete extension to the eavesdrop-
per’s system.

Proof. For the proof, see Sec. F of Appendix.
Theorem 1, together with Definition 2, establishes a con-

nection between the secret-key rate in the SKA and NSDI

6One can also consider the reverse order of optimization, but that
opens up a different, uncommon paradigm of key distillation.

FIG. 3. The relative hierarchy of the squashed function M̂(A :
B||E ) of any bipartite device P(AB|XY ). Any M̂(A : B||E ) function,
which is positive semidefinite and vanishes for devices that are the
product of two local devices, is called a nonsignaling squashed se-
crecy quantifier, and the set of all such functions is the entire region
inside the black ellipse. The quantifiers that are generated from the
monotones of the SK paradigm are called nonsignaling squashed
secrecy monotones and are represented by the green region inside
the green ellipse, as a subset of the secrecy quantifiers. Î(A : B|E ),
Î(A : B ↓ E ), and Î(A : B ↓↓ E ) are the monotones belonging to this
category. If a function is additionally monotonic under MDLOPC
operations for devices, vanishes for local ones, then we call it the
nonsignaling squashed secrecy measure, and the set represented by
the red region in the figure. Any secrecy quantifier will be called
squashed secrecy quantifier if the extension of the device P(AB|XY )
has been taken to be the CE E (P)(ABE |XY Z ). The set of such
functions are denoted by the dashed blue region. The intersection of
the dashed blue region with the green region includes all squashed
secrecy monotones, whereas its intersection with the red contains
all squashed secrecy measures. The squashed nonlocality Nsq is a
particular function from that region, which is depicted as the black
dot.

scenario. The novelty of our approach is that not only it
connects at least two major security paradigms, but it also
opens up a new area of research—to study more tighter upper
bounds on the key rate in the NSDI scenario (for parallel, dif-
ferent approach see Ref. [31]). In this paper, we focus on the
secrecy monotone called intrinsic information I (A : B ↓ E ).
From this secrecy monotone via squashing we construct the so
called squashed nonlocality, as an upper bound on the NSDI
key. We then prove several important properties of squashed
nonlocality, which promotes it as a measure of nonlocality.
Secrecy monotone called the reduced intrinsic information
I (A : B ↓↓ E ), provide a tighter bound on the key rate in the
SKA scenario, as I (A : B ↓↓ E ) � I (A : B ↓ E ) for tripartite
probability distribution P(ABE ) [71]. Hence we open a pos-
sibility to study even tighter upper bound on the K (iid)

DI , upon
squashing the I (A : B ↓↓ E ). We focus now on the definition
of the aforementioned squashed nonlocality.

Definition 3. The squashed nonlocality Nsq(P), of a bipar-
tite nonsignaling device P := P(AB|XY ) is

Nsq(P) := Î(A : B ↓ E )E (P)(ABE |XY Z )

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE|XYZ),
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where E (P) := E (P)(ABE |XY Z ) is the complete extension of
the device P [56].

We note here, that the above definition is tuned to the
deifinition of K (iid)

DI . The order of the maxx,y and minz stems
from the fact that we consider the scenario of key distillation
in which Eve knows x, y beforehand. In our case, the inputs
(x, y) are fixed before the beginning of the protocol, but in
general it could be announced during the protocol’s execution.
This is important point, as alternative protocols exist in which
only one party announces the inputs, and the key is distilled
from output of all the inputs [14]. In the latter case, a positive
key rate can be obtained even from the quantum isotropic
devices in the scenario of two binary inputs and two binary
outputs, while in the scenario which we consider where both
inputs are known to the eavesdropper no positive lower bound
on the key rate is known. It is possible that the upper bounds
on the protocols such as those from Ref. [14] where x is not
announced, are provided in terms of the squashed nonlocality
where however maxy minz maxx appears in front instead of
maxxy minz.

From the definition of a complete extension of a device (see
Ref. [56]), we know that in order to construct it, one needs
to identify all possible so-called minimal ensembles of the de-
vice. For example, in the polytope of two binary input and two
binary output devices (2,2,2,2), a device lying on the isotropic
line between Popescu-Rohrlich and Tsirelson’s one7 has up to
354 minimal ensembles (achieved for the Tsirelson’s device).
However, a priori, there are 880 946 of ensembles that can
be potentially minimal [56]. Hence, obtaining all possible
minimal ensembles, and therefore finding out the complete
structure of the CE may be an arduous task. However, we
observe that to obtain a nontrivial upper bound on the Nsq,
not the whole complete extension has to be even known.

We collect below certain properties of the above measure.
Some of them are used in what follows, and some of them are
of independent interest in the context of Bell nonlocality.

Proposition 1. Besides being nonfaithful, the squashed
nonlocality satisfies the following properties:

(1) Positive. It is a non-negative real function of bipartite
nonsignaling devices, and equal to zero for local devices.8

(2) Monotonic with respect to MDLOPC class of opera-
tions.

(3) Convex with respect to the mixture of devices.
(4) Superadditive over joint nonsignaling devices.
(5) Additive for product devices.
(6) Subextensive. Nsq(P) � log2(min{dA, dB}).
Proof. For the proof, see Sec. G of Appendix. See also the

discussion in Sec. VI.
Note. On the completion of the main results (preliminary

version of this paper) contained in Secs. C-F, I and J in Ap-
pendix, we have noticed the preprint of the paper by E. Kaur,
M. Wilde, and A. Winter [31] also related to upper bounds on

7By Tsirelson’s device, we mean a one attaining maximal value
of violation of the CHSH inequality [60] among quantum (2,2,2,2)
devices [72].

8By local we mean devices which possess a local hidden variable
model [8].

device independent key. The proofs of monotonicity, subaddi-
tivity and additivity over tensor product devices (see Secs. G 4
and G 5 of Appendix), were inspired by the analogous result
for the squashed intrinsic nonlocality presented there.

Calculating Nsq for an arbitrary bipartite device P is a
nontrivial task, but we can use the convexity of this measure
to simplify the procedure of finding an upper bound of it. Pos-
itivity, monotonicity, and additivity of squashed nonlocality
lead to the following Corollary.

Corollary 2. The squashed nonlocality is a measure of
nonlocal correlation of the bipartite device P.

We describe now, how to use the convexity of the squashed
nonlocality (this technique proposed in this manuscript proved
already useful in context of upper bounds on the secure
key in QDI scenario [51]). Consider any set of functions
F = {Fi(P)}, that are convex w.r.t. the mixture of de-
vices, each of which upper bounds the squashed nonlocality
Fi(P) � Nsq(P),∀i. Then the lower convex hull (LCH) of
F denoted as F (P)(≡ LCH(F )) upper bounds Nsq(P), i.e.,
Nsq(P) � F (P), as a consequence of property (3). To ex-
emplify the above convexification process, let F = {̂I(A :
B)P(AB|XY ), Î(A : B|E )E (P)(ABE |XY Z )}, then Nsq(P) � F (P) ≡
LCH(̂I(A : B)P(AB|XY ), Î(A : B|E )E (P)(ABE |XY Z ) ). This fact is
used in order to construct Fig. 1: the orange curve is, in fact,
a convex hull of several upper bounds that are incomparable
with each other.

VI. QUANTITATIVE RESULTS

In Fig. 1, we construct numerically an upper bound on
the Nsq, with the help of above specified convexification
procedure. We also draw several other squashed quanti-
fiers for the set of (2,2,2,2) devices, lying in the isotropic
line, i.e., Piso = (1 − ε)PR + εPR. Where PR is the famous
Popescu-Rohrlich box [30], and PR is the anti-PR box.9

The nonfaithfulness of our measure, Nsq is visible from
the numerical results. The orange curve is the upper bound
on Nsq, and we have found that the bound reaches 0 for
ε = 0.2 (it remains equal to 0 for ε ∈ [0.2, 0.25] due to the
convexity of the measure). This is since, in MDLOPC pro-
tocol, Eve can perform adaptive general measurements and
post-process her output through a classical post-processing
channel to reduce the correlations between Alice and Bob. In
the range ε ∈ [0.2, 0.25], corresponding to each input (x, y)
of the honest parties, we have found a measurement and a
post-processing channel on Eve, which partitioned the device
into an ensemble of product distributions. This proves that
there exists nonlocality which can not be turned into secu-
rity via MDLOPC protocols. Interestingly, these devices are
quantum realizable ones. One can conjecture that even the
general operation, including the so-called “wirings”10 can not
help in distilling key out of these isotropic devices. Indeed,
using wirings that is necessary for the key to be nonzero,

9Anti-PR box is a binary input output device, satisfy PR(ab|xy) =
1
2 δa⊕b,x.y, ∀a, b, x, y ∈ {0, 1} [73].

10Operations of feeding input of one device with the output of the
other.
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FIG. 4. Plot of several nonsignaling secrecy quantifiers M̂(A :
B||E ), as an upper bound on secure key rate K (iid)

DI , for the bipartite bi-
nary input output device PHRW given in Eq. (9) (also in Ref. [17]). The
parameters used to draw plot (a) are δ = 0.01, ε = 1

16 (3.04 + 12ε),
and for plot (b) we used δ = 0.03, ε = 1

16 (3.12 + 12ε). The dashed
red line corresponds to the nonsignaling squashed mutual informa-
tion Î(A : B)PHRW . The blue straight line represents the nonlocality
cost, as well as the nonsignaling squashed conditional mutual infor-
mation Î(A : B|E )E (PHRW ) over the complete extension E (PHRW ) of the
given device P. The solid orange line represents the upper bound
on the nonsignaling squashed nonlocality Nsq which is in fact the
lower convex hull of the several other upper bounds on Nsq. The
magenta dotted line is the key rate R(P|PHRW ) of the protocol design
by Hänggi, Renner and Wolf [17]. The region with black stripes
corresponds to the devices that are quantum realizable ones.

which implies that we enter to some extent the general sce-
nario of key distillation for which there is a wide class of
attacks by employing the forward signaling attacks found in
Ref. [25,26].

In Figs. 4(a) and 4(b), we plot upper bounds on Nsq for
several other sets of (2,2,2,2) devices (nonisotropic), param-
eterized as in equation (9). In fact, the parametrization that
we use is the same as in Ref. [17] as we want to compare
our upper bound with the lower bound obtained therein. One
can see that there exists some region of nonlocal correlation
[Figs. 4(a) and 4(b)], which can be simulated by a quantum
device and for which the lower bound obtained by [17,63]
is positive, and therefore the secret-key can be generated.
As we observe and Nsq is also nontrivial and close to the
lower bound in the case considered here. We address the
interested reader to Sec. J of Appendix, where more plots are

provided.
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We note here, that the result presented in Fig. 1 exhibits that
in our approach the nonlocality measure based on the intrinsic
information can be nonfaithful, i.e., zero for some nonlo-
cal devices. This is inherited after the intrinsic information,
which is known to be zero for some tripartite distributions in
spite of the fact that the latter are not of the product form
P(A|E )P(B|E ). We note here, that [74] claimed, that the in-
trinsic information is nonzero for all devices violating Bell
inequality (cf. Ref. [16]). We reformulate the result of [74] as
follows:

∀P(ABE ) ∀�:E→E ′ ∃(x,y) P(ABE ′)

�= P(AE ′)P(BE ′) ⇔ I (A : B|E ′) > 0. (10)

The above implies that if we can adjust the inputs after the
attack by Eve represented by the map � is performed, we
will obtain nonzero conditional information. This implies also
nonzero intrinsic information as the map can realize the infi-
mum over such maps in the definition of the latter. However
this approach does not fit the usual cryptographic scenario: it
is that Eve is listening to Alice and Bob and adjusts her mea-
surement to their announcement and not vice versa. Owing
to that observation, one should consider the inputs (x, y) to
be chosen before the map � of the attack is performed. This
happens, e.g., whenever the input is fixed from advanced as
we assume, or when it is announced right after has been made.
This change in the paradigm has important consequences.
What both Ref. [50] and our result implies goes with no
contradiction with the above, as is based on the following fact:

∃P(ABE )�=P(AE )P(BE ) ∀(x,y)∃�:E→E ′ I (A : B|E ′) = 0. (11)

Indeed, in the case of the above mentioned quantitative results,
we adjust the measurement and post-processing of Eve to the
inputs of the honest parties.

Finally we note, that a more common approach to key
distribution in device independent scenarios is such that, fol-
lowing A. Ekert [5], one of the honest parties has one more
input, which is use to key generation. This so called (3,2,2,2)
scenario has been considered in Ref. [16] in context of a
nonsignaling adversary, along with a protocol of key distil-
lation and an upper bound on it in terms of the intrinsic
information. To see the relation between our results with that
of Ref. [16], we show the Eq. (3), that is max(x,y) IAMP,(x,y) =
Nsq (see Sec. G 1 of Appendix). We note here, that by this fact,
we show that the bound given in IAMP,(x,y) hold for any MD-
LOPC protocol using inputs (x, y) for generating key, closes
the problem left open in Ref. [16] concerning possibility of
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FIG. 5. Plot of nontrivial upper bound on the secret-key rate K (iid)
DI

given by Nsq, of PAMP(ab|xy) given in Eq. (J13) (see Appendix), by
the blue shaded region under the orange solid line and a red dashed
line. The red dashed line is the (segment of) lower convex hull of
the orange solid curve and the purple “big-dashed” straight line. The
solid orange line is obtained by the lower convex hull of several upper
bounds of Nsq, with the help of Eq. (339). Blue dashed-dotted line is
the squashed conditional mutual information Î(A : B|E )E (PAMP ). The
magenta dotted line is the lower bound on the key rate, whereas the
purple big-dashed line is the upper bound on intrinsic information
of the eavesdropping strategy used in Ref. [16]. We observe that
the convexification technique resulting in the convex-hull bound
allows to obtain tighter upper bound on Nsq, and therefore the tight-
est known upper bound on the secret-key rate in the nonsignaling
scenario.

key distillation from states that violate CHSH inequality but
have zero IAMP,(x,y) bound.

As we will see this fact proves useful, since we have shown
that Nsq is convex. This will enable us to use the convexifica-
tion method to obtain tighter upper bounds. Following [16], as
a noise model, we consider the isotropic state p|ψ+〉〈ψ+|AB +
(1−p)

4 1AB with |ψ+〉 = 1√
2
(|00〉 + |11〉) with p ∈ [0, 1]. The

bound outperforms existing one [16] in a wide range of a pa-
rameter p (see the orange curve in Fig. 5). In general, however,
it is incomparable (for the whole range of parameters) with
the one given in Ref. [16]. It is possible that a more refined
optimization procedure, involving all the extremal points of
the nonsignaling polytope in (3,2,2,2) scenario, would provide
a tighter bound. It is, however, computationally involved.

Moreover the convex hull of the bound given in Ref. [16]
and ours [which we got by convexification of two upper
bounds, given in Eq. (339)], is also an upper bound on the
distillable key. This is because Nsq is a lower bound to both
upper bounds, and is convex. Hence is less than the convex
hull of the latter two bounds. This gives to our knowledge the
tightest bound known so far in this scenario.

VII. REPHRASING THE KEY RATE OF THE SKA MODEL

In the SKA model of key distillation, the honest parties
and the eavesdropper share a joint probability distribution
P(ABE ). The task of the honest parties is to perform LOPC
operation to distill a secret key, in such a manner that the
eavesdropper’s knowledge about the key remains negligibly

small. In the following lines, we propose an alternative def-
inition of the key rate in the aforementioned scenario and
prove that it is equivalent to the definition of the secret-key
rate introduced in the literature [1,2,34,75]. Rephrasing, the
definition of the secret key in the SKA model to the form sim-
ilar to the one used in quantum cryptography serves not only
as a connection between different cryptographic paradigms.
Indeed, the theorem below, besides being interesting on its
own, is a crucial ingredient used to prove Theorem 1, i.e., our
main result.

Theorem 2 (Informal). The secret-key rate S(A : B||E ) of
SKA cryptographic model [1,2,34,75] is equivalent to the
following asymptotic expression:

S(A : B||E ) = sup
P

lim sup
N→∞

log2 dimA[PN (P⊗N (ABE ))]

N
,

(12)
with security condition∥∥PN

(
P⊗N (ABE )

) − Pideal
N

∥∥
1 � δN

N→∞−→ 0, (13)

where P = ∪∞
N=1{PN } is a cryptographic protocol consisting

of LOPC operations, acting on N iid copies of the classical
probability distribution P(ABE ), and Pideal

N is the distribution
containing ideal secret key, with adequate dimensions.

Proof. For the proof, see Sec. E of Appendix.
The aim of this rephrasing is to show and utilize a con-

nection between the definition of a secret-key rate in the SKA
and NSDI scenarios, as it was done in the case of quantum
cryptography [34].

The link we have made in the above theorem, is technical,
however important in our method for obtaining the upper
bound on the key rate in NSDI scenario. We rephrase the se-
curity definition of SKA proposed by U. Maurer [2], with the
one based on the trace norm ||.||1. What is crucial in the choice
of the latter criterion is the fact that it is equivalent to the NS
norm ||.||NS for tripartite probability distributions.11 We recall
here that the security definition in SKA is based on the control
of the correlations (in terms of the mutual information) of the
random variable of the honest parties with a random variable
representing Eve’s knowledge. These correlations should tend
to zero for a large number of copies N . Thus, in other words,
in the above theorem, we have modified the security criterion
of the SKA to an equivalent form, which is more useful for
our purpose. We have done so by demanding that the output
distribution of the protocol should be close to an ideal one.
The ideal is the distribution representing perfectly correlated
uniform random variables, of the honest parties close to being
product with the variable of Eve, in trace norm distance ||.||1.
As it will appear later, this technical change turns to be useful
when we pass to the case of devices because the NS norm of
a device is in fact a trace norm of a distribution coming from
this device after measurement.

11Note however that ||.||NS norm applies also to conditional dis-
tributions, i.e., devices. Only for devices with unary input, i.e.,
distributions, it is equivalent to ||.||1.
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VIII. EQUIVALENCE OF THE SECURITY CONDITIONS

In this section, we show the equivalence between two dif-
ferent known definitions of the security of the secret-key in the
NSDI scenario via showing that each of them is equivalent to
the one proposed by us. Indeed, we show that the security def-
inition proposed by us that bases on the NS norm is equivalent
both to the definition that employs secrecy and correctness as
well as the so-called distinguisher [17,24,63,64] and the other
one given in Refs. [11,15,23].

A. The definition and the properties of the NS norm

In this section, we provide the explicit description of the
NS norm that is an important ingredient of our security crite-
rion. The tensor product should be understood as an algebraic
tensor product in RN space [76]. To measure the closeness
between two devices P and P′, we use the newly defined
distance measure, the NS norm which reads

||P − P′||NS := sup
g∈G

1
2 ||g(P) − g(P′)||1, (14)

where G is a set of certain operations that map a device to
probability distributions and ||.||1 is a variational distance
between two distributions. More precisely, operations from G
are convex combinations of operations that can be composed
of the following basic ones (i) fetching an auxiliary device
that has single input and single output (a dice) (ii) connect-
ing the output of a device/dice to the input of a dice/device
respectively, called wirings (iii) pre-processing the inputs of
device(s) (iv) post-processing inputs and outputs of the de-
vices. We call them generating operations,12 and refer to
this norm as to nonsignaling norm. The set of generating
operations G is a subset of all linear operations L mapping
device to distribution, that were considered in Ref. [67]. Op-
erational characterization of the set L is interesting, yet, to
our knowledge, unresolved task. However, as we show (see
Proposition 2), the set G ⊆ L has enough power in discrim-
inating between devices, to be used in security definition in
place of L. Indeed, NS norm via Eq. (14) leads to security
definition, which is equivalent to the other two already present
in literature (Refs. [11,15,23] and [17,24,63,64]). For more
detailed discussion, see Sec. C of Appendix.

After the MDLOPC key distribution protocol, the output of
the honest parties reduces to a classical-classical-probability
distribution, whereas the part shared by Eve still remains
a device, of the form �N (E (P⊗N ))SA,SB,Q,E |Z (sA, sB, Q, E |Z ),
where sA and sB are the instances of the key shared between
Alice and Bob. We will denote random variables SA, SB for
the secret keys in possession of Alice and Bob, whereas
Q stands for all possible classical communications between
Alice and Bob; E , Z for Eve’s output and input (and the
lower case letters are for their values). This distribution, which
is, in part a probability distribution, and in part a condi-
tional probability distribution, i.e., device. Hence we will
refer to it as to “classical-classical-device” (cc-d) distribution

12Name for these operations stems from the fact that they are
proven in Ref. [56] to generate from the complete extension any
possible other nonsignaling extension of a conditional probability
distribution.

throughout the paper. The (P(dN )
ideal )SA,SB,Q,E |Z (sA, sB, Q, E |Z ) =

1
|SA|δsA,sB ⊗ ∑

s′
A,s′

B
�N (E (P⊗N ))(s′

A, s′
B, Q, E |Z ), is an ideal

cc-d distribution which contains uniform and perfectly cor-
related outcomes shared between the honest parties. Eve is
completely uncorrelated in case of this distribution, and it is
assumed that Eve’s system is the same as she possesses at the
end of the real protocol �N .

For the cc-d distribution shared at the end of the MDLOPC
protocol, the NS norm given in Eq. (14) takes a more simpli-
fied form, stated in the following proposition.

Proposition 2. For the cc-d states P and R shared at the end
of the MDLOPC protocol �N , the NS norm can be rephrased
with a simplified expression:

||PSA,SB,Q,E |Z − RSA,SB,Q,E |Z ||NS

= 1

2

∑
sA,sB,q

max
z

∑
e

|PSA,SB,Q,E |Z (sA, sB, q, e|z)

− RSA,SB,Q,E |Z (sA, sB, q, e|z)|, (15)

where maxz stands for the maximization over all possible
direct measurements performed by the eavesdropper.

Proof. For the proof, see Sec. C of Appendix.
In the above equality, one can see that the adopted

definition of security is equivalent to the one used in
Refs. [11,15,23] in the case of the NSDI scenario (the latter
is defined as in r.h.s. of the (15). This justifies our security
definition given in Eq. (4), in particular, the choice of the set
of operations G, that define the NS norm ||.||NS. However,
in literature, another definition of security is adopted, given
in Refs. [17,24,63,64]. This one is based on assuring high
correlations between the parties and low correlations with the
eavesdropper. In this approach, Eve can generate ensembles
of the device of the honest parties i.e., representation of a
device as probabilistic mixtures of devices. In later part of
this manuscript, we show that the latter definition is also
equivalent to the newly proposed one based on the NS norm.
By doing so, as a byproduct, we have also proven that our, and
the two definitions given in Refs. [11,15,23] and [17,24,63,64]
respectively, are equivalent.

B. Equivalence of security criteria

We show that in the NSDI scenario, in analogy to quan-
tum cryptography [77,78], there exist two different, however
equivalent definitions of security. One connected to the notion
of the so-called distinguisher and the other one based on the
proximity in norm [79,80]. In the case of NSDI, Renner,
Hänggi, and Wolf [17] present the approach via the notion of
distinguisher. Recall here, that to develop the latter approach,
we consider the nonsignaling norm, which is a total variational
distance for two devices mapped into probability distribution
with the so-called nonsignaling operations, over which we
take a supremum (see Refs. [17,67] in this context). We then
focus on tripartite cc-d distributions (classical distribution is
isomorphic to a device with unary input) as these are en-
countered at the end of an NSDI cryptographic protocol. The
two classical parts are in the hands of the honest parties,
while eavesdropper holds some device. We then show that
the NS norm takes for such cc-d distribution a closed-form
expression. In particular, we prove that the supremum over
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Eve’s operations reduces to a maximization over direct mea-
surements (for the proof, see Sec. C of Appendix).

We present below the theorem, which states that our def-
inition of NS norm security criterion is equivalent to the
criteria used by Renner, Hänggi, and Wolf [17]. We do it in
analogy to the results of Refs. [77,78] related to quantum
device-dependent security, but for nonsignaling devices.

Theorem 3 (Equivalence of the NSDI security criteria). For
an MDLOPC protocol �, the proximity in the NS norm secu-
rity criterion is equivalent to the criterion based on secrecy
and correctness of the protocol. That is for any εsec + εcor ≡
ε � εsec, εcor � 0 the following relation holds

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� O(ε) ⇐⇒ {(1 − pabort )P[SA �= SB|pass] � O(εcor )

∧ (1−pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� O(εsec)
}
, (16)

where pabort is the probability for the protocol to abort and
the constant O(ε) does not depend on any parameter of the
protocol.

Proof. For the proof, see Sec. D of Appendix.
Following arguments in Ref. [77], as a consequence of the

above Theorem, we can claim that our definition of security
is restricted composable [79–81] provided the device is not
reused. In that sense, our definition diverges from that of [17]
formally in two ways. First, we use the notion of the complete
extension. This encapsulates the access of the eavesdropper
to all ensembles of the device shared by the honest parties—
the fact used in Ref. [17]. Furthermore, in our approach, the
memory of Eve is finite and minimal without compromising
her eavesdropping power. Second, as we have mentioned,
we modify the security criterion, without losing the effect
of composability. We use the proximity in NS norm to the
ideal classical-classical-device distribution. We show that it is
equivalent to the statement that (as it was used in Ref. [17])
the distinguisher can not tell apart the real cc-d distribution
from the ideal one.

IX. DISCUSSION AND OPEN PROBLEMS

In this manuscript, we have contributed in three ways to
the topics of cryptographic security and Bell nonlocality. We
describe them below along with possible directions to follow
that naturally appears in consequence.

Firstly, we have initiated a systematic study on the upper
bounds on the secret-key rate on the NSDI scenario and de-
fined a computable function, the squashed nonlocality as one
of the bounds. We have also demonstrated a direct link be-
tween the Secrete Key Agreement scenario and that of NSDI
by systematic construction of the bounds in the latter case
from the secrecy monotones of the former. Interestingly this
method leads among others to a known measure of nonlocal-
ity, which is the nonlocality fraction. However, our approach
goes much beyond that by offering construction of alternative
nonlocality measures, which confirms the generality of our
paradigm. Looking for tighter upper bounds stemming from
(or even going beyond), the relationship between SKA and
NSDI scenarios is a new direction to study.

The numerical estimate of the upper bound suggests that
only a limited amount of key can be obtained from quantum

devices with two binary inputs and two binary outputs via
direct measurement followed by local operations and public
communication. For the family of devices studied here, it
is below 40%. Given characterization from Ref. [82] of the
boundary of the quantum set, one can find limitations on the
key rate obtained via quantum mechanics against a nonsignal-
ing adversary for the set of (2,2,2,2) devices. It appears
plausible that employing similar idea to the contextual set of
observables may also lead to a novel measure of contextuality
which upper bounds their private randomness content [83].

One of the most important problems which arise here is
a dual one—whether the isotropic devices in (2,2,2,2) sce-
nario with less than 80% weight of Popescu-Rohrlich box
are key undistillable in general. We have shown that one
can not distill them by MDLOPC operations, i.e., by direct
measurements on device and LOPC operations. However, one
might consider that grouping several of such devices together
and distilling one of them via the so-called “wirings,” could
lead to a positive key if followed by MDLOPC operations.
Although one can not exclude this case, it is rather improb-
able, because an action of wiring, within a group of wired
devices, opens a possibility of the forward-signaling attack,
as discovered in Ref. [25] and developed in Ref. [26] (the
two-way signaling case was excluded already in Ref. [24]).
This is the reason why the nonsignaling between individual
devices seems necessary precondition of security in NSDI.
In any case, extending presented results to a more general
class of operations, e.g., including wirings, is an important
open problem. As a step in this direction, one can consider
how the key rate changes if the honest parties have access
to randomness private from Eve. Such randomness could be
in principle used for performing general measurements. We
have also demonstrated applicability of our bound in the
(3,2,2,2) scenario, giving a tighter bound to the one provided
in Ref. [16]. A more careful study, which takes into account
all the extremal points of the nonsignaling polytope in the
(3,2,2,2) scenario could be a basis for further tighter bounds.

As the second of the main contributions, we have provided
a method of constructing novel measures of nonlocality and
proved several important properties for one of them—the
squashed nonlocality. Among these properties are the
monotonicity, convexity, and additivity. One property which
is not considered here, the asymptotic continuity of the
squashed nonlocality, will be presented in the forthcoming
contribution [84].

Comparing it with the other measure—the relative entropy
of nonlocality [55,85,86] may lead to interesting results and
possibly the proof that the latter is also an upper bound on the
distillable device-independent key. Exploring further the anal-
ogy between squashed entanglement and squashed nonlocal-
ity may lead to novel analogous results in the realm of quan-
tum devices. We also notice that the squashing procedure can
be naturally extended to an arbitrary number of parties. This
can be achieved by following Ref. [37], where the multipartite
version of the intrinsic information in SKA has been shown to
upper bound the conference key in the latter scenario.

As the third contribution, we have realized a idea of in-
corporating the eavesdropper in the scenario by applying the
newly introduced concept of the complete extension [56]. Eve
controls the additional interfaces of the extended part. This
provides the NSDI protocol a structural definition like the
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quantum purification did for QDD and QDI. Although the
security condition derived from this approach is equivalent
to the former, it shows a direct structural analogy between
NSDI and QDD paradigms. In consequence, the complete ex-
tension models an adversary with minimal memory required
for ultimate eavesdropping power. The amount of memory
needed for a given attack in a nonsignaling scenario to best
our knowledge has not been studied so far and deserves at-
tention in the future. To formalize security, we considered
the NS norm analogous to the trace norm in quantum me-
chanics. We have proven that this approach is equivalent to
the two former ones [11,15,17,23,24,63,64]. We obtained that
our definition of security is composably secure if the same
device is not reused in composing the protocols (restricted
composable). The properties of this NS norm computed for
classical-classical devices may become useful also in the
context of generalized probabilistic theory [65,66,87]. In this
context, it is an important open problem if the class of oper-
ations G, over which supremum is taken in the definition of
the NS device norm, is equal to the set of all linear operations
L considered in Ref. [67]. Finding an answer to this problem
may lead to the full operational characterization of the set of
maps that can be performed on devices.
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APPENDIX A: DEFINITIONS OF ENTROPIC FUNCTIONS

Notation. In Appendix A, we adapt two different notations
for conditional probability distributions (devices). We do this
to avoid small fonts in multilevel mathematical expressions
that appear in forthcoming parts of this work and hence to
make them more readable. For the convenience of the reader,
we also provide a table of symbols used throughout the paper
(Table I).

In this section, we recall definitions of basic quantities
associated with random variables. Suppose A, B, and E are
discrete random variables, with outcomes a ∈ A, b ∈ B and
e ∈ E . Let P(ABE ) be the joint probability distribution of
random variables A, B, and E . Similarly, let P(A = a, B =
b, E = e) ≡ p(abe) be the probability for obtaining the out-
come A = a, B = b, and E = e.

(i) The Shannon entropy of a random variable (variables)
is defined as

H (A) = −
∑

a

p(a) log2 p(a), (A1)

H (AB) = −
∑

ab

p(ab) log2 p(ab), (A2)

H (ABE ) = −
∑
abe

p(abe) log2 p(abe), (A3)

where, p(ab) = ∑
e p(abe) and p(a) = ∑

b p(ab) are the
marginal probabilities of the joint probability distribution
P(ABE ).

(ii) The conditional Shannon entropy of any random vari-
able A with respect to the random variable B, quantifying the
lack of knowledge about the outcome of A when one already
knows the value of B, is given by

H (A|B) =
∑

b

p(b)H (A|B = b) = H (AB) − H (B).

(A4)

(iii) The mutual information I (A : B), measuring the corre-
lations between A and B, is defined as

I (A : B) = H (A) + H (B) − H (AB). (A5)

(iv) The conditional mutual information I (A : B|E ), quan-
tifying the correlation remaining between variables A and B
conditioned upon the knowledge about value of third variable
E , is given by

I (A : B|E ) =
∑

e

I (A : B|E = e) (A6)

= H (A|E ) + H (B|E ) − H (AB|E ). (A7)

(v) The intrinsic mutual information [58,59] I (A : B ↓ E )
is

I (A : B ↓ E ) = inf
	E ′ |E

I (A : B|E ′), (A8)

where I (A : B|E ′) is the conditional mutual information
of the probability distribution P(ABE ′) = ∑

e 	E ′|E (E ′|E =
e)P(AB, E = e), while the infimum is taken over all possible
conditional channels 	E ′|E .

(vi) The reduced intrinsic information [70,88] of random
variables A, B and E , denoted by I (A : B ↓↓ E ) is defined as

I (A : B ↓↓ E ) = inf
	U |ABE

(I (A : B ↓ EU ) + H (U )), (A9)

where the infimum is taken over all possible conditional chan-
nels 	U |ABE .

APPENDIX B: THE WORLD OF NONSIGNALING
DEVICES AND THE NSDI CRYPTOGRAPHIC SCENARIO

In the NSDI cryptographic scenario, we consider that the
honest parties, Alice and Bob, share a cryptographic device
of unknown internal structure, identified with a nonsignaling
conditional probability distribution P(AB|XY ) (we use also
PAB|XY notation). We refer to P(AB|XY ), as to a nonsignaling
device throughout our paper. Here A, B, X , and Y are random
variables and a ∈ A, b ∈ B, x ∈ X , and y ∈ Y are respectively
their values. The indices x and y are considered to be choices
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TABLE I. List of symbols and abbreviations.

Symbol Meaning Symbol Meaning

P(AB|XY) Bipartite non-signaling device. P(ABE|XYZ) Tripartite non-signaling device.
P(ABE) Tripartite probability distribution. |ψ〉ABE A pure tripartite quantum state.
S(A : B||E) Secure key rate in SKA model. I(A : B) Mutual information.
I(A : B|E) Conditional mutual information. I(A : B ↓ E) Intrinsic information.
KD(ρAB) Key rate in QDD scenario. I(A : B ↓↓ E) Reduced intrinsic information.
Isq(ρAB) Quantum squashed entanglement. KDI Non-signaling Device independent key rate
Nsq(P) Non-signaling squashed nonlocality. E(P) Complete extension of a device P .
MF Full direct measurements. MG General measurements.

Λ The set of all MDLOPC protocol {ΛN} Ẽ(P) Overcomplete extension of the device P .
||P − Q||resNS Restricted NS norm of two devices. NC Nonlocality cost of a non-signaling device.
H(S) Entropy of the final key S. ε Error in the CHSH game.
Q Classical communication variable. PR Popescu Rohrlich box
{pi,P

i} An ensemble of a device P . {pi,P
i
E} Pure members ensemble of the device P .

P(AB|XY)⊗N Tensor product of N iid copies of the de-
vice P .

||P − Q||NS Non-signaling device norm of two devices
P and Q.

ΛN MDLOPC protocol of key distribution act-
ing on N iid copies of a device.

M Measurements, maps devices to
distributions.

E P⊗N Complete extension of N iid copies of the
device P .

PdN
ideal Ideal cc-d distribution of dimension dN .

O All possible linear operations which map a
device to a distribution.

SA The set of all possible key string in part of
Alice after the MDLOPC operation.

R(Λ|P) NSDI key rate for a particular MDLOPC
protocol.

SB The set of all possible key string in part of
Bob after the MDLOPC operation.

M(A : B||E) Secrecy quantifiers of probability distribu-
tion P (ABE)

M(A : B||E) Non-signaling squashed secrecy quantifiers
of the device P .

PR Complementary box to Popescu Rohrlich
box.

Piso Device lying on the isotropic line connect-
ing PR and P̄R box.

PE Extremal device in the polytope of all non-
signaling devices.

D A dice, source of additional randomness.

W Variable designate wirings between two
devices.

PN LOPC operations on N copies of the
distribution.

P Class of LOPC operations {PN}∞N=1, also
a protocol for SKA model.

PB,A1|X1
A classical-device distribution.

SABE Total state of the system after the MD-
LOPC protocol.

Preal
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of a real protocol.

pabort Probability of aborting the protocol. P
real|abort
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of a real protocol condition-
ing of aborting.

P
real|pass
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of a real protocol condition-
ing of not aborting.

P
ideal|pass
SA,SB,Q,E|Z Classical-classical-device distribution after

the execution of an ideal protocol condi-
tioning of not aborting.

SAE State of the system after the protocol in
part of Alice and Eve.

D(P,Q) Distance of two devices P and Q.

P[SA �= SB] Probability of not having the same key
strings between Alice and Bob.

Ci Message sent from Alice to Bob as part of
SKA protocol or vice versa.

Ct Collection of all messages Ct = C1C2 . . . Ct

sent between Alice and Bob in the tth step.
I(S : CtEN) Mutual information between the final key

string and Eve’s information.
Λη

N η optimal MDLOPC protocol on N iid
copies of the device.

Pη
N η optimal LOPC protocol on N iid copies

of the distribution.
x,yPη

N Measurement dependent η optimal LOPC
protocol on N iid copies of the distribution.

ΩGMDLOPC LOPC operations involve general measure-
ments on the devices.

ΛMDLOPC LOPC operations involve direct measure-
ments on the devices.

C(P) Nonlocality fraction of a non-signaling de-
vice P .

dimA(PN (P(ABE))N Dimension of part A after the
LOPC operation on the N copies of the
probability distribution.
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of inputs of the honest parties, whereas the respective out-
comes are denoted by a and b. The nonsignaling condition for
PAB|XY (ab|xy), that roughly speaking forbids faster than light
communication between the two parties, is defined as

PA|X (a|x) =
∑

b

PAB|XY (ab|xy)

=
∑

b

PAB|XY (ab|xy′)∀a, x, y, y′, (B1)

PB|Y (b|y) =
∑

a

PAB|XY (ab|xy)

=
∑

a

PAB|XY (ab|x′y)∀b, x, x′, y. (B2)

We incorporate the no-signaling eavesdropper (Eve) in the
system by giving her the access to the additional interfaces
of the complete extension (CE) [56], of the shared tripartite
nonsignaling device (see next Appendix B 1 for reference on
CE). We denote the complete extension of a bipartite device
P(AB|XY ) as E (P)(ABE |XY Z ), where the additional input
z ∈ Z and the corresponding output e ∈ E , are controlled by
Eve. Extending a bipartite device with CE ensures that the
nonsignaling constraints also hold between Eve and Alice’s
and Bob’s joint subsystem. Additionally, Eve can also apply
local randomness in both her input and output to generate gen-
eral measurements and to post-processing the output, which
gives her the ultimate operational eavesdropping power, as
then by construction of CE, she can access all possible en-
sembles of the extended device [56].

1. The notion of the complete extension

For an arbitrary device P(A|X ), one can always find its
extension P(AE |XZ ) in the space of a larger dimension, such
that the nonsignaling constraints are satisfied [see Eqs. (B1)
and (B2)]. Some extensions of bipartite nonsignaling boxes
have been studied in the past [14–17]. The complete extension
defined in Ref. [56], is an extension of the lowest possible
dimension, that possesses all basic properties of quantum
purification except extremality.

Let us consider a polytope (state space) of nonsignaling
devices, with a fixed number of parties and fixed cardinalities
of inputs and outputs. An arbitrary device P, in that polytope,
can always be expanded as a convex combination of the ex-
tremal (pure) devices {Pi

E }, as P = ∑
i piPi

E . The ensemble
{pi, Pi

E } will be called a pure members ensemble (PME). The
decomposition {pi} is not unique in general [56].

Definition 4 (Minimal ensemble). A pure members en-
semble, {pi, Pi

E }i∈I will be called a minimal ensemble of P,
if all the members are pure and if any proper subset of {Pi

E }i∈I
for any new choices of the corresponding probabilities {p′

i}i∈I
is not an ensemble of the device P.

We can now invoke the definition of a complete extension.
Qualitatively, it is such an extension of a device, which en-
ables to produce all minimal ensembles of it, with the choice
of input in the extending part resolving which minimal en-
semble will be generated. The complete extension is, by its
definition a nonsignaling extension, which makes it a perfect
tool for the NSDI cryptography (see Ref. [17] in this context).

Definition 5 (Complete extension [56]). Given a device
PA(A|X ), we say that a device E (P)AX (AE |XZ ) is its

complete extension to system X if for any z ∈ Z and e ∈ E
there holds

E (P)AX (A, E = e|X, Z = z) = p(e|z)Pe,z
A (A|X ), (B3)

such that the ensemble {p(e|z), Pe,z
A (A|X )} is a minimal en-

semble of the device PA(A|X ), and corresponding to each
minimal ensemble of PA(A|X ), there is exactly one z ∈ Z
which generates it.13

Here we slightly abuse the notation, so by PA(A|X ), we
mean the device P(A|X ) with random variables A and X .
The subscript A denotes that the device is in possession of
party A. Similarly, the subscript X , for the complete exten-
sion E (P)AX (AE |XZ ), stands for the extending party X , who
controls the additional interfaces Z and E .

The complete extension satisfies the following properties
alike the quantum purification, what makes CE its counterpart
[56].

(1) ACCESS. A complete extension of a device P, to-
gether with access to arbitrary randomness, gives access to
any ensemble of a device P.

(2) GENERATION. The complete extension can be trans-
formed to any other extension.

2. Possible eavesdropping actions

In this section, we define the building blocks of the set
of allowed operations that the nonsignaling eavesdropper can
perform. In every device-independent key distribution proto-
col, the honest parties hold a device, the internal structure of
which is completely unknown to them. Their task is to share at
the end of the protocol a cryptographically secure key, which
is perfectly correlated between the honest parties and com-
pletely secret with respect to the eavesdropper [78], by use of
several copies of the device P(AB|XY ). As we are interested
in finding the upper bound on the key rate, we consider the
attacks by the eavesdropper as an independent and identically
distributed (iid) attack as a choice of particular eavesdrop-
ping strategy. In this attack, the eavesdropper prepares N iid
devices (P(AB|XY ))

⊗N ≡ P⊗N (AB|XY ) for Alice and Bob
and holds the extending part of the CE E (P⊗N )(ABE |XY Z ),
where A = A1A2 · · · AN , and similarly for B, X , and Y . At this
point we are ready to describe the possible actions of Eve on
input and output of the extending system.

(1) Full direct measurement, {MF
z } defined by choice of

input Z = z. The inputs correspond to the choices of different
minimal ensembles. In a cryptographic sense, some inputs are
in favour of Eve, and some are not.

(2) General measurement, {MG
z }, defined by a proba-

bilistic choice of direct measurements MG
z = ∑

z′ p(z′|z)MF
z′ .

Upon each choice of general measurement on the CE of the
shared device, Eve can generate any pure members ensemble
of the device. Here {p(z′|z)} represents the dice, an external
randomness.

(3) Classical post-processing channel 	E ′|E on the output
of the extending subsystem that can also be conditioned upon

13The calligraphic X stands here for the extending system and
should not be confused with the input of the system A.
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values of inputs and outputs of the dice. These operations
when considered together with a general measurement gives
access to all ensembles (possibly mixed) of the part of the
device shared by the honest parties.

(4) Eve can also monitor the communication, i.e., col-
lect the classical information exchanged between the honest
parties.

The most general strategy of the eavesdropper is to utilize
both the general measurement and the post-processing chan-
nel. Any other strategy is a specific case of the general one
described above. For example, the full direct measurement can
be considered as a combination of deterministic dice and an
identity post-processing channel.

3. Cryptographic protocol

In this section, we describe the building blocks of the set
of operations that the honest parties can perform to generate
a cryptographically secure key. In the case of nonsignaling
device-independent protocol, the honest parties can perform
the following operations on their shared devices.

(1) Full direct measurements on the input, i.e., setting
certain values x, y of their inputs X , Y , followed by any
composition of operations 2 and 3 below.

(2) Classical post-processing of the distribution.
(3) Public communication.
We call this class of operations as Measurement on de-

vices followed by local operations and public communications
(MDLOPC) [23]. Here we do not allow the honest parties to
perform wirings between their subsystems because the for-
ward signaling between the subsystems has been proved to be
an insecure procedure for many important examples of post-
processing [25,26]. Limitation from a general measurement
to a direct one is because, in the former case, Eve does not
have access to correlation with the whole system of Alice
and Bob.

In our cryptographic protocol, we prove the security when
the Eve’s attacking strategy is to prepare N iid copies of a
nonsignaling device P(AB|XY ) and hands them over to the
honest parties. Eve controls the CE of the full system, i.e.,
P⊗N (AB|XY ). It is important to note that CE of a tensor
product of devices is not a tensor product of CE’s of these
devices. This is the most general eavesdropping strategy (in
the iid case) since it gives Eve access to all possible statisti-
cal ensembles of the shared device. Incorporating CE in this
NSDI scenario encompasses a structural way to access to all
ensembles of the extended device, which is the key point in
all NSDI security protocol [13–17,21–23].

APPENDIX C: PROPERTIES OF THE NS NORM

The NS norm introduced in Eq. (14) that has its main
application in Proposition 2 strongly relies on the notion of the
so-called distinguishing system [17,24,63]. The distinguishing
system, also dubbed as the distinguisher, is an external black
box type device having the same interfaces as the original
device (with one extra output) however, its inputs are inter-
changed into outputs and vice versa. The structure of the
distinguishing system allows it then to be connected to the
interfaces of the original device. For each pair of systems

to be distinguished, the distinguisher is devised in such a
way that it attains maximal guessing advantage to distinguish
between two examined devices. The extra output is used to
communicate the guess. For a far more detailed description of
the distinguishing system, we refer the reader to Ref. [63].

In this section, we show that in the heuristic approach, the
NS norm is a maximal guessing advantage for a distinguisher
to distinguish between two devices and plays a role of a
distance D between two conditional probability distributions
[63,77]. Devices with unary inputs are isomorphic to proba-
bility distributions. For them, the NS norm, is by definition,
proportional to the total variational distance.

||P − Q||NS = D(P, Q), (C1)

For the sake of cohesion we introduce the NS norm for-
mally.

Definition 6 (Of the NS norm). Let P and P′ be any two
nonsignaling devices. The following distance measure be-
tween P and P′ is called the NS norm.

||P − P′||NS := sup
g∈G

1
2 ||g(P) − g(P′)||1, (C2)

where ||.||1 is a variational distance between two distributions.
Furthermore G, is a set of generating operations that consists
of:

(1) adding an auxiliary device that has single input and
single output (a dice),

(2) connecting the output of a device/dice to the input of a
dice/device respectively, called wirings,

(3) pre-processing the inputs of device(s),
(4) post-processing inputs and outputs of the devices.
The results of this section, although seem to be highly

technical, have a direct implication in distinguishability of
the states of devices at the end of the protocol. For an initial
tripartite device P(ABE |XY Z ), when the honest parties finish
the MDLOPC protocol on it, i.e., perform measurements in
their respective parts and post-process their data by local op-
erations and public communication, the device is transformed
into a classical-classical-device probability distribution (cc-
d state). In fact, it is enough to consider classical-device
states (c-d states) PB,A1|X1 , and the result still holds for any
c-d states, i.e., consisting of many classical subsystems (see
Fig. 6). This is because one can always claim that classi-
cal variable B is the Cartesian product of many classical
variables.

We identify the operations g ∈ G that the distinguisher
can perform to discriminate between the devices. These can
always be decomposed into several basic operations belonging
to disjoint sub-classes of different operational meaning, i.e.,
g = P ◦ MG ◦ W considered together with external random-
ness D. This decomposition guarantees adequate causal order
of operations.

(i) The distinguisher can make use of external random-
ness, which in general may depend on the output of the
classical part of the system B. We incorporate this randomness
by combining systems to be distinguished with an external
system, DA2|X2,B called a dice.

(ii) A composition of wirings and prior to input classical
communication (WIPCC), we denote this operation with W .
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FIG. 6. Schematic diagram of deterministic wiring between the cc-d distribution PA1|X1B and an arbitrary external device (called a dice)
DA2 |X2 . (a) represents the wiring from the cc-d distribution to the external device, W→, and (b) represents the converse one, i.e., wiring from
an external device to the cc-d distribution, W←. The diagram is motivated by Ref. [89].

In general, wirings can be adaptive to the outcome of classical
variable B, and can be constructed in different manners.

(a) W→: deterministic wirings from c-d system to dice.
(b) W←: deterministic wirings from a dice into the

input of the c-d system.
(c) A mixture of the above.

(iii) Direct or general measurements
(a) Full direct measurement MF

x : A full direct mea-
surement acting on a device P(A|X ) ≡ PA|X , is equivalent
to choosing an input x ∈ X , resulting with a conditional
probability distribution,

MF
x (P(A|X )) = P(A|X = x). (C3)

Different x correspond to different measurements (inputs).
(b) General measurement MG

x : A general mea-
surement is a mixture of direct measurements, MG

x′ =∑
x p(x|x′)MF

x , and its action is described as

MG
x′ (P(A|X )) =

∑
x

p(x|x′)MF
x (P(A|X ))

=
∑

x

p(x|x′)P(A|X = x), (C4)

with a conditional probability distribution p(x|x′) satisfying∑
x p(x|x′) = 1 ∀x′. Here different x′ indicate different

choices of a general measurement.
(iv) Classical data post-processing we denote with P .
In the proof of the following proposition, we consider

supremum over external systems DA2|X2B. Hence without loss
of generality, we can consider only wirings employing deter-
ministic functions. The notation for wirings is adapted from
Ref. [89], as depicted in Fig. 6 above. The domains and
codomains of functions fb and gb, which determine wirings,
are always adapted to the sizes of inputs and outputs. We
consider deterministic wiring, so the sets of { fb} and {gb}
are always finite. For the sake of simplicity, in the proof, we
omit a unary input in the places where it does not lead to any
ambiguity.

Proposition 2. For the c-d states (alike those shared at the
end of the MDLOPC-protocol �N ), i.e., the many parties
nonsignaling device for which only a single party has not
unary input, the NS norm takes the form∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
MF

x1

∑
a

∣∣MF
x1

(
P1

B,A1|X1

)
(b, a)

−MF
x1

(
P2

B,A1|X1

)
(b, a)

∣∣, (C5)

where b ∈ B is a multivariable corresponding to outputs of c
part of the c-d distribution.

From now on, for the sake of the ease of notation we
make the following identification: MF ≡ MF

x and MG ≡
MG

x , where x should be understood from the context. Note
that wherever fiducial measurements are considered the sup
operator can be used here interchangeably with max operator,
as they act in the set with a finite number of elements.

Proof. To attain the supremum over all operations given
in Eq. (14), we have to consider all possible actions of the
distinguisher. For the proof, it is sufficient to consider the
single most general operation instead of a mixture. This is
because a norm defined with supremum of some distance is
a convex function and attains maximum at the boundaries of
the set over which the supremum is evaluated.

sup
g∈G

‖g(P) − g(Q)‖1

= sup
{λi}

sup
{g̃i}⊆G̃

∥∥∥∥∥∑
i

λig̃i(P) −
∑

i

λig̃i(Q)

∥∥∥∥∥
1

� sup
{λi}

sup
{g̃i}⊆G̃

∑
i

λi‖g̃i(P) − g̃i(Q)‖1 (C6)

� sup
{λi}

∑
i

λi sup
g̃∈G̃

‖g̃(P) − g̃(Q)‖1 = sup
g̃∈G̃

‖g̃(P) − g̃(Q)‖1,

(C7)

052612-16



LIMITATIONS ON A DEVICE-INDEPENDENT KEY … PHYSICAL REVIEW A 106, 052612 (2022)

where g̃ ∈ G̃ are pure operations, i.e., they are not a mixture
of others.

Following the arguments of the previous paragraphs the NS
norm can be phrased as∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= sup
g∈G

1
2

∣∣∣∣g(P1
B,A1|X1

) − g
(
P2

B,A1|X1

)∣∣∣∣
1

(C8)

= sup
D

sup
W

sup
MG

sup
P

1
2

∣∣∣∣(P ◦ MG ◦ W )
(
P1

B,A1|X1
⊗ DA2|X2,B

)
− (P ◦ MG ◦ W )(P2

B,A1|X1
⊗ DA2|X2,B)

∣∣∣∣
1, (C9)

where the suprema are taken over operations being adaptive
with respect to the output B. When acting on the systems
with a fixed value of classical output B, with a little abuse
of notation, this can be rephrased using the same symbols for
nonadaptive operations.∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
D

sup
W

sup
MG

sup
P

∣∣∣∣(P ◦ MG ◦ W )

× (
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (P ◦ MG ◦ W )

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1
. (C10)

The first step to simplify the expression above is to notice
that || · − · ||1 is contractive under classical post-processing
on probability distributions. Since the trivial post-processing
is always accessible, we obtain∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
D

sup
W

sup
MG

∣∣∣∣(MG ◦ W )
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W )

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1
. (C11)

As it was stated informally above, the general wiring, W , can
be constructed adaptively upon the knowledge of the values
of the output B, as a probabilistic combination of two types of
wirings conv{W→,W←} (see Fig. 6). In the following lines,
we show that the strategy of mixing is not optimal. However,
in general, the cardinalities of inputs and outputs in different
(types) of wiring can be different. In order to overcome this
obstacle, we consider a common supremum over a convex set
of wirings composed with measurements. From an operational
point of view, this procedure means that the knowledge about
the preparation was discarded after the optimal measurement
for each type of wiring had already been chosen.

∣∣∣∣P1
B,A1|X1

− P2
B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
D

sup
{p←

b ,p→
b }

sup
MG◦W←

sup
MG◦W→

∣∣∣∣(p←
b (MG ◦ W←)

(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
+ p→

b (MG ◦ W→)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)) − (
p←

b (MG ◦ W←)
(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)
+ p→

b (MG ◦ W→)
(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

))∣∣∣∣
1 (C12)

� 1

2

∑
b

sup
D

sup
{p←

b ,p→
b }

(
sup

MG◦W←
p←

b

∣∣∣∣(MG ◦ W←)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W←)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1 + sup

MG◦W→
p→

b

∣∣∣∣(MG ◦ W→)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W→)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1

)
(C13)

� 1

2

∑
b

sup
D

max
{

sup
MG◦W←

∣∣∣∣(MG ◦ W←)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W←)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1, sup

MG◦W→

∣∣∣∣(MG ◦ W→)
(
P1

B=b,A1|X1
⊗ DA2|X2,B=b

)
− (MG ◦ W→)

(
P2

B=b,A1|X1
⊗ DA2|X2,B=b

)∣∣∣∣
1

}
. (C14)

In the two following paragraphs, we investigate probability distributions, obtained after the wirings W→ and W←.
W→) The first thing to do now is to identify a probability distribution we obtain after wiring. The state of the system

after distinguisher obtains a classical output B = b, which is prior to input in the considered scenario, is given by PA1|X1,B=b ⊗
DA2|X2B=b, see Fig. 6(a). The distinguisher can apply wirings from P to D, controlled by fb, gb, which can depend on outcome b.
The probability distribution after the wiring W→ (for a fixed value of outcome B) is given by

W→(PA1|X1,B ⊗ DA2|X2,B)A′
1|X1,B

(a′
1|x′

1, b) =
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

PA1|X1,B(a1|x′
1, b)DA2|X2,B(a2|fb(a1, x′

1), b) (C15)

Hence the probability distribution for the device after a wiring is given by

Pfb,gb B,A′
1|X ′

1
(b, a′

1|x′
1) : = PB|X1 (b|x′

1)
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

PA1|X1,B(a1|x′
1, b)DA2|X2,B(a2|fb(a1, x′

1), b) (C16)

=
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

PB,A1|X1 (b, a1|x′
1)DA2|X2,B(a2|fb(a1, x′

1), b). (C17)
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W←). The first thing to do is again to identify a probability distribution after wiring. However, we are now in a comfortable
situation, as it is enough to interchange inputs of PA1|X1,B and DA2|X2,B systems, see Fig. 6(b).

Pfb,gb B,A′
1|X ′

1
(b, a′

1|x′
1) :=

∑
a1,a2:gb(a1,a2,x′

1 )=a′
1

PB,A1|X1 (b, a1|fb(a2, x′
1))DA2|X2,B(a2|x′

1, b). (C18)

At this point, we are ready to calculate both terms in Eq. (C14) separately.
(a) In the first term ∀b∈B∀D, we have

sup
MG◦W→

∣∣∣∣(MG ◦ W→)(P1
B=b,A1|X1

⊗ DA2|X2,B=b) − (MG ◦ W→)(P2
B=b,A1|X1

⊗ DA2|X2,B=b)
∣∣∣∣

1
(C19)

= sup
fb,gb

sup
MG

∑
a′

1

∣∣MG
(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MG
(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C20)

= sup
fb,gb

sup
{ωi}

∑
a′

1

∣∣∣∣∣∑
i

ωiMF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) −
∑

i

ωiMF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)

∣∣∣∣∣ (C21)

� sup
fb,gb

sup
{ωi}

∑
a′

1

∑
i

ωi

∣∣MF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C22)

� sup
fb,gb

max
x′

1

∑
a′

1

∣∣P1
fb,gb B,A′

1|X ′
1
(b, a′

1|x′
1) − P2

fb,gb B,A′
1|X ′

1
(b, a′

1|x′
1)

∣∣ (C23)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P1
B,A1|X1

(b, a1|x′
1)DA2|X2,B(a2|fb(a1, x′

1), b)

−
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P2
B,A1|X1

(b, a1|x′
1)DA2|X2,B(a2|fb(a1, x′

1), b)

∣∣∣∣∣∣ (C24)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

DA2|X2,B(a2|fb(a1, x′
1), b)

(
P1

B,A1|X1
(b, a1|x′

1) − P2
B,A1|X1

(b, a1|x′
1)

)∣∣∣∣∣∣ (C25)

� sup
fb,gb

max
x′

1

∑
a′

1

∑
a1,a2:gb(a1,a2,x′

1 )=a′
1

DA2|X2,B(a2|fb(a1, x′
1), b)

∣∣P1
B,A1|X1

(b, a1|x′
1) − P2

B,A1|X1
(b, a1|x′

1)
∣∣ (C26)

= sup
fb,gb

max
x′

1

∑
a1,a2

DA2|X2,B(a2|fb(a1, x′
1), b)

∣∣P1
B,A1|X1

(b, a1|x′
1) − P2

B,A1|X1
(b, a1|x′

1)
∣∣ (C27)

= max
x′

1

∑
a1

∣∣P1
B,A1|X1

(b, a1|x′
1) − P2

B,A1|X1
(b, a1|x′

1)
∣∣ (C28)

= sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣. (C29)

The important point is to notice that
∑

a′
1

∑
a1,a2: gb(a1,a2,x′

1 )=a′
1

h(a1, a2) = ∑
a1,a2

h(a1, a2).
(b) Now in the second term ∀b∈B∀D, we have

sup
MG◦W←

∣∣∣∣(MG ◦ W←)(P1
B=b,A1|X1

⊗ DA2|X2,B=b) − (MG ◦ W←)(P2
B=b,A1|X1

⊗ DA2|X2,B=b)
∣∣∣∣

1
(C30)

= sup
fb,gb

sup
MG

∑
a′

1

∣∣MG
(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MG
(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C31)

= sup
fb,gb

sup
{ωi}

∑
a′

1

∣∣∣∣∣∑
i

ωiMF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) −
∑

i

ωiMF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)

∣∣∣∣∣ (C32)

� 1

2
sup
fb,gb

sup
{ωi}

∑
a′

1

∑
i

ωi

∣∣MF
i

(
P1

fb,gb B,A′
1|X ′

1

)
(b, a′

1) − MF
i

(
P2

fb,gb B,A′
1|X ′

1

)
(b, a′

1)
∣∣ (C33)

052612-18



LIMITATIONS ON A DEVICE-INDEPENDENT KEY … PHYSICAL REVIEW A 106, 052612 (2022)

� 1

2
sup
fb,gb

max
x′

1

∑
a′

1

∣∣P1
fb,gb B,A′

1|X ′
1
(b, a′

1|x′
1) − P2

fb,gb B,A′
1|X ′

1
(b, a′

1|x′
1)

∣∣ (C34)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P1
B,A1|X1

(b, a1|fb(a2, x′
1))DA2|X2,B(a2|x′

1, b) (C35)

−
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

P2
B,A1|X1

(b, a1|fb(a2, x′
1))DA2|X2,B(a2|x′

1, b)

∣∣∣∣∣∣ (C36)

= sup
fb,gb

max
x′

1

∑
a′

1

∣∣∣∣∣∣
∑

a1,a2:gb(a1,a2,x′
1 )=a′

1

DA2|X2,B(a2|x′
1, b)

(
P1

B,A1|X1
(b, a1|fb(a2, x′

1)) (C37)

− P2
B,A1|X1

(b, a1|fb(a2, x′
1))

)∣∣ (C38)

� sup
fb,gb

max
x′

1

∑
a′

1

∑
a1,a2:gb(a1,a2,x′

1 )=a′
1

DA2|X2,B(a2|x′
1, b)

∣∣P1
B,A1|X1

(b, a1|fb(a2, x′
1)) (C39)

−P2
B,A1|X1

(b, a1|fb(a2, x′
1))

∣∣ (C40)

= sup
fb

max
x′

1

∑
a1,a2

DA2|X2,B(a2|x′
1, b)

∣∣P1
B,A1|X1

(b, a1|fb(a2, x′
1)) − P2

B,A1|X1
(b, a1|fb(a2, x′

1))
∣∣ (C41)

= sup
fb

max
x′

1

∑
a2

DA2|X2,B(a2|x′
1, b)

∑
a1

∣∣P1
B,A1|X1

(b, a1|fb(a2, x′
1)) − P2

B,A1|X1
(b, a1|fb(a2, x′

1))
∣∣ (C42)

� sup
fb

max
x′

1

∑
a2

DA2|X2,B(a2|x′
1, b) max

a′
2

∑
a1

∣∣P1
B,A1|X1

(b, a1|fb(a′
2, x′

1)) − P2
B,A1|X1

(b, a1|fb(a′
2, x′

1))
∣∣ (C43)

= sup
fb

max
x′

1

max
a′

2

∑
a1

∣∣P1
B,A1|X1

(b, a1|fb(a′
2, x′

1)) − P2
B,A1|X1

(b, a1|fb(a′
2, x′

1))
∣∣ (C44)

= max
x1

∑
a1

∣∣P1
B,A1|X1

(b, a1|x1) − P2
B,A1|X1

(b, a1|x1)
∣∣ (C45)

= sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣. (C46)

From (a), (b), and Eq. (C14), we conclude that∣∣∣∣P1
B,A1|X1

− P2
B,A1|X1

∣∣∣∣
NS

(C47)

� 1

2

∑
b

sup
D

max

{
sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣
, sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣} (C48)

� 1

2

∑
b

sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1) − MF

(
P2

B,A1|X1

)
(b, a1)

∣∣. (C49)

As the right-hand side (r.h.s.) of the expression above realizes
a particular strategy of the distinguisher within considered
NS norm, the above inequality can be always saturated, what
yields: ∣∣∣∣P1

B,A1|X1
− P2

B,A1|X1

∣∣∣∣
NS

= 1

2

∑
b

sup
MF

∑
a1

∣∣MF
(
P1

B,A1|X1

)
(b, a1)

−MF
(
P2

B,A1|X1

)
(b, a1)

∣∣. (C50)

�
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Corollary 1. For the cc-d states shared at the end of the
MDLOPC protocol �, the NS norm can be rephrased with a
simplified expression:

||PSA,SB,Q,E |Z − QSA,SB,Q,E |Z ||NS

= 1

2

∑
sA,sB,q

max
z

∑
e

|PSA,SB,Q,E |Z (sA, sB, q, e|z)

−QSA,SB,Q,E |Z (sA, sB, q, e|z)|, (C51)

where maxz stands for the maximization over all possible
direct measurements performed by the eavesdropper.

Proof. The proof follows directly from substituting B ≡
(SA, SB, Q), A1 ≡ E and X1 ≡ Z in the result of Proposition
(9). In this way, we obtain cc-d states that are shared at the
end of the MDLOPC protocol �, and hence we arrive at the
claim:

||PSA,SB,Q,E |Z − QSA,SB,Q,E |Z ||NS

= 1

2

∑
sA,sB,q

max
z

∑
e

|PSA,SB,Q,E |Z (sA, sB, q, e|z)

−QSA,SB,Q,E |Z (sA, sB, q, e|z)|, (C52)

where the maxz is the maximization over direct measurements
in the part of Eve. �

Remark 1. The norm on the space of no-signaling con-
ditional probability distributions based on trace distance
introduced by M. Christandl and B. Toner [67] is based on
a supremum over all possible linear operations. According to
our best knowledge, these operations have not been charac-
terized yet in the literature. In this section, we do not target
to describe this class of operations. Instead, via the set G, we
constructed a particular action of the distinguishing system on
c-d states, which is sufficient for cryptographic purpose as it
yields equivalent security criterion to [23].

APPENDIX D: EQUIVALENCE BETWEEN SECURITY
CRITERIA FOR NSDI PROTOCOLS

The iid NSDI key rate in Definition 1 is implicitly de-
pendent on proximity in the NS norm security criterion in
Eq. (4). In the quantum case, it was shown that the proximity
in the norm (of a state to the ideal one) is equivalent to
the correctness and secrecy of a protocol [77,78]. These two
notions are employed in a protocol independent definition of
security [80]. In this section, we show that security criterion
based on NS norm is equivalent to the one based on secrecy
and correctness of MDLOPC protocol.

In what follows, we employ the notions of real, ideal, and
intermediate systems. A real system is a device shared by
the parties at the end of a protocol. An ideal device is the
one which possesses the same distribution on Eve’s side as a
real device, however, possesses perfect (uniform) correlations
between Alice and Bob, that are completely uncorrelated with
Eve. An intermediate device is another kind of device in which
Alice and Bob always share fully correlated keys. However,
the distribution of the keys is not uniform (Eve’s part stays
unchanged). The usual part of any protocol employing nonlo-
cal correlations is an acceptance phase in which honest parties

decide (upon some test) whether to abort or to proceed with
the protocol.

Composability concept in security is an area of research
concerned with composing cryptographic primitives into more
complex ones while keeping high security level. In the univer-
sal composability approach, a cryptographic primitive is said
to be universally composable if any functionality using this
primitive is as secure as an ideal one [80,81]. The compos-
able security is considered as the strongest notion of security
[80,81]. However, in the device independent scenario, so far,
it was not rigorously proven that this scheme is ultimately
secure. Furthermore, the results of Ref. [68] strongly suggest
that it is not the case, so the problem arises when one wants to
reuse the device. In particular, if the device used for composi-
tion has some memory, then it can leak the key of the previous
use. This implies that, in general, the protocol is composably
secure as long as the same device is not reused in the protocol.
We refer to this notion of security to be restricted composable.

Theorem 3 is essential to compare the secret key of our sce-
nario to these of other cryptographic schemes or even certain
protocols, in particular to the results of Hänggi, Renner, and
Wolf [17], with the upper bounds that will be presented in this
paper. We start with a few definitions.

Definition 7 (State of the device at the end of protocol).
The state of the device after the MDLOPC protocol is a
conditional probability distribution (c-d state) denoted by
Preal

SA,SA,Q,E |Z :

Preal
SA,SB,Q,E |Z = pabortP

real|abort
SA,SB,Q,E |Z + (1 − pabort )P

real|pass
SA,SB,Q,E |Z .

(D1)

The random variables SA, SB, andE are respectively out-
puts of Alice, Bob, and Eve conditioned upon input Z of Eve.
SA and SB are the key strings hold by Alice and Bob after
the protocol, respectively. Q is the random denoting public
communication. During the protocol, Q is shared by the three
parties, although Alice and Bob use it only to distill the final
key and discard it after the protocol is finished. For this reason,
we treat Q to be the random variable of Eve that she can
use for the choice of her input. Despite the fact that in the
notation adopted by as variables of outputs are conditioned
upon variables of inputs, Eve’s choice of input Z can still
depend on the value of Q. The superscripts abort and pass
indicate whether protocol passed the acceptance phase.

Definition 8 (Ideal output state). The ideal output state of
the device is the one that possesses perfect correlations be-
tween honest parties that are completely uncorrelated with
the eavesdropper. Local outcomes of the eavesdropper and
communication simulate the real system.

Pideal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

= δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z). (D2)

Since the honest parties are uncorrelated with Eve, the ideal
system can be decomposed according to tensor rule formula
for independent systems in the following way:

Pideal|pass
SA,SB,Q,E |Z = Pideal|pass

SA,SB
⊗ Pideal|pass

Q,E |Z . (D3)
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Definition 9 (State of the intermediate system). An
intermediate system is the one that bears fully correlated
key strings between the honest parties, but the distribution
they possess is not uniform; hence correlations are not perfect
in a cryptographic sense. The eavesdropper is not completely
uncorrelated with the honest parties.

Pint|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

= δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z). (D4)

Since the states of the intermediate and the ideal systems
are constructed with respect to the state of the real system, the
pabort is the same in all cases (later, we consider the protocol
after the acceptation phase, for which pabort = 0). The same
is true for all states conditioned on aborting, i.e., they are
trivially the same.

For the sake of cohesion, we provide definitions of secrecy,
correctness, and security of a cryptographic protocol in case
of nonsignaling devices.

Definition 10 (ε-secrecy of a protocol). An MDLOPC key
distribution protocol is ε-secret if it outputs a device for
which conditional probability distribution shared between Al-
ice (Bob) and Eve at the end of the protocol (and the protocol
does not abort) satisfies

(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� ε, (D5)

where

Preal(ideal)|pass
SA,Q,E |Z (sA, q, e|z) :=

∑
sB

Preal(ideal)|pass
SA,SB,Q,E |Z (sA, sB, q, e|z).

(D6)

Definition 11 (ε correctness). An MDLOPC key distribu-
tion protocol is ε-correct if the probability (and the protocol
does not abort) for Alice and Bob not to share the same output
keys satisfies

(1 − pabort )P[SA �= SB|pass] � ε. (D7)

Definition 12 (ε-security of a protocol). Let Preal|pass
SA,SB,Q,E |Z be

the state of the system shared between Alice, Bob, and Eve
after the protocol (and the protocol does not abort). Then the
protocol is ε-secure if

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε, (D8)

where pabort is the probability of aborting (which is the same
for the real and ideal protocols).

To prove the equivalence between security criterion based
on NS norm and the one based on security and correctness,
we provide technical Lemmas, showing that proximity in NS
norm implies secrecy and correctness, and vice versa.

Observation 1. The following equality holds.∣∣∣∣Preal
SA,SB,Q,E |Z − Pideal

SA,SB,Q,E |Z
∣∣∣∣

NS
= (1 − pabort )

∣∣∣∣Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∣∣∣∣

NS
. (D9)

Proof. ∣∣∣∣Preal
SA,SB,Q,E |Z − Pideal

SA,SB,Q,E |Z
∣∣∣∣

NS

= ∣∣∣∣pabortP
real|abort
SA,SB,Q,E |Z + (1 − pabort )P

real|pass
SA,SB,Q,E |Z − pabortP

ideal|abort
SA,SB,Q,E |Z − (1 − pabort )P

ideal|pass
SA,SB,Q,E |Z

∣∣∣∣
NS

(D10)

= ∣∣∣∣pabort
(
Preal|abort

SA,SB,Q,E |Z − Pideal|abort
SA,SB,Q,E |Z

) + (1 − pabort )
(
Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

)∣∣∣∣
NS

(D11)

(I )= (1 − pabort )
∣∣∣∣Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∣∣∣∣
NS

, (D12)

(I ) - we use the fact that Preal|abort
SA,SB,Q,E |Z and Pideal|abort

SA,SB,Q,E |Z are the same when the protocol is aborted [78]. �
Lemma 1. The NS norm evaluated for real and intermediate states quantifies the probability of Alice and Bob to share different

key strings at the end of the protocol.∥∥Preal
SA,SB,Q,E |Z − Pint

SA,SB,Q,E |Z
∥∥ = (1 − pabort )P[SA �= SB|pass]. (D13)

Proof. From Observation 1, we have∥∥Preal
SA,SB,Q,E |Z − Pint

SA,SB,Q,E |Z
∥∥

NS

(I )= (1 − pabort )
∥∥(Preal|pass

SA,SB,Q,E |Z − Pint|pass
SA,SB,Q,E |Z )

∥∥
NS

. (D14)

Now, using Proposition 2:∥∥Preal|pass
SA,SB,Q,E |Z − Pint|pass

SA,SB,Q,E |Z
∥∥

NS

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − Pint|pass

SA,SB,Q,E |Z (sA, sB, q, e|z)
∣∣ (D15)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣ (D16)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣δsA,sB
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+ 1

2

∑
sA,q

∑
sB �=sA

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣ (D17)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣
+ 1

2

∑
sA,q

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D18)

(I )= 1

2

∑
sA,q

max
z

∑
e

(∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − Preal|pass

SA,SB,Q,E |Z (sA, sA, q, e|z)

)

+ 1

2

∑
sA,q

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D19)

= 1

2

∑
sA,q

max
z

∑
e

∑
sB �=sA

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) + 1

2

∑
sA,q

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D20)

(II )=
∑
sA,q

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) (D21)

= P[SA �= SB|pass], (D22)

where (I) and (II) are due to nonsignaling condition on Eves’s input z. Finally we obtain∥∥Preal
SA,SB,Q,E |Z − Pint

SA,SB,Q,E |Z
∥∥

NS
= (1 − pabort )P[SA �= SB|pass]. (D23)

�
Lemma 2 (Secrecy and correctness imply security). If a protocol is εsec-secret and εcor-correct then the protocol is ε-secure,

where ε = εsec + εcor.{
(1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� εsec and (1 − pabort )P[SA �= SB|pass] � εcor

}
⇒ (1 − pabort )

∥∥Preal|pass
SA,SB,Q,E |Z , Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
� εsec + εcor = ε. (D24)

Proof. To prove the security of the protocol, we can decompose the left-hand side (l.h.s.) of Eq. (D8) in the following way:∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
�

∥∥Preal|pass
SA,SB,Q,E |Z − Pint|pass

SA,SB,Q,E |Z
∥∥

NS
+ ∥∥Pint|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

, (D25)

where we used the triangle inequality for the NS norm. From proposition 2, we have∥∥Pint|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
(D26)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣∣δsA,sB

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D27)

= 1

2

∑
sA,sB,q

max
z

∑
e

δsA,sB

∣∣∣∣∣∣
∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D28)

= 1

2

∑
sA

max
z

∑
e

∣∣∣∣∣∣
∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) −

∑
sB

δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D29)

= ∣∣∣∣Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∣∣∣∣

NS
. (D30)

Using now Lemma 1 and Eq. (D25), we have∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
� P[SA �= SB|pass] + ∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D31)

Hence,

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )P[SA �= SB|pass] + (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D32)

Using the above inequality if a protocol is εsec secret and εcor correct it is also at least (εsec + εcor ) secure.{
(1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� εsec and (1 − pabort )P[SA �= SB|pass] � εcor

}
(D33)

⇒ (1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z , Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� εsec + εcor = ε. (D34)
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We proved that if the protocol is εsec secret and εcor correct then its output is εsec + εcor close to ideal device in NS norm, and
by definition is εsec + εcor secure. To prove equivalence of security criteria, we now show the proof in the opposite direction, i.e.,
we show that if an output device of the protocol is ε close in NS norm to the ideal one, then the protocol is at least ε secret and
ε correct.

Lemma 3 (Security implies secrecy and correctness). If a protocol is ε-secure, then it is at least ε-secret and ε-correct.

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε

⇒ {
(1 − pabort )P[SA �= SB|pass] � ε and (1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� ε

}
(D35)

Proof of Lemma 3. Let us prove the following first.∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
� P[SA �= SB|pass]. (D36)

To proceed with this task we employ Definition 8 of the ideal system and Proposition 2.∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
(D37)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D38)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D39)

(I )
� 1

2

∑
sA,q

max
z

∣∣∣∣∣∣
∑

e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑

s′
A,s′

B,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D40)

(II )
� 1

2

∑
sA,q

∣∣∣∣∣∣
∑

e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑

s′
A,s′

B,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D41)

(III )
� 1

2

∣∣∣∣∣∣
∑
sA,q

⎛⎝∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑

s′
A,s′

B,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

⎞⎠∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D42)

= 1

2

∣∣∣∣∣∣
∑
sA,q,e

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sA

1

|SA|
∑

s′
A,s′

B,q,e

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D43)

= 1

2

∑
s′

A

∑
s′

B �=s′
A

∑
e,q

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z) + 1

2
P[SA �= SB|pass] (D44)

= P[SA �= SB|pass], (D45)

where we used the triangle inequality used in (I) and (III), and the nonsignaling condition in the Eve’s subsystems used in (II).
Hence

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )P[SA �= SB|pass]. (D46)

The above inequality verifies that ε security implies ε correctness.
In the next step, we prove

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D47)
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Let us use Proposition 2 again.∥∥Preal|pass
SA,SB,Q,E |Z − Pideal|pass

SA,SB,Q,E |Z
∥∥

NS
(D48)

= 1

2

∑
sA,sB,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − δsA,sB

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ (D49)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣
+ 1

2

∑
sA

∑
sB �=sA

max
z

∑
e

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) (D50)

(I )= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D51)

= 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣
(

Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

)

+
( ∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

)∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D52)

(II )
� 1

2

∑
sA,q

max
z

∑
e

∣∣∣∣∣
∣∣∣∣∣Preal|pass

SA,SB,Q,E |Z (sA, sA, q, e|z) −
∑

sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣
−

∣∣∣∣ ∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣
∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D53)

(III )
� 1

2

∣∣∣∣∣∑
sA,q

max
z

∑
e

∣∣∣∣∣Preal|pass
SA,SB,Q,E |Z (sA, sA, q, e|z) −

∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z)

∣∣∣∣∣
−

∑
sA,q

max
z

∑
e

∣∣∣∣∣∑
sB

Preal|pass
SA,SB,Q,E |Z (sA, sB, q, e|z) − 1

|SA|
∑
s′

A,s′
B

Preal|pass
SA,SB,Q,E |Z (s′

A, s′
B, q, e|z)

∣∣∣∣∣
∣∣∣∣∣∣ + 1

2
P[SA �= SB|pass] (D54)

(IV )=
∣∣∣∣1

2
P[SA �= SB|pass] − ∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

∣∣∣∣ + 1

2
P[SA �= SB|pass], (D55)

where in (I) the second component is treated like in the previous step, reverse triangle inequality has been used in (II), triangle
inequality in (III) and in (IV) we use the results given in Eqs. (D22) and (D30). We have

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

(D56)

�
∣∣ 1

2 (1 − pabort )P[SA �= SB|pass] − (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

∣∣ + 1
2 (1 − pabort )P[SA �= SB|pass]. (D57)

One should now go through two separate cases:
Case 1. ( 1

2 P[SA �= SB|pass] � ‖Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z ‖
NS

):

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� 1
2 (1 − pabort )P[SA �= SB|pass]

−(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

+ 1
2 (1 − pabort )P[SA �= SB|pass] (D58)

= (1 − pabort )P[SA �= SB|pass] − (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

(D59)

� 2(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

− (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

(D60)

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D61)
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Case 2. ( 1
2 P[SA �= SB|pass] < ‖Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z ‖

NS
):

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

(D62)

− 1
2 (1 − pabort )P[SA �= SB|pass] + 1

2 (1 − pabort )P[SA �= SB|pass]

= (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D63)

Finally,

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

. (D64)

If protocol is ε-secure, we see from (D36) and (D47) that

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε

⇒ {
(1 − pabort )P[SA �= SB|pass] � ε and (1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� ε

}
. (D65)

�
Once we proved the above Lemmas, we can state the Theorem regarding the equivalence between the secrecy and correctness

and proximity in NS norm criteria of security for a protocol we have considered.
Theorem 3 (Equivalence of security criteria). For an MDLOPC protocol �, the proximity in the NS norm security criterion

is equivalent to the criterion based on security and correctness. That is for any εsec + εcor ≡ ε � εsec, εcor � 0 the following
equivalence relation holds:

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� O(ε) ⇐⇒ {(1 − pabort )P[SA �= SB|pass] � O(εcor )

∧ (1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� O(εsec)
}
, (D66)

where pabort is the probability for the protocol to abort and the constant in O(ε) does not depend on any parameter of the protocol.
Proof. From Lemma 2, we have{

(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� εsec and (1 − pabort )P[SA �= SB|pass] � εcor
}

⇒ (1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z , Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� εsec + εcor = ε, (D67)

and from Lemma 3,

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� ε

⇒ {
(1 − pabort )P[SA �= SB|pass] � ε and (1 − pabort )

∥∥Preal|pass
SA,Q,E |Z − Pideal|pass

SA,Q,E |Z
∥∥

NS
� ε

}
(D68)

By combining the above implications under εsec + εcor ≡ ε � εsec, εcor � 0 constraints, we obtain

(1 − pabort )
∥∥Preal|pass

SA,SB,Q,E |Z − Pideal|pass
SA,SB,Q,E |Z

∥∥
NS

� O(ε) ⇐⇒ {(1 − pabort )P[SA �= SB|pass] � O(εcor ) (D69)

∧(1 − pabort )(1 − pabort )
∥∥Preal|pass

SA,Q,E |Z − Pideal|pass
SA,Q,E |Z

∥∥
NS

� O(εsec)
}
, (D70)

hence the corresponding notion’s are cryptographically equivalent. �

Remark 2. In the rest of this paper, we assume that the
protocol is after the acceptance phase. However, for the full
generality in this section, we took a step back and also con-
sidered the possibility of aborting. From now, we set the
probability of aborting to zero.

APPENDIX E: REPHRASING THE KEY RATE IN THE
SECRET-KEY AGREEMENT SCENARIO

The secret-key agreement (SKA) scenario is a cryp-
tographic scheme in which the honest parties and the
eavesdropper share many copies of a classical joint probability
distribution P(ABE ) [1,2]. The honest parties task is to agree
on the secret key, by employing local operations and public

communication (LOPC), in such a manner that the eavesdrop-
per’s knowledge about the key is negligible. In the following
lines, we propose an alternative definition of the secret-key
rate S(A : B||E ) in the aforementioned scenario and prove that
the definition we propose is equivalent to those present in the
literature [2,70,75]. This technical result intends to show and
utilize a connection between the definition of secret-key rate
in SKA and NSDI scenarios, as it was done in the case of
quantum cryptography [34].

Before we begin with the proof of Theorem 2, let us recall
two definitions of secret-key rate in SKA scenario [2,75].

Definition 13 (The weak secret-key rate [2,75]). The
(weak) secret-key rate of A and B with respect to E, denoted
S(A : B||Z ), is the maximal R � 0 such that for every ε > 0
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and for all N � N0(ε) there exists a protocol, using public
communication over an insecure but an authenticated channel,
such that Alice and Bob, who receive AN = [A1, . . . , AN ]
and BN = [B1, . . . , BN ], can compute keys SA and SB,
respectively, with the following properties. First, SA = SB

hold with probability at least 1 − ε, and second,

1

N
I (SA : CEN ) � ε and

1

N
H (SA) � R − ε (E1)

hold. Here, C denotes the collection of messages sent over the
insecure channel by Alice and Bob.

Definition 14 (The strong secret-key rate [75]). The strong
secret-key rate of A and B with respect to E, denoted by

S(A : B||Z ), is defined in the same way as S(A : B||Z ) with
the modifications that Alice and Bob compute strings SA and
SB which are with probability at least 1 − ε both equal to a
string S with the properties

I (S : CEN ) � ε and H (S) = log2 |S| � N · (R − ε).
(E2)

The above definitions of the secret-key rate were proven

to be equivalent [75], i.e., S(A : B||Z ) = S(A : B||Z ), for ev-
ery distribution P(ABE ) shared between the parties before
the protocol. We propose an alternative definition of the
secret-key rate based on proximity in the trace distance (total
variational distance).

Definition 15 (The secret-key rate). Let P(ABE ) be the
joint distribution of three discrete random variables A, B, and
E. The secret-key rate S(A : B||E ) is given by

S(A : B||E )P(ABE ) := sup
P

lim sup
N→∞

log2 dimSA [PN (P⊗N (ABE ))]

N
,

(E3)

where P = ∪∞
N=1{PN } is a LOPC protocol that satisfies∥∥Preal

N − Pideal
N

∥∥
1 � δN

N→∞−→ 0, (E4)

for

Preal
N ≡ Preal

N (SASBCEN ) := PN (P⊗N (ABE )), (E5)

Pideal
N ≡ Pideal

N (SASBCEN )

:=
(

δsA,sB

|SA|
)

⊗
∑
sA,sB

Preal
N (SA = sA, SB = sB,CEN ).

(E6)

Theorem 2. The secret-key rate S(A : B||E ) introduced in

Definition 15 is equal to secret-key rates S(A : B||E ) and S(A :
B||Z ) provided in Definitions 13 and 14, respectively.

Before we show the proof of Theorem 2, we present the
basic tools that will be used. For two joint probability distribu-
tions P ≡ P(XY ) and Q ≡ Q(XY ), that are close by according
to the trace distance, their Shannon entropies, and the mutual
information functions satisfy the asymptotic continuity rela-
tions [90,91], which is

|H(X )P − H(X )Q| � ε log2 (dimX(P) − 1) + h2(ε), (E7)

|I(X : Y )P − I(X : Y )Q| � 2ε log2 d + 2g(ε), (E8)

where ε = 1
2 ||P(XY ) − Q(XY )||1 ∈ [0, 1], h2(ε) :=

−ε log2 ε − (1 − ε) log2(1 − ε) is the binary Shannon
entropy, g(ε) := −ε log2 ε + (1 + ε) log2(1 + ε), and
d = min{dimX(P), dimY(P)}. Functions h2 and g are equal at
ε = 0 and for ε > 0 h2(ε) < g(ε). It is also useful to observe
that ||P(X ) − Q(X )||1 � ||P(XY ) − Q(XY )||1 for P(X ) and
Q(X ) being marginal probability distributions of P(XY ) and
Q(XY ) respectively.

Another relation that we need is the so-called Pinsker’s
inequality. It states that if P and Q are two probability dis-
tributions, then

1

2
‖P − Q‖1 �

√
1

2
DKL(P||Q), (E9)

where DKL(P||Q) is the Kullback-Leibler divergence. One
of the properties of this function is its relation to mutual
information, i.e., for a joint probability distribution P(XY )
and P(X ), P(Y ) being its marginal distributions we have:
DKL(P(XY )||P(X )P(Y )) = I (X : Y )P(XY ).

The last mathematical property we describe before the
proof is the Fano’s inequality stating that

H (X |Y ) � h(e) + P(e) log2 (|X | − 1),

P(e) = Prob[X �= X̃ ], (E10)

where h(x) is the binary entropy and X̃ = f (Y ) is an approxi-
mate version of X .

In the proof, we also use the notions of real and ideal
systems. The real system Preal

N is a tripartite probability dis-
tribution shared by the honest parties after N th round of an
LOPC protocol P . The ideal system Pideal

N is the one in which
the honest parties are perfectly correlated (with uniform distri-
bution), and Eve’s marginal distribution is the same as for the
real system, however completely uncorrelated with the honest
parties.

Preal
N ≡ Preal

N (SASBCEN ) := PN (P⊗N (ABE )), (E11)

Pideal
N ≡ Pideal

N (SASBCEN )

:=
(

δsA,sB

|SA|
)

⊗
∑
sA,sB

Preal
N (SA = sA, SB = sB,CEN ),

(E12)

where P(ABE ) is tripartite probability distribution shared by
all parties at the beginning of SKA protocol, i.e., input state
of the protocol, |S| = dimS (Preal

N ) and dimensions of Preal
N and

Pdeal
N are equal. By (

δsA ,sB
|SA| ) we denote a distribution of perfectly

and uniformly correlated random variables SA and SB.
Proof of Theorem 2. We begin the proof by showing that

the weak secret-key rate S(A : B||Z ), constitutes an upper
bound on S(A : B||Z ). We do this by showing that every
protocol that satisfies the condition in Eq. (E4) also satisfies
conditions in Definition 13.

We denote protocol that satisfy security condition in
Eq. (E4) with P . From asymptotic continuity of the mu-
tual information and the fact that I (SA : CEN )Pideal

N
= 0 by the
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construction of Pideal
N , we read

∀P∀N I (SA : CEN )Preal
N

= I (SA : CEN )Preal
N

− I (SA : CEN )Pideal
N

�
∣∣I (SA : CEN )Preal

N
− I (SA : CEN )Pideal

N

∣∣
� 2δN log2 dSA + 2g(δN ), (E13)

where dSA := dimSA (Preal
N ) � min{dimSA (Preal

N ), dimCEN (Preal
N )}

and δN � 1
2‖Preal

N − Pideal
N ‖1. Because in any reasonable

LOPC protocol dimension of the output is smaller than the
dimension of the input, and we observe that14

∀P∀N dS

= dimSA

(
Preal

N

) = dimSA [PN ((P(ABE ))⊗N )]

� dimA[(P(ABE ))⊗N ]

= [dimA (P(ABE ))]N . (E14)

Hence,

∀P∀N
1

N
I (SA : CEN )Preal

N

� 2δN log2 [dimA (P(ABE ))]N + 2g(δN )

N

= 2δN log2 [dimA (P(ABE ))] + 2g(δN )

N
(E15)

Hence if a protocol satisfies the trace norm security condition

‖PN (P⊗N (ABE )) − Pideal
N ‖1 � δN

N→∞−→ 0 then

∀P∀ε>0∃N1(ε)∀N�N1(ε)
1

N
I (SA : CEN )Preal

N
< ε, (E16)

as r.h.s. of Eq. (E15) approaches 0 when N goes to infinity.
Another condition in Definition 13 we call correctness of a

protocol, requiring that SA = SB with probability at least 1 −
ε (equivalently Prob[SA �= SB] � ε) is satisfied15 by virtue of
Theorem 3, with |Z| = 1 and pabort = 0.

This is because the NS norm computed for classical prob-
ability distributions is equal to the trace distance. Therefore,
from the condition in Eq. (E4) and Theorem 3, we have

∀P∀ε∃N2(ε)∀N�N2(ε) Prob[SA �= SB] � δN . (E17)

Let us show now the upper bound. We first observe that for
all protocols the following is true:

∀P∀N H (SA)Preal
N

� H (SA)Pideal
N

= log2 dimSA

(
Pideal

N

) = log2 dimSA

(
Preal

N

)
, (E18)

where the inequality is due to the definition of ideal system in
which SA is uniformly distributed and of the same dimension

14This follows from: S(A : B||E )P � I (A : B ↓ E )P �
log2 dimA(P).

15Devices with unary input are isomorphic with unconditional
probability distributions.

as in real system. From asymptotic continuity of the Shannon
entropy, we have

∀P∀N
1

N
H (SA)Preal

N

� 1

N
H (SA)Pideal

N
− 1

N

(
δN log2

(
dimSA

(
Preal

N

) − 1
) + h2(δN )

)
(E19)

� 1

N
H (SA)Pideal

N
−

(
2δN log2 (dimA (P(ABE ))) + 2g(δN )

N

)
,

(E20)

where the second inequality is a consequence of the similar
arguments as in Eq. (E14) and the fact that ∀x>0 h2(s) < g(x).

Let us define L(N ) := log2 dimSA (Preal
N )

N . In particu-

lar there exists 0 < η(N )
N→∞−→ 0 such that L(N ) =

lim supN→∞
log2 dimSA (Preal

N )
N − η(N ). Hence, we have the

following inequality.

∀P∀ε>0∃N3(ε)∀N>N3(ε)
1

N
H (SA)Preal

N

� lim sup
N→∞

log2 dimSA (Preal
N )

N
− ε. (E21)

Let us define now N0(ε) := max{N1(ε), N2(ε), N3(ε)}. All
conditions in Definition 13, are now satisfied as for all ε > 0

and for all N � N0(ε), with R = lim supN→∞
log2 dimSA (Preal

N )
N .

The weak secret-key rate is by Definition 13 maximal R, for
which second inequality in Eq. (E1) is satisfied, hence to
achieve S(A : B||E ) one has to take a supremum over rates
of all protocols.

S(A : B||E )P(ABE ) = sup
P

R, (E22)

where P are the protocols that satisfy conditions in Definition
13. As we have shown that condition (E4) in Definition 15
implies conditions in Definition 13, it is clear that {P} ⊆ {P},
and hence:

S(A : B||E )P(ABE )

= sup
P

R � sup
P

R

= sup
P

lim sup
N→∞

log2 dimSA

(
Preal

N

)
N

. (E23)

Let us now show that the secret-key rate S(A : B||E ) is

lower bounded with the strong secret-key rate S(A : B||E ).
In this part, we refer again to results in Appendix D. It is
enough to show that conditions in Definition 14 imply secrecy
and correctness of a protocol, as by virtue of Theorem 3 and
the same arguments regarding the connection between the NS
norm and the trace distance, these conditions imply proximity
in the trace distance.

We start with the condition of secrecy (see Definition
10). Let Preal

N (SASBSCEN ) be an extension of Preal
N (SASBCEN ),
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such it satisfies conditions in Eq. (E2).

∀N εsec
N := 1

2

∥∥Preal
N (SACEN ) − Pideal

N (SACEN )
∥∥

1 = 1

2

∥∥∥∥Preal
N (SACEN ) −

(
1

|SA|
)

⊗ Preal
N (CEN )

∥∥∥∥
1

= 1

2

∥∥∥∥Preal
N (SACEN ) − Preal

N (SA) ⊗ Preal
N (CEN ) + Preal

N (SA) ⊗ Preal
N (CEN ) −

(
1

|SA|
)

⊗ Preal
N (CEN )

∥∥∥∥
1

� 1

2

∥∥Preal
N (SACEN ) − Preal

N (SA) ⊗ Preal
N (CEN )

∥∥
1 + 1

2

∥∥∥∥Preal
N (SA) −

(
1

|SA|
)∥∥∥∥

1

� 1

2

∥∥Preal
N (SASCEN ) − Preal

N (SAS) ⊗ Preal
N (CEN )

∥∥
1 + 1

2

∥∥∥∥Preal
N (SA) −

(
1

|SA|
)∥∥∥∥

1

, (E24)

where ( 1
|SA| ) denotes uniform distribution, and we identify |SA| with |S|. The first term in the equation above can be upper

bounded via Pinsker’s inequality, and the first inequality in (E2):

∀ε>0∃N0(ε)∀N>N0(ε)
1

2

∥∥Preal
N (SASCEN ) − Preal

N (SAS) ⊗ Preal
N (CEN )

∥∥
1 �

√
1

2
DKL

(
Preal

N (SASCEN )||Preal
N (SAS) ⊗ Preal

N (CEN )
)

(I )=
√

1

2
I (SAS : CEN )

Preal
N

= 1√
2

√
I (S : CEN )

Preal
N

+ I (SA : CEN |S)
Preal

N
� 1√

2

√
ε + I (SA : CEN |S)

Preal
N

, (E25)

where (I ) follows from the properties of the Kullback–Leibler divergence. Let us upper bound I (SA : CEN |S)
Preal

N
in the next step.

I (SA : CEN |S)
Preal

N
= H (SA|S)

Preal
N

− H (SA|S,CEN )
Preal

N

(II )
� H (SA|S)

Preal
N

(III )
� H (e)P(e) + P(e) log2 (|S| − 1)

(IV )
� h(ε)

+ ε log2 (|S| − 1), (E26)

where h(x) is the binary entropy and in (II ) we used non-negativity of the conditional entropy, (III ) follows from Fano’s
inequality for P(e) = Prob[S �= SA], and the last step (IV ) is a consequence of Prob[SA = SB = S] � 1 − ε and an assumption
that ε � 1

2 . This assumption is well justified in cryptography. From inequalities (E25) and (E26), we have

∀ 1
2 �ε>0∃N0(ε)∀N>N0(ε)

1

2

∥∥Preal
N (SASCEN ) − Preal

N (SAS) ⊗ Preal
N (CEN )

∥∥
1 � 1√

2

√
ε + h(ε) + ε log2 (|S| − 1). (E27)

In order to upper bound the second term, we make the following observations:

∀ε>0∃N0(ε)∀N>N0(ε)

(a) Prob[SA = SB = S] > 1 − ε ⇒ Prob[SA = S] > 1 − ε ⇔ Prob[SA �= S] < ε ⇔
∑

sA

∑
s �=sA

Preal
N (sAs) < ε, (E28)

(b) H (S) = log2 |S| ⇒ Preal
N (s) = 1

|S| , (E29)

(c) ∀s
1

|SA| =
∑

sA

Preal
N (sAs) =

∑
sA �=s

Preal
N (sAs) + Preal

N (ss) � Preal
N (ss). (E30)

Therefore we have

∀ε>0∃N0(ε)∀N>N0(ε)
1

2

∥∥∥∥Preal
N (SA) −

(
1

|SA|
)∥∥∥∥

1

= 1

2

∑
sA

∣∣∣∣Preal
N (sA) − 1

|SA|
∣∣∣∣ = 1

2

∑
sA

∣∣∣∣∣∑
s

Preal
N (sAs) − 1

|SA|

∣∣∣∣∣
= 1

2

∑
sA

∣∣∣∣∣∑
s �=sA

Preal
N (sAs) + Preal

N (sAsA) − 1

|SA|

∣∣∣∣∣ (I )
� 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

∑
sA

∣∣∣∣ 1

|SA| − Preal
N (sAsA)

∣∣∣∣
= 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

∑
s

∣∣∣∣ 1

|SA| − Preal
N (ss)

∣∣∣∣ (II )= 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

∑
sA

(
1

|SA| − Preal
N (sAsA)

)

= 1

2

∑
sA

∑
s �=sA

Preal
N (sAs) + 1

2

(
1 −

∑
sA

Preal
N (sAsA)

)
=

∑
sA

∑
s �=sA

Preal
N (sAs) � ε, (E31)
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where (I ) follows from triangle inequality, (II ) is due to
observation (c), and in the last step, we used (a). From
eqs. (E24), (E25), and (E31), we conclude that εsec

N �
1√
2

√
ε + h(ε) + ε log2(|S| − 1) + ε.

The correctness of a protocol is explicitly stated in Defi-
nition 14, i.e., Prob[SA = SB = S] > 1 − ε (see Definition 11
for reference). Hence we have εcor

N := ε. From Theorem 3, we
obtain>

∀ 1
2 �ε>0∃N0(ε)∀N>N0(ε)

1

2

∥∥Preal
N (SASBCEN ) − Pideal

N (SASBCEN )
∥∥

1 � εcor
N + εsec

N

� 1√
2

√
ε + h(ε) + ε log2 (|S| − 1) + 2ε, (E32)

or equivalently ∥∥Preal
N − Pideal

N

∥∥
1 � δN

N→∞−→ 0. (E33)

From the second inequality (E2) and Eq. (E18), we have
that

∀ε>0∃N0(ε)∀N>N0(ε) L(N ) � R − ε, (E34)

for L(N ) = log2 dimSA (Preal
N )

N and hence by performing a limit
N → ∞, and condition of R being maximal number so that

the above is satisfied we have R = lim supN→∞
log2 dimSA (Preal

N )
N .

The strong secret-key rate is defined as

S(A : B||E )P(ABE ) = sup
P

R, (E35)

where P are protocols that satisfy conditions in Definition 14.
Because conditions in Definition 14 imply Condition (E4), we

have {P} ⊆ {P}, and therefore,

S(A : B||E )P(ABE )

= sup
P

R = sup
P

lim sup
N→∞

log2 dimSA (Preal
N )

N

� sup
P

lim sup
N→∞

log2 dimSA (Preal
N )

N
. (E36)

By combining equations (E23) and (E36), we have

S(A : B||E )P(ABE )

� sup
P

lim sup
N→∞

log2 dimSA (Preal
N )

N

� S(A : B||E )P(ABE ). (E37)

However, in Ref. [75], it was shown that ∀P(ABE ) S(A :
B||E )P(ABE ) = S(A : B||E )P(ABE ), hence we conclude that

S(A : B||E )P(ABE ) = S(A : B||E )P(ABE )

= S(A : B||E )P(ABE ), (E38)
with S(A : B||E )P(ABE ) = supP lim supN→∞
log2 dimSA [PN (P⊗N (ABE ))]

N , and therefore all three definitions
are equivalent.

APPENDIX F: UPPER BOUND ON DEVICE
INDEPENDENT KEY

In this section, we prove our main result. Namely, we
show that the secrecy quantifiers, that provide upper bounds
on the key rate in the SKA model [2,75], can serve us to
construct upper bounds in device-independent key agreement
scenario via operation of squashing. The secret-key agreement
scenario (SKA) is a well established area of cryptography,
where upper bounds on the key rate are well known and given
by entropic functions. The connection between upper bounds
in SKA and NSDI cryptographic paradigms that we show in
this section may simplify further studies on the latter.

Theorem 1. The secret-key rate, in the nonsignaling
device-independent iid scenario achieved with MDLOPC op-
erations, K (iid)

DI , from a device P is upper bounded by any
nonsignaling squashed secrecy quantifier evaluated for the
complete extension of P:

∀P M̂(A : B||E )E (P) � K (iid)
DI (P), (F1)

where P ≡ P(AB|XY ) is a single copy of a bipartite
nonsignaling device shared by the honest parties, and E (P) ≡
E (P)(ABE |XY Z ) is its complete extension to the eavesdrop-
per’s system.

Proof of Theorem 1. We start the proof by modifying the
equality in Eq. (E3), in Definition 15 in the following way:

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) = max
x,y

min
z

sup
Px,y,z

lim sup
N→∞

log2 dimSA

[
Px,y,z

N

((
(MF

x,y ⊗ MG
z )E (P)(ABE |XY Z )

)⊗N)]
N

,

(F2)

where Px,y,z is a LOPC protocol secure with respect to probability distribution that arises after x, y, z choice of inputs (see
Sec. E of Appendix for reference), and MF

x,y, MG
z are fiducial and general measurements of Alice, Bob, and Eve, respectively,

described before in Sec. B 2 of Appendix.
Let us notice that for each choice of x and y there exists z = z̄x,y such that

max
x,y

sup
Px,y,z̄x,y

lim sup
N→∞

log2 dimSA

[
Px,y,z̄x,y

N

(((
MF

x,y ⊗ MG
z̄x,y

)
E (P)(ABE |XY Z )

)⊗N)]
N

(F3)

:= max
x,y

min
z

sup
Px,y,z

lim sup
N→∞

log2 dimSA

[
Px,y,z

N

(((
MF

x,y ⊗ MG
z

)
E (P)(ABE |XY Z )

)⊗N)]
N

. (F4)
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Now, when the optimization domains are explicitly stated, we can make use of max-min inequality to obtain

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) (F5)

� max
x,y

sup
Px,y,z̄x,y

min
z

lim sup
N→∞

log2 dimSA

[
Px,y,z̄x,y

N

(((
MF

x,y ⊗ MG
z

)
E (P)(ABE |XY Z )

)⊗N)]
N

. (F6)

We notice that the minimization of Eve’s choice of input (minz) is void in the r.h.s. of the Eq. (F5) above. This is because the
value of r.h.s. depends only on the value of dimSA (·) that is determined by choice of x, y, and hence by the protocol. Therefore
we can write the following sequence of equalities where we swap from classical probability distributions to cc-d states:

∀x,y∀Px,y,z̄x,y minz lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

(((
MF

x,y ⊗ MG
z

)
E (P)(ABE |XY Z )

)⊗N)]
N

(F7)

= lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

((
(MF

x,y ⊗ 1)E (P)(ABE |XY Z )
)⊗N)]

N
(F8)

= lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

(
(MF

x,y ⊗ 1)⊗NE⊗N (P)(ABE |XY Z )
)]

N
(F9)

= lim supN→∞
log2 dimSA

[
Px,y,z̄x,y

N

(
(MF

x,y ⊗ 1)⊗NE (P⊗N )(ABE |XY Z )
)]

N
(F10)

= lim supN→∞
log2 dimSA

[(
Px,y,z̄x,y

N ◦ (MF
x,y)⊗N

)
(E (P⊗N )(ABE |XY Z ))

]
N

. (F11)

In the third equality above, we again used the fact that
the dimension of Alice’s subsystem (when the protocol is
already fixed) is independent of Eve’s action and her marginal
distribution. This is the reason why we can substitute E (P⊗N )
in the place of E⊗N (P). Moreover, in the last equality we use
a notation that explicitly shows the composition between a
measurement and a LOPC protocol. With a little abuse of
notation 1 in Eve’s part is abandoned.

We notice now that each composition of measurement x,
y and protocol Px,y,z̄x,y is a candidate for MDLOPC protocol
� := {�N } = {Px,y,z̄x,y

N ◦ (MF
x,y)⊗N }. However we require that

the distribution after the protocol is secure in NS-norm, i.e.,

∥∥�N (E (P⊗N )) − P(dN )
ideal

∥∥
NS � εN

N→∞−→ 0, (F12)

what implies security not only with respect to Eve choosing
z̄x,y, but against eavesdropper that has access to all inputs of
E (P⊗N ), hence possibly more powerful attacks. This is also
a reason why we stay general even if there is any other good
choice of z̄x,y in Eq. (F3). Having this in mind, we can write
the inequalities below:

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) (F13)

� max
x,y

sup
Px,y,z̄x,y

lim sup
N→∞

log2 dimSA

[(
Px,y,z̄x,y

N ◦ (
MF

x,y

)⊗N)
(E (P⊗N )(ABE |XY Z ))

]
N

(F14)

� sup
�

lim sup
N→∞

log2 dimSA [�N (E (P⊗N )(ABE |XY Z ))]

N
= K (iid)

DI (P), (F15)

where the second inequality is due to the fact that now opti-
mization is over a smaller set (not larger), i.e., only these com-
binations of measurements and LOPC operations that satisfy
security condition in Eq. (F12). Moreover, in the equality we
identified MDLOPC (iid) secret-key rate from Definition 1.

For the second part of the proof, we need to recall some
properties of a family of secrecy quantifiers {M(A : B||E )} of
SKA model [88]. Each function that upper bounds secret-key
rate in the SKA paradigm can be squashed according to the
following procedure. For any function among them:

∀Q(ABE ) M(A : B||E )Q(ABE ) � S(A : B||E )Q(ABE ). (F16)

By extending the above inequality to any tripartite nonsignal-
ing device P(ABE |XY Z ) and general measurement for input
Z , one can write

∀P(ABE |XY Z )∀x,y,z M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z )

� S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F17)

Without loss of generality, we fix the device P(ABE |XY Z ) for
now. Let us denote z̃x,y as such an adaptive choice of z that

∀x,y M(A : B||E )(MF
x,y⊗MG

z̃x,y
)P(ABE |XY Z )

:= min
z

M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F18)
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The immediate consequence is

∀x,y min
z

M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z )

= M(A : B||E )(MF
x,y⊗MG

z̃x,y
)P(ABE |XY Z ) (F19)

� S(A : B||E )(MF
x,y⊗MG

z̃x,y
)P(ABE |XY Z )

� min
z

S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F20)

Employing a similar technique again, let us choose x̃, ỹ such
that

min
z

S(A : B||E )(MF
x̃,ỹ⊗MG

z )P(ABE |XY Z )

:= max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F21)

This yields

max
x,y

min
z

S(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z )

= min
z

S(A : B||E )(MF
x̃,ỹ⊗MG

z )P(ABE |XY Z ) (F22)

� min
z

M(A : B||E )(MF
x̃,ỹ⊗MG

z )P(ABE |XY Z )

� max
x,y

min
z

M(A : B||E )(MF
x,y⊗MG

z )P(ABE |XY Z ). (F23)

On the r.h.s. we recognize M̂(A : B||E )P(ABE |XY Z ) from Defi-
nition 2. Using the result in Eqs. (F13)–(F15) from the first
part of the proof, and substituting the complete extension of
P(AB|XY ) as a tripartite device, we obtain

∀P(AB|XY ) M̂(A : B||E )E (P)(ABE |XY Z ) � K(iid)
DI (P(AB|XY )).

(F24)

APPENDIX G: PROOF OF THE PROPERTIES OF
NONSIGNALING SQUASHED NONLOCALITY

In this section, we give the proofs of the properties of
the nonsignaling squashed nonlocality. Before we start with
the proof, let us recall the definition of intrinsic information
I(A : B ↓ E ), given in Sec. X. We will rewrite the definition in
two new ways. One of them is in full analogy to the forms of
the squashed entanglement [61,62]. Indeed, one can write the
latter measure in terms of the minimization over all possible
extensions: Esq(ρAB) := infσABE :TrE σABE =ρAB I (A : B|E )σABE . The
second form of the squashed nonlocality involves ensembles
induced by measurements on the extending system and re-
sembles the definition of the so-called classical squashed
entanglement [62].

The intrinsic information involves an optimization over
all possible conditional probability distributions 	E ′|E . More-
over, in the squashing procedure, an optimization over the
measurements on the CE of a bipartite device P(AB|XY ), has
been involved. The nonsignaling squashed intrinsic informa-
tion is

Î(A : B ↓ E )E (P)(ABE |XY Z )

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ) (G1)

= max
x,y

min
z

inf
	z

E ′ |E
I(A : B|E ′)(	z

E ′ |E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z ),

(G2)

where MF
x,y is the direct measurement on the inputs X and Y ,

and MG
z is a general measurement on Z . According to The-

orem 4 of Ref. [56], (	z
E ′|E )(1 ⊗ MG

z )E (P)(ABE |XY Z ) =∑
e 	z

E ′|E=e

∑
z p(z|z′)E (P)(ABE = e|XY Z = z) =

P̃(ABE ′|XY Z ′ = z′), is an arbitrary ensemble (possibly
mixed) of the device P(AB|XY ), where 1 is the identity
operator on the system of the honest parties. Hence, for a
fixed input randomizer (dice p(z|z′)) and a fixed channel,
one can generate an arbitrary extension P̃(ABE ′|XY ) with
unary input. All possible choices of input randomizer and
post-processing channel lead to all possible extensions,
hence minz inf	z

E ′ |E
= inf P̃(ABE ′ |XY ). And hence, it follows that

Definition 3 of the squashed nonlocality is equivalent to

Nsq(P(AB|XY )) = max
x,y

inf
P̃(ABE |XY )

I(A : B|E )MF
x,yP̃(ABE |XY ).

(G3)

This arbitrary extension of a form P̃(ABE |XY ), gives rise
to an arbitrary but fixed ensemble of the bipartite device
P(AB|XY ) = ∑

e P̃(ABE = e|XY ) = ∑
e p(e)Pe(AB|XY ),

where Pe(AB|XY ) is an arbitrary device corresponding to
each output E = e, and belongs to the same polytope (state
space) as P(AB|XY ). Moreover, all possible choices of
P̃(ABE |XY ) give rise to all possible ensembles of P(AB|XY ).
The set of all ensembles of a given device P(AB|XY ), reads

Sall :=
{

{pi, Pi(AB|XY )} :
∑

i

piP
i(AB|XY ) = P(AB|XY )

}
.

(G4)

Hence, inf P̃(ABE ′ |XY ) = inf {pi,Pi (AB|XY )}∈Sall , and by virtue of
Eq. (G3) we can rewrite definition 3 of the squashed nonlo-
cality in the following way:

Nsq(P(AB|XY )) = max
x,y

inf
{pi,Pi (AB|XY )}∈Sall

×
∑

i

piI(A : B)MF
x,yPi (AB|XY ). (G5)

From Eq. (G5), it is clear that the squashed nonlocality re-
duces to the convex roof extension of the mutual information
function. This is analogous to the definition of entanglement
for mixed quantum states [92], the only difference is that here
we are not restricting the device to be decomposable in terms
of only pure (extremal) devices (see in this context [37]).

1. Relation to the bound of Ref. [16]

To describe the relation between our results and the re-
sults in Ref. [16], we prove that maxx,y IAMP,(x,y) = Nsq. This
allows us to compare the bounds on equal footing, and by
showing that Nsq is convex, to use the convexification method
to achieve tighter bound than given in Ref. [16].

We first show that the � inequality. Indeed, let us fix
(x, y) arbitrarily. Let {p(E = e)∗, P(ABE = e|XY )∗} be an
optimal ensemble achieving IAMP,(x,y). By definition of the
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complete extension [56], there exists a measurement16 z on
its Eve’s system E that generates this ensemble: {P(E =
e|Z = z), P(ABE = e|XY, Z = z)} so that P(E = e|Z = z) =
P(E = e)∗ and P(ABE = e|XY, Z = z) = P(ABE = e|XY )∗.
Since (x, y) was arbitrary and the z could be suboptimal for
the definition of Nsq we get the inequality maxx,y IAMP,(x,y) �
Nsq. To see that maxx,y IAMP,(x,y) � Nsq, let x, y be fixed
arbitrarily and z(x, y) such that the value of infz I (A :
B ↓ E )P(ABE |X=x,Y =y,Z=z) is minimal. Then {P(E = e|Z =
z(xy)), P(ABE = e|X = x,Y = y, Z = z(x, y) is a particular
ensemble of P(AB|XY ), which may be suboptimal, i.e., not
attaining infimum in definition of IAMP,(x,y), we get that
IAMP,(x,y) � infz I (A : B ↓ E )P(ABE |X=x,Y =y,Z=z). Since (x, y)
was arbitrary, we can take max over (x, y) on both sides, and
on the r.h.s. we obtain Nsq while the bound max(x,y) IAMP,(x,y)

is on the l.h.s., which proves the claimed equality.

2. Positivity of the measure

Proposition 3. The squashed nonlocality is a positive
semidefinite function of bipartite nonsignaling devices
P(AB|XY ),

Nsq(P(AB|XY )) � 0, (G6)

andthe equality holds if the device P admits a local hidden
variable model [8].

Proof. The intrinsic conditional mutual information satisfy
I(A : B ↓ E ) � 0 for all distributions P(ABE ), hence the pos-
itive semi-definiteness directly follows from its definition:

Nsq(P(AB|XY ))

= max
x,y

min
z

I(A : B ↓ E )(MF
x,y⊗MG

z )E (P)(ABE |XY Z )

� max
x,y

min
z

0 = 0. (G7)

Now we have to show that it is zero for all local de-
vices. Let us assume PL(AB|XY ) is a local device, i.e., there
exists a hidden variable model λ, such that PL(AB|XY ) =∑

λ P(A|X, λ) ⊗ P(B|Y, λ)ρ(λ). This leads to an ensemble
{ρ(λ), P(A|X, λ) ⊗ P(B|Y, λ)} whose members are tensor
products of local devices, hence from Eq. (G5), we can di-
rectly write

Nsq(PL(AB|XY ))

= max
x,y

∑
i

ρ(λi )I(A : B)MF
x,y (P(A|X,λi )⊗P(B|Y,λi )) = 0. (G8)

�

3. Convexity

Proposition 4. Nsq(P) is a convex function, i.e., if
P(AB|XY ) and Q(AB|XY ) are two bipartite nonsignaling de-
vices in the same polytope, then

Nsq(λP(AB|XY ) + (1 − λ)Q(AB|XY ))

� λNsq(P(AB|XY )) + (1 − λ)Nsq(Q(AB|XY )) (G9)

16Here, we mean the generalized measurement that gives the eaves-
dropper the access to any ensemble of the device (see Appendix B 2
for details).

∀λ ∈ [0, 1].
Proof. Consider the convex combination of the devices

P̄(AB|XY ) = λP(AB|XY ) + (1 − λ)Q(AB|XY ). (G10)

In particular there exists an extension P̄ext (ABE�|XY ) of
P̄(AB|XY ), such that

P̄ext (ABE� = 0|XY ) = p(� = 0)P̃(ABE |XY ), (G11)

P̄ext (ABE� = 1|XY ) = p(� = 1)Q̃(ABE |XY ), (G12)

with p(� = 0) = λ and p(� = 1) = 1 − λ. We consider that
the devices P̃(ABE |XY ) and Q̃(ABE |XY ) are arbitrary exten-
sions of the devices P(AB|XY ) and Q(AB|XY ) respectively,
as discussed above.

Hence, from Eq. (G3), we have

∀x, y inf
P̄(ABE |XY )

I(A : B|E )MF
x,yP̄(ABE |XY )

� I(A : B|E�)MF
x,yP̄ext (ABE�|XY ) (G13)

= λI(A : B|E )MF
x,yP̃(ABE |XY )

+(1 − λ)I(A : B|E )MF
x,yQ̃(ABE |XY ), (G14)

where P̄(ABE |XY ) are such that
∑

e P̄(ABE = e|XY ) =
P̄(AB|XY ). The above relation holds for an arbitrary ex-
tensions of P and Q, the P̃(ABE |XY ) and Q̃(ABE |XY )
respectively. Hence, it is also true for the optimal extensions

∀x, y inf
P̄(ABE |XY )

I(A : B|E )MF
x,yP̄(ABE |XY )

� λ inf
P̂(ABE |XY )

I(A : B|E )MF
x,yP̂(ABE |XY )

+ (1 − λ) inf
Q̂(ABE |XY )

I(A : B|E )MF
x,yQ̂(ABE |XY ), (G15)

where P̂(ABE |XY ) are such that
∑

e P̂(ABE = e|XY ) =
P(AB|XY ) and Q̂(ABE |XY ) are such that

∑
e Q̂(ABE =

e|XY ) = Q(AB|XY ). Consider direct measurements x̄ and ȳ
that maximize l.h.s. of inequality (G15). Then from Eq. (G3),
we have

Nsq(P̄(AB|XY ))

= max
x,y

inf
P̄(ABE |XY )

I(A : B|E )MF
x,yP̄(ABE |XY )

= inf
P̄(ABE |XY )

I(A : B|E )MF
x̄,ȳ P̄(ABE |XY ) (G16)

(I )
� λ inf

P̂(ABE |XY )
I(A : B|E )MF

x̄,ȳ P̂(ABE |XY )

+(1 − λ) inf
Q̂(ABE |XY )

I(A : B|E )MF
x̄,ȳ Q̂(ABE |XY ). (G17)

(II )
� λ max

x,y
inf

P̂(ABE |XY )
I(A : B|E )MF

x̄,ȳ P̂(ABE |XY )

+(1 − λ) max
x,y

inf
Q̂(ABE |XY )

I(A : B|E )MF
x̄,ȳ Q̂(ABE |XY ). (G18)

= λNsq(P(AB|XY )) + (1 − λ)Nsq(Q(AB|XY )), (G19)

where in (I), we use the inequality (G15), with x = x̄
and y = ȳ. In (II), we use the fact that direct measure-
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FIG. 7. Schematic diagram of the �GMDLOPC operation, where the inputs of the devices shared by the honest parties are chosen by
a local randomizer DL

XY |X ′Y ′ (xy|x′y′) as given in Eq. (G28). Similarly, the outputs are also connected through a post-processing channel
PCL

A′B′ |ABXY (a′b′|abxy) which also depends on the inputs x, y and has a local hidden variable model given in Eq. (G29).

ments x̄ and ȳ, may not maximize terms at r.h.s. of the
inequality (G15). �

4. Inheritance of monotonicity: Monotonicity
under MDLOPC class of operation

In this section, we will show that any secrecy mono-
tone (functional, nonincreasing under LOPC operations), after
squashing procedure yields a functional which is monotonic
under MDLOPC operations.

Proposition 5. (Inheritance of monotonicity) Any secrecy
quantifier M(A : B|E ), which is nonincreasing under LOPC
operations, after the squashing procedure is nonincreasing
under MDLOPC operations.

Proof. Let us consider arbitrary MDLOPC operation
�MDLOPC. By definition it is a composition of the form
�MDLOPC = �LOPC ◦ MF

x0,y0
. Let us also choose arbitrary de-

vice P(ABE |XY Z ) and let us fix arbitrarily z = z0. As a
consequence we can write a sequence of (in)equalities which
we comment below, where for the sake of clarity of the proof
we will use a short notation: M(A : B|E ) ≡ M and M̂(A :
B|E ) ≡ M̂.

M̂(�MDLOPC(P(ABE |XY Z )))

= max
x,y

min
z

M(�MDLOPC(P(ABE |X = x,Y = y, Z = z)))

(G20)

= min
z

M(�LOPC(P(ABE |X = x0,Y = y0, Z = z)))

(G21)

� M(�LOPC(P(ABE |X = x0,Y = y0, Z = z0))) (G22)

� M(P(ABE |X = x0,Y = y0, Z = z0) (G23)

� max
x,y

M(P(ABE |X = x,Y = y, Z = z0)) (G24)

= max
x,y

min
z

M(P(ABE |X = x,Y = y, Z = z)) (G25)

= M̂(P(ABE |XY Z )). (G26)

In the first equality, we use the definition of M̂. In Eq. (G21),
we use the fact that the device P after measurement MF

x0,y0

has unary inputs in part of the honest parties (it becomes a
distribution in that part), hence there is no parameter x, y to
maximise over. The inequality (G22) follows from the prop-
erty of minimum (over z). The inequality (G23) is due to the
monotonicity of M under �LOPC. The inequality (G24) is be-
cause x0, y0 may be suboptimal in maxx,y over M(P(ABE |X =
x,Y = y, Z = z0)). The equality (G25) comes from the fact
that the choice of z0 was arbitrary, so it is true for the z0 that
attains minz in (G25). The last equality comes from definition
of M̂ ≡ M̂(A : B|E ), which ends the proof. �

From Proposition 5, it directly follows that the squashed
nonlocality, is monotonic under �MDLOPC, as it is defined
based on the secrecy quantifier, intrinsic mutual information
I(A : B ↓ E ). And it is monotonic under LOPC operation
[34,70].

Without using the above proposition, we can also in-
dependently prove that Nsq is monotonic under MDLOPC
operation, or in principle, under a larger class of operations,
the GMDLOPC. We have mentioned in the main text, that
the MDLOPC class of operations involve (i) direct mea-
surement, changing devices into distributions followed by
(ii) Local operations and Public communication. If we relax
the measurement procedure and include all possible general
measurements, then we will have the GMDLOPC class of op-
erations, as shown in the schematic diagram in Fig. 7. Clearly
MDLOPC ⊂ GMDLOPC, and one particular operation of
GMDLOPC class will be denoted as �GMDLOPC. Hence the
monotonicity:

Proposition 6. 17 The nonsignaling squashed nonlocality
of any nonsignaling bipartite device P satisfies

∀�GMDLOPC Nsq(�GMDLOPC(P)) � Nsq(P), (G27)

Proof. To prove the monotonicity under GMDLOPC, we
will use the equivalent definition of Nsq given in Eq. (G5).

17The result of this section is partially based on Ref. [31].
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Under the GMDLOPC operation �GMDLOPC ∈ GMDLOPC,
the honest parties can choose general measurements in
the input of the shared device P(AB|XY ). The general
measurements can be chosen by using a public shared lo-
cal randomeness generator DL

XY |X ′Y ′ (xy|x′y′) (as depicted in
Fig. 7), with x′ ∈ X ′, y′ ∈ Y ′ the input and x ∈ X, y ∈ Y are
the output. As the output of DL will be feeded to the input
of P(AB|XY ), hence, we will assume without any loss of
generality that both cardinality are same. Moreover, as DL is

local randomness generator, hence

DL
XY |X ′Y ′ (xy|x′y′) =

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1), (G28)

where λ1 ∈ �1 is the local hidden variable and
∑

λ1
μ(λ1) =

1. Similarly, the outputs are also passed through a local
post-processing channel PCL

A′B′ |ABXY (a′b′|abxy), which also
depends on the inputs of the initial device, as shown in Fig. 7.
Additionally, the locality condition give rise to

PCL
A′B′ |ABXY (a′b′|abxy) =

∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2), (G29)

with λ2 ∈ �2 and
∑

λ2
ν(λ2) = 1. Hence, under �GMDLOPC, the given device P(AB|XY ) transforms into

P′
A′B′|X ′Y ′ (a′b′|x′y′) = �GMDLOPC(P(AB|XY )) (G30)

=
∑

xy

DL
XY |X ′Y ′ (xy|x′y′)

∑
ab

PAB|XY (ab|xy)PCL
A′B′|ABXY (a′b′|abxy) (G31)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

P(ab|xy)
∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2). (G32)

Now the Nsq of P′ as in Eq. (G5) is

Nsq(P′) = Î(A′ : B′ ↓ E )E (P′ )(A′B′E |X ′Y ′Z ) = max
x′y′

inf
{pi,P′i}∈Sall (P′ )

∑
i

piI(A
′ : B′)P′i , (G33)

where E (P′)(A′B′E |X ′Y ′Z ), is the CE of P′(A′B′|X ′Y ′), and Sall (P′) denotes all possible ensembles of P′.
Consider the following tripartite device, resulting upon performing the �GMDLOPC on the CE of P(AB|XY ),

�GMDLOPC ⊗ 1E (E (P)(ABE |XY Z )) =
∑

xy

DL
XY |X ′Y ′ (xy|x′y′)

∑
ab

E (P)(abe|xyz)PCL
A′B′ |ABXY (a′b′|abxy) (G34)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

E (P)(abe|xyz)

×
∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2). (G35)

Here 1E means the identity operator in Eve’s subsystem.
Consider the ensemble {p(e|z)μ(λ1)ν(λ2), Pezλ1λ2 (a′b′|x′y′)}, where

Pezλ1λ2 (a′b′|x′y′) =
∑

xy

D1(x|x′λ1)D2(y|y′λ1)
∑

ab

Pez(ab|xy)PC1(a′|axλ2)PC2(b′|byλ2). (G36)

Now we will show that the above ensemble will be an ensemble of P′(A′B′|X ′Y ′), if {p(e|z), Pez
AB|XY } is an ensemble of P(AB|XY ).

Suppose {p(e|z), Pez
AB|XY }, is an ensemble of P, then∑

eλ1λ2

p(e|z)μ(λ1)ν(λ2)Pezλ1λ2 (a′b′|x′y′) (G37)

=
∑
eλ1λ2

p(e|z)μ(λ1)ν(λ2)
∑

xy

D1(x|x′λ1)D2(y|y′λ1)
∑

ab

Pez(ab|xy)PC1(a′|axλ2)PC2(b′|byλ2) (G38)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

(∑
e

p(e|z)Pez(ab|xy)

)∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2) (G39)

=
∑

xy

∑
λ1

μ(λ1)D1(x|x′λ1)D2(y|y′λ1)
∑

ab

P(ab|xy)
∑
λ2

ν(λ2)PC1(a′|axλ2)PC2(b′|byλ2) (G40)

= P′
A′B′|X ′Y ′ (a′b′|x′y′), (G41)

by using Eq. (G32) and the fact that
∑

e p(e|z)Pez(ab|xy) = P(ab|xy).
Moreover, {p(e|z), Pez

AB|XY } is an arbitrary ensemble, and Eve can easily access it once she has the CE E (P)(ABE |XY Z ):
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Because {p(e|z)μ(λ1)ν(λ2), Pezλ1λ2 (a′b′|x′y′)} is an ensemble of P′,

∀x′,y′ inf
{pi,Pi}∈Sall (P′ )

∑
i

piI(A
′ : B′)P′i �

∑
eλ1λ2

p(e|z)μ(λ1)ν(λ2)I(A′ : B′)Pezλ1λ2 (A′B′ |X ′=x′,Y ′=y′ ) (G42)

(I )
�

∑
eλ1λ2

p(e|z)μ(λ1)ν(λ2)I(AX : BY )Pezλ1λ2 (AXBY |X ′=x′,Y ′=y′ ) (G43)

(II )=
∑
eλ1

p(e|z)μ(λ1)(I(A : B|XY ) + I(X : B|Y ) + I(A : Y |X ) + I(X : Y ))Pezλ1 (AXBY |X ′=x′,Y ′=y′ )

(G44)
(III )=

∑
eλ1

p(e|z)μ(λ1)I(A : B|XY )Pezλ1 (AXBY |X ′=x′,Y ′=y′ ) (G45)

=
∑
exyλ1

p(e|z)μ(λ1)D1(x|x′λ1)D2(y|y′λ1)I(A : B)Pezλ1 (AB|X=x,Y =y,X ′=x′,Y ′=y′ ) (G46)

(IV )
� max

xy

∑
e

p(e|z)I(A : B)Pez (AB|XY ), (G47)

where in (I) we use the data processing inequality and also
use the fact that the distribution Pezλ1λ2

AXBY |X ′Y ′ (axby|x′y′) =
D1(x|x′λ1)D2(y|y′λ1)Pez

AB|XY (ab|xy)
∑

a′b′ PC1(a′|axλ2)PC2

(b′|byλ2) is independent of λ2. The chain rule of mutual
information has been used in (II) whereas in (III), we use
the fact that given x′, y′ and λ1, the random variables X
and Y are independent, hence I(X : B|Y ) = I(A : Y |X ) = 0,
which follows from the nonsignaling condition. In (IV) we
simply write Pezλ1 (AB|X = x,Y = y, X ′ = x′,Y ′ = y′) =
Pez(AB|X = x,Y = y).

The r.h.s. of (G47) is valid for an arbitrary ensemble
{p(e|z), Pez} ∈ Sall (P), so it is still valid when taking infimum
over all ensembles. Hence,

max
x′y′

inf
{pi,P′i}∈Sall (P′ )

∑
i

piI(A
′ : B′)P′i (A′B′|X ′Y ′ )

� max
xy

inf
{pi,Pi}∈Sall (P)

∑
i

piI(A : B)Pi (AB|XY ), (G48)

⇒ Nsq(�GMDLOPC(P)) � Nsq(P). (G49)

�
As MDLOPC ⊂ GMDLOPC, so we have
Corollary 3. The nonsignaling squashed nonlocality of

any nonsignaling bipartite device P satisfies

∀�MDLOPC Nsq(�MDLOPC(P)) � Nsq(P), (G50)

The above monotonicity property also holds for the
nonsignaling squashed conditional mutual information Î(A :
B|E )E (P)(ABE |XY Z ).

5. Superadditivity and additivity

Proposition 7.18 If two bipartite nonsignaling devices
P(A1B1|X1Y1) and Q(A2B2|X2Y2) are the marginals of a four
partite nonsignaling device P̄(A1A2B1B2|X1X2Y1Y2), then the

18The result of this section is partially based on Ref. [31].

nonsignaling squashed nonlocality Nsq is superadditive,

Nsq(P̄(A1A2B1B2|X1X2Y1Y2))

� Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)), (G51)

and additive for tensor product of devices P(A1B1|X1Y1) ⊗
Q(A2B2|X2Y2), that is

Nsq(P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2))

= Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G52)

Proof. Superadditivity on joint device: Let us consider
two devices P(A1B1|X1Y1) and Q(A2B2|X2Y2), which are
the marginals of a big four party nonsignaling device
P̄(A1A2B1B2|X1X2Y1Y2), i.e.,∑

a2b2

P̄(a1, a2, b1, b2|x1, x2, y1, y2)

= P(a1, b1|x1, y1) ∀a1, b1, x1, x2, y1, y2, (G53)∑
a1b1

P̄(a1, a2, b1, b2|x1, x2, y1, y2)

= Q(a2, b2|x2, y2), ∀a2, b2, x1, x2, y1, y2. (G54)

where P̄(A1=a1, A2=a2, B1=b1, B2 = b2|X1 = x1, X2 = x2,

Y1 = y1,Y2=y2) ≡ P̄(a1, a2, b1, b2|x1, x2, y1, y2), P(A1=a1,

B1 = b1|X1 = x1,Y1 = y1) = P(a1, b1|x1, y1), and Q(A2 =
a2, B2 = b2|X2 = x2,Y2 = y2) = Q(a2, b2|x2, y2). Moreover,
P̄(A1A2B1B2|X1X2Y1Y2) is also satisfy nonsignaling conditions
among all of its parties, as defined in Eqs. (B1) and (B2).

Consider an arbitrary nonsignaling extension of
P̄(A1A2B1B2|X1X2Y1Y2) → P̄(A1A2B1B2E |X1X2Y1Y2Z ), with
unary input |Z| in the extended part. The input is unary, so
the nonsignaling condition is automatic and we can omit the
Z . The conditional mutual information of the distribution
after performing an arbitrary pair of direct measurements,
i.e., MF

x1,y1
⊗ MF

x2,y2
on the inputs X1,Y1 and X2,Y2
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reads

∀x1, x2, y1, y2

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

(I )= (I(A1 : B1|E ) + I(A2 : B1|EA1) + I(A1 : B2|EB1) + I(A2 : B2|EA1B1))(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G55)

(II )
� I(A1 : B1|E )MF

x1 ,y1
P̄(A1B1E |X1Y1 ) + I(A2 : B2|EA1B1)(MF

x1 ,y1
⊗MF

x2 ,y2
)P̄(A1A2B1B2E |X1X2Y1Y2 ), (G56)

where we use the chain rule of mutual information in (I) and in (II), we use positivity condition of mutual information.
MF

x1,y1
P̄(A1B1E |X1Y1) is the marginal of the device (MF

x1,y1
⊗ MF

x2,y2
)P̄(A1A2B1B2E |X1X2Y1Y2) after the direct measurements

on the inputs. Recall that(
MF

x1,y1
⊗ MF

x2,y2

)
P̄(A1A2B1B2E |X1X2Y1Y2) = P̄(A1A2B1B2E |X1 = x1, X2 = x2,Y1 = y1,Y2 = y2). (G57)

Noticing that P̄(A1B1E |X1Y1) is an arbitrary extension of P(A1B1|X1Y1) and similarly P̄(A1A2B1B2E |X1X2Y1Y2) is for the
device Q(A1B1E |X1Y1), we can write

∀x1, x2, y1, y2

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ) � inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ), (G58)

I(A2 : B2|EA1B1)(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) � inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ). (G59)

From inequalities (G56), (G58), and (G59), we have

∀x1, x2, y1, y2

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

� inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ) + inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ). (G60)

The above inequality holds for all extensions of P̄(A1A2B1B2|X1X2Y1Y2), hence also for an optimal extension on the l.h.s., so

∀x1, x2, y1, y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

� inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̃(A1B1E |X1Y1 ) + inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ). (G61)

Suppose that x̄1, ȳ1 are the optimal direct measurement choice for Nsq(P) and x̄2, ȳ2 are for Nsq(Q),

Nsq(P(A1B1|X1Y1)) = max
x1,y1

inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x1 ,y1

P̄(A1B1E |X1Y1 ) = inf
P̄(A1B1E |X1Y1 )

I(A1 : B1|E )MF
x̄1 ,ȳ1

P̄(A1B1E |X1Y1 ), (G62)

Nsq(Q(A2B2|X2Y2)) = max
x2,y2

inf
P̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x2 ,y2

Q̄(A2B2E |X2Y2 ) = inf
Q̄(A2B2E |X2Y2 )

I(A2 : B2|E )MF
x̄2 ,ȳ2

P̄(A1B1E |X1Y1 ). (G63)

Finally,

Nsq(P̄(A1B1A2B2|X1X2Y1Y2)) = max
x1,y1,x2y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G64)

(I )
� inf

P̄(A1B1A2B2E |X1X2Y1Y2 )
I(A1A2 : B1B2|E )(MF

x̄1 ,ȳ1
⊗MF

x̄2 ,ȳ2
)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G65)

(II )
� inf

P̄(A1B1E |X1Y1 )
I(A1 : B1|E )MF

x̄1 ,ȳ1
P̃(A1B1E |X1Y1 ) + inf

Q̄(A2B2E |X2Y2 )
I(A2 : B2|E )MF

x̄2 ,ȳ2
Q̄(A2B2E |X2Y2 ),

(G66)
(III )= Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G67)

In (I ), we use an specific choice of direct measurement, MF
x̄1,ȳ1

⊗ MF
x̄2,ȳ2

, which may not be optimal for device
P̄(A1B1A2B2|X1X2Y1Y2). We use Eq. (G61) for the direct measurements MF

x̄1,ȳ1
⊗ MF

x̄2,ȳ2
in (II ) and finally in (III ), Eqs. (G62)

and (G63) has been used.
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Additivity for tensor product of devices: Let us assume that the joint nonsignaling four party device (two random variables
for input and output in the honest parties’ part) is the tensor product [76] of two bipartite devices,

P̄(A1B1A2B2|X1X2Y1Y2) = P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2). (G68)

Consider the (nonsignaling) extensions with unary inputs of both the devices, P(A1B1|X1Y1) → P̄(A1B1E1|X1Y1) and
Q(A2B2|X2Y2) → Q̄(A2B2E2|X2Y2), which are the optimal extensions for calculating Nsq for both the devices, as given
in Eq. (G3), for all x and y. Hence, their tensor product P̄(A1B1E1|X1Y1) ⊗ Q̄(A2B2E2|X2Y2) is an extension of
P̄(A1B1A2B2|X1X2Y1Y2), which may not be optimal one, resulting in

∀x1, x2, y1, y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 )

� I(A1A2 : B1B2|E1E2)(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1B1E1|X1Y1 )⊗Q̄(A2B2E2|X2Y2 ) (G69)

= I(A1 : B1|E1)MF
x1 ,y1

P̄(A1B1E1|X1Y1 ) + I(A2 : B2|E2)MF
x2 ,y2

Q̄(A2B2E2|X2Y2 ) (G70)

= inf
P(A1B1E1|X1Y1 )

I(A1 : B1|E1)MF
x1 ,y1

P(A1B1E1|X1Y1 ) + inf
Q(A2B2E2|X2Y2 )

I(A2 : B2|E2)MF
x2 ,y2

Q(A2B2E2|X2Y2 ). (G71)

Considering the optimal direct measurements MF
x̄1,ȳ1

⊗ MF
x̄2,ȳ2

in the l.h.s. of the above relation, gives

Nsq(P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2))

= max
x1,x2,y1,y2

inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x1 ,y1

⊗MF
x2 ,y2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G72)

= inf
P̄(A1B1A2B2E |X1X2Y1Y2 )

I(A1A2 : B1B2|E )(MF
x̄1 ,ȳ1

⊗MF
x̄2 ,ȳ2

)P̄(A1A2B1B2E |X1X2Y1Y2 ) (G73)

� inf
P(A1B1E1|X1Y1 )

I(A1 : B1|E1)MF
x̄1 ,ȳ1

P(A1B1E1|X1Y1 ) + inf
Q(A2B2E2|X2Y2 )

I(A2 : B2|E2)MF
x̄2 ,ȳ2

Q(A2B2E2|X2Y2 ) (G74)

� max
x1,y1

inf
P(A1B1E1|X1Y1 )

I(A1 : B1|E1)MF
x1 ,y1

P(A1B1E1|X1Y1 ) + max
x2,y2

inf
Q(A2B2E2|X2Y2 )

I(A2 : B2|E2)MF
x2 ,y2

Q(A2B2E2|X2Y2 ) (G75)

= Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G76)

Using relation (G67), we finish the proof with equality:

Nsq(P(A1B1|X1Y1) ⊗ Q(A2B2|X2Y2)) = Nsq(P(A1B1|X1Y1)) + Nsq(Q(A2B2|X2Y2)). (G77)

6. Subextensivity

Proposition 8. Nonsignaling squashed nonlocality is
bounded by log2(min{dA, dB}).

Proof. From the definition of nonsignaling squashed non-
locality given in Eq. (G5), we have

Nsq(P(AB|XY ))

= max
x,y

inf
{pi,Pi (AB|XY )}∈Sall

∑
i

piI(A : B)MF
x,yPi (AB|XY ) (G78)

(I )
� max

x,y
inf

{pi,Pi (AB|XY )}∈Sall

∑
i

pi log2

(
min

{
dx

A, dy
B

})
(G79)

� log2 (min {dA, dB}). (G80)

where in (I ), we use the fact that I(A : B)Mx,y (Pi (AB|XY )) �
log2(min{dx

A, dy
B}) for all i, and dx

A = suppP(A|X = x) and
dy

B = suppP(B|Y = y) and dA = maxx suppP(A|X = x) and
dB = maxy suppP(B|Y = y).

APPENDIX H: NONLOCALITY COST
AS AN UPPER BOUND

Definition 16. The nonlocality cost of bipartite nonsignal-
ing device is

NC(P) := C(P) log2 (min {dA, dB}), (H1)

where dA = maxx(suppMF
x (P(A|X ))) and dB =

maxy(suppMF
y (P(B|Y )) are dimensions of the outputs,

and C(P) is the nonlocality fraction of P [93,94].
Proposition 9. The secret-key rate K (iid)

DI (P) of a device is
upper bounded by

NC(P) � K (iid)
DI (P). (H2)

Proof. Suppose Alice and Bob share a nonsignaling device
P ≡ P(AB|XY ), and Eve has access to its complete extension
[56]. The device P can be decomposed into a nonlocal vertex
and a local device,

P = αPV
NL + (1 − α)PL, (H3)

where PV
NL is the nonlocal vertex and PL is any local device.

Let us denote the nonlocality fraction

C(P) := min
All decompsitions as in Eq. (H3)

α. (H4)

Eve can always get access to this ensemble,
{(C(P), P̄V

NL), (1 − C(P), P̄L)}, in part of the honest parties.
We assume that Eve works in favor of Alice and Bob, and

informs them about her output when she obtains the above
ensemble. The key rate K̃ , in this scenario, must be greater
than in NSDI-iid scenario, since in the latter case Eve does
not work on account of Alice and Bob,

K (iid)
DI (P) � K̃ (P). (H5)
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With a probability C(P) the honest parties share the nonlocal
correlations, useful for secret-key agreement and with proba-
bility 1 − C(P), they share a local device with zero key rates.
Since the key satisfying Maurer’s security definition is upper
bounded by mutual information function, and both of them are
nonincreasing under the LOPC operations, we obtain

K̃ (P) � C(P)(max
x,y

I(A : B)MF
x,yPV

NL (AB|XY ) ). (H6)

Furthermore,

I(A : B)MF
x,y (P(AB|XY )) � log2 (min {dx

A, dy
B}), (H7)

where dx
A = suppP(A|X = x) and dy

B = suppP(B|Y = y). Em-
ploying Eq. (H5), we finally obtain

K (iid)
DI (P) � C(P)

(
sup
MF

x,y

log2 (min {dx
A, dy

B})

)
(H8)

= C(P) log2 (min {dA, dB}) = NC (P), (H9)

by Definition 16,with dA = maxx suppP(A|X = x) and dB =
maxy suppP(B|Y = y). �

APPENDIX I: EXAMPLES OF SECRECY MONOTONES,
CONVEXIFICATION OF̂I(A : B ↓ E )

AND A NONTRIVIAL BOUND

Monotones, based on mutual information functions, are
used to upper bound the secret-key rate on the SKA scenario.
However, the only one amongst them, which is easily com-
putable, is the mutual information itself. All of them can be
“squashed” and used to generate the upper bounds for K (iid)

DI .
Fact 1. The secrecy quantifiers and monotones [34] (and

the mutual information function) are the upper bounds on
S(A : B||E ):

I(A : B)P(ABE ) � S(A : B||E )P(ABE ), (I1)

I(A : B|E )P(ABE ) � S(A : B||E )P(ABE ), (I2)

min {I(A : B)P(ABE ), I(A : B|E )P(ABE )} � S(A : B||E )P(ABE ),

(I3)

I(A : B ↓ E )P(ABE )

� I(A : B ↓↓ E )P(ABE ) � S(A : B||E )P(ABE ). (I4)

We can use all of the functions displayed in Fact 1 to
construct the nonsignaling squashed secrecy quantifiers and
monotones for the devices. See Appendix A for the proper
definition of the above functions.

Corollary 4. The following upper bounds on K (iid)
DI (P) hold

Î(A : B)E (P)(ABE |XY Z ) � K (iid)
DI (P), (I5)

Î(A : B|E )E (P)(ABE |XY Z ) � K (iid)
DI (P), (I6)

min{̂I(A : B)E (P)(ABE |XY Z ), Î(A : B|E )E (P)(ABE |XY Z )}
� K (iid)

DI (P), (I7)

Î(A : B ↓ E )E (P)(ABE |XY Z ) � Î(A : B ↓↓ E )E (P)(ABE |XY Z )

� K (iid)
DI (P). (I8)

The proof of the above Corollary is straightforward
from Theorem 1. It is important to note that, the com-
plete extension of a device, P(AB|XY ), has been denoted
as E (P)(ABE |XY Z ), where the extended systems are in full
control of Eve.

The intrinsic information Î(A : B ↓ E ) and the reduced
intrinsic information Î(A : B ↓↓ E ) are functions without
closed-form expression, and hence they cannot be computed
straightforwardly. We present a technique for finding a non-
trivial bound using the properties of one of them. First, we
notice that for any fixed bipartite device and its complete
extension, the following is true.

Observation 2 (Hierarchy between different mutual infor-
mation functions).

Nsq(P) = Î(A : B ↓ E )E (P)(ABE |XY Z ) � Î(A : B)E (P)(ABE |XY Z ),

(I9)

Nsq(P) = Î(A : B ↓ E )E (P)(ABE |XY Z )

� Î(A : B|E )E (P)(ABE |XY Z ). (I10)

The squashed nonlocality is upper bounded by
the squashed conditional mutual information Î(A :
B|E )E (P)(ABE |XY Z ), and also with squashed mutual information
Î(A : B)E (P)(ABE |XY Z ), hence:

Observation 3. Nonsignaling squashed nonlocality is
upper-bounded by the following expression.

Nsq(P) � min{̂I(A : B)E (P)(ABE |XY Z ), Î(A : B|E )E (P)(ABE |XY Z )}.
(I11)

Unfortunately, the squashed nonlocality lacks a closed-
form expression for an arbitrary nonsignaling device. It
involves optimization over general measurement and post-
processing channels in the eavesdropper side. This makes it
hard to compute for a generic nonsignaling device. Moreover,
we obtained the squashed nonlocality to be a convex function
over the mixture of devices, see Appendix G 3, whereas the
intrinsic information is not a convex function. This might be
due to the fact that it was constructed in the same way as
the nonsignaling squashed entanglement, and the latter is a
convex function of quantum states [62]. In this section, we
will show how convexity of squashed nonlocality can be used
not only to calculate nontrivial upper bounds on K (iid)

DI , but
also how it can be used to define new nonsignaling squashed
secrecy quantifiers.

Observation 3, brings the idea of how to use the con-
vexity property of squashed nonlocality. Since the squashed
nonlocality is an upper bound on K (iid)

DI , hence, the r.h.s. of
Eq. (I11) must also be an upper bound on secret-key rate as
well. Together with the convexity property, it implies that a
lower convex hull of Î(A : B|E ) and Î(A : B) also bounds K (iid)

DI
from above.

Theorem 4. Within a family of functions {Fi}, which are
convex with respect to mixtures of devices, and

Fi(P) � Î(A : B)E (P)(ABE |XY Z ), (I12)

Fi(P) � Î(A : B|E )E (P)(ABE |XY Z ), (I13)
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there exists a function F that upper bounds any function in {Fi}
and for which the following relation holds

F(P) � K (iid)
DI (P). (I14)

Proof. Since Î(A : B ↓ E ) ∈ {Fi} because of Proposition 4
and Î(A : B ↓ E )E (P) � K (iid)

DI (P), then, for a function F which
lies above the values of the squashed intrinsic mutual infor-
mation, satisfies F(P) � K (iid)

DI (P).
Theorem 4, can be easily generalized by imposing different

constraints than Eqs. (I12) and (I13), for example, by using
other upper bounds on the squashed nonlocality and also an
arbitrary number of them.

Remark 3. The lower convex hull of plots of an arbitrary
number of functions, each being an upper bound on a convex
function which upper bounds K (iid)

DI , is an upper bound on the
key rate itself.

This observation automatically yields a recipe on how to
construct nontrivial upper bounds on K (iid)

DI . We come up with
the following Corollary, being a direct consequence of Theo-
rem 4 and Remark 3.

Corollary 5. A nontrivial upper bound is given by the
lower convex hull (LCH) of plots of nonsignaling squashed
secrecy quantifiers.

Nsq(P) � F(P)

:= LCH{̂I(A : B)E (P)(ABE |XY Z ), Î(A : B|E )E (P)(ABE |XY Z )}.
(I15)

Proof. We prove by contradiction. If there would be a func-
tion which at any point is greater than the lower convex hull
of Î(A : B) and Î(A : B|E ), either it would not be convex or it
would be greater (at least at a single point) then at least one
from the above nonsignaling squashed nonlocality quantifiers.
Therefore it is not in the set {Fi}. �

The upper bound on K (iid)
DI introduced in the above corollary

can be computed much more easily than the nonsignaling
squashed nonlocality. We will refer to the procedure of cal-
culating upper bounds via this technique as convexification.
Observation 2 and Proposition 9 provide a collection of func-
tions which are upper bounds for Nsq. Hence, there exists a
convex (in the same sense) function, which is an upper bound
on the squashed nonlocality, but at the same time, it is a lower
bound on any function in this group, which is very clear from
the proof of Theorem 4.

APPENDIX J: NUMERICAL UPPER BOUNDS
ON SQUASHED NONLOCALITY

In this section, we will provide the upper bound on the Nsq,
for some exemplary family of devices, namely, two binary
input and two binary output devices (2,2,2,2) and for a device
which has ternary input for one subsystem and binary input for
the other subsystem but all the outputs are binary (3,2,2,2). We
have obtained that there exist some devices that are not MD-
LOPC key distillable, although they are nonlocal. Describing
the procedure of convexification, we focused on obtaining
upper bounds by employing a lower convex hull of the upper
bounds on Nsq. The reason behind such an approach is to
simplify our calculations. In this Section, we present a specific
example of upper bounds on Nsq, which we have obtained via
this technique for some bipartite binary input output nonlocal
devices. Let us recall here that Nsq is defined as

Nsq(P) = max
x,y

min
z

inf
	E ′ |E

I(A : B|E ′)(MF
x,y⊗MG

z )E (P). (J1)

The core strategy is based on the observation that the
definition of nonsignaling squashed nonlocality involves two
minimizations: one in the measurement process and another
one in applying suitable post-processing channel, in part of
the eavesdropper. We notice that one can obtain upper bounds
also in the case in which used measurement and channels
are not optimal, which follows from the property of infimum.
Knowing this, we can run a three-step strategy to obtain an
upper bound on K (iid)

DI for the desired set of devices.
(1) Choose an (arbitrary, possibly continuous) set of de-

vices, for which an upper bound is to be calculated.
(2) Calculate the values of upper bounds on nonsignaling

squashed nonlocality employing different devices, different
measurement choices, and different post-processing channels.
These can be obtained either via educated guess, some heuris-
tic method or with computer aid, including a random search
over the space.

(3) Construct lower convex hull of all previously gener-
ated plots, and the result is the convex hull of the chosen set
of points.

1. Upper bound for the nonsignalling device
used by Hänggi, Renner and Wolf

We will now employ the above technique to bound the
K (iid)

DI . As we have argued, the notion of security employed
by us is equivalent to that used by Hänggi, Renner, and Wolf
[17]. The protocol proposed by them yields a positive key
rate for devices exhibiting quantum correlations, we compare
our upper bounds with the lower bound presented by them
[17,63], in Fig. 8. The nonsignaling device we consider, as in
Ref. [17], is given by

PHRW(ab|xy) =

x 0 1

y b
a 0 1 0 1

0
0 1

2 − δ
2

δ
2

3
8 − ε

2
1
8 + ε

2

1 δ
2

1
2 − δ

2
1
8 + ε

2
3
8 − ε

2

1
0 3

8 − ε
2

1
8 + ε

2
1
8 + ε

2
3
8 − ε

2

1 1
8 + ε

2
3
8 − ε

2
3
8 − ε

2
1
8 + ε

2

. (J2)
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FIG. 8. Plot of several nonsignaling secrecy quantifiers M̂(A : B||E ), as an upper bound on secure key rate K (iid)
DI , for the bipartite binary

input output device PHRW given in Eq. (J2) (also in Ref. [17]). The parameters chosen for drawing these figures are provided in Table II. The
dashed red line corresponds to the nonsignaling squashed mutual information Î(A : B)PHRW . The blue dashed-dotted straight line represents the
nonlocality cost, as well as the nonsignaling squashed conditional mutual information Î(A : B|E )E (PHRW ) over the complete extension E (PHRW )
of the given device P. The solid orange line represents the upper bound on the nonsignaling squashed nonlocality Nsq which is in fact the lower
convex hull of the several other upper bounds on Nsq. The magenta dotted line is the key rate R(P|PHRW ) of the protocol design by Hänggi,
Renner, and Wolf [17].

It remains a valid nonsignaling probability distribution in
the parameter range 0 � δ � 1 and − 1

4 � ε � 3
4 . It exhibits

nonlocal correlation for a very small range of parameters,
quantified by the parameter ε, probability of not wining the
CHSH game [60], which is

ε = Pr(a ⊕ b �= x · y) = 1
4

(
3
4 + δ + 3ε

)
. (J3)

The device is nonlocal when the error ε ∈ [0, 1
4 ), and there

are multiple choices of δ and ε to attain this. Without loss
of generality, we choose 0 � δ � 1 and − 1

4 � ε � 1
12 − δ

3 .

TABLE II. Table of the different values of the parameters δ and
ε, for the sub-figures as given in Fig. 8. δ and ε are the parameters of
bipartite nonsignaling device PHRW given in Eq. (J2).

Figure δ ε

(a) 0.01 1
16 (3.04 + 12ε)

(b) 0.03 1
16 (3.12 + 12ε)

(c) 2
5 ε 6

5 ε − 1
4

(d) ε ε − 1
4

The nonlocality fraction of these devices in the above range
of parameters is C(P) = 1

4 − δ − 3ε.
The polytope of PHRW, bipartite binary input-output de-

vices, consists of 24 extremal devices [95], among which 16
are local or deterministic devices, and the remaining 8 are
nonlocal. The local devices are given by

Lαβγσ (ab|xy) =
{

1 if a = αx ⊕ β, b = γ y ⊕ σ ,

0 otherwise,
(J4)

where α, β, γ , σ ∈ {0, 1}. And the nonlocal devices are

Brst (ab|xy) =
{

1/2 if a ⊕ b = xy ⊕ rx ⊕ sy ⊕ t,

0 otherwise,
(J5)

where r, s, t ∈ {0, 1}.
In Fig. 8, we plot several nonsignaling squashed secrecy

quantifiers and monotones M̂(A : B||E ) for different choices
of the parameters δ and ε, with respect to the ε, which forms
the upper bound on K (iid)

DI . Different plots correspond to dif-
ferent choices of the parameters ε and δ, as given in Table II.
The last row of Table II, give rise to the isotropic device, i.e.,
Piso = (1 − ε)PR + εPR, described in the main text.
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In all the four figures, the red dashed line represents the
squashed mutual information Î(A : B)P between Alice and
Bob. The optimal choices of the measurements by Alice
and Bob in the squashing process varies with δ and ε. For
Figs. 8(a) and 8(b), the optimum direct measurement choice is
(x = 0, y = 0) for δ < ε, and any one of the other three input
choices for δ � ε. The measurement choice (x = 0, y = 0) is
optimal in the entire range of ε for Fig. 8(c), and all measure-
ments choices give the same mutual information for the choice
of δ and ε in Fig. 8(d).

The nonlocality cost NC (PHRW) is plotted with the dashed-
dot blue line in all the figures.

Figure 8(d) clearly shows that our measure, nonsignal-
ing squashed nonlocality Nsq is not a faithful measure
of nonlocality. The orange curve is the upper bound on
Nsq, and we have found that the bound reaches to 0 for
ε = 0.2 (it remains equal 0 for ε ∈ (0.2, 0.25] due to the
convexity of the measure). It strongly suggests that there
exists nonlocality which can not be turned into security.
Indeed, for these devices, no protocol of distribution is
known. Using wirings that is necessary for the key to be
nonzero, imply that we enter to some extent the general
scenario of KDI for which there is a wide class of attacks
[26]. Since our scenario is restricted, we can not postulate

nonequivalence between nonlocality and secrecy in NSDI
paradigm.

a. Method to obtain the upper bound on Nsq

The nonsignaling squashed nonlocality defined in
Eq. (J1), is the optimal conditional mutual information
I(A : B|E ′)E (PHRW ), between Alice and Bob, when Eve holds
the complete extension of the device PHRW. It involves
a maximization over the measurement (input) choices of
Alice and Bob. In our cryptographic protocol, we assume
that Eve will perform an adaptive choice of measurements
after learning Alice and Bob’s measurements, followed by a
post-processing channel. We also observed that an arbitrary
adaptive measurement by Eve, direct or general, with any
post-processing channel, provides an upper bound on Nsq,
which remains convex over ε, in the entire range of ε.

We calculate the CE [56] of PHRW numerically in the entire
range of δ and ε, where the device is nonlocal. The most
tighter upper bound we have obtained numerically, involve a
direct measurement by Eve. This direct measurement is no
doubt is a function of Alice and Bob’s input choice, which
is intended to reduce the correlation shared by them. This
measurement on Eve’s system creates the following minimal
ensembles in part of Alice and Bob,

v =
[

1

4
− δ − 3ε,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,

1 + 4ε

8
,
δ

2
,
δ

2

]
, (J6)

Ez0 = [B000, L0000, L0010, L0101, L0111, L1000, L1101, L1011, L1110]. (J7)

The same measurement leads us to the nonsignaling squashed conditional mutual information Î(A : B|E )E (P) for all input choices
of Alice and Bob, which we have plotted by the dashed-dotted blue line in all the figures of Fig. 8. We have obtained that
nonlocality cost of the shared device is NC (PHRW) = Î(A : B|E )E (P).

The classical discrete post-processing channel 	E ′|E , that we have obtained is different for different input choice of Alice and
Bob. And they are

	0,0
E ′|E =

Device B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 1 0 0

, (J8)

	0,1
E ′|E =

Box B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1

, (J9)
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	1,0
E ′|E =

Device B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1

, (J10)

	1,1
E ′|E =

Device B000 L0000 L0010 L0101 L0111 L1000 L1101 L1011 L1110

e′ e 0 1 2 3 4 5 6 7 8

0 1 1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1

. (J11)

Hence, the upper bound on the key, according to our numerical findings is

K (iid)
DI � Nsq(P) � LCH{̂I(A : B|E )E (PRH )(ABE |XY Z ), Î(A : B|E )Q(ABE|XYZ)}, (J12)

where Q(ABE |XY Z ) = 	X,Y
E |E ′ (E (PHRW)(ABE ′|XY Z )), an ar-

bitrary optimal extension, which is obtained from CE by
applying the above post-processing channel.

The plot of the r.h.s. of the above inequality is given by
the solid orange curve in Fig. 8. The color shade is used
to separate the two regions, where the optimal measurement
choices of the honest parties are coming from two different
inputs. The light blue shade in Figs. 8(a) and 8(b) represents
the choices of optimal inputs to be (x = 0, y = 0), whereas
the dark blue shade is for the other choices of input (all of
them give rise to the same value). In Fig. 8(c), the optimal
input by the honest parties is (x = 0, y = 0), and in Fig. 8(d)
all the other set of inputs are equally likely, and the color shed
has been chosen to light blue.

We compare our upper bound with the key rate R(P|PHRW ),
generated by Hänggi, Renner, and Wolf [17], which is the
magenta dotted line in all the figures in Fig. 8. It lies below
the solid orange line, as it represents the NSDI key rate for a
particular protocol, and we provide the upper bound over all
possible protocols.

Moreover, if we compare the bounds among the sub-
figures of Fig. 8, we observe that for a fixed ε, the bound is
almost decreasing if one goes from Fig. 8(a) to 8(d). This is
because in Fig. 8(a), the choices of the parameters δ and ε are
such that the probability of not winning the CHSH game is
smaller for one choice of the input compared to the other input
choices of the honest parties. In Fig. 8(d), all the distribution
has the same error ε, depicting the lowest bound, i.e., all the
inputs give rise to the same error, which leads to no specific
choice of inputs.

The nonfaithfulness of our measure is visible from
Fig. 8(d). We have found that the bound reaches to 0 for
ε = 0.2 (it remains equal 0 for ε ∈ (0.2, 0.25] due to the
convexity of the measure). It strongly suggests that there exists
nonlocality which can not be turned into security. Indeed, for
these devices, no protocol of distribution is known. Using
wirings that is necessary for the key to be nonzero, imply that
we enter to some extent the general scenario of KDI for which
there is a wide class of attacks [26].

2. Upper bound for the nonsignaling device used by Acín,
Massar, and Pironio

In this section, we will find an upper bound on the
nonsignaling squashed nonlocality, for a device, which
the honest parties Alice and Bob can obtain by perform-
ing quantum measurements on a shared bipartite quantum
state, given in Ref. [16]. The shared quantum state is the
Werner state ρAB = p|ψ+〉〈ψ+|AB + 1−p

4 IAB, where |ψ+〉AB =
1√
2
(|0〉A|0〉B + |1〉A|1〉A), and p ∈ [0, 1]. One of the honest

parties, Alice consider three possible measurement choices
x ∈ {0, 1, 2}, whereas Bob chooses only two possible mea-
surements y ∈ {0, 1}. Among those set of measurements when
both the measurement settings are x = 0 and y = 0, the
measurement bases coincides and only that choice of mea-
surement has been used for the key distribution run. The
other two measurements x ∈ {1, 2}, for Alice and two mea-
surements y ∈ {0, 1},for Bob, are for the test of nonlocal
correlation present in the system, i.e., for the violation of Bell
inequality, of the shared state.
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The shared probability distribution by both the parties, or the device obtained after the possible set of measurements is given
by

PAMP(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1+p

4
1−p

4
2+√

2p
8

2−√
2p

8
2+√

2p
8

2−√
2p

8

1 1−p
4

1+p
4

2−√
2p

8
2+√

2p
8

2−√
2p

8
2+√

2p
8

1
0 1

4
1
4

2+√
2p

8
2−√

2p
8

2−√
2p

8
2+√

2p
8

1 1
4

1
4

2−√
2p

8
2+√

2
8

2+√
2p

8
2−√

2p
8

. (J13)

In the entire range of p, the device is a valid probability distribution but it exhibit nonlocal correlation only for an small range
of p. To compute the range of p, where let us quantify the probability of not wining the CHSH game [60], by the parameter ε,
which is

ε(PAMP) = Pr(a ⊕ b �= (x − 1) · y)PAMP = 1
4 (2 −

√
2p). (J14)

Note that for PAMP, Alice will use her inputs x ∈ {1, 2} for the detection of nonlocality. Now the device is nonlocal when
0 � ε < 1

4 , hence the device may be useful for secure key agreement protocol in presence of nonsignalling Eve in the range of
1√
2

< p � 1.
To make a rough estimation on the upper bound of Nsq, of PAMP(ab|xy), we first focus on the squashed conditional mutual

information Î(A : B|E )E (PAMP ), where E (PAMP) is the complete extension of the given quantum device. In general, obtaining the
complete extension of a given box, in this new (3,2,2,2) polytope is an extremely difficult task and hence, we have found here
only one exemplary minimal ensemble which up to our numerical search is an optimal eavesdropping strategy, i.e., achieving
the minz [see Eqs. (6) and Appendix A for the definition of Î(A : B|E )E (PAMP )], for the chosen values of the measurement setup
by the honest parties for key sharing x = y = 0. The minimal ensemble is

v =
[

p√
2

− 1

2
,

p√
2

− 1

2
,

2 − √
2p

8
,

2 − √
2p

8
,
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8
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8
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4
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4
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8
,
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2)p

8

]
, (J15)

Ez0 = [B0, B1, L0, L1, L2, L3, L4, L5, L6, L7, L8, L9], (J16)

where B0 and B1 are the two nonlocal extremal devices and L0, . . . , L9 are the local deterministic devices (extremal), in the
polytope of the devices where PAMP) lies, and they are given by [96]

B0(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1

2 0 1
2 0 1

2 0

1 0 1
2 0 1

2 0 1
2

1
0 1

2 0 1
2 0 0 1

2

1 0 1
2 0 1

2
1
2 0

, B1(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1

2 0 1
2 0 1

2 0

1 0 1
2 0 1

2 0 1
2

1
0 0 1

2
1
2 0 0 1

2

1 1
2 0 0 1

2
1
2 0

; (J17)

L0 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 1 0 1 0

1 0 0 0 0 0 0

1
0 1 0 1 0 1 0

1 0 0 0 0 0 0

, L1 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 1 0 0 1

1 0 0 0 0 0 0

1
0 1 0 1 0 0 1

1 0 0 0 0 0 0

,
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L2 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 0 1 0 1

1
0 0 0 0 0 0 0

1 0 1 0 1 0 1

, (J18)

L3 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 0 1 0 1

1
0 0 1 0 1 0 1

1 0 0 0 0 0 0

, L4 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 1 0 0 1

1
0 0 1 1 0 0 1

1 0 0 0 0 0 0

,

L5 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 0 1 1 0

1 0 0 0 0 0 0

1
0 0 0 0 0 0 0

1 1 0 0 1 1 0

, (J19)

L6 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 1 0 0 1 1 0

1
0 0 0 0 0 0 0

1 1 0 0 1 1 0

, L7 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 1 1 0 1 0

1 0 0 0 0 0 0

1
0 0 0 0 0 0 0

1 0 1 1 0 1 0

,

L8 =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 1 0 1 0 1 0

1 0 0 0 0 0 0

1
0 0 0 0 0 0 0

1 1 0 1 0 1 0

, (J20)

L9(ab|xy) =

x 0 1 2

y b
a 0 1 0 1 0 1

0
0 0 0 0 0 0 0

1 0 1 0 1 1 0

1
0 0 0 0 0 0 0

1 0 1 0 1 1 0

. (J21)

For the given decomposition of the device PAMP(ab|xy), the squashed conditional mutual information reduces to Î(A :
B|E )E (PAMP ) = √

2p − 1, which is equal to the nonlocality cost of the shared device i.e., NC (PAMP). It reaches to
√

2 − 1, for
p = 1, i.e., when the Bell state is shared.

To obtained the upper bound on Nsq(PAMP), we will again apply some post-processing channel 	E |E ′ , on the output of Eve
E , and apply the procedure of getting the lower convex hull, by the relation

Nsq(PAMP) � LCH
{̂
I(A : B|E )E (PAMP )(ABE |XY Z ), Î(A : B|E )QAMP (ABE |XY Z )

}
, (J22)
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FIG. 9. Plot of nontrivial upper bound on the nonsignaling squashed nonlocality Nsq, of PAMP(ab|xy) given in Eq. (J13), by the blue shaded
region under the orange solid line and a red dashed line. The red dashed line is the (segment of) lower convex hull of the orange solid curve and
the purple long-dashed straight line. The solid orange line is obtained by the lower convex hull of several upper bounds of Nsq, with the help
of Eq. (339). Blue dashed-dotted line is the squashed conditional mutual information Î(A : B|E )E (PAMP ). The magenta dotted line is the lower
bound on the key rate, whereas the purple long-dashed line is the upper bound on intrinsic information of the eavesdropping strategy used in
Ref. [16]. We observe that the convexification technique resulting in the convex-hull bound allows to obtain tighter upper bound on Nsq, and
therefore the tightest known upper bound on the secret-key rate in the nonsignaling scenario.

where QAMP(ABE |XY Z ) = 	E |E ′ (E (PAMP)(ABE ′|XY Z )) is an arbitrary extension of PAMP, upon applying the post-processing
channel 	E |E ′ , given by

	E |E ′ =

Device B0 B1 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

e
e′

0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 0 0 0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 0 0 0 1

. (J23)

Note that here we need only one post-processing channel, be-
cause in the squashing procedure unlike Appendix J 1, Eve’s
know which outcomes of Alice and Bob are used for the key
generation run.

The upper bound on Nsq(PAMP), i.e., the right-hand side of
(339), has been plotted in Fig. 9, by the orange line, which
vanishes for p ≈ 0.783, and from the procedure of lower

convex hull we will consider it 0, for all p < 0.783. The
magenta dotted line is the lower bound on the key rate of
Ref. [16], whereas the violate dashed line is the upper bound
on the intrinsic information I (A : B ↓ E ), of Ref. [16], for
a particular eavesdropping strategy. We have found that our
bound on Nsq is better than the bound on I (A : B ↓ E ), by
[16], for p > 0.853.
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Deriving quantum mechanics from information-theoretic postulates is a recent research
direction taken, in part, with the view of finding a beyond-quantum theory; once the
postulates are clear, we can consider modifications to them. A key postulate is the
purification postulate, which we propose to replace by a more generally applicable postulate
that we call the complete extension postulate (CEP), i.e., the existence of an extension of a
physical system from which one can generate any other extension. This new concept leads
to a plethora of open questions and research directions in the study of general theories
satisfying the CEP (which may include a theory that hyper-decoheres to quantum theory).
For example, we show that the CEP implies the impossibility of bit-commitment. This
is exemplified by a case study of the theory of non-signalling behaviors which we show
satisfies the CEP. We moreover show that in certain cases the complete extension will not
be pure, highlighting the key divergence from the purification postulate.
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1 Introduction
Quantum mechanics appears to be one of the best validated physical theories and, at the same time,
lacking a single agreed-on interpretation [1]. It can be expressed via several mathematical axioms [2–4]
and leads to numerous phenomena, which have been confirmed experimentally, and now form the basis
for many of our everyday technologies. However, it cannot explain some of the visible (or detectable)
parts of the universe – the key example being the realm of the theory of gravity. For this reason,
an important scientific effort is underway to find a beyond-quantum theory which would explain
phenomena beyond quantum theory [5–10]. However, it is not clear which axiom of quantum mechanics
should be replaced or modified in order to keep the theory as expressive as quantum mechanics whilst
explaining phenomena, such as gravity, which seem to be beyond quantum theory.

It is known that the standard axioms of quantum mechanics are not independent from one
another [11–13], i.e., they can be used to derive one another. It is therefore difficult to modify
the standard postulates of quantum theory as they cannot be independently modified. In order to
examine modifications of quantum theory, it is therefore useful to first re-express quantum mechanics
in the form of a new set of postulates which can be independently modified. Recently, there has
been a great deal of interest in such reformulations, particularly, via information theoretic postulates
within the framework of so-called Generalised Probabilistic Theories (GPTs). This idea led to quite
a number of reformulations of quantum theory [8, 14–27] in which sets of axioms are proposed which
single out quantum mechanics from the space of all GPTs.

One of the key insights in the reconstruction programme came from [28] which introduced the
purification postulate. This was an essential postulate, in that it was the sole postulate that distinguished
quantum from classical theory. Since it’s introduction the purification postulate has been used
extensively in the literature to prove many results, for example, pertaining to computation [29–31],
cryptography [32, 33], thermodynamics [34, 35], and interference [36]. Essentially the purification
postulate is a generalisation of the notion of purification within quantum theory to arbitrary GPTs:

Quantum Purifications In quantum theory, for any state ρA there exists a system B and a
bipartite pure state |ψ〉AB, which satisfies trB(|ψ〉〈ψ|) = ρA. The bipartite state |ψ〉AB is known
as a purification of ρA, and these are essentially unique, in that there is always an isometry
mapping between any pair of purifications.

2



We formally introduce purifications in Sec. 2 and the formalism of GPTs necessary to talk about it
in Sec. 1.1. At this point, however, let us observe that there are various issues with the purification
postulate that may lead one to believe that it will have to be modified in order to find a more
fundamental theory of nature.

1. There is a no-go theorem proven in Ref. [37] which shows that if one believes that a more
fundamental theory should be causal, and should reduce to quantum theory by a decoherence-
like mechanism, then one must give up on the purification postulate.

2. We prove a theorem in Sec. 2.1 which shows that the purification postulate must fail in any
discrete theory, whilst in Refs. [38–40] ideas coming from quantum gravity are used to argue
that on a fundamental level the quantum state space will become discrete.

3. The purification postulate also fails to hold in super-selected quantum systems [24, 27, 41], and
so if we believe in any fundamental superselection rules then the postulate must be modified in
some way.

4. There are also questions about whether the purification postulate is suitable in a theory which
permits indefinite causal structure [42–45], as it is shown in Ref. [46] that a purification-like
postulate fails to hold for all quantum process matrices. That a theory should permit indefinite
causal structure can again be motivated by ideas coming from quantum gravity.

For all of these reasons one can then ask if the purification postulate can be weakened or replaced by
another postulate, resulting in a physical theory with more explanatory power. In this manuscript,
we propose such a replacement for the purification postulate called the Complete Extension Postulate
(CEP) and study its consequences in various contexts.

In order to understand the complete extension postulate we begin by observing that, within
quantum mechanics, purifications are examples of complete extensions [47, Exercise 2.8.2].

Quantum Complete Extensions A complete extension for a state ρA in quantum theory,
is an extension σ∗AB of ρA, that is is satisfies trB(σ∗AB) = ρA, where, moreover, any other
extension σ can be reached via local operations on B, and any ensemble for ρA can be reached
via a measurement on B.

It can be straightforwardly seen that, within quantum theory, all quantum purifications are quantum
complete extensions but not vice versa. It is precisely these complete extensions which we generalise
to GPTs in order to define the complete extension postulate in Sec. 3. As this is a weaker notion
within quantum theory it is therefore plausible that the associated postulate will apply more broadly
and avoid some of the aforementioned issues with the purification postulate. Indeed, we show that
this is the case for the first three issues raised above:

1. In Sec. 3.2 we show the proof of the no-go theorem for hyperdecoherence provided in [37] no
longer holds if we use the complete extension postulate.

2. We show that the complete extension postulate can hold in discrete theories, in particular, in
Sec. 4 we demonstrate this for the widely studied theory of non-signalling behaviours [5, 48, 49]
colloquially known as boxworld.

3. In Sec. 3 we show that the complete extension postulate holds in super-selected quantum systems
and within classical systems.

This may therefore lead one to wonder whether perhaps the complete extension postulate is too
weak and does not have any meaningful consequences. We show that this is not the case. In particular,
we show that there are theories which have been studied in the literature, such as those found in [50],
which fail to satisfy the CEP. This means that it is not a trivial postulate and does offer explanatory
power. Indeed, there are two key reasons that a given GPT may fail to satisfy the CEP. On the one
hand, it may not have sufficient bipartite states, in which case it would not admit of an extension which
enables access of all ensembles, on the other hand, it may not have sufficient dynamics as would be
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the case for highly asymmetric state spaces, in which case even if there is an extension which enables
access it may not be generating. Moreover, in Sec. 3.1 We show that any theory which satisfies the
CEP cannot allow for the crytographic primitive of bit-commitment, and, moreover, following the
techniques of [33], we find a non-trivial lower bound on the success probability for any protocol. As an
added benefit, this unifies the proof of impossibility of bit-commitment for the quantum and classical
cases which previously were treated separately.

We also study the complete extensions within the theory of non-signalling behaviours in some
depth in Sec. 4 and in App. B. In particular, we show how a complete extension can be constructed
within this theory, and that the dimensions of these complete extensions are always finite. In this
way, we show that CEP is not an empty postulate in general theories, as the complete extensions can
actually be constructed. Furthermore, we characterise the minimal ensembles of the non-local isotropic
behaviours, which was already proved useful in the context of the non-signalling device independent
secure key agreement [51].

The introduction of a new postulate opens up many doors for future exploration. We touch on
just a few of them in this paper and point out many others as future research directions as we go. In
particular, we collect together many of these in Sec. 5.

1.1 Generalised probabilistic theories
The purification postulate and complete extension postulate that we introduce are expressed in the
language of generalised probabilistic theories (GPTs), hence, in order to understand these we first
provide a brief introduction to this formalism. For a more in-depth introduction see, for example,
Refs. [52–54]

The formalism of GPTs [8,48] is a formalism for describing the operational predictions of essentially
arbitrary conceivable theories of physics. In the case of quantum theory, this operational description
is isomorphic to the standard quantum informatic approach to quantum theory (that is, of completely
positive trace preserving maps, density matrices, and positive operator value measures).

The primitive building blocks of any GPT, G are the systems, denoted A,B, ... ∈ Syst[G], these
come equipped with an associative binary composition rule ⊗ : Syst[G]×Syst[G]→ Syst[G] which allow
us to build composite systems out of simpler system. In quantum theory these systems can be labeled
by natural numbers, i.e., by their dimension, and then these labels compose simply by multiplication,
as the dimension of a tensor product of two Hilbert spaces is the product of the individual dimensions.

Each system A corresponds to a finite dimensional real vector space VA. The fact that it is finite
can either be viewed as simply a choice for technical convenience, or can be motivated operationally as
the idea that in practice we can only ever perform a finite number of measurements to do tomography
on a system (even if in principle there are an infinite number of degrees of freedom). In quantum theory
these real vector spaces are the spaces of Hermitian operators on some finite dimensional Hilbert space,
whilst in classical theory these real vector spaces are the function spaces RΛ for some finite sample
space Λ. It is important to note at this point that VA⊗B is not necessarily equal to VA ⊗ VB. These
are equal only under the assumption of tomographic locality [8] – that every multipartite state can
be characterised by means of local measurements on its parts. Note that both quantum and classical
theory are tomographically local theories.

Within these vector spaces VA there is a specified convex set ΩA ⊂ VA which describes the state
space for the system. This convex set must be compact and closed, and, moreover, must have an
affine dimension one less than the linear dimension of the vector space such that the affine span of
ΩA does not intersect the origin. We can also define the convex state cone KA which includes also
subnormalised and supernormalised states as KA := {rs|r ∈ R+, s ∈ ΩA}. In quantum theory this
state space corresponds to the space of density matrices and the state cone to positive semidefinite
operators.

Within the dual vector space V ∗A – that is, the vector space of linear functionals on VA – there is
also a specified convex set EA ⊂ V ∗A which describes the effect space for the system. This convex set
must also be compact and closed, however, it will be full dimensional and contain the origin. The
effects e ∈ EA assign probabilities to measurement outcomes when the measurement is performed on
an arbitrary state in ΩA, they therefore must satisfy e(ΩA) ⊆ [0, 1]. The effect space EA must also
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contain the unique unit effect uA ∈ EA which is defined as uA(ΩA) = {1}. The uniqueness of this
effect is built into the setup of our framework, however, there are modifications to the framework in
which this is instead an additional principle which captures the notion of causality [15]. In quantum
theory this effect space corresponds to tr(σ·) where σ is a POVM element and the unit corresponds
to σ = 1.

Like the systems themselves, these state and effect spaces have an associative composition rule,
ΩA ⊗ΩB := ΩA⊗B, EA ⊗ EB := EA⊗B and uA ⊗ uB := uA⊗B. Note that in general ⊗ is not related to
the tensor product of vector spaces, the symbol is used in analogy to the role of the tensor product in
composing quantum systems. This composition must be bilinear, and satisfy e ⊗ f(s ⊗ t) = e(s)f(t)
for all e ∈ EA, f ∈ EB, s ∈ ΩA and t ∈ ΩB. These conditions, in particular, ensure that the unit effect
uB gives a way to uniquely define a kind of “partial trace” and hence marginal states – this in turn
ensures that the theory does not permit signalling without sending a physical system [15,55,56].

Next we consider transformations between systems. For a pair of systems A and B there is a space
of transformations T BA from system A to system B. These again form a closed compact and convex
set. In this case, there are two relevant associative composition rules. The first, parallel composition,
T BA ⊗T DC := T B⊗DA⊗C and the second, sequential composition, T CB ◦ T BA := T CA . These are both bilinear
and must satisfy the condition that (T1 ⊗ T2) ◦ (T3 ⊗ T4) = (T1 ◦ T3) ⊗ (T2 ◦ T4). Note that states
(and effects) can be viewed as particular kinds of transformations, namely those that have a trivial
input (resp. output) system. Denoting this trivial system by ? and noting that ? is a unit of system
composition (A ⊗ ? = A = ? ⊗ A) we can therefore write that ΩA = T A? and EA = T ?A . Note that
for every system, A, there is an identity transformation 1A which for every T : A → B must satisfy
1B ◦T = T = T ◦1A. One can then observe that what we are defining here is nothing but a monoidal
category where the objects are the GPT systems and the morphisms are the GPT transformations.

It is convenient to work with the convention whereby every GPT contains classical systems, denoted
∆I , in which measurement outcomes can be encoded, and which can act as control variables in
descriptions of experiments. See, for example, [24, 57]. In particular, a demolition measurement of
system A with outcome set I can then be viewed as a transformation in the set T ∆I

A
1. In order to see

the connection between this and the description of measurements in terms of effects, we first set up
some notation for describing classical systems.

Consider a classical system ∆I which is a system corresponding to, for example, some outcome
degree of freedom on some measurement device where I labels the set of possible outcomes. The
vector space V∆I

will correspond to the real vector space of real functions from I → R, denoted RI .
The state space Ω∆I

is the space of probability distributions over I, that is, real functions p : I → R

such that p(i) ∈ [0, 1] and
∑
i p(i) = 1 for all i ∈ I. Note that geometrically this is a simplex with

vertices labelled by the elements of I. These vertices correspond to delta function distributions which
we denote as δi. The effect space E∆I

lives in the dual vector space, however, here we make use of
the Riesz representation theorem via the inner product

∑
i∈I f(i)g(i) in order to view the effects as

living in RI . Using this representation then the effects correspond to functions e : I → R such that
e(i) ∈ [0, 1]. Geometrically these form a hypercube which contains the simplex of states. The vertices
of the simplex, when interpreted as effects via the Riesz representation will be denoted as εi such
that εi(δj) =

∑
k∈I δi(k)δj(k) = δij . These systems compose via ∆I ⊗∆J := ∆I×J . Transformations

between classical systems correspond to stochastic linear maps.
Now, note an important property of classical theory, that identity transformations 1∆I

can be
decomposed as

∑
i∈I δi ◦ εi. Hence, any measurement M : A → ∆I satisfies M = 1∆I

◦ M =∑
i∈I δi ◦ εi ◦M then, noting that ei := εi ◦M ∈ T ?A = EA we can rewrite this as

∑
i∈I δi ◦ ei. One

can then, recalling that εi(δj) = δij , see that it is possible to construct an isomorphism between
measurements as transformations to a classical system and measurements as a collection of effects.

1Nondemolition measurements would live in the space T A⊗∆I
A
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2 The purification postulate
The purification postulate [15] has been widely studied within the literature on generalised probabilistic
theories, from the study of thermodynamics [34, 35], cryptography [32, 33], and computation [29–31]
through to higher-order interference [36] and reconstructions of quantum theory [28]. One of the
reasons for the wide use of this principle is the fact that it is mathematically very powerful. For
instance, one immediate corollary is that the state space is transitive [15] and there is a continuum of
pure states (see Theorem 7 below).

Despite the utility of the purification postulate, as we discussed in Sec. 1, there are several
criticisms which can be made of it. This motivates the search for alternative postulates such as
the complete extension postulate that we propose here. Nonetheless, the purification postulate served
as the inspiration behind the complete extension so it is useful to introduce it in some detail here.

The purification postulate takes the key ideas behind quantum purification and recasts them in
the language of GPTs such that it can be taken as a postulate. We will slowly build up the relevant
GPT concepts here before presenting the postulate itself.

Definition 1 (Pure states). A state s of a system A is said to be pure if and only if it is extremal in
ΩA.

In the case of quantum theory this coincides with the usual notion of purity, namely that of rank-1
density matrices. More generally, pure states are thought of as states of maximal knowledge whilst
mixed states can be thought of as describing classical uncertainty of knowledge about which pure state
has been prepared.

We can then define the notion of a purification of a given state:

Definition 2 (Purifications of a state). A purification of a state ωA of system A is a non-signalling
extension to system B. That is, a state εAB of the composite system A⊗B, satisfying

(a) [1A ⊗ uB](εAB) = ωA.

(b) εAB is a pure state.

If s is pure by itself, we assume that it is one of its own purifications, by taking B system to be trivial.
We denote the set of purifications of a given state ωA as Purif [ωA].

According to Definition 2, a state may possess more than one state that purifies it. That is,
Purif [s] typically is not a singleton set. In quantum mechanics, for example |ψAB〉 and |ψAB〉⊗ |φB′〉
purify the same state, i.e., trB(|ψAB〉〈ψAB|). In quantum mechanics, however, purifications are unique
up to isometries on the purifying system. This motivates the following:

Definition 3 (Essential uniqueness of purifications). The purifications of a given state s are said to
be essentially unique, if and only if the elements in Purif [ωA] with the same purifying system can be
related by reversible transformations on the purifying systems.

With these ideas in place we are then in the position that we can succinctly define the purification
postulate:

Definition 4 (Purification Postulate). A GPT G satisfies the Purification Postulate if and only if
for all systems A and all states ωA ∈ ΩA, there exists purifications (Def. 2) which are essentially
unique (Def. 3).

2.1 No-go theorem for purification in discrete theories
In this subsection, we will prove that there cannot exist purifications of arbitrary states in any discrete
theory. Later on, we will see that this implies that in such theories the complete extensions that we
have introduced will generically not be pure. This fact has been proven in case of classical theory and
for the theory of non-signalling behaviours in [15, 28]. We show below a different, direct argument,
which holds in general for all non-signalling, convex discrete theories. In fact, the result developed
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here is valid in any convex, non-signalling theory, provided that in each dimension number of different
systems’ types (state spaces with distinct shapes) is countable. We show that there is no single finite
dimensional discrete theory [58–60], which vertices can purify all the states from a theory of a smaller
dimension. We recall below the formal definition of a discrete theory:

Definition 5 (Discrete theory). A GPT G is said to be discrete, if and only if, for each system
T ∈ Syst[G] there is a discrete number of pure states, that is, where each state space, ΩT , is a polytope.

The demand for the theory to be convex presumes that the state space lives inside a vector space,
the dimension of which is also the dimension of a theory. These assumptions together with the
non-signalling condition allow for the well-definiteness of the partial trace as a linear map TrB (·) :
ΩA ⊗ ΩB ≡ ΩA⊗B 7→ ΩA

2, which for normalized states (in a sense of probabilistic outcomes) ρA, σB
satisfies TrB (ρA ⊗ σB) = (1A ⊗ uB)(ρA ⊗ σB) = ρA, where uB is the unit effect on the system B.

Lemma 6. In any convex (nontrivial) theory, the cardinality of the set of states is at least of power
of the continuum c.

Proof. Let us take ωA 6= ω′A in ΩA. Since the theory is convex, any state of the form pωA + (1− p)ω′A,
for p ∈ [0, 1] is still a state in ΩA. The set of states {pωA + (1− p)ω′A}

p=1
p=0, forms an interval in ΩA.

Since there is a bijection between any interval and the set of real numbers that has cardinality of
continuum, the state space has at least cardinality of continuum.

We are ready to state the main theorem of this section now.

Theorem 7. In any discrete theory (Def. 5) there are no (non-trivial) systems that have purifications
for all states. Hence, theories with purifications (Def. 4) cannot be discrete.

Proof. As the theory is a discrete theory, any system, T within the theory contains only finite number
of v, vertices, and so the vertices can only purify a finite number of states f (as each pure state purifies
a single mixed state). On the other hand according to Lemma 6, for all (nontrivial) systems, T ′, in
the theory, the cardinality of the set of states is at least c. So according to set-theoretic fact [63]
f < ℵ0 < c, in the system T there are not enough vertices to purify all states from the system T ′. As
it is true for all systems T in the theory, there exist no discrete theory, that can purify all states.

Note that the proof of theorem 7 does not strictly rely on convexity, but just that the cardinality
of the state space is greater than ℵ0. One could therefore replace the assumption of convexity simply
with the assumption that the number of mixed states in a considered discrete theory is greater than
ℵ0.

As a consequence of Theorem 7, we have the following Proposition. Note that this result does not
rely on the essential uniqueness of purifications, only their existence.

Proposition 8. For any theory (with a countable number of system types) where purifications exist
for all mixed states, there must be at least one system with a continuum of pure states.

Proof. In any non-trivial theory there are state spaces which correspond to convex sets other than the
singleton set. Such convex sets necessarily contain a continuum of mixed states, i.e., a continuum of
non-extremal states. If purifications exist then each of these mixed states must purify to a distinct
pure state in the theory (as marginalisation is described by a mapping from the bipartite states to the
local states).

Now suppose, for the sake of contradiction, that there is a countable number of system types, that
the state spaces of these systems live in finite dimensional vector spaces (as per the definition of a
GPT) , and, that these state spaces all have a discrete number of vertices (i.e., pure states). Then,
the theory as a whole has a countable number of pure states, and hence there are not enough pure
states to purify the continuum of mixed states – in contradiction to our initial assumption.

If we want to hold on to the countable number of system types, the finite dimensional vector
spaces, and the existence of purifications, it must therefore be the case that there exists a system with
a continuum of pure states.

2The theory of composition in GPTs was developed in various places, for example, Refs. [15, 61,62].
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3 The complete extension postulate
The idea of the complete extension is that it should be taken as a competitor to the purification
postulate and is, prima facie, a mathematically weaker postulate. Indeed, one cannot derive either
transitivity of the state space or the necessity for a continuum of pure states from this postulate
whereas these are consequences of the purification postulate. Consequently, the complete extension
postulate has the potential to be much more broadly applicable in scope and, hence, any results which
can be derived using this postulate will hold in a broader class of theories than those derived using
the purification postulate.

In this section we will formalise the definition of the complete extension postulate in the language
of GPTs introduced in Sec. 2. We will work towards this by first defining ensembles, extensions and
the principles of access and generation within this language.

To begin, suppose we have some state, s, a vector in the convex set of states ΩA of a GPT system
A. An ensemble for s, is some set of pairs {(pi, si)}i∈I such that si ∈ ΩA and {pi} define a probability
distribution (pi ∈ R, pi ≥ 0, and

∑
i pi = 1), satisfying:

s =
∑
i∈I

pisi (1)

in other words, it is some convex decomposition of s within the state space. We will denote the set of
all possible ensembles for a state s as Ens[s].

The set of states which appear in some ensemble in Ens[s] is, will be, a face of the state space ΩA,
we denote this as Face[s]. A state is pure if and only if Face[s] = {s} and is said to be an interior
state if and only if Face[s] = ΩA.

We can then define a pure ensemble for s as an ensemble {(pi, si)}i∈I ∈ Ens[s] in which all of
the si are pure, that is, Face[si] = {si} ∀i ∈ I. Let us denote the set of such pure ensembles as
EnsP [s] ⊆ Ens[s], this is necessarily non-empty as we can always decompose a point inside a compact
and closed convex set in terms of the vertices of the convex set.

An extension of a state s ∈ ΩA of system A is a state σ ∈ ΩA⊗E of a bipartite system A ⊗ E for
which we have:

s = [1A ⊗ uE ](σ) (2)

we will denote the set of extensions, σ, of a state s as Ext[s], note that, in general, there will be
extensions with many different extending systems E. A purification, should it exist, is simply some
σ ∈ Ext[s] which is pure, that is, Purif [s] ⊆ Ext[s].

Now we can define what we mean for an extension to satisfy generation. An extension σ∗ ∈
Ext[s] with extending system E∗ is said to be generating if and only if for every σ ∈ Ext[s] with
arbitrary extending system E there is some transformation Tσ : E∗ → E such that:

1A ⊗ Tσ(σ∗) = σ (3)

Next we show an equivalence between the notion of an ensemble and a particular class of extensions.
This particular class of extensions are extensions in which the extending system, E, is taken to be a
classical system, ∆d for some d ∈ N. We will denote this class of extensions for a state s as Extclass[s]
and show that there is an isomorphism between Extclass[s] and Ens[s].

Proposition 9. The space of extensions with classical extending system is isomorphic to the space of
ensembles, i.e., Extclass[s] ∼= Ens[s]

Proof. Starting with an ensemble:
{(pi, si)}i∈I (4)

we can construct an extension: ∑
i∈I

pisi ⊗ δi ∈ ΩA ⊗∆I (5)

where δi ∈ Vert[∆I ].
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Whilst, on the other hand, if we start with an extension

σ ∈ ΩA ⊗∆J (6)

we can construct an ensemble:{(
uA ⊗ εj(σ) ,

1
uA ⊗ εj(σ)1A ⊗ εj(σ)

)}
j∈J

(7)

It is then simple to verify that these two constructions are the inverse of one another and hence
establishes an isomorphism between the two sets.

Using this isomorphism we can easily express the property of access in a way which makes it
manifestly a special case of generation. That is, an extension σ∗ ∈ Ext[s] with extending system
E∗ is an extension with access if and only if, for any ensemble σ ∈ Extclass[s] with extending system
∆I we can find a measurement Mσ : E∗ → ∆I such that:

1A ⊗Mσ(σ∗) = σ (8)

Then it is clear that:

Proposition 10. If an extension σ has the property of generation then it necessarily has the property
of access.

Proof. This immediately follows from inspection of the two definitions, and noting that Ens[s] ∼=
Extclass[s] ⊆ Ext[s].

The converse however will not always be true, that is, from access we cannot generally derive
generation.

Proposition 11. If an extension σ has the property of access then it does not necessarily have the
property of generation.

Proof. We prove this by providing an example of a GPT which has extensions which allow for access
but do not allow for generation.

Specifically, consider the GPT which has the same states and measurements as quantum theory.
Then, the static part of the purification postulate, namely the existence of purifications, is satisfied.
Hence, we have that any purification of a state allows us to access the ensembles of that state – that
is they have the property access.

On the other hand, let us assume that the set of possible dynamics is restricted relative to quantum
theory, such that transformations between non-trivial systems are necessarily noisy, that is, mixed with
some non-zero parameter ε of the totally depolarising channel. Then we fail the dynamical, “essential
uniqueness” part of the purification postulate and so these extensions will not have the property of
generation.

We are now in a position such that we can formally define the complete extension postulate within
the language of GPTs.

Definition 12 (Complete Extension Postulate). A GPT G satisfies the Complete Extension Postulate
(CEP) iff: for all systems A and all states s ∈ ΩA, there exists an extension σ∗ ∈ Ext[s] which is
generating, that is, which has the generation property.

With this definition in place, we can now compare this to the Purification Postulate [15], Def. 4.
The essential uniqueness property in the purification postulate is intuitively very closely related to the
generation property of the complete extension postulate. However, note an important subtlety –
essential uniqueness is a property for extensions on the same extending system, whilst generation is a
property for extensions on arbitrary extending systems. In order to derive generation from essential
uniqueness we must therefore invoke one additional, relatively innocuous looking, assumption about
the GPT. Specifically, that the parallel composition of pure states is necessarily pure.
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Proposition 13. For the set of GPTs in which the product of pure states is pure, the purification
postulate implies the complete extension postulate.

Proof. See App. A.1.

An immediate corollary of this is that quantum theory satisfies the CEP, as it is a GPT satisfying
the purification postulate and in which the product of pure states is pure. More specifically, in the
case of quantum theory, a purification |ψ〉 of a state ρ is a complete extension. In particular, it allows
for generation of arbitrary extensions and access of arbitrary ensembles.

It can also easily be shown that classical probability theory satisfies the CEP. That is, the complete
extension of a probability distribution with finite support over some set X has a complete extension
given by simply copying the variable X. See, for example, Ex. 3.4 in [64] for details. Specifically, a
general extension of a probability distribution p(x) is a simply a distribution q(x, y) which marginalises
to p(x), that is, such that

∑
y q(x, y) = p(x). It is then straightforward to verify that the bipartite

probability distribution pce(x, x′) := p(x)δ(x, x′) (obtained by copying x) is a complete extension, as
any other extension can be generated by applying a stochastic map to x′. This is in stark contrast to
the purification postulate, which does not hold in the case of classical theory. In this sense, CEP is a
far more natural postulate to consider; indeed, it can be thought of as salvaging the most intuitive part
of the purification postulate, which is common to both quantum and classical theory (even though the
full purification postulate does not hold in classical theory). We also show in Sec. 4, that the complete
extension postulate holds in the GPT of non-signalling boxes (colloquially known as Boxworld) which
is also known to fail the purification postulate.

Another proposal to modify the purification postulate was put forward in Ref. [24] which provides
a time-symmetric version of the purification postulate. It can be shown that this time-symmetric
purification postulate, together with another postulate from Ref. [24], namely, the existence of cups
& caps, suffices to derive the CEP. More specifically, if we take a time-symmetric purification of some
state and then turn the input via a cup, this defines a complete extension of the state. Since both
quantum and classical theory satisfy all of the postulates of Ref. [24], it therefore immediately follows
that they both have complete extensions. Moreover, superselected quantum systems also satsify the
time-symmetric purification postulate and have cups & caps, hence they also satisfy CEP.

We now consider two results which have been proven using the purification postulate, and consider
whether or not they can be reproven using the complete extension postulate instead.

3.1 Impossibility of bit-commitment
The task of bit-commitment is a two-party cryptographic task that can be used as a primitive in
building up other important cryptographic protocols such as coin-flipping [65] and zero-knowledge
proofs [66]. It is well known that bit-commitment and its generalisation to integer-commitment is
impossible in both quantum and classical theory [67,68]. However, this is not true in all GPTs, indeed
in [50] they show that any GPT which is non-classical but does not have entanglement allows for
bit-commitment. It is therefore interesting to study what are the features of quantum theory which
make this task impossible.

There have been various works on this subject including [15, Corollary 45] and [33]. The former
demonstrates the impossibility of bit-commitment under a set of physical postulates including the
purification postulate. The latter goes beyond a strict impossibility proof and provides an analytic
lower bound on the product of the two relevant cheating probabilities, again, however, relying on the
purification postulate in the process. In this section we will show that we can derive exactly the same
analytic lower bound but using the complete extension rather than the purification postulate.

Before getting to this result, however, let us first introduce the protocol. For honest parties this
task consists of two phases: i) the commit phase, in which Alice chooses an integer j ∈ {1, ..., n} via
a uniform random distribution and “commits” it to Bob by passing him a “token”. After doing so it
should be impossible for Alice to change the value j but it should also be impossible for Bob to learn
the value j. ii) the reveal phase, in which Alice communicates the integer j to Bob and sends him a
second token to verify the integer. Bob must be able to check that the integer that Alice revealed was
indeed the integer that she committed to in the first phase. Succinctly, for a protocol to be secure,
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it must be the case that Bob cannot learn anything about the integer j prior to the reveal phase and
that Alice cannot change j after the commit phase. The extent to which they can deviate from this
ideal is characterised by the cheating probabilities p∗B and p∗A, respectively.

More formally, the protocol can be described as follows: (i) In the commit phase, Alice chooses an
integer j ∈ {1, ..., n} via a uniform random distribution and creates a corresponding bipartite state
sj ∈ ΩA⊗B of the bipartite system A⊗B. This is her “commitment” to the integer j. She then sends
the system B to Bob to complete this phase. The idea behind this being that is now having access to
only one part of the state will prevent Alice from being able to change her commitment, whilst at the
same time, the fact that Bob only has access to one part of the state will prevent him from being able
to learn the integer value. (ii) In the reveal phase, Alice communicates the integer j to Bob and sends
him the system A, Bob applies a two-outcome measurement (ejaccept, e

j
reject) to the bipartite system

AB to check that it is in fact in state sj to verify that the integer that Alice reveals is indeed the
integer that she originally committed to.

The cheating probabilities can then be described as follows. p∗B is the maximum probability with
which Bob can learn the value j prior to the reveal phase, that is, by performing some measurement
on the reduced states on system B alone. In the case of quantum theory, this can be computed as a
semi-definite program, whilst, as shown in [33], in the case of generic GPTs, they are computed via
cone programs (a natural generalisation of SDPs). p∗A is the maximum probability with which Alice
can reveal an integer other than the value j that she committed to in the commit phase. There are
many ways in which Alice can attempt to cheat but in order to find a lower bound on p∗A we focus on
the following particular cheating strategy: she applies some transformation to her part of the shared
state between the two phases of the task thereby transforming sj into some other state s′j′ . Alice’s
success probability with this strategy is then the probability which Bob’s measurement (ej

′

accept, e
j′

reject)
will give the accept outcome on state s′j′ . A perfect protocol would be one such that p∗B = p∗A = 0, that
is, in which there is no probability that Bob can learn anything about j prior to the reveal phase, and
there is no probability that Alice can influence the value after the commit phase. In the case that the
GPT satisfies the complete extension postulate and an additional assumption called the no-restriction
hypothesis [15], then it can be shown that such a perfect protocol is impossible. The following theorem
encapsulates the result:

Theorem 14. In any GPT satisfying the complete extension postulate and the no-restriction hypothesis
[15], and in any integer-commitment protocol within that GPT, Alice and Bob’s cheating probabilities
satisfy

p∗A · p∗B ≥
α

n
>

1
2n (9)

Proof. (Adapted from [33]). The proof is identical up to the paragraph containing eq. 14. At which
point we must rewrite the proof as follows:

Since ρj is the marginal of sj , we call sj a extension let tj be an extension of rj . Then

χj := 1
uB[x] · n(sj + tj) ∈ KA⊗B (10)

is an extension of x′ for each j.
Now, consider a complete extension of x′, denoted χ̃ ∈ KB⊗E∗ . Then, the generation property

implies that, for each j there exists Tj : E∗ → A such that 1A ⊗ Tj(χ̃) = χj .
We now have the following cheating strategy for Alice: Alice prepares the state χ̃ and passes

system B to Bob keeping hold of the system E∗. Then to reveal j, she ‘steers’ the state χ̃ to χj using
Tj before sending j and the system A to Bob.

The remainder of the proof is identical relying on the use of the tool from convex-optimisation
known as cone programming [69]. This is the natural generalisation of the notion of semi-definite
programs, which are ubiquitous in quantum information theory, to the setting of GPTs. To date there
have only been a handful of papers which utilise this tool either in quantum theory [70–74] or in
GPTs [33,75–80].
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Figure 1: Schematic depiction of the relationship between the set of all theories, those are satisfying the complete
extension postulate and those are satisfying the purification postulate. Also shown is the hyperdecoherence mechanism
(purple arrows) relating hypothetical beyond quantum theories and quantum theory in analogy to the relationship
between quantum and classical theory by a decoherence mechanism (blue arrow).

In the above, the no-restriction hypothesis [15] means that any logically possible measurement
compatible with the state space of theory is physically realisable within the GPT. This is satisfied by
both quantum and classical theory and is well motivated in adversarial scenarios when one does not
want to make assumptions on the capabilities of the adversaries. Formally this means that, for every
system A in the GPT, that the effect space EA is the dual of the state space Ω. That is:

EA = Ω∗A := {e ∈ V ∗A|e(s) ∈ [0, 1]∀s ∈ ΩA ⊂ VA} (11)

That is, any convex-linear functional which gives valid probabilities for all states corresponds to a
physically realisable effect.

3.2 No no-go for hyperdecoherence
The question that any beyond-quantum theory must answer is the following: why do we not observe
beyond-quantum phenomena in all of our current experimental tests of quantum theory? That is,
within the beyond-quantum theory there must be some mechanism which explains the emergence of
the quantum world. We can gain intuition for this by considering the beyond-classical theory that
is quantum theory. Within quantum theory, the mechanism that best explains the emergence of the
classical world is decoherence.

It has recently been understood [81, 82] how decoherence is not simply a way in which quantum
states can be made effectively classical (as diagonal density matrices are isomorphic to classical
probability distributions) but that this can be lifted to a mechanism which shows how the entirety
of quantum theory (i.e., including states, measurements, transformations, and so on) can be made
effectively classical (i.e., the theory of classical stochastic dynamics). In [37] this idea was generalised
to define the notion of hyperdecoherence (a term coined in [9]) which similarly describes how the
entirety of a beyond-quantum theory can be made effectively quantum.

The basic idea, is that for every beyond-quantum system, A, there exists some hyperdecoherence
process,

HA : A→ A, (12)
which will cause the system A to behave essentially as quantum systems. These hyperdecoherence
processes must satisfy three basic properties:

1. they must be unit-effect preserving,

uA ◦HA = uA, (13)

which is analogous to the trace-preservation condition for quantum decoherence processes; and
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2. that they must be idempotent,
HA ◦HA = HA, (14)

which means that once the beyond-quantum features have been lost, that hyperdecohering again
does nothing.

3. Moreover, they must be chosen compositionally, that is, such that

HA⊗B = HA ⊗HB, (15)

such that if two systems hyperdecohere independently then the global system will behave as a
quantum system.

We then can model the hyperdecoherence of a beyond-quantum theory by replacing the identity
processes 1A with hyperdecoherence processes HA, the intuition being that we are trying to describe
a situation in which the hyperdecoherence happens on a time scale which is much shorter than any we
can currently experimentally probe such that when we “do nothing” we are actually letting the system
hyperdecohere. The conditions that we have imposed on the hyperdecoherence processes ensure that
this can be described in consistent manner and that the result of this is a valid physical theory.

In order for such a procedure to describe the emergence of the quantum world from some beyond-
quantum theory, it must be the case that the physical theory that we obtain by replacing the identities
by hyperdecoherence processes in the beyond-quantum theory, is (isomorphic to) quantum theory.
In [37], they demonstrate that any beyond-quantum theory which can hyperdecohere to quantum
theory in this way, must violate either the causality principle – that information can only flow forwards
in time, or the purification postulate. Letting go of purification seems like the more palatable option,
and so this motivates the question of whether or not the complete extension postulate could be satisfied
by a beyond-quantum theory which hyperdecoheres to quantum theory.

By examination of the proof of [37], however, it becomes clear that one cannot obtain the same
result using the complete extension postulate – at least, not with the same proof technique. One may
have suspected that the proof would still go through as it is clear that at no point does it crucially
rely on the fact that a purification is actually pure. Instead, what is needed is the fact, which can
be derived from the purification postulate, that pure extensions are generating. Or, in other words,
that the purification postulate tells us that pure extensions are necessarily complete extensions. This
fact, however, does not follow from the complete extension postulate alone, and so the proof does not
go through. It therefore remains a possibility that there is a beyond-quantum theory satisfying the
CEP, which moreover satisfies the causality principle and can hyperdecohere to quantum theory. An
important direction for future research is therefore to try to formulate such a beyond-quantum theory.

4 Case study - theory of non-signalling behaviours
As a case study, in this section, we focus on the theory of non-signalling behaviours [5]. It exhibits
stronger correlations between its subsystem than quantum theory, for example, it violates the Information
Causality principle [83] and reaches the algebraic maximum for the CHSH inequality. It is also proved
that, such behaviours can not be used for teleportation, and it does not allow for swapping of non-
separable correlations [84,85] between two parties which were initially completely uncorrelated. This is
not surprising as we already know that the theory of non-signalling behaviours violates the purification
postulate (as it is a discrete theory), whilst in case of quantum theory, the ability to teleport an
unknown state or entanglement swapping directly related to the existence of purifications [86,87].

In this section, we consider the lack of existence of purifications for the theory of non-signalling
behaviours and try to bypass it with other entity fitted for the theory of non-signalling behaviours,
namely, the complete extension that we introduced in Sec. 3. For a given behaviour PA, we want to
construct a non-signalling extension PAE , which, whilst not being a purification, still satisfies the two
key properties of purifications that we identified, namely:

access: The extension gives access to all ensembles of the extended system.
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That is one can generate an arbitrary ensemble {(pi, P iA)} of PA, (such that
∑
i piP

i
A = PA and∑

i pi = 1) from the extension PAE .

generation: The extension can be transformed to any other extension of PA.

That is, upon applying pre(post)-processing of inputs(outputs) (a classical channel) PE on system E
of PAE , it should be transformed to an arbitrary extension P ′AE = PE(PAE), e.g., trE(P ′AE) = PA.

In the following, we show that this is indeed possible, and, hence, the theory of non-signalling
behaviours satisfies the Complete Extension Postulate. In this way we show that CEP is not an
empty postulate and complete extensions can be actually constructed in certain theories. Moreover,
we explore the properties of such extensions. In particular, we show that there are infinitely many
ensembles of each behaviour, therefore each behaviour can be extended to infinite number of different
extensions. Each ensemble corresponds then to certain choice of input in the extending system. As a
consequence, these extensions might possess an arbitrarily large number of inputs. But in the theory
of non-signalling behaviours, one can have behaviours lying only in a finite-dimensional polytope. This
shows that some of the ensembles (inputs) are redundant, in the sense that they can be obtained from
others via adequate operations of pre(post)-processing of inputs(outputs), and others can be equivalent
under reversible operations, e.g., relabelling of inputs and outputs (see Fig. 2). In this section, we
will show that corresponding to each behaviour, there exist many finite-dimensional non-signalling
extensions with the property of access and generation.In fact, what we show, the above properties
are equivalent, access to all possible ensembles is equivalent to generation of arbitrary extensions.

ACCESS
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Figure 2: Schematic diagram. In any discrete convex theory, generic states do not have an extension which is a
vertex (aka purification). This is different to the quantum theory that is not discrete. However, in non-signalling
theory, the Complete Extension postulate is satisfied. a) From the Non-Signalling Complete Extension (NSCE) of a
system, A one can generate any other extension by means of the input randomizer and output post-processing. b)
The extending system E of the NSCE provides access to any ensemble {pk(i), P ik(a|x)} of the system A, which can
be generated upon measurement z = k performed on the system E.

We also show that there is always a finite-dimensional complete extension, usually of a large
dimension. We give an upper bound on this dimension as a function of the dimension of an extended
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Figure 3: Schematic diagram of purifications of system A to an extended system E. a) Purification of any quantum
state ρA, to |ψAE〉 in the extended state space. If the quantum state is a single qubit maximally mixed state I

2 , then
its purification is maximally entangled Bell state. b) Complete extension of a maximally mixed behaviour Pm

A , (given
in Eq. (50)) is a pure behaviour - the well known PR box, which is however generically not the case.

system and the number of inputs and outputs. Among these possible complete extensions, we give
a prescription of how to construct (up to relabeling) the minimal one, which we call the non-
signalling extension with access (NSEA). This lies in the lowest dimensional polytope among all
possible extensions with the above properties. The fact that access to all possible ensembles of a
non-signalling system, has been considered operationally for the worst case extension someone might
have, in context of device independent cryptography [88, 89] against non-signalling adversary by the
Authors of Ref. [89–92], and more recently in private randomness [93–98] . The NSEA which we define
is the structure responsible for this fact: access to this special extension, gives the non-signalling
eavesdropper an ultimate operational power. That is, the extending system of NSEA naturally
represents the minimal memory of a non-signalling adversary with maximal power in cryptography
based on no-faster than light communication [51].

Interestingly, whilst we know that not all NSEAs can be pure, we show that some of them are.
In particular, the aforementioned NSEA of a maximally mixed binary input binary output behaviour,
i.e., the PR box [5] is a pure non-signalling behaviour. Observing that a PR box is an extension with
access for a maximally mixed system can be viewed as a derivation of the PR box without referring
to the notion of a Bell inequality – this is in stark contrast to the original approach of Popescu and
Rohrlich [5]. The sense in which we derive the PR box is the following. We assume only a) the
structure of single-partite systems, and b) that NSCE of any single-partite system is a valid state of
the theory. In particular, we do not presuppose a) that all non-signalling behaviours belong to the
given theory, or b) a particular composition rule, or c) the no-restriction hypothesis. This means that
if the PR box was not the NSCE of any single-partite behaviour, then it would be “excluded” from
the state space built with the above prescription – i.e., apriori, we do not know that the PR box is an
allowed physical behaviour. What we the show is that the PR box is the complete extension of the
maximally mixed single-partite behaviour, and hence, by our assumptions, it is a valid bipartite state.

Since an NSEA PAE is generically not extreme in the set of behaviours, it can be non-trivially
extended to a new system E′ giving a new NSEA PAEE′ . Note that an interesting corollary of
Theorem 7 is that for particular behaviours this process can be iterated indefinitely. Thus, identifying
or constructing such behaviours and understanding their properties is an important direction for future
research.

From our proof technique (heavily based on convex geometry) we expect that the complete
extensions exemplified using the theory of non-signalling behaviours can also be defined in a similar
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way in any discrete convex theory. Proving this, however, needs further work.
In Sec. 4.1, we provide the basic definition of the Non-signalling extension with access (NSEA)

and prove that it is a complete extension as it satisfies access and generation, and moreover, in
Sec. 4.2 that it is a minimal complete extension. In App. B we construct many explicit examples
and study their properties. In particular in App. B.1, we prove that the NSEA of the maximally
mixed single party binary input and binary output behaviour is the Popescu-Rohrlich behaviour (See.
Fig. 3). We also give an explicit example showing that the non-signalling complete extension has the
property of access and generation. In App. B.4, we find the NSCE for two party binary input
and binary output behaviour in the isotropic line, which enclose the Bell-Tsirelsen box and the NSCE
for Specker’s triangle has been found in Sec. B.3.

4.1 The complete extension in the theory of non-signalling behavious
In this section, we provide a definition of the non-signalling extension with access (NSEA) in the
theory of non-signalling behaviours (NS), and show that NSEA satisfies the property access. We
then show that NSEA also satisfies the generation property, and, moreover, that in this theory these
two properties are actually equivalent. This will allow us to refer to NSEA as a non-signalling complete
extension (NSCE), and demonstrates that NS satisfies the complete extension postulate (CEP). What
is interesting here is that it provides a constructive proof that NS satisfies the CEP, which proves
useful for introducing explicitly the state of the system of the eavesdropper in the non-signalling
device independent secure key agreement protocol [51] .

Let us first fix the notation. We call a conditional probability distribution, PA = pA|X (a|x) a
box or behaviour , representing the state of system A, where X stands for all possible measurement
choices (inputs) and the index x ∈ X is a particular choice. Ax is the set of measurement outcomes
(outputs), corresponding to input x and the index a ≡ ax ∈ Ax represents one particular instance.
Note that if all of the outputs have the same outcome set then we will drop the subscript x and write
A instead. As PA is a conditional probability distribution it must satisfy the positivity conditions,
0 ≤ pA|X (a|x) ≤ 1, ∀a ∈ Ax, x ∈ X , and the normalization condition

∑
a∈Ax

pA|X (a|x) = 1, ∀x ∈ X 3.
Let PAE = pAE|XZ(ae|xz) be a bipartite conditional probability distribution, where the system E has
associated input and output sets Z and E respectively. We say that it is a non-signalling extension of
the behaviour PA if PA is its marginal distribution∑

e∈Ez

pAE|XZ(ae|xz) = pA|X (a|x), ∀a ∈ Ax, x ∈ X , z ∈ Z, (16)

and it satisfies non-signalling conditions∑
e∈Ez

pAE|XZ(ae|xz) =
∑
e∈Ez′

pAE|XZ(ae|xz′), ∀a ∈ Ax, x ∈ X , z, z′ ∈ Z, (17)

∑
a∈Ax

pAE|XZ(ae|xz) =
∑
a∈Ax′

pAE|XZ(ae|x′z), ∀e ∈ Ez, z ∈ Z, x, x′ ∈ X , (18)

For the sake of simplicity we omit the subscript, and we assign pA|X (a|x) ≡ PA(a|x). The set of all
non-signalling behaviours of system A is denoted by ΩA, mutatis mutandis for multipartite systems.
The PA can have inner non-signalling structure [5], i.e., system A can be compound (e.g., A = A1A2)
itself, where the system A1 can not signal to system A2 and vice versa. We will encounter this later
when we consider the extension of the binary two input two output behaviour.

All n-partite non-signalling behaviours, with the same cardinalities of inputs and outputs satisfy
a set of linear equations and inequalities (constraints). These constraints define a convex, bounded
polyhedron (a polytope) that is a subset of RN for some N ∈ N, with a finite number D of vertices.
Each point within this polytope represents a different non-signalling behaviour. In such a polytope
of behaviours, we will distinguish those which are extremal (vertices), i.e., the behaviours which can
not be expressed as a convex combination of other non-signalling behaviours, distinguishing them by
subscript E: PE.

3The summation over the output here is an analogue of partial trace.
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An ensemble {(pi, P i)}i, of a behaviour P , where P =
∑
i piP

i, we will denote by E (P ). In this
paper, we will consider only those ensembles which consists of finite number of elements. We will
also need the notion of the set of members of an ensemble E (P ) = {(pi, P i)}i, this is defined by
V (E (P )) = V ({(pi, P i)}i) := {P i : pi > 0}, and its distribution, which is {pi}. If all the members,
P i ∈ V (E ), are extremal (pure), P iE, then we call the ensemble a pure members ensemble (PME) and
denoted as Epure(P ). We say that an ensemble Epure(P ) is generated on system A by measurement
M on system E, if upon this measurement on the extending system, the outcome e = i is obtained on
E with probability pi and conditionally upon it, the state of the system A is described by behaviour
P iE. By SP we will denote the set of all PME of a behaviour P .

Our aim is to obtain the minimal extension with properties access and generation. To begin
with, however, as an intermediate step used to simplify further proofs, we will define an extension,
satisfying properties access and generation yet of a larger dimension hence called overcomplete
non-signalling extension with access (ONSEA), defined as:

Definition 15 (Overcomplete non-signalling extension with access - ONSEA). Given a behaviour
PA : PA(a|x), we say that a behaviour PAE : PAE(ae|xz) is its overcomplete non-signalling extension
with access (extension to system E with access to system A), if for any input choice z = k and outcome
e = i obtained in the extending part, there holds

PAE(a, e = i|x, z = k) = P i,kE (a|x)p(e = i|z = k), (19)

such, that, for each k, the ensemble
{(
p(e = i|z = k), P i,kE (a|x)

)}
i

is a pure members ensemble of the
behaviour PA, and corresponding to each pure members ensemble of PA, there is exactly one input
z = k, in the extending system which generates it.

It is simple to see that the overcomplete extension ONSEA of an arbitrary behaviour PA exists.
Indeed, PA belongs to a polytope. That is it belongs to a set with a finite number of pure behaviours.
Any pure member ensemble of PA is a subset of the set of pure behaviours. Hence, there is finite
number of the latter ensembles and we can construct extension where for each of such ensemble we
have k such that z = k generates it. This extension is precisely the ONSEA. We will denote it as
Ẽ(P )AE . Notice that when a particular input z = k is chosen in the extending part, an outcome
e = i occurs with the probability p(e = i|z = k), resulting in a pure behaviour P i,kE (a|x) in part of A.
Eq. (19), expresses the partially measured behaviour with the probability times the conditional pure
behaviour. Moreover,

{(
p(e = i|z = k), P i,kE (a|x)

)}
i

is a pure members ensemble of PA, for each k, as

∑
i

p(e = i|z = k)P i,kE (a|x) =
∑
i

Ẽ(P )AE(a, e = i|x, z = k) = PA(a|x), (20)

and given an overcomplete extension (ONSEA) there are |Z| pure members ensembles, where Z = {z},
is the set of all input choices of the extending system.

The above definition of ONSEA satisfies the non-signalling condition for its both subsystems. For
system A, it is by construction, and for system E it holds due to the fact that for each input output
pair (z = k, e = i) of E, system A holds a behaviour P i,kE (a|x) according to Eq. (19), which gives 1
when summed over a.

We will see later that the ONSEA is actually a complete extension as it allows for access and
generation. However, the dimension of the extending system is larger than necessary, we therefore
seek to construct a minimal complete extension4. To do so we will now introduce a representative
subset of all PMEs. An ensemble Epure(P ) = {pi, P iE}i, of a behaviour P =

∑
i piP

i
E , is called minimal

ensemble, if any proper subset V ′ ⊂ V (Epure), with another choices of probabilities {p′j} is not an
ensemble of the behaviour P , i.e., P 6=

∑
j:P j

E ∈V ′
p′jP

j
E . Any minimal ensemble will be denoted as

M (P ), to distinguish it from an arbitrary PME that is not necessarily minimal.
Next, we will eliminate the redundant ensembles from the ONSEA, to obtain the NSEA that

has the lowest number of inputs sufficient to satisfy access property. To achieve this we will show

4Minimality will be proven in Prop. 27 in the following subsection.
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Figure 4: Panel a), schematic diagram of a NSEA of an arbitrary behaviour PA to E(P )AE . Panel b), Corresponding
to each input z = k in part of the extending system, the composite behaviour partitioned to a minimal ensemble
{p(e|z = k), P ek

E (a|x)} in part of A.

that having access to all minimal ensembles {M (P )} of P , along with arbitrary randomness, one can
generate any PME, Epure(P ).

Theorem 16. access to PMEs is equivalent to access to minimal ensembles.

Proof. See App. A.2.

Remark 17. This theorem (Thm. 16) can be generalized to any GPT that is a discrete theory (see
Definition 5).

The above theorem motivates the following definition of non-signalling extension with access
(NSEA), which, like the extension defined in Definition 15, also satisfies the properties of access
and generation:

Definition 18 (Non-signalling Extension with Access). Given a behaviour PA : PA(a|x), we say that
a behaviour PAE : PAE(ae|xz) is its non-signalling extension with access extended to system E if for
any input choice z = k an outcome e = i occurred in the extending system, there holds

PAE(a, e = i|x, z = k) = P i,kE (a|x)p(e = i|z = k) (21)

such, that, for each k, the ensemble
{(
p(e = i|z = k), P i,kE (a|x)

)}
i

is a minimal ensemble of the
behaviour PA. Moreover, corresponding to each minimal ensemble of PA, there is exactly one input
z = k, in part of the extending system which generates it.

We will represent the NSEA of an arbitrary behaviour PA as E(P )AE . If there is more than
one subsystem in the system A satisfying non-signalling constraints, i.e., if A ≡ A1A2 . . . AN , and
none of the k systems {Ai1 , . . . , Aik} with I = {i1, . . . , ik} can signal to the remaining N − k systems
{Aj1,...,jN−k

} with jl ∈ {1, . . . , N}\I, for all k ∈ {1, 2, . . . , N−1}, then also our method of constructing
NSEA holds, and it will be denoted by E(P )A1A2...ANE . A schematic diagram of NSEA has been
depicted in Fig. 4. For NSEA defined above, the inputs of the extending system correspond to the
minimal ensembles of the given behaviour PA. If there are N number of minimal ensembles, then the
total number of input choices in the extending part is |Z| = N .

Proposition 19. For each behavior PA of system A, its NSEA E(P )AE is unique up to the local
relabeling on the extending system E.
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Proof. Let PAE and P ′AE be two different NSEA of a behaviour PA. First note, that PA determines
the number of inputs |E|. However the inputs of PAE can be labelled in different way than that of
P ′AE . However, due to Definition 18, each input of PAE corresponds to a unique minimal ensemble
of PA. The same holds for P ′AE . Thus for each input e of PAE there exists input e′ of P ′AE which
corresponds to the same unique minimal ensemble. Hence for this pair of inputs the distribution of
outputs of PAE and P ′AE are the same up to labeling of outputs. For this reason, the two extensions
differ only by relabelling of inputs and outputs of the extending system. Thus, relabellings establish
an equivalence class over different behaviors being NCEA of behavior PA.

Note that one can easily show that such an extension necessarily exists for any behaviour PA. For
example, one can check (see Section B.1 of the Appendix) that the NSEA of the behaviour PA, the
maximally mixed behaviour with a single binary input and single binary output, extended to system
E, has the following structure:

PAE (ae|xz) =

x 0 1
z e a 0 1 0 1

0 0 1/2 0 1/2 0
1 0 1/2 0 1/2

1 0 1/2 0 0 1/2
1 0 1/2 1/2 0

, (22)

which is nothing but the famous Popescu-Rohrlich (PR) behaviour satisfying conditions x.z = a ⊕ e
with ⊕ being addition modulo 2. We have thus arrived at this structure without referring to the
CHSH inequality [99] (in contrast to the way in which it was done in [5]).

We are in a position to show, that having access to NSEA we can generate any PME.

Corollary 20. The non-signalling extension with access (NSEA) of a behaviour P given in Definition
18, together with access to arbitrary local randomness, gives access to any pure members ensemble of
a behaviour P .

Proof. See App. A.3.

From the above corollary it is clear that an arbitrary PME can be accessed from the NSEA by
using a randomness generator {p(k)}, i.e., by using a dice(coin). To access all possible PME, one
needs an access to arbitrary randomness. This can be done by setting the output (k) of a dice with a
distribution, p(k|z′), where z′ is the tuning parameter, as the input of the extending party of NSEA.
Here |{k}| = |Z|, and |{z′}| will be equal to the possible number of PME one wants to generate. The
dice can be thought of as a local behaviour with z′ being the input and k as the output. Different
choices of the z′ can be considered as dices with different probabilities of outcome, actually led to
different PMEs. Accessing all possible PME has been pictorially depicted in Fig. 5.

An explicit example of constructing an arbitrary pure members ensembles has been given in Sec
B.1.2. Where we have chosen an arbitrary behaviour containing single binary input and single binary
output.

Theorem 21. access to PMEs is equivalent to access to all ensembles.

Proof. Let us consider the access of the mixed ensemble Emix(P ) = {(pm, Pm)}m, which is the most
general ensemble, from the set of all ensembles of a given behavior P . Now each Pm lies in the same
polytope as P , hence, all of them has a pure behaviour decomposition,

Pm =
∑
i

qmi P
i
E, (23)

where
∑
i q
m
i = 1, ∀m and 0 ≤ qmi ≤ 1, ∀i,m. Note that this decomposition is not unique, unless it

is a minimal decomposition. Now P =
∑
m pmP

m =
∑
m,i pmq

m
i P

i
E =

∑
i riP

i
E, where ri =

∑
m pmq

m
i ,

implies that {(ri, P iE)}i is also a PME of P . From Theorem 20, we know that by using an appropriate

19



|z’|=1

k

z

e

A

a

x

ℰ 𝑃 𝐴𝐸(𝑎𝑒|𝑥𝑧)

E

𝑝(𝑘)

A

x

a
𝑃0(𝑎|𝑥)
E

+ A

x

a
𝑃1(𝑎|𝑥)
E

+ …q(e = 0) q(e = 1)=

{𝑞 𝑒 , 𝑃𝑒(𝑎|𝑥)}
E

A

x

a
𝑃0(𝑎|𝑥)
E

+ A

x

a
𝑃1(𝑎|𝑥)
E

+ …q(e = 0) p(e = 1)=

{𝑞 𝑒 , 𝑃𝑒(𝑎|𝑥)}
E



𝑘

𝑝(𝑘)ℰ 𝑃 𝐴𝐸(𝑎𝑒|𝑥𝑧 = 𝑘)

Figure 5: Schematic diagram visualizing the mixing the minimal ensembles {Mk} of A with arbitrary randomness
p(k) in part of the extending system on the NSEA of the behaviour, which is obtained from the output of a dice (a
local behaviour with unary input), results an arbitrary pure members ensemble

{
p(k), {(p(e|z = k), P ez=k

E (a|x))}
}

=
{q(e), P e

E (ab|xy)}, where q(e) =
∑

k p(k)p(e|z = k).
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Figure 6: Explanation of Theorem 22 of accessing all possible ensembles even mixed in part of the extended system.
By passing the output e of the extending party’s (Eve) behaviour, through a post-processing channel PC, Eve is able to
interpret the behaviour shared by Alice and Bob as an ensemble of mixed bipartite behaviours {(p(m), Pm(ab|xy))},
where Pm(ab|xy), are mixed behaviours and can be expanded as Pm(ab|xy) =

∑
e q

m
e P

e
E(ab|xy). Now the

post-processing channel pc(m|e), helps Eve to interpret the mixed behaviours as
∑

e pc(m|e)r(e)P e
E(ab|xy) =

p(m)Pm(ab|xy).

randomness generator in the input of the extending system E (input randomizer), such PME can be
realized. To interpret the mixed ensembles, from {(ri, P iE)}i, the extending system send her output
(e = i, of the NSEA along with an appropriate input randomizer) through a post-processing channel
pc(m|e). The existence of this channel (24), pc(m|e) with

∑
m p(m|e) = 1, is guaranteed by the initial

decomposition of the members of the mixed ensemble into pure behaviours.

∑
i

pc(m|e = i)riP iE =
∑
i

pmq
m
i

ri
riP

i
E = pmP

m, (24)

where pc(m|e) take the form pmqm
e

re
.

Corollary 22. (NSEA satisfies access) The extending system of the NSEA gives access to any
possible (even mixed) ensemble of the extended behaviour.

Proof. Suppose the extending system wants to access an arbitrary mixed ensemble, once she obtained
the NSEA. From Corollary 20, NSEA gives access to any PME, and from Theorem 21, it is clear that
access to PMEs is equivalent to access to all ensembles. Hence, NSEA gives access to any possible
(even mixed) ensemble of the extended behaviour.

From the above theorem, we observe that, corresponding to each mixed ensemble of P , there
exists at least one PME of P , from which one can obtain the mixed ensemble by using an appropriate
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post-processing channel. In this construction the NSEA plays an important role due to the fact that
Theorem 20 certifies the existence of that particular PME. In Sec. B.1.3 of the Appendix, we exemplify
Theorem 22 for a single party binary input binary output behaviour, by providing the explicit form
of input randomizer and the post-processing channel. A visualization of Theorem 22, has been given
in Fig. 6. Note that the input randomizer p̃(k), which generates the required PME of P, is a dice with
a unary input (trivial input), p̃(k|z′ = fix). One can generate all possible ensembles by appropriately
tuning the dice with the help of the dice input z′ and a post-processing channel (also dependent on
z′) on part of the extending system.

We have now seen that we can construct the NSEA which is an extension with access. However,
in order for this to be a complete extension we need that it also satisfies generation. One can show
that this is indeed the case by demonstrating that access and generation are equivalent conditions
in the theory of non-signalling behaviours.

Theorem 23. In the theory of non-signalling behaviours access is equivalent to generation.

Proof. See App. A.4.

From the above theorem, Theorem 22, and the fact that NSEAs exist for all behavious, we obtain
the main result of this section:

Corollary 24. The Non-signalling Extension with Access (NSEA) has the properties of access and
generation, that is, it is a Non-signalling Complete Extension (NSCE). Hence, the theory of non-
signalling behavious satisfies the Complete Extension Postulate (CEP).

4.2 On the dimensionality of the complete extension
In this subsection we are going to discuss the size of the non-signalling complete extension NSEA,
and, what is most important, is that we are going to show that it is finite. The restriction on the
size of the non-signalling complete extension (NSEA) is particularly important from point of view of
non-signalling Device Independent cryptography [89, 90, 100], and interesting on its own. We finish
this section with another observation, namely we show that for any behaviour P , its NSEA E(P )
has the lowest dimension (is minimal) among all non-signalling extension of P having the property of
access.

The following Theorem holds.

Theorem 25. Let be B be a polytope of n-partite non-signalling behaviours, with mi inputs for parties
and vij outputs respectively. Then for each P ∈ B, there exists a non-signalling polytope B̃ 3 E(P )
which the NSEA lives in, such that:

dim B̃ < (dimB + 1)

×
(((2t−bt/2c−dimB

bt/2c
)

+
(3t−bt/2c−(dimB+1)

t−bt/2c−1
)

dim B + 1

)
dimB + 1

)
, (25)

where:

dimB =
n∏
i=1

mi∑
j=1

(vij − 1) + 1

− 1, t =
n∏
i=1

mi∑
j=1

vij . (26)

Proof. The proof is the content of Section B.2 of the Appendix.

In Theorem 25 we were interested only in showing that the dimension of the complete extension
is always finite and therefore the upper bound is very loose. For instance, the expression in equation
(25) in the case of n = 1, mi = 2, vij = 2 yields the dimension of 339, for n = 2, mi = 2, vij = 2
we have c.a. 1.2 × 1054, and for n = 2, mi = 3, vij = 3 we obtain c.a. 1.14 × 101762. All exemplified
results are far above any numerical predictions. The discussion about the possible improvements in
the upper bound is left to the Appendix. Importantly for us, however, is the following simple corollary
of the existence of any upper bound, namely:
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Corollary 26. The dimension of the NSCE can always be finite.

A tempting question to ask about NSEA is whether it has the lowest dimension amongst all
NSCEs, and therefore whether it is the minimal one. Similarly to earlier in this section, we refer to
the dimension of the extension as the dimension of the behaviour polytope to which it belongs. The
answer to this query is positive and therefore we finish this section with the following proposition.

Proposition 27. Among all non-signalling extensions of a behaviour P , having the property of
access, NSEA E(P ) is a minimal one.

Proof. Let P be a non-signalling behaviour in B, and E(P ) ∈ B̃ be its NSEA. The dimensions of
non-signalling polytopes can be determined with equation (89) as before. Suppose now, there exists
another non-signalling extension Ê(P ) ∈ B̂, having a property of access, such that dim B̂ < dim B̃.
The fact that Ê(P ) has the property of access implies that upon processing (possibly trivial) of
inputs and outputs of the extending system with local randomness, Ê(P ) also has access also to all
minimal ensembles of P . However, the minimal ensembles of P are extremal points in the polytope of
all possible ensembles (see Theorem 30) of the behaviour P , and so cannot be created via probabilistic
processing of inputs and outputs in the extending system (class of operations considered in access).
Therefore, Ê(P ) having a property of access, must have for each minimal ensemble of P , an input
that generates it, like E(P ) does. This implies that dim B̂ ≥ dim B̃, and so proves by contradiction
that NSEA E(P ) is the minimal extension of P having the property of access.

5 Conclusions
To summarize, our main contribution is a new concept, which is the complete extension. We show that
complete extensions are present in classical theory, quantum theory, super-selected quantum theory,
the theory of non-signalling behaviours, and, moreover, any theory satisfying the purification postulate
in which the product of pure states is pure. We also postulate that it may exist hypothetical beyond-
quantum theories which could hyperdecohere to quantum theory. In the case of quantum and classical
theory, as well as the theory of non-signalling behaviours, we can explicitly construct these complete
extensions. This notion implies a number of paths for research, some of which we have exemplified in
our case study on the theory of non-signalling behaviors.

The idea of the CEP sets a demarcation line in the set of results obtained on the basis of the
purification postulate. It divides them into those that really require all of the purification postulate and
those for which the CEP suffices. We exemplify this by considering the possibility of bit commitment
showing that the no-go for it is not specific to theories with the purification postulate. This has the
added benefit of giving a unified proof for the quantum and classical cases.

The CEP may also be viewed as a razor for excluding theories that can not substitute quantum
theory in the future. Indeed, a theory not satisfying CEP may not be physical, as (see Theorem 24)
even the theory of non-signalling behaviours satisfies it. The easiest way to obtain theories that do not
satisfy CEP is to restrict state space or dynamics so that it is not possible to generate all extensions
of some state. An example of a theory that does not satisfy CEP for this reason is given in [50].

We also show that an interesting “mirror” property of quantum purifications no longer holds for
the case of non-signalling behaviours. That is, suppose that we have a purification |ψAB〉 of a quantum
state ρA, and let us define σB := TrA(|ψAB〉 〈ψAB|). Then, any purification of σB on system A, (which
necessarily exists as |ψAB〉 is such a purification)) we denote as |φAB〉 and call the “mirror” purification,
is equal to |ψAB〉 up to a local unitary on A. That is |ψAB〉 = UA ⊗ 1B |φAB〉 for some unitary UA.
In general, beyond-quantum theory, it need not be the case, as we have exemplified in the theory
of non-signalling behaviours (see Sec. B.1.6 of the Appendix). A properly defined minimal distance
between the complete extension and its “mirror” one, overall systems whose complete extension is not
pure, can characterise to what extent a given theory departs from quantum mechanics.

Following the development of quantum cryptography, one can ask if a post-quantum theory should
lead to secure communication. As it is shown in [101], this need not always be the case. In the quantum
case, the system E of the purification ψAE describes the worst-case state of the knowledge of the
quantum adversary that may have about a given system A in many information processing protocols

22



such as QKD. Similarly, in the theory of non-signalling behaviours, the system E of the NSCE τAE
represents the worst case knowledge of an adversary about system A. The minimal dimension of the
system E, therefore, represents the maximal memory needed by the adversary. We, therefore, enable
the study of the worst-case adversary’s capabilities in other post-quantum theories, see Ref. [51] for
an application of this idea.

Significantly, one can use CEP to define composed systems in a post-quantum theory. Namely
given a set of states of a single system A, one can define as valid states of a joint system AB only
those that are either (i) complete extensions of the states of A, or (ii) states obtained from such
complete extensions by some operations valid in this theory. We exemplify this approach by arriving
at the structure of the PR box, assuming (i) in the case that A is a local system from NS with two
binary inputs and two binary outputs. Together with (ii) the local transformations in NS (including
e.g. relabelings of intputs and outputs), we can reach all the non-local vertices of the non-signalling
polytope of behaviours with two binary inputs and two binary outputs. Given the fact, that the
complete extension of a local deterministic behavior of system A is a product of two deterministic
behaviors on systems A ⊗ B, via operation of mixing two or more behaviors we show that the state
space of non-signalling behaviours includes the whole non-signalling polytope of behaviours with two
binary inputs and two binary outputs.

Interestingly, a post-quantum theory that does not satisfy the purification postulate, but rather
the CEP, can have a property that there is an infinite sequence of complete extensions of complete
extensions as none of them is pure. This will always hold unless the number of pure states in the
theory is of cardinality continuum at least. This is indeed the case in both classical theory and the
theory of non-signalling behaviours.

Verifying if CEP holds in the case of other beyond-quantum theories and studying its consequences
is an important direction to follow. We formulate the hypothesis that there exists a generalised
probabilistic theory with complete extensions that may naturally hyper-decohere to quantum mechanics.
This is supported by demonstrating that the proof of an existing no-go result, which applies to
generalised probabilistic theories with purifications, no longer holds. The confirmation of this hypothesis
would open a new arena in which new physical laws and phenomena may be searched.

It is also interesting to study whether complementing CEP with a more dynamical axiom, e.g., the
one linked to the Neumark extension or Stinespring dilations, can lead to a more powerful postulate.
In the case of the purification postulate such a dynamical postulate can be derived, it is therefore
interesting to investigate whether this is also the case for a dynamical version of the CEP, or whether
this must be additionally postulated. Determining what form this dynamical postulate should take,
and demonstrating that it indeed holds in the theory of non-signalling behaviours, is perhaps the most
important direction for follow up research.
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[106] C. Carathéodory. “Über den variabilitätsbereich der fourier’schen konstanten von positiven
harmonischen funktionen”. Aus: Rendiconti del Circolo Matematico di Palermo. Direzione e
Redazione. (1911). url: books.google.co.in/books?id=n4SkjwEACAAJ.

[107] Günter M. Ziegler. “Lectures on polytopes”. Springer New York. (1995).
[108] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu. “Bell inequalities

for arbitrarily high-dimensional systems”. Phys. Rev. Lett. 88, 040404 (2002).
url: doi.org/10.1103/PhysRevLett.88.040404.

[109] P. McMullen. “The maximum numbers of faces of a convex polytope”. Mathematika 17, 179–
184 (1970). arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/S0025579300002850.

[110] Khaled Elbassioni, Zvi Lotker, and Raimund Seidel. “Upper bound on the number of vertices
of polyhedra with 0,1-constraint matrices”. Information Processing Letters 100, 69 – 71 (2006).

[111] Samson Abramsky and Adam Brandenburger. “The sheaf-theoretic structure of non-locality and
contextuality”. New J. Phys. 13, 113036 (2011). url: doi.org/10.1088/1367-2630/13/11/113036.
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A Proofs
A.1 Proof of Proposition 13
For simplicity in this proof we adopt the diagrammatic notation of [15] using the conventions of [24].

Consider some state s and some purification σp ∈ ExtP [s] and an arbitrary extension Σ ∈ Ext[s].
We want to demonstrate that we can achieve generation, which we will do by showing that there exists
a transformation mapping σp to Σ, as Σ is an arbitrary extension we will therefore have demonstrated
that σp is generating.

To start, let us consider another purification, Σp ∈ ExtP [σ] this time of the state Σ. It is clear
that, as this is pure and an extension of s then it is also a purification of s. We therefore have two
purifications of s and so one may be tempted to connect them via the essential uniqueness property.
However, this will not always be the case, to see this let us examine the systems more carefully. σp is
a state on some purifying system B:

σp

A B

(27)

whilst, σ could have been an extension on some other system X and the purification of this, Σp could
involve a third system Y :

Σp

A X Y

(28)

Unless we are in a highly contrived scenario whereby B = X⊗Y then we are not able to directly employ
the essential uniqueness property. We therefore have to further extend our systems by composing with
some extra pure states, φ and χ, as follows:

σp

A X YB

χ and Σp

A X Y

φ

B

(29)

Then, thanks to our additional assumption that the parallel composite of pure states is pure, then
these composite states define further purifications of the original states s. Now however, they have
the same systems and hence we can use essential uniqueness to conclude that there is a reversible
transformation T mapping between them, that is:

σp

A

X YB

χ

T

B X Y

= Σp

A X Y

φ

B

(30)

Now, we can simply discard the B and Y systems on both sides of this equation to see that we can
achieve generation:

σp

A

B

T̃

X

:= σp

A

B
χ

T

X

= σp

A

X YB

χ

T
B

X
Y

(31)

= Σp

A X
Y

φ

B

= Σp

A X
Y

= Σ

A X

(32)

That is, there is a transformation T̃ which maps σp to Σ which completes the proof.

30



A.2 Proof of Theorem 16
To see this, first note that the set of all PMEs, Sp is a convex set as any two PMEs of P , E 1

pure(P ), E 2
pure(P ) ∈

SP , their convex combination5 λ E 1
pure(P )+(1−λ) E 2

pure(P ) ∈ SP , ∀λ ∈ (0, 1). Such a mixture of PMEs
is defined as follows: Suppose {(pi, P iE)}i = E 1

pure(P ) and {(qi, P iE)}i = E 2
pure(P ) are two PMEs of the

behaviour P , where V (E 1
pure) and V (E 2

pure) are the set of pure behaviours corresponds to the ensembles.
Now define Vint = V (E 1

pure) ∩ V (E 2
pure), V1 = V (E 1

pure) \ V (E 2
pure) and V2 = V (E 2

pure) \ V (E 1
pure). Then

the convex combination of E 1
pure(P ) and E 2

pure(P ) is defined as

λ E 1
pure(P ) + (1− λ) E 2

pure(P ) := {(ri, P iE)}P i
E∈V (E 1

pure)∪V (E 2
pure), (33)

where ri = λpi + (1− λ)qi, ∀ P iE ∈ Vint, ri = λpi, ∀ P iE ∈ V1 and ri = (1− λ)qi, ∀ P iE ∈ V2. Clearly∑
i: P i

E∈V (E 1
pure)∪V (E 2

pure)
riP

i
E =

∑
i: P i

E∈Vint

(λpi + (1− λ)qi)P iE +
∑

i: P i
E∈V1

λpiP
i
E +

∑
i: P i

E∈V2

(1− λ)qiP iE (34)

=
∑

i: P i
E∈Vint∪V1

λpiP
i
E +

∑
i: P i

E∈Vint∪V2

(1− λ)qiP iE (35)

= λP + (1− λ)P = P. (36)

Here we use the fact that Vint ∪ V1 = V (E 1
pure), Vint ∪ V2 = V (E 2

pure) and
∑
i: P i

E∈V (E 1
pure) piP

i
E = P and∑

i: P i
E∈V (E 2

pure) qiP
i
E = P . The above equation proves that the convex combination of two PMEs of a

behaviour P is also an ensemble of P , and its members are all pure. Hence, SP forms a convex set (as
we have shown) with only finite number of vertices (as we show below), and all of them are minimal
ensembles, as the following lemma proves.

Lemma 28 (Extremal =⇒ Minimal). In the set of all pure members ensembles of the behaviour P ,
denoted by SP , the ensembles that are extremal of SP , are minimal.

Proof. Suppose by contradiction, this is not true, i.e. there exists a PME, Epure(P ) = {(pi, P iE)}ni=1,
with pi > 0, ∀i, which is extremal in SP , but is not minimal. Then, there must exists a proper subset
I ⊂ V (Epure) such that for all P jE ∈ I, there is some other choices of probabilities {qj}, which forms
an ensemble M (P ) = {(qj , P jE )}

P j
E ∈I

, and it is minimal. Let us now embed the distribution {qj}∈I
which has less than n elements, to obtain new but equivalent distribution with n elements, by letting
p′i := qi, ∀P iE ∈ I and p′i := 0, ∀P iE ∈ V (Epure) \ I. Let us note that the minimal ensemble M (P ), is
now equivalent to the PME, {(p′i, P iE)}ni=1.

Consider now an ensemble defined as:

N =
{
pi − pp′i
(1− p) , P

i
E

}n
i=1
≡ {(ri, P iE)}ni=1, (37)

where we define p = pmin
p′max

with pmin = mini{pi : pi > 0} and p′max = maxi{p′i}. Let us first note, that
N is an ensemble of P . indeed, note that

P =
∑
i

piP
i
E =

∑
i

(pi − pp′i)P iE + p
∑
i

p′iP
i
E,

= (1− p)
∑
i

riP
i
E + p

∑
i

p′iP
i
E, (38)

now by assumption
∑
i p
′
iP

i
E = P , as {(p′i, P iE)}ni=1 = M (P ). Thus:

P = (1− p)
∑
i

riP
i
E + pP (39)

which implies that
∑
i riP

i
E = P , i.e. N is an ensemble of P , if 0 < p < 1.

5Abstractly we can view PMEs as probability distributions over the set of pure behaviours and hence is a convex
set (in particular a simplex) the set SP is then a subset of this simplex which we will show is closed under convex
combinations.
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We will argue now that the latter fact holds. Indeed, by definition, p is nonzero, resulting pmin > 0.
To see p < 1 we will prove that pmin < p′max. If pmin ≥ p′max, then 1 =

∑
i pi ≥ npmin ≥ np′max ≥

n/|I| ⇒ |I| ≥ n, which is a contradiction as I is a proper subset of V (Epure). Here we use the fact
that p′max ≥ 1/|I|. Hence, p = pmin

p′max
< 1 and N is an ensemble of P, and can be denoted as N (P ).

Now, we observe that by construction the PME

E (P ) = pM (P ) + (1− p)N (P ), (40)

i.e., E (P ) is a mixture of two ensembles, that are not equal to each other. This is a contradiction with
assumed extremality of the ensemble E (P ), since the mixture, as shown above, is non-trivial, and the
assertion follows.

The above theorem proves that all the extremal points in SP , are minimal ensembles, i.e., there
is no extremal points in SP other than the M (P ). Now we will prove the converse, that no interior
point from SP is a minimal ensemble, i.e., all minimal ensembles are also extremal. To prove it, we
will need the following lemma, interesting in its own right, as it characterizes minimal ensembles as
those with a unique distribution:

Lemma 29. The pure members ensemble Epure(P ) = {(pi, P iE)}i of a behaviour P is minimal, M , iff
the decomposition of this behaviour into the elements {pi : pi > 0} is unique, given by corresponding
probabilities pi.

Proof. The “if” direction is trivial: if the elements {pi : pi > 0}, of the decomposition of Epure(P )
are unique, then it is not possible to set any probability to zero. Hence, there is no proper subset
I ⊂ V (Epure), which forms an ensemble of P , with another choice of probabilities.

For the “only if” part, suppose M (P ) = {(pi, P iE)}mi=1, is a minimal ensemble of P , we have to
prove that the decomposition {pi, pi > 0}, is unique. Assume that the {pi} is not unique, but being
a minimal ensemble it should follow

∑m
i=1 piP

i
E = P , or in other words the set of following linear

equations
m∑
i=1

akiyi = ck, (41)

for some k = 1, . . . , l′, has solution in form yi = pi. Here ck are the entries of the behaviour P ,
for the pair (a, x), or in other words the probability of getting a, when the input is x, P (a|x) = ck.
Similarly the coefficients {aki} are the same entries for the pair (a, x) of the pure behaviours {P iE(a|x) =
aki}. As the behaviour P should follow some equality constraint, and due to some internal symmetry
of it, not all l′ equations in Eq. (41), are linearly independent. Here, by linear independence we mean∑
k 6=k′ λk(

∑m
i=1 akiyi− ck) 6=

∑m
i=1 ak′iyi− c′k, for some k, k′ and λk. Suppose, there are only l linearly

independent equations. (There is also a constraint on the {yi}, that
∑m
i=1 yi = 1 as they represent

the probability of the ensemble, but we don’t need to consider it separately, as the behaviour P is
normalized, so Eq. (41), will take care of it.) Now the number of linearly independent equations and
the number of variables can be in one of the three orders which we consider separately: 1) l > m, 2)
l < m 3) l = m. Notice first, that it can not be l > m, i.e., for l number of linear equation pertaining
m number of variables. Otherwise there would be no solution of the set of equation:{

m∑
i

akiyi = ck

}l
k=1

, (42)

with variables yi but we already have a solution, the initial one: yi = pi > 0, ∀i. On the other hand,
if l < m, then one can always write down any set of l, {yi}li=1, as a linear functions of the remaining
(m − l) {yj}mj=l+1. And in that case one can always set any one (or more) yi = 0 for some i, which
violates the condition of minimal ensembles. Hence we are left with l = m.

In this case, we have the same number of linearly independent equation as the number of variables,
and in that case the matrix A = [aki] is non-singular and invertible, which gives a unique solution of
yi = pi > 0 for all i.
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We can pass now to prove the extremality of minimal ensembles:

Lemma 30 (Minimal =⇒ Extremal). For a behaviour P, all of its minimal ensembles M (P ) are
extremal in the set SP of all ensembles of a behaviour P .

Proof. Suppose by contradiction, that M (P ) is not extremal. Then, there exist pure members
ensembles E1(P ) and E2(P ) such that:

M (P ) = λE1(P ) + (1− λ)E2(P ) (43)

for some 0 < λ < 1. By the above equality, V (E1) ⊆ V (M ) and V (E2) ⊆ V (M ). But by minimality of
M , V (E1) can not be proper subset of V (M ), as there are no weights that together with any proper
subset of V (M ) form an ensemble of P . Thus V (E1) = V (M ) and for similar reason V (E2) = V (M ).
It would mean, that there is an ensemble (let us focus on E1) which has different distribution, but the
same set of members. It would mean that the distribution of M is not unique: there is another one
which together with the same set of members yields an ensemble of P . This however is not possible,
since by Lemma 29, any minimal ensemble has unique distribution. This proves desired contradiction,
hence the assertion follows.

From these two Lemmas 28 and 30, we obtain, that the set SP of all pure member ensembles
(PMEs) of P is a convex hull of the set of minimal ensembles M (P ). And for any behaviour P , the
set of minimal ensembles is finite, as there are finite number of pure behaviours6 and corresponding
to Lemma 29 the decomposition of the pi in minimal ensembles are unique, implies SP forms a convex
polytope.

A.3 Proof of Corollary 20
Proof. Note that according to the Definition 18, if E(P )AE(ae|xz) is the NSEA of the given behaviour
PA(a|x), then the only ensembles realized for different choices of input z of the extending party E
are the minimal ensembles M (P ). If there are {Mi(P )}Ni=1, N numbers of such minimal ensembles
of PA, then there should be |Z| = N , number of distinct inputs in part of the extending system. Due
to Lemma 28 all the extremal points in SP are minimal ensembles. From the latter, one can generate
any pure members ensemble E (P ) by properly mixing the minimal ensembles by using appropriate
distribution {p̃(k)}Nk=1, with

∑N
k=1 p̃(k) = 1. For an arbitrary E (P ) ∈ SP , the Lemma 28, certifies the

existence of at least one such {p̃(k)}Nk=1, which will generate it, hence, E (P ) =
∑N
k=1 p̃(k)Mk(P ). Each

Mk(P ) = {(p(e = i|z = k), P ikE (a|x))}i, has been obtained from E(P )AE , by setting the input z = k
of the extending party. If the inputs are now chosen probabilistically according to the distribution
{p̃(k)}Nk=1, and registering the output e = i, then

E (P ) =
N∑
k=1

p̃(k)
{(
p(e = i|z = k), P ikE (a|x)

)}
(44)

=
{(
q(i), P iE(a|x)

)}
P i

E∈∪N
k=1V (Mk)

, (45)

where q(i) is the probability of getting the pure behaviour P iE, as given in Lemma 28.

A.4 Proof of Theorem 23
Lemma 31. (access =⇒ generation) Access to all ensembles implies access to arbitrary extensions
of the extended system.

6The cardinality of the set of minimal ensembles is bounded by the cardinality of the set of all subsets of pure
behaviours which is finite if the set of pure behaviours is finite. See section 4.2 for an explicit tighter upper bound.
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Figure 7: Pictorial depiction of Theorem 24. E holds the additional interfaces of the NSEA of behaviour PA. She use
an input randomizer (a dice) p̃(k|z′), which can be tuned by the parameter z′, and a classical post-processing channel
pc(m|ez′), which is also z′ dependent. The dice, the extending system and the posy-processing channel together
form the new system in part of E. The input of the dice z′ and the output of the channel m, can be considered as
the input and output of the new system. E only choose some value of input z′, generates required randomness and
also appropriate conditional probability distribution, resulting different set of mixed ensembles.

Proof. We first follow [102] (See Eq. (35) there) and observe that for any extension P ≡ P (am|xz′)
of P (a|x) there is

P (am|xz′) = P (a|xz′m)P (m|xz′) (46)
= P (a|xz′m)P (m|z′) (47)
≡ {P ij(a|x)P (m = i|z′ = j)}i,j (48)

In the first of the above equalities we use Bayes rule, and in the second the non-signalling from A to
E. Such obtained equality implies that every bipartite behaviour can be viewed from perspective of
the system E as having access to |z′| ensembles of the form Ej(P ) = {(P (m = i|z′ = j), P ij(a|x))}i.
We argue now, that from NSEA one can generate any of these ensembles. Thanks to Theorem 22,
for |z′| inputs z′ = j there exists a dice Dj with probability distribution p̃(k|z′ = j) and a classical
post-processing channel Cj , described with a conditional distribution pc(m|e, z′ = j), such that when
applied on system E of the NSEA E(P )(ae|xz) they generate the ensemble Ej . Hence from a collection
of {Dj}|z

′|
j=1 and {Cj}|z

′|
j=1 one can build via appropriate “wiring” a behaviour P ′ which upon input z′ = j

performs according to a dice Dj and further post-process the output e (and that of Dj) through Cj
to give the final output m (see Fig. 7). In this way one assures that a new behaviour P ′ has access to
all the ensembles Ej (and no other), forming (thanks to Eq. (48) above) an extension equivalent to P
up to relabelling of inputs in the extending system E.

From the above theorem it is clear that the NSEA E(P )AE , of PA together with access of arbitrary
randomness (input randomizer followed by a classical post-processing channel) can generate any
collection of ensembles (Theorem 22) even mixed. If we consider the whole setup as a single behaviour,
as depicted in Fig. 7 (with the blue rectangular part is in possession of E), then it becomes a proper
arbitrary extension generating a particular collection of ensembles. Note that it can be easily verified
that it fulfills all properties of non-signalling behaviour.

Lemma 32. generation =⇒ access

Proof. The proof for any GPT is given in Proposition 10. For the sake of completeness, we show it now
using solely arguments from the non-signalling theory. Namely NSEA is a particular extension, hence
access to arbitrary extension implies access to NSEA. This further via Theorem 22 implies access to
any (possibly mixed) ensemble.
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B Explicit examples in the theory of no-signaling behavious
B.1 Complete extensions of binary input-output behaviours
In section 2.1, we proved that the theory of non-signaling behaviours (NS) does not possess the
property of purification as there is not a pure extension of every behaviour. However, there do exist
some behaviours for which the NSEA is an extremal, i.e., pure, behaviour. In other words, whilst
the purification postulate fails as not every behaviour has a purification, there nonetheless do exist
purifications of certain behaviours.

Here we are going to show an example of this. Namely, that if one considers a maximally mixed
behaviour with a single binary input and a single binary output, then it can be extended to an extremal
(pure) behaviour in a higher dimensional state space7 This pure behaviour is the maximally non-local
behaviour equivalent to the Popescu-Rohrlich box [5] (up to proper labeling on the extending system)
defined as

PPR(a, e|x, z) =
{

1
2 for a⊕ e = x · z,
0 otherwise. (49)

where a, e, x, z ∈ {0, 1}. This is a close analogue to the fact that in quantum theory: a purification of
the maximally mixed state Id

d is the maximally entangled Bell state (up to local isometry) [103].
We will now prove this result. Note that the maximally mixed behaviour with a single binary

input and single binary output is given by

Pm
A(a|x) =

ax 0 1
0 1/2 1/2
1 1/2 1/2

(50)

here x being the input and a being the output of the behaviour on system A. This maximally mixed
behaviour lies in the “center” of the polytope (of the set of behaviours with a single binary input and
a single binary output), the extremal points (vertices) of the polytope are

P0
E =

ax 0 1
0 1 1
1 0 0

, P1
E =

ax 0 1
0 0 0
1 1 1

, P2
E =

ax 0 1
0 1 0
1 0 1

, P3
E =

ax 0 1
0 0 1
1 1 0

. (51)

These pure behaviours are are deterministic behaviours as PiE(a|x) = δa,gi(x), for some function gi :
{0, 1} → {0, 1}. The polytope has been depicted in Fig. 8, with a blue square, the corners of the
square are the extremal (pure) behaviours {P iE}, represented by the black solid circles. The center
point of the polytope is the maximally mixed behaviour, PmA , which is depicted by a white solid circle.
Any point inside the polytope can be expanded as a convex combination of the vertices. It is easy
to see that, as PmA lies at the intersection of the two diagonals of the square (behaviour polytope), it
can be expanded in terms of vertex pairs {P0

E,P1
E} and {P2

E,P3
E} with equal probabilities. In particular

these form the two minimal ensembles of PmA namely

M0(PmA ) = {(1/2,P0
E); (1/2,P1

E)} = {p(i|0),Pi0E }, (52)
M1(PmA ) = {(1/2,P2

E); (1/2,P3
E)} = {p(i|1),Pi1E }, (53)

and there are no other minimal ensembles. Now from the Definition 18, of NSEA to the system E, the
above two minimal ensembles are obtained in part of system A, for two different measurement choices
on E. We choose that the first ensemble is obtained by setting the input z = 0, and the second one

7Throughout the paper we use the following notation for behaviours,
• P – italic represent any generic behaviour.
• P – normal font represent a particular example of a behaviour.
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Figure 8: Polytope of the set of single party binary input output behaviours. Here the behaviour of consideration
given in Eq. (56) is the yellow bullet. The white bullet is the maximally mixed behaviour. The black bullets are
the deterministic, pure or extremal behaviours as given in Eq. (51). The required behaviour can be decomposed as
linear combination of the deterministic behaviours as given in Eqs. (57) and (58). It can also be expanded as convex
combination of mixed behaviours which are the red and blue bullets, these form the mixed ensemble of PA.

is obtained by z = 1. Labeling the member behaviours of each ensemble with the output e, i.e.,

z e behaviour on A Probability

0 0 P0
E 1/2

1 P1
E 1/2

1 0 P2
E 1/2

1 P3
E 1/2

(54)

we finally obtain the non-signaling complete extension (NSCE) of the maximally mixed behaviour
that presents the same behaviour as the PR box in equation (49):

PPR
AE (ae|xz) =

x 0 1
z e

a 0 1 0 1

0 0 1/2 0 1/2 0
1 0 1/2 0 1/2

1 0 1/2 0 0 1/2
1 0 1/2 1/2 0

(55)

It is easy to check that if x · z = 0, the resulting probability distribution on a and e is perfectly
correlated, while for x · z = 1 it is perfectly anti-correlated (i.e., e = 0 implies a = 1 and e = 1 implies
a = 0). Thus in a sense we have derived a PR box solely from the principle of the complete extension
(CEP). It is easy to see, that by negating z and e, one can instead obtain another maximally non-
local bipartite behaviour. Similarly, all of the other maximally non-local behaviours (i.e., all non-local
vertices of the polytope of two party binary input and binary output behaviours) can be obtained by
proper relabeling of the z and e.

Note that the PR box is a vertex in the polytope of two party binary input and binary output
behaviours [102]. Hence, we have the following conclusion:

Corollary 33. The PR box is a purification of a maximally mixed behaviour with a single binary
input and a single binary output.

We have therefore constructed the PR box without any reference to CHSH inequality [99] (in
contrast to how it was originally in [5]), as the non-signaling complete extension (NSCE) of a maximally
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mixed behaviour (50). One could argue that the PR box is present in the theory of non-signaling
behaviours from the very beginning. Whilst this is true, our derivation is based solely on the Definition
18, rather than relying on the structure of the polytope of non-signaling behaviours.

Remark 34. It is tempting to say that the non-signaling complete extension (NSCE) of two party
maximally mixed binary input and binary output behaviours is a tensor product of the PR boxes. It is
however not the case. This is due to the fact, that one of the valid ensembles of a maximally mixed
state IAB

4 = 1
2PRAB+ 1

2PRAB, where PRAB(ab|xy) = 1
2δa⊕b,xy⊕1 is a non-local behaviour supported on

the orthogonal subspace to that of the support of PR. Since this ensemble is clearly minimal, having 2
members, in definition of NSCE there should be the input z which allows the owner of extending system
to collapse the system AB into one of these maximally non-local behaviours (each with probability half).
Suppose now, by contradiction that the NSCE is of the form PRAXA

⊗PRBXB
. It is then clear to see,

that in such a behaviour none of direct measurements (choosing the inputs) has outcome behaviour on
AB of the form expected by measurement of demanded input z. However one should consider some
other possible ways of measuring system XAXB e.g. via wiring. Yet there is no such action on systems
XAXB, simulating joint outcomes of z, since that would lead to the so called non-locality swapping,
which is proven to be impossible in Refs. [84, 85].

By virtue of Theorem 7, getting a pure behaviour in the higher dimensional state space through
the construction of non-signaling complete extension (NSCE) is not always possible for any generic
behaviour. Indeed, if we choose any other behaviour in the polytope of single binary input and single
binary output, except for the maximally mixed and the four vertices behaviours, then its NSCE is not
a vertex. For example, let us consider the following behaviour

PA =
ax 0 1
0 1/3 2/3
1 2/3 1/3

(56)

which lies in the polytope of single party binary input and binary output behaviours, and it is
represented by the yellow point in Fig. 8. Each behaviour can be expanded in terms of the pure
behaviours of the polytope, hence

PA = x0P0
E + x1P1

E + x2P2
E + x3P3

E, (57)

where xi ≥ 0, ∀i, and
∑3
i=0 xi = 1. The general solutions of Eq. (57) is:

x0 = 1
3 (2− 3x3) ,

x1 = 1
3 (2− 3x3) ,

x2 = 1
3 (3x3 − 1) ,

x3 = x3

1
3 ≤ x3 ≤

2
3 (58)

To construct the minimal ensembles of behaviour PA, we have to find out the set of decomposition
over the pure points {P iE}, such that any proper subset of each choice can not be the ensemble of PA
with another set of probabilities. This implies that we have to find those solutions of Eq. (58), where
the minimal number of xi’s are nonzero. There are two of such choices, given by

x0 = 1
3 ,

x1 = 1
3 ,

x2 = 0,
x3 = 1

3

,


x0 = 0,
x1 = 0,
x2 = 1

3 ,

x3 = 2
3

, (59)

which, hence, form the two minimal ensembles of PA:

M0(PA) = {(1/3,P0
E); (1/3,P1

E); (1/3,P3
E)} = {p(i|0),Pi0E }, (60)

M1(PA) = {(1/3,P2
E); (2/3,P3

E)} = {p(i|1),Pi1E }. (61)
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Here we label the ensembles by {0, 1}, according to the inputs z and the members as P00 = P0
E,

P10 = P1
E, P20 = P3

E and P01 = P2
E, P11 = P3

E. Finally then, the NSCE of PA to system E is given by

PAE (ae|xz) =

x 0 1
z e

a 0 1 0 1

0
0 1/3 0 1/3 0
1 0 1/3 0 1/3
2 0 1/3 1/3 0

1 0 1/3 0 0 1/3
1 0 2/3 2/3 0

(62)

which lies in the polytope of two party behaviours, in which one party has a binary input and output,
whereas the other party has a binary input but a ternary output. Moreover, as we will prove in
the following section (Sec. B.1.1), this extended behaviour is not pure in the respective behaviour
polytope.

An example of Theorem 20 has been given in Sec. B.1.2, where we have shown that any pure
members ensemble of PA, given in Eq. (56), can be constructed by taking the convex combination
of its two minimal ensembles. This convex combination has been simulated by using an additional
randomness (a dice) at the input of the extending party. An arbitrary ensemble of PA, can be
constructed by passing the output of the extending party through a classical post-processing channel
(Theorem 22) has also been exemplified in Sec. B.1.3. The members of the mixed ensembles have
been depicted by the blue dots (for mixed ensemble 1) and by red dots (for mixed ensemble 2). By
enumerating the mixed ensembles with the input and the member behaviours with the output of
an additional system, an extension of PA has been generated. As the mixed ensembles of PA are
arbitrarily chosen, the extension made out of it is also an arbitrary extension of PA – given in Eq.
(79) of Sec. B.1.4. Moreover, for a generic behaviour, the non-signaling complete extension (NSCE)
introduces correlations (possibly non-local) between the extending and the extended system. It is
quite clear that, for a pure behaviour (a vertex of a polytope), there will be no correlation due to
NSCE, whereas it can inject a maximal amount of correlation when the given behaviour is maximally
mixed. For PA, we calculate the non-local correlation in Sec. B.1.5.

Another important aspect of non-signaling complete extensions (NSCE) is that, unlike quantum
purifications, the NSCE of an arbitrary behaviour and its conjugate behaviour are not the same. If
E(P )AE(ae|xz) is the NSCE of the behaviour PA(a|x), then the behaviour PE(e|z) =

∑
a PAE(ae|xz), is

the conjugate behaviour of PA. The NSCE of PE(e|z), according to the Definition 18, E(P )A′E(a′e|x′z)
is not equal to the E(P )AE(ae|xz). In section B.1.6, we provide an explicit example in favour of this
argument, for the behaviour PA, given in Eq. (56).

B.1.1 Example: the non-signaling complete extension that is not a vertex

In this section we will prove that the NSCE of PA (given in equation (56)) , is not a vertex in the higher
dimensional behaviour polytope. Consider an arbitrary behaviour PA1A2...An(a1a2 . . . an|x1x2 . . . xn),
with n parties A1A2 . . . An where the xi and ai are respectively the input and output of the ith party Ai.
Suppose there are mi possible measurement choices of Ai, i.e., xi ∈ {1, 2, . . .mi}, and corresponding
to each measurement xi = j the number of possible outcomes is dij , such that ai ∈ {1, 2, . . . , dij}. The
total number of parameters involved in defining the behaviour is given by Ref. [104] as

t =
n∏
i=1

mi∑
j=1

dij

 . (63)

Among these t parameters not all of them are independent as the behaviour should obey normalization
and non-signaling conditions. These conditions together imply that the behaviour must lie within a
particular polytope of Rt. If we construct a vector v ∈ Rt, whose entries are those t probabilities, then
the polytope can be defined as

P = {v | Av ≤ w} (64)
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for some w ∈ Rs, and A an t × s matrix. Here the condition Av ≤ w captures all of the constraints
that the probabilities need to satisfy.

Let us take an arbitrary element u ∈ P, and suppose Auu ≤ wu are those inequality constraints
among all possible constraints that are satisfied by u with equality [105], i.e., Auu = wu. Here, Au
and wu are sub-matrices of A and w respectively. Then from Theorem 5.7 of Ref. [105], u will be a
pure point of P if and only if rank (Au) = t.

The behaviour PAE, given in Eq. (62), belongs to a polytope which lies in a space of t = 20.
We now compute the rank of Au to demonstrate that this is not a vertex of the polytope. First we
count how many independent equality constraints are acting on PAE. The t = 20 probabilities are
PAE(00|00), PAE(01|00), . . . , PAE(12|11), i.e., PAE(ae|xz) for a, x ∈ {0, 1} and e ∈ {0, 1, 2} for z = 0
and e ∈ {0, 1} for z = 1. The equality constraints they need to satisfy are the non-signaling constraint
and normalization conditions, namely∑

a

PAE(ae|xz) =
∑
a

PAE(ae|x′z), ∀e, x, x′, z, (65)∑
e

PAE(ae|xz) =
∑
e

PAE(ae|xz′), ∀a, x, z, z′, (66)

and ∑
ae

PAE(ae|xz) = 1, ∀x, z. (67)

There are 5 from Eq. (65)8, 4 from Eq. (66)9, and another 4 from Eq. (67), totalling 13 equality
constraints. Moreover, among the 40 inequality constraints of the form 0 ≤ PAE(ae|xz) ≤ 1, ∀a, e, x, z,
(2 inequalities for each of the 20 probabilities PAE(ae|xz)), only 10 of them find equality with zeroes.
Note that there is no probability which finds equality with 1, as there is no entry of 1, in Eq. (62).
Hence, the total number of equality constraint are 23, and the matrix Au for which Auu = wu, is of
the dimension 23× 20. To obtain rank (Au), we need to find out the number of linearly independent
equality constraint out of the 23. The 10 equality constraint with zero, on the probabilities are all
linearly independent, but among those 13 (non-signaling constraint and normalization conditions)
only 9 of them are linearly independent – by choosing any 1 normalization condition, and any 8
non-signaling condition one can generate the remaining 4 conditions. Hence, the total number of the
linearly independent constraints, on the behaviour PAE is 9 + 10 = 19, and rank(Au) = 19 < 20.
Which allows us to state that behaviour PAE is not a vertex (extreme point) of the given polytope.

On the other hand the NSCE of the maximally mixed behaviour, the PR box given in Eq. (55) is
a pure behaviour in the polytope of two binary input output behaviours. This can be shown in the
following way: the space where the PR box lives is of t = 16 [102]. Amongst the 16 parameters there
are 8 equality constraints with zeroes and 4 + 4 = 8 linearly independent equality comes from the 8
non-signaling conditions and 4 normalization condition, hence rank(Au) = 16, which exactly matches
with the dimension of the space.

In the following lines we study particular properties of NSEA in a low dimensional case.

Observation 35. All non-deterministic behaviours in single party, binary input, binary output scenario
have two minimal ensembles. All minimal ensembles of those have either two or three members.

Proof. The polytope of single party binary input binary output behaviour belongs to set of reals of
dimension d = 2 and it has been given in Fig. 8. Suppose, P is any arbitrary behaviour in the
polytope, then from the theorem of Carathéodory [106,107], the maximal number of pure behaviours
in each minimal ensembles of P is 3. It is also clear from the figure that any 3 pure behaviours of
the polytope form a triangle, and any arbitrary point inside the polytope can be inside at most two
overlapping triangles. Hence, it has at most two minimal ensembles.

8∑
a

PAE(ae|xz) = PE(e|z), e ∈ {0, 1, 2} for z = 0 and e ∈ {0, 1} for z = 1.
9∑

e
PAE(ae|xz) = PA(a|x), a, x ∈ {0, 1}
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For any arbitrary behaviour inside that polytope, the minimal ensembles consists of any combination
of the following number of members.

Corollary 36. Among single party, binary input, binary output behaviours, only five of them have
NSCE that is a purification (NSCE which is a vertex).

Proof. Due to the Observation 35 we know that the non-signaling complete extensions of behaviours
in considered scenario are bipartite states in one of the following polytopes. Polytope of

(i) one binary input and one unary input with binary outputs: behaviours lying on the edges of the
polytope has single minimal ensembles with only two members.

(ii) two binary inputs, two binary outputs behaviours: when the initial behaviour has two minimal
ensembles and each of the ensembles has two members.

(iii) two binary inputs, one binary output, one binary/ternary output (depending on the corresponding
input setting) behaviours: behaviours lying on any one diagonal of the polytope.

(iv) two binary inputs, and two ternary outputs behaviours: for any arbitrary behaviour, not belongs
to the above sets.

For each local vertex (deterministic box) of the listed polytopes, if we trace out the second party by
summation over all of its outcomes, the result is one of the deterministic behaviours of the initial
polytope. Due to Theorem 1 of [102], we know the form of all non-local vertices in (i,ii,iii) polytopes.
In each case after tracing out the extending system (summation over outcomes), the result is the
maximally mixed behaviour of the initial system.
As we have investigated all the vertices which were suspected of being a purifications of behaviours from
single party, one binary input, one binary output scenario and in each case we obtained one of the five
states we conclude there are no other behaviours (in the initial polytope) that have purification.

B.1.2 Example: NSCE of PA gives access to any PME of PA

In Theorem 20, we state that, the extended system of the NSCE, can access any PMEs of the behaviour
PA, if it is equipped with arbitrary randomness. Any pure ensemble of PA, E (PA) = {xi,Pi}i, where
the {xi} satisfy Eq. (58), can be written down as convex combination of the minimal ensembles, which
is given below

E (PA) = λM0(PA) + (1− λ)M1(PA), (68)

with λ = 2 − 3x3 ∈ [0, 1], as x3 ∈ [1
3 ,

2
3 ]. If the extending party X chooses to toss a coin pt, (binary

output) and feed it to the input z of her part of the completely extended behaviour with pt(0) = λ,
and pt(1) = 1− λ, then the extending system has access to any pure ensemble of PA.

B.1.3 Example: NSCE of PA gives access to any mixed ensemble of PA

In this section, we will explicitly exemplify that the extending system E can access all possible mixed
ensemble Emix(PA) = {pm,Pm

M}m, of an arbitrary behaviour PA, (given in Theorem 22). Here the
behaviours Pm

M are any arbitrary behaviours.
Example 1: Suppose X wants to access the following ensemble of mixed behaviours

Emix(PA) =
{(33

81 ,P
0
M

)
;
(32

81 ,P
1
M

)
;
(16

81 ,P
2
M

)}
, (69)

in part of system A10, where the mixed behaviours (the blue points in Fig. 8), are given by

P0
M =

ax 0 1
0 1/5 2/5
1 4/5 3/5

, P1
M =

ax 0 1
0 1/5 9/10
1 4/5 1/10

, P2
M =

ax 0 1
0 7/8 3/4
1 1/8 1/4

.

(70)

10Here we use tilde, on the symbol of ensemble to denote a particular ensemble among the set of ensembles.
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Each of these mixed behaviours has some decompositions over the pure behaviours, which are certainly
not unique, consider the following minimal one, which are

M (P0
M) =

{(2
5 ,P

1
E

)
;
(1

5 ,P
2
E

)
;
(2

5 ,P
3
E

)}
, (71)

M (P1
M) =

{( 1
10 ,P

0
E

)
;
( 1

10 ,P
2
E

)
;
(4

5 ,P
3
E

)}
, (72)

and

M (P2
M) =

{(3
4 ,P

0
E

)
;
(1

8 ,P
1
E

)
;
(1

8 ,P
2
E

)}
, (73)

Put them into Eq. (69), the mixed ensemble then turn out to be the pure one, given by

Epure(PA) =
{( 76

405 ,P
0
E

)
;
( 76

405 ,P
1
E

)
;
( 59

405 ,P
2
E

)
;
(194

405 ,P
3
E

)}
= {r(e),Pe

E} (74)

One can check that Epure(PA) = 76
135M0(PA) + 59

135M1(PA), and E can access Epure(PA) by choosing
the input according to the probability distribution, {pt(0) = 76

135 , pt(1) = 59
135}. This can be done by

feeding the output of a flipped coin to the input z of her part of the NSCE, E(P)AE(ae|xz).
Once the PME in part of A has been prepared, the prefixed mixed ensembles has been constructed

by passing the output e through a classical channel (post-processing channel) Pc(m|e), which is

Pc(m|e) =

m
e 0 1 2 3

0 0 33/38 33/59 33/97
1 4/19 0 16/59 64/97
2 15/19 5/38 10/59 0

(75)

the index m is the flag in part of E, different m give the access to different mixed behaviour Pm
M with

probability pm. One can check that pm =
∑
e Pc(m|e)r(e), and Pm

M = 1
pm

∑
e Pc(m|e)r(e)P eE . Thus we

can see that the extending system can be able to access any ensemble of behaviour PA, by NSCE with
arbitrary randomness which will mix the minimal ensembles by mixing the input z, and then gluing
the output e by a conditional classical channel.

Example 2: PA can also be expanded as another mixed ensemble E ′mix(PA) =
{(

2
5 ,P

′0
M

)
;
(

3
5 ,P

′1
M

)}
,

(the red points in Fig. 8) where

P′0M = 5/6 1
1/6 0 =

{(5
6 ,P

0
E

)
;
(1

6 ,P
3
E

)}
, (76)

P′1M = 0 4/9
1 5/9 =

{(5
9 ,P

1
E

)
;
(4

9 ,P
3
E

)}
. (77)

Now the pure ensemble turn out to E ′(PA) = M0(PA) = {(1/3,P0
E); (1/3,P1

E); (1/3,P3
E)} = {r′(e),PeE}.

For this, E will chose a completely biased coin, pt(0) = 1, pt(1) = 0, and feed its output to the input
of the NSCE, and the post-processing channel Pc is

Pc(m|e) =
m
e 0 1 2 3

0 1 0 − 1/5
1 0 1 − 4/5

(78)

which will be used to post-process the output of the extending part. Here we keep the column
for e = 2 “blank” as there is no such incidence that the pure behaviour P 2

E occur. Clearly p0 =∑
e r
′(e)Pc(m|e) = 1

3 + 1
3 ×

1
5 = 2

5 and P′0M = 1
p0

∑
e r
′(e)Pc(m = 0|e)PeE = 5

6P0
E + 1

6P3
E.
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B.1.4 NSCE can generate any extension

(Example of Theorem 24). Numbering these two examples of mixed ensembles with z′ = 0 and
z′ = 1, we obtain an arbitrary extension of PA to the behaviour PAE(am|xz′). Such that {p(m|z′ =
0),Pm0(a|x)} = Emix(PA) and {p(m|z′ = 1),Pm1(a|x)} = E ′mix(PA). And the arbitrary extended
behaviour is

Pmix
AE

(
am|xz′

)
=

x 0 1
z′ m

a 0 1 0 1

0

0 11
135

44
135

22
135

11
45

1 32
405

128
405

16
45

16
405

2 14
81

2
81

4
27

4
81

1 0 1
3

1
15

2
5 0

1 0 3
5

4
15

1
3

(79)

We can consider all possible extension of PA → PAE, which will take care of all possible ensembles of
PA.

B.1.5 Quantifying non-locality introduced in NSCE

Here we quantify the amount of non-locality introduced among the extending and the extended system
in the process of the construction of the NSCE, following Definition 18.

We have observed the fact that the completely extended behaviour of the maximally mixed single
input output box, has turned out to be the Popescu-Rohrlich box [5], which (under suitable pre
and post processing) can violate any kind of bipartite Bell expression maximally. In that case, the
maximal amount of non-locality was introduced in the process of the construction of the NSCE. On
the other hand, to quantify the non-locality of the NSCE of the non-maximally mixed single input
output behaviour given in Eq. (56), the NSCE is shown in Eq. (62), to have different cardinalities of
outputs. To get rid of this asymmetry in the extending system of X, we can do two possible surgeries.
Case 1: One can add one more outputs in the purified system and calculate the Bell like inequality
defined by Collins et. al. (CGLMP) [108] (the acronym is after it finders D. Collins, N. Gissin, N.
Linden, S. Massar and S. Popescu). The behaviour which maximizes the CGLMP bound has the
following form after a local relabeling of the inputs and outputs

PAE (ae|xz) =

x 0 1
z e

a 0 1 2 0 1 2

0
0 1/3 0 0 0 1/3 0
1 0 2/3 0 2/3 0 0
2 0 0 0 0 0 0

1
0 1/3 0 0 1/3 0 0
1 0 1/3 0 0 1/3 0
2 0 1/3 0 1/3 0 0

(80)

For this bipartite two inputs and three-output box, the CGLMP bound turns out to be 3, which is
beyond the quantum limit quoted to be 2.87 in Ref. [108].
Case 2: Another way to calculate the non-locality of this asymmetric behaviour by following the
prescription giving in Ref. [104]. It proposes to merge the extra outcomes in the following way

P′AE (ae = 1|xz) = PAE (ae = 1|xz) + PAE (ae = 2|xz)
(81)
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Hence the behaviour in Eq. (62) can be transformed to a bipartite binary input output box,

P′AE (ae|xz) =

x 0 1
z e

a 0 1 0 1

0 0 1/3 0 1/3 0
1 0 2/3 1/3 1/3

1 0 1/3 0 0 1/3
1 0 2/3 2/3 0

(82)

For this behaviour we have the well known CHSH inequality to quantify the non-locality, and it is
3.33, which is also beyond the quantum limit. However, the amount of non-locality for this NSCE is
substantially less than the amount of non-locality present in a PR box. It therefore seems that it may
be possible to quantify the non-locality between subsystem and its extending system as a measure of
how close a behaviour is to being a vertex for NSCE in the theory of non-signaling behaviours.

Until now, we have given examples in favor of the various properties of NSCE we have discovered so
far. Now we want to shed some light on another aspects of NSCE which shows a sharp disparity with
the purification principle of the QT. If |ψAE〉, is the purification of a quantum state ρA, to system E,
then the same pure state is also the purification of quantum state ρX = trA|ψAE〉〈ψAE |. In the latter
section we give an example to show that this is not the case for the NSCE. If we have a behaviour PA,
and PAE is its NSCE, then we say the behaviour PE = trAPAE is the conjugate box. We are going
now to construct the NSCE of the conjugate box.

B.1.6 Complete extension of the conjugate box

In this section, we will find the NSCE of the conjugate behaviour of the behaviour given in Eq. (56).
The conjugate box, PE can be obtained from Eq. (62), by PE(e|z) =

∑
a PAE(ae|xz), and it is given

by

PE(e|z) =

ez 0 1
0 1/3 1/3
1 1/3 2/3
2 1/3 0

(83)

This behaviour lies in a 4 dimensional behaviour polytope whose vertices are given by

P0
E =

ez 0 1
0 1 1
1 0 0
2 0 0

, P1
E =

ez 0 1
0 0 0
1 1 1
2 0 0

, P2
E =

ez 0 1
0 0 0
1 0 0
2 1 1

,

P3
E =

ez 0 1
0 1 0
1 0 1
2 0 0

, P4
E =

ez 0 1
0 1 0
1 0 0
2 0 1

, P5
E =

ez 0 1
0 0 1
1 1 0
2 0 0

,

P6
E =

ez 0 1
0 0 1
1 0 0
2 1 0

, P7
E =

ez 0 1
0 0 0
1 0 1
2 1 0

, P8
E =

ez 0 1
0 0 0
1 1 0
2 0 1

. (84)
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To obtain the NSCE of this box, we need to find the minimal ensembles of PE, which are

M0(PE) = {(1/3,P0
E); (1/3,P1

E); (1/3,P7
E)}, (85)

M1(PE) = {(1/3,P1
E); (1/3,P3

E); (1/3,P6
E)}, (86)

M2(PE) = {(1/3,P3
E); (1/3,P5

E); (1/3,P7
E)}. (87)

Consider the NSCE of PE to a system A′, as PA′E(a′e|x′z), where {p(a′ = i|x′ = k),PE
ik(e|z)} = Mk,

the NSCE of PE is

PA′E
(
a′e|x′z

)
=

x′ 0 1 2
z e

a′ 0 1 2 0 1 2 0 1 2

0
0 1

3 0 0 0 1
3 0 1

3 0 0
1 0 1

3 0 1
3 0 0 0 1

3 0
2 0 0 1

3 0 0 1
3 0 0 1

3

1 0 1
3 0 0 0 0 1

3 0 1
3 0

1 0 1
3

1
3

1
3

1
3 0 1

3 0 1
3

(88)

One can clearly see that PAE 6= PA′E, for example, by noticing the mismatch of the cardinality of
the inputs of the extended party of the conjugate system.

B.2 Dimensionality of the No-signaling complete extension
In this subsection we provide a proof for Theorem 25 of the main text.

Proof. Let us recall, that in quantum theory (due to the Schmidt decomposition) purifications can
always be found with an extending system with the same dimension as the extended system. We are
interested in similarly quantifying the size of the minimal NSCE. However, there are many possible
quantifiers that we could use here, for example, we can measure the size of the NSCE using the total
number of its outputs, inputs and outputs, or, the dimension of its state space (vector space). The
theory of non-signalling behaviours is a discrete convex theory, hence we call its state space a convex
polytope, a multidimensional generalization of a convex polyhedron. In this section, we strive to upper
bound the dimension of the polytope that contains NSEA of some fixed but arbitrary behaviour P.
We identify the dimension of behaviour with the dimension of a polytope it belongs. Although we
chose the dimension of NSEA, as a quantifier of its size, other aspects of it, like the number of its
inputs and outputs, will also be discussed in the following.

From Theorem 1 of [104] we know that the dimension of a certain behaviour polytope B is:

dimB =
n∏
i=1

mi∑
j=1

(vij − 1) + 1

− 1, (89)

where n is the total number of non-signalling parties, mi is the total number of the inputs of the ith
party, with vij being the number of outputs for the jth input. This polytope of dimB is contained in
the vector space of Rt, where t =

∏n
i=1

∑mi
j=1 vij is the total number of outputs.

Suppose now that P ∈ B, then there exists a polytope B̃, such that the NSEA E(P ) ∈ B̃. The
dimension of B̃ can be determined by:

dim B̃ =
n+1∏
i=1

mi∑
j=1

(vij − 1) + 1

− 1 (90)

=

mn+1∑
j=1

(vn+1,j − 1) + 1

 (dimB + 1)− 1, (91)

where n+ 1 is the index of the extending party, and the last equality is due to expansion of product
with respect to n+ 1-th term.
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To obtain the upper bound on dim B̃ it is enough now to find upper bounds on the number of inputs
and outputs of the extending system. The following considerations have a qualitative character, we are
much more interested in the fact that an upper bound on dim B̃ exists than in its tightness. The upper
bound on the number of outputs can be found via Carathéodory theorem [107], i.e., vn+1,j ≤ dimB+1,
we obtain:

dim B̃ ≤ (mn+1 dimB + 1) (dimB + 1)− 1. (92)

It is instructive to notice that the above inequality can be saturated for some generic behaviours. The
number of inputs of the extending system is equal to the number of minimal ensembles of the behaviour
P. Suppose now that V is the number of vertices of the polytope B. Then, using Carathéodory theorem
again, each choice of dimB+ 1 vertices (out of V ) leads to a minimal ensemble via elimination of the
vertices, therefore mn+1 ≤

( V
dimB+1

)
, and hence:

dim B̃ <
((

V

dimB + 1

)
dimB + 1

)
(dimB + 1) , (93)

where the last term (−1) was neglected.
The characterisation of the vertices of polytopes of behaviours with two binary inputs and two

binary outputs in bipartite and tripartite scenarios was provided in [102]. In general, however, finding
vertices of a polytope is a hard problem known as the “vertex enumeration problem”. Using McMullen’s
Upper Bound Theorem [107,109,110], we can, however, still obtain an upper bound for the number of
vertices in terms of dimB and t. Here we use a fact that a polytope can be defined as an intersection
of a set of halfspaces. Then following [110] (up to notation) we have the subsequent statement.

Let A be an m× t matrix of reals and let b ∈ Rm be a real vector. Consider a polytope

P =
{
x ∈ Rt : Ax ≤ b

}
, (94)

and VP be the number of vertices of P then:

VP ≤
(
m− t− s

s

)
+
(
m− s− 1
t− s− 1

)
, (95)

where s = bt/2c.
To achieve our goal it is enough to determine the number of rows m of matrix A. We divide

now all the constraints on the non-signalling polytope into three classes, written in terms of marginal
probabilities pijk:

1. Probabilistic constraints: 0 ≤ pijk ≤ 1.

2. Normalization constraints, i.e,
∑vij

k pijk = 1.

3. non-signalling constraints (see Section 4.1).

It is easy to see that constraints of type 1 contribute to 2t rows of matrix A. In the next step we
observe that constraints of type 2 and 3 are linear and together reduce the dimension of the space
of correlations from t to dimB, and hence can be encoded in t − dimB linearly independent rows of
matrix A (irrespectively on the actual number of constraints). The total number of rows is therefore
upper bound with m ≤ 3t − dimB (there still is some redundancy because of the relation between
constraints of types 1 and 2), hence:

V ≤
(

2t− bt/2c − dimB
bt/2c

)
+
(

3t− bt/2c − (dimB + 1)
t− bt/2c − 1

)
. (96)

Finally, we obtain

dim B̃ < (dimB + 1)

×
(((2t−bt/2c−dimB

bt/2c
)

+
(3t−bt/2c−(dimB+1)

t−bt/2c−1
)

dim B + 1

)
dimB + 1

)
, (97)
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where:

dimB =
n∏
i=1

mi∑
j=1

(vij − 1) + 1

− 1, t =
n∏
i=1

mi∑
j=1

vij . (98)

In Theorem 25 we were interested only in showing that the dimension of the complete extension
is bounded from above, and hence our result is very loose. In particular the number of candidates for
a minimal ensemble is very inefficient upper bound on the number of minimal ensembles, although
obtained with simple combinatorics. Therefore, the first place for improvement is to find tighter
upper bound on the number of minimal ensembles. A more rigorous treatment can show that
many candidates lead to the same minimal ensemble and moreover that some of them are not valid.
Furthermore, the upper bound on the number of vertices that we used is very general and does not
incorporate, for example, symmetries of the non-signalling polytope.

B.3 Complete extensions of three-cycle contextual behaviour
In the previous sections, we have considered the NSCE of an arbitrary behavior which is inherently of
the form PA(a|x), i.e., a conditional probability distribution consist of only single set of input x and
output a. The polytope of those behaviors are completely determined by the constraints probability
distributions satisfy, like non-signaling and normalization condition. Here, within the theory of
non-signalling behaviours (NS) we will study contextuality scenarios, and, hence, investigate NSCE
of contextual behaviours. The polytope of contextual behaviors are not simply the non-signalling
polytopes but rather they are termed as no-disturbance polytopes. And while considering the minimal
ensembles of a contextual behavior we will focus on the pure members of the no-disturbance polytopes.
In particular we are going to focus on the three-cycle contextuality scenario [111,112] (aka Specker’s

triangle [113,114]).
First we will introduce this contextuality scenario in standard notation before showing how to

recast it within NS. The three-cycle scenario consists of a triple of binary observables {X0, X1, X2} with
outcomes {a, b, c} valued in {−1, 1}, together with the constraint that these are pairwise compatible –
that is, any pair {Xi, Xj} can be jointly measured without disturbance, but are globally incompatible
– that is, there is no way to measure all three without disturbance. Such a setup can be realised
in quantum theory [115] provided that the observables are not taken to correspond to projective
measurements. This compatibility structure can be captured by the set of maximal contexts [111,112]

C3 = {{X0, X1}, {X1, X2}, {X2, X0}}. (99)

The behaviour of a particular realisation of this scenario is captured by the joint distributions over
the outcomes of the compatible observables, i.e., p(a, b); p(b, c); and p(c, a), which can be represented
in the following table:

a
b +1 -1 b

c +1 -1 c
a +1 -1

+1 +1 +1
-1 -1 -1

(100)

Any such behaviour must satisfy certain no-disturbance constraints11 [111,112], which together define

11As it should follow the no-disturbance condition like the non-signaling one in non-locality, which is

p(a) =
1∑

b=−1

p(a, b) =
1∑

c=−1

p(c, a) (101)

p(b) =
1∑

a=−1

p(a, b) =
1∑

c=−1

p(b, c) (102)

p(c) =
1∑

b=−1

p(b, c) =
1∑

a=−1

p(c, a) (103)
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the no-disturbance polytope. Formally defining contextuality is beyond the scope of this paper, but,
for our purposes it suffices to note that a behaviour is non-contextual if it is a convex combination of
the eight deterministic vertices of the no-disturbance polytope

N C0 = 1 0 1 0 1 0
0 0 0 0 0 0 N C1 = 1 0 0 1 0 0

0 0 0 0 1 0

N C2 = 0 1 0 0 1 0
0 0 1 0 0 0 N C3 = 0 0 1 0 0 1

1 0 0 0 0 0 N C4 = 0 1 0 0 0 0
0 0 0 1 1 0

N C5 = 0 0 0 1 0 0
1 0 0 0 0 1 N C6 = 0 0 0 0 0 1

0 1 1 0 0 0 N C7 = 0 0 0 0 0 0
0 1 0 1 0 1

otherwise, it is a contextual behaviour. Any other vertex of the no-disturbance polytope is therefore
contextual, indeed, there are four of these which are

C0 = 1/2 0 1/2 0 0 1/2
0 1/2 0 1/2 1/2 0 C1 = 1/2 0 0 1/2 1/2 0

0 1/2 1/2 0 0 1/2

C2 = 0 1/2 1/2 0 1/2 0
1/2 0 0 1/2 0 1/2 C3 = 0 1/2 0 1/2 0 1/2

1/2 0 1/2 0 1/2 0 .

Note that the dimension of the no-disturbance polytope is 6, hence, according to the Carathéodory
theorem [107], the set of minimal ensembles of an arbitrary behaviour inside the polytope has at most
7 elements.

We will now focus on a particular class of behaviours within this polytope, namely those lying
on an isotropic line – a mixture of a contextual vertex, say C0 and the maximally mixed behaviour12

which is a non-contextual behaviour. We denote an element on this isotropic line (parameterised by
λ ∈ (0, 1)) as Pλ which can be explicitly written as

Pλ = (1− λ)C0 + λM

=
2−λ

4
λ
4

2−λ
4

λ
4

λ
4

2−λ
4

λ
4

2−λ
4

λ
4

2−λ
4

2−λ
4

λ
4

(105)

The minimal ensembles of Pλ, have been found by applying numerical techniques to obtain the
solution of a set of linear equations, and they are as follows.

For all λ ∈ (0, 1) we have the following

v =
[ λ

4 ,
λ

4 , 1− λ

2
]

(106)

M1(P) =
[
N C2, N C5, C0

]
(107)

v =
[ λ

4 ,
λ

4 , 1− λ, λ

2
]

(108)

M2 =
[
N C3, N C4, C0, C1

]
(109)

M3 =
[
N C1, N C6, C0, C2

]
(110)

M4 =
[
N C0, N C7, C0, C3

]
(111)

12The maximally mixed behaviour M is given by

M =
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

(104)
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v =
[
1− 3λ

4 ,
λ

4 ,
λ

4 ,
λ

4
]

(112)

M5 =
[
C0, C1, C2, C3

]
(113)

v =
[ λ

4 ,
λ

4 ,
λ

4 ,
λ

4 , 1− λ
]

(114)

M6 =
[
N C1, N C2, N C3, N C7, C0

]
(115)

M7 =
[
N C0, N C4, N C5, N C6, C0

]
(116)

In λ ∈ (0, 2
3), we additionally have

v =
[ λ

4 ,
λ

4 ,
λ

4 ,
λ

4 ,
λ

4 ,
λ

4 , 1−
3λ
2
]

(117)

M8 =
[
N C0,N C1, N C3, N C4, N C6, N C7, C0

]
(118)

Whilst in λ ∈ (2
3 , 1), the behaviour has another 5 minimal ensembles. However, in this range of λ, Pλ

is non-contextual (see Theorem 1 in [112]) and we are interested in exploring the case in which Pλ
displays contextuality so we will not go into detail about these.

To study the NSEAs for contextuality scenarios we must first recast the scenario into the theory
of non-signalling behaviours. In particular, rather than describing the scenario by a triple of bipartite
distributions (i.e., p(a, b), p(b, c), and p(c, a)) we will instead describe the scenario by a conditional
probability distribution. We do this by associating the input x ∈ {0, 1, 2} to the maximal contexts,
i.e., 0 ∼ {X0, X1}, 1 ∼ {X1, X2}, and 2 ∼ {X2, X0}; and associating an outcome a′ ∈ {0, 1, 2, 3}
to the outcome of the bipartite distributions {+1,−1} × {+1,−1}. This defines an embedding of
the no-disturbance polytope into the polytope of single input output behaviours (with the relevant
dimensions).

In our particular example of interest, namely Pλ using this embedding we can associate the
behaviour of the contextuality scenario Pλ to the single input output behaviour

P′Aλ =

a′
x 0 1 2

0 2−λ
4

2−λ
4

λ
4

1 λ
4

λ
4

2−λ
4

2 λ
4

λ
4

2−λ
4

3 2−λ
4

2−λ
4

λ
4

(119)

Now we are in the position that we can construct the NSCE of P ′Aλ, in particular, focusing on the
contextual case in which λ ∈ (0, 2

3). Note however, that we want to construct the NSCE not for the
minimal ensembles of the behaviour within the single input output polytope, but for the ensembles
within the embedded no-disturbance polytope. The NSCE of this will however still live inside the
polytope of no signalling behaviours with a pair of inputs and outputs (of suitable dimensions).
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In particular, one can show that the NSEA of P ′Aλ in λ ∈ (0, 2
3) is given by

P′AEλ (ae|xz) =

x 0 1 2
z e

a 0 1 2 3 0 1 2 3 0 1 2 3

0
0 0 λ

4 0 0 0 0 λ
4 0 λ

4 0 0 0
1 0 0 λ

4 0 0 λ
4 0 0 0 0 0 λ

4
2 2−λ

4 0 0 2−λ
4

2−λ
4 0 0 2−λ

4 0 2−λ
4

2−λ
4 0

1

0 0 0 λ
4 0 λ

4 0 0 0 0 λ
4 0 0

1 0 λ
4 0 0 0 0 0 λ

4 0 0 λ
4 0

2 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0
3 λ

4 0 0 λ
4 0 λ

4
λ
4 0 λ

4 0 0 λ
4

2

0 λ
4 0 0 0 0 λ

4 0 0 0 0 λ
4 0

1 0 0 0 λ
4 0 0 λ

4 0 0 λ
4 0 0

2 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0
3 0 λ

4
λ
4 0 λ

4 0 0 λ
4

λ
4 0 0 λ

4

3

0 λ
4 0 0 0 λ

4 0 0 0 λ
4 0 0 0

1 0 0 0 λ
4 0 0 0 λ

4 0 0 0 λ
4

2 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0
3 0 λ

4
λ
4 0 0 λ

4
λ
4 0 0 λ

4
λ
4 0

4

0 4−3λ
8 0 0 4−3λ

8
4−3λ

8 0 0 4−3λ
8 0 4−3λ

8
4−3λ

8 0
1 λ

8 0 0 λ
8 0 λ

8
λ
8 0 λ

8 0 0 λ
8

2 0 λ
8

λ
8 0 λ

8 0 0 λ
8

λ
8 0 0 λ

8
3 0 λ

8
λ
8 0 0 λ

8
λ
8 0 0 λ

8
λ
8 0

5

0 λ
4 0 0 0 0 λ

4 0 0 0 0 λ
4 0

1 0 λ
4 0 0 0 0 λ

4 0 λ
4 0 0 0

2 0 0 λ
4 0 λ

4 0 0 0 0 λ
4 0 0

3 0 0 0 λ
4 0 0 0 λ

4 0 0 0 λ
4

4 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0

6

0 λ
4 0 0 0 λ

4 0 0 0 λ
4 0 0 0

1 0 λ
4 0 0 0 0 0 λ

4 0 0 λ
4 0

2 0 0 λ
4 0 0 λ

4 0 0 0 0 0 λ
4

3 0 0 0 λ
4 0 0 λ

4 0 0 λ
4 0 0

4 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0

7

0 λ
4 0 0 0 λ

4 0 0 0 λ
4 0 0 0

1 λ
4 0 0 0 0 λ

4 0 0 0 0 λ
4 0

2 0 0 λ
4 0 λ

4 0 0 0 0 λ
4 0 0

3 0 λ
4 0 0 0 0 0 λ

4 0 0 λ
4 0

4 0 0 0 λ
4 0 0 λ

4 0 0 λ
4 0 0

5 0 0 0 λ
4 0 0 0 λ

4 0 0 0 λ
4

6 2−3λ
4 0 0 2−3λ

4
2−3λ

4 0 0 2−3λ
4 0 2−3λ

4
2−3λ

4 0

(120)

One can then observe that non-locality is a special case of contextuality in which the no-disturbance
polytope coincides with a non-signalling polytope – in such a case the NSCE that we construct for the
contextuality scenario will be precisely that which we would construct in the non-signalling scenario.

Note that as the no-disturbance polytope is a discrete theory, that theorem 7 applies and so in
general the NSEAs that we construct will not be purifications. However, it would be interesting to
study the cases in which they are.
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B.4 Complete extension of the behaviours lying on the isotropic line
The aim of this section is to construct explicitly the NSCE of the isotropic behaviour, that is, a
mixture of the PR and anti-PR box. We therefore focus on the polytope of behaviours, PAB(ab|xy),
with two binary inputs x, y ∈ {0, 1}, two binary outputs a, b ∈ {0, 1}, and satisfying the non-signaling
condition. There are 24 extremal (pure) behaviours (vertices) of this polytope, among which 16 are
local behaviours given by

Lαβγδ(ab|xy) =


1 if a = αx⊕ b,

b = γy ⊕ δ
0 otherwise.

(121)

with α, β, γ and δ ∈ {0, 1}. And another 8 non-local behaviours, which are

Brst(ab|xy) =
{

1/2 if a⊕ b = xy ⊕ rx⊕ sy ⊕ t
0 otherwise. (122)

with r, s, t taking values either 0 or 1 [102]. The triple (r, s, t) enumerates the non-local behaviours
in the polytope of behaviours with two binary inputs and two binary outputs. Hence, the isotropic
behaviour can be formulated as, B(η)AB(ab|xy) = ηB000(ab|xy) + (1 − η)B111(ab|xy), where η ∈
(0, 1), and where B000 and B111 are the PR and anti-PR boxes respectively. One can easily check
that B(1

2) = PmAB(ab|xy), is a maximally mixed behaviour in the polytope of two input two output
behaviours (the one taking value P (ab|xy) = 1

4 for all a, b, x, y ∈ {0, 1}). All the behaviours B(η), for
η ∈ (1, 1

2) can be transformed into to the behaviours B(η), for η ∈ (1
2 , 0) by local relabeling of inputs

and outputs. Thus, in our investigation we will consider only the behaviours lying on the isotropic
line from the PR box to maximally mixed behaviour, i.e., for B(η), where η ∈ [1

2 , 1).
We know from the definition of NSCE, Definition 18, that, corresponding to each input of the

extending party, there is a minimal ensemble M(B(η)), where the members of the ensembles are
enumerated by the outputs of the extending system. Hence, finding all possible minimal ensembles of
a behaviour is sufficient for the construction of NSCE.

B.4.1 Minimal ensembles for isotropic behaviours

Our aim is to find the minimal ensembles for the behaviours lying on the isotropic line, but, in
this section we first focus on the minimal ensembles for a particular behaviour, the Bell Tsirelson
behaviour [116]. The Bell Tsirelson behaviour, lying on the isotropic line for η = 2+

√
2

4 , reaches the
quantum limit in violating the CHSH inequality [99]. The challenge in finding the minimal ensembles
is that the Bell Tsirelson behaviour is specified by an irrational number, however, despite this, we are
able to find all of its minimal ensembles analytically, due to the following observations and a theorem.

Observation 37. All the pure members ensembles of the behaviours B(η), in the isotropic line,
contains the PR box, B000 as one of its member element, for all η ∈ (3

4 , 1].

Proof. By direct inspection of the 24 vertices of the polytope of behaviours with two binary inputs
and two binary outputs we observe that PR-box is the only behaviour, which has value 4 of the CHSH
functional which reads

β(P ) =
∑
x,y

∑
(a,b)∈supp(B000)

P (ab|xy) (123)

Moreover, for all other vertices the functional achieves values ≤ 3. It is also clear that the functional
β is linear (in fact it is equal to 2〈P |B000〉 where 〈.|.〉 denotes Euclidean scalar product of vectors (see
Lemma 4 of [117]). Let us then suppose that there exists an ensemble {pi, Vi}i of a behaviour P from
the isotropic line (3/4, 1], which does not have PR in its set of members (here Vi are the vertices of
the polytope). We have then β(P ) = β(

∑
i piVi) =

∑
i piβ(Vi) ≤

∑
i pi3 ≤ 3. This contradicts the fact

that all behaviours from the considered set satisfy β(P ) > 3 i.e. they violate CHSH inequality.

Let SM (η) denote the set of all minimal ensembles of the isotropic behaviour B(η).
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Lemma 38. Let 1 > η′ > η > 3
4 , then for any minimal ensemble from SM (η), there exists a unique

minimal ensemble of SM (η′) with the same set of members.

Proof. Since η, η′ ∈ (3
4 , 1) by observation 37, all the minimal ensembles of B(η) must contain B000 as

its members elements. Now, from lemma 29, for the set V (M1) there exists unique weights {pi > 0}ni=0
such that ∑

Vi∈V (M1)
piVi = B(η), (124)

where V0 = B000 and Vi for i =∈ {1, ..., n} are vertices of the polytope of behaviours with two binary
inputs and two binary outputs. Now, from η′ > η there exists unique weight 1 > q > 0 such, that
B(η′) = qB(η) + (1 − q)B000. Hence, for the set {Vi}ni=0 there exist unique weights {ri}ni=0 given by
equations r0 = qp0 + (1− q) and ri = pi(1− q) for i ∈ {1, ..., n}, such that

∑
i riVi = B(η′). Hence, by

lemma 29, the ensemble {ri, Vi}ni=0 is minimal ensemble of B(η′), and the assertion follows.

We will now adopt the notation, that V is the set of the sets of members of minimal ensembles:

V(P ) :=
⋃

M∈SM(P )
{V (M(P ))}. (125)

From lemma 38 we have the immediate corollary:

Corollary 39. Let 1 > η′ > η > 3
4 , and B(η) = ηB000 +(1−η)B111 then, there is V(P (η)) ⊆ V(P (η′))

Theorem 40. Let 3
4 < η′ < η < η′′ < 1. If V(B(η′)) = V(B(η′′)) ≡ V, then we also have V(η) = V.

Proof. Since η′, η′′ ∈ (3
4 , 1), from the Corollary 39, we have

V(B(η′)) ⊆ V(B(η)) ⊆ V(B(η′′)) (126)

However by assumption there is V(B(η′′)) ⊆ V(B(η′)), hence V(B(η)) ⊆ V(B(η′)), and the assertion
follows.

The above theorem holds for the range of the isotropic parameter (3
4 , 1). Moreover, due to this

theorem we are able to find out the minimal ensembles of all non-local B(η) for η ∈ (1
2 , 1). However,

numerical investigate indicates that it holds true also for the (1
2 ,

3
4 ], hence we conjecture as follows:

Conjecture 41. Let 1
2 < η′ < η < η′′ < 1. If V(B(η′)) = V(B(η′′)) ≡ V, then we also have V(η) = V.

The above observation and theorem help us to find out the NSEA of the Bell-Tsirelson’s box.
There are a total of 354 minimal ensembles of B(η), for η = 2+

√
2

4 . Surprisingly, the NSEA of a noisy
PR box leads to an extending system E embedded in a vector space of dimension 2, 837 (taking into
account the normalization constraints it effectively lives in a 2, 483 dimensional space) and the entire
NSEA, is lying in a polytope which is embedded in a vector space of dimension 45, 392 taking into
account the normalization and non-signaling constraints effectively lives in space of dimension 22, 355.
The list of these ensembles are given in Sec. B.4.3.

B.4.2 Dimension of the extending party for the behaviours lying on the isotropic line

In the previous section, we discussed how one can construct the NSCE of the Bell-Tsirelson box. In
this section, due to the large number of minimal ensembles for a generic B(η), we will discuss some
of the statistics of the NSCE of more general isotropic behaviours.

For any value of η ∈ [1
2 , 1), we have provided an estimate of the NSCE for the bipartite behaviour

B(η) for η ∈ (1
2 , 1). This is indeed an NSCE of this behaviour provided that conjecture 41 holds

true. The number of elements in each of the minimal ensembles is bounded between 2 and dimB+ 1,
which is 9, for two input and two output binary behaviours. In the entire range of η ∈ (1

2 , 1), we
have numerically calculated the total number of inputs (number of minimal ensembles |M|) of the

51



0.5 0.6 0.7 0.8 0.9 1
η

500

1000

1500

1670

|ℳ|

0.5 0.6 0.7 0.8 0.9 1
η

11

12

13

14
Log2DE

Figure 9: Panel a) Histogram plot of the total number of inputs |Z| = |M| of the extending system of the NSEA
of the behaviours along the isotropic line. Different color in each column of the histogram shows the the number of
inputs having different numbers of outputs. The height of the yellow color in each column represents the number
of inputs with 9 outputs, orange represents the same for 8 outputs, green is for 7 outputs, red is for 6 outputs and
so on. The inputs of the extending system for various values of outputs are given in Table 1. Panel b) Histogram
plot of the memory required in the extending system to store the information about the minimal ensembles of the
behaviours along the isotropic line. Here DE represents the dimension of the extending system of NSEA. All the
plots have been given from η = 0 to η = 1

2 , i.e., from the PR box to the maximally mixed box.

extending system, which have an equal number of outputs vj ∈ {2, 3, . . . , 9}. This is given in table 1.
The Bell-Tsirelson box, η = 2+

√
2

4 , lying in the range η ∈ (3
4 , 1), is given in the last column of Table 1,

having total number of inputs as 354. Among these 354 inputs there are 130 inputs having 9 outputs,
160 inputs having 8 outputs and so on. The minimal ensembles associated with each input of the
Bell-Tsirelson box have been given in Sec. B.4.3 of the supplemental material. Here,M represent the
number of minimal ensembles of a behaviour and the length of the column represent the number of
pure behaviours in each of the minimal ensembles.

vj
η 1

2 (1
2 ,

5
9 ] (5

9 ,
4
7 ] (4

7 ,
3
5 ] (3

5 ,
2
3 ] (2

3 ,
3
4 ] (3

4 , 1)

2 4 1 1 1 1 1 1

3 0 3 3 3 3 3 3

4 12 0 0 0 0 0 0

5 0 12 12 12 12 12 12

6 32 38 38 38 26 20 20

7 64 100 100 100 96 28 28

8 176 528 528 520 376 160 160

9 120 988 972 844 356 144 130

total 408 1670 1654 1518 870 368 354

Table 1: Table shows the number of inputs (number of minimal ensembles |M|), of the extending system which have
same number of outputs vj , for various values of vj ∈ {2, 3, . . . , 9}, in the entire range of the parameter η.

The number of inputs of the extending system for various values of η, has been given in figure 9(a).
The color represent the number of inputs among the total number of inputs having equal number of
outputs. The yellow color stands for the set of inputs having 9 outputs, orange is for 8, green is for
7 and red is for 6 and so on. We have also plotted the memory required by the extending system, to
store the information about the all possible minimal ensembles of the behaviours lying on the isotropic

52



line, in figure 9(b). Here DE represent the dimension of the extending system.

dim η 1
2 (1

2 ,
5
9 ] (5

9 ,
4
7 ] (4

7 ,
3
5 ] (3

5 ,
2
3 ] (2

3 ,
3
4 ] (3

4 , 1)

E 2776 12445 12317 11237 6241 2595 2483

NSCE 24992 112013 110861 101141 56177 23363 22355

Table 2: Table shows the dimension of the extending system as well as the total dimension of the NSCE, of the
behaviours lying on the isotropic line.

The dimension of the extending system as well as the total dimension of the NSCE, as given in
Eq. (89), for various values of η ∈ (1

2 , 1) has been enlisted in Table 2. We have observed that the
dimension of the NSCE is a maximum when the behaviour is in the vicinity of the maximally mixed
behaviour. The system size is considerably lower in the range of our interest i.e., when η ∈ (3

4 , 1), that
is, when the behaviour B(η) starts showing non-classical features.

B.4.3 Minimal ensembles for non-local isotropic behaviours

Here we present the minimal ensembles of the Bell-Tsirelson box, which lies on the isotropic line

B(η) = ηB000 + (1− η)B001, (127)

for η = 2+
√

2
4 . This behaviour lies in a polytope of dimension d = 8 [102], and, according to the theorem

of Carathéodory [106], the minimal ensembles of B(η), consists of at most d+1 pure behaviours. Hence,
we present only those minimal ensembles having at most 9 elements.

We group the ensembles by the intervals of the parameter η for which they are valid minimal
ensembles. They are minimal, as otherwise we would find their subsets which would be minimal and
also valid for higher α. The interval of the parameter α is the due to the requirement that the B000
coefficient must be greater or equal 0.

We also group the ensembles by the vector of coefficients corresponding to the behaviours of the
decomposition which summed up give the B(α).

1. Having η ∈ (0, 1) .

v = [η, 1− η]
M1 = [B000,B001]

2. Having η ∈
(

1
4 , 1
)
.

v =
[4η

3 −
1
3 ,

1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]
M2 = [B000, L0001, L0011, L0100, L0110, L1001, L1010, L1100, L1111]

3. Having η ∈
(

1
3 , 1
)
.

v =
[3η

2 −
1
2 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]
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M3 = [B000, L0000, L0001, L0100, L0110, L1001, L1111]
M4 = [B000, L0001, L0011, L0100, L0101, L1010, L1100]
M5 = [B000, L0001, L0011, L0110, L0111, L1010, L1100]
M6 = [B000, L0001, L0110, L1000, L1001, L1100, L1111]
M7 = [B000, L0001, L0110, L1010, L1011, L1100, L1111]
M8 = [B000, L0010, L0011, L0100, L0110, L1001, L1111]
M9 = [B000, L0011, L0100, L1001, L1010, L1100, L1101]
M10 = [B000, L0011, L0100, L1001, L1010, L1110, L1111]

v =
[3η

2 −
1
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]

M11 = [B000,B010, L0001, L0011, L0100, L0110]
M12 = [B000,B011, L1001, L1010, L1100, L1111]
M13 = [B000,B100, L0001, L0100, L1001, L1100]
M14 = [B000,B101, L0011, L0110, L1010, L1111]
M15 = [B000,B110, L0011, L0110, L1001, L1100]
M16 = [B000,B111, L0001, L0100, L1010, L1111]

4. Having η ∈
(

2
5 , 1
)
.

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M17 = [B000,B110, L0001, L0011,L0101,L0110,L1010,L1011,L1100]
M18 = [B000,B111,L0001,L0010,L0100,L0110,L1000,L1001,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]
M19 = [B000,B110,L0000,L0011,L0100,L0110,L1001,L1110,L1111]
M20 = [B000,B111,L0001,L0011,L0100,L0111,L1010,L1100,L1101]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3

]
M21 = [B000,B011,L0000,L0010,L0100,L0110,L1001,L1111]
M22 = [B000,B011,L0001,L0011,L0101,L0111,L1010,L1100]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3

]
M23 = [B000,B011,L0010,L0110,L1000,L1001,L1100,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6

]
M24 = [B000,B011,L0011,L0111,L1001,L1010,L1100,L1101]
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v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M25 = [B000,B110,L0000,L0001,L0110,L1001,L1011,L1100,L1111]
M26 = [B000,B111,L0010,L0011,L0100,L1001,L1010,L1101,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]
M27 = [B000,B011,L0000,L0100,L1001,L1010,L1110,L1111]
M28 = [B000,B101,L0000,L0001,L0110,L1000,L1001,L1111]
M29 = [B000,B101,L0000,L0001,L0110,L1010,L1011,L1111]
M30 = [B000,B101,L0010,L0011,L0110,L1000,L1001,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6

]
M31 = [B000,B011,L0001,L0101,L1010,L1011,L1100,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M32 = [B000,B100,L0000,L0001,L0100,L1001,L1110,L1111]
M33 = [B000,B100,L0010,L0011,L0100,L1001,L1100,L1101]
M34 = [B000,B100,L0010,L0011,L0100,L1001,L1110,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]
M35 = [B000,B010,L0000,L0001,L0100,L0110,L1011,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M36 = [B000,B010,L0001,L0011,L0100,L0101,L1010,L1110]
M37 = [B000,B010,L0010,L0011,L0100,L0110,L1001,L1101]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M38 = [B000,B110,L0011,L0100,L0101,L1001,L1010,L1100,L1110]
M39 = [B000,B111,L0001,L0110,L0111,L1000,L1010,L1100,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]
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M40 = [B000,B011,B100,L0001,L0111,L1001,L1010,L1100]
M41 = [B000,B011,B101,L0000,L0110,L1001,L1010,L1111]
M42 = [B000,B011,B110,L0011,L0101,L1001,L1010,L1100]
M43 = [B000,B011,B111,L0010,L0100,L1001,L1010,L1111]
M44 = [B000,B100,B110,L0001,L0110,L1001,L1011,L1100]
M45 = [B000,B100,L0001,L0100,L0101,L1010,L1011,L1100]
M46 = [B000,B100,L0001,L0110,L0111,L1000,L1001,L1100]
M47 = [B000,B100,L0001,L0110,L0111,L1010,L1011,L1100]
M48 = [B000,B101,B111,L0001,L0110,L1000,L1010,L1111]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M49 = [B000,B010,B100,L0001,L0011,L0100,L1001,L1110]
M50 = [B000,B010,B101,L0001,L0011,L0110,L1000,L1111]
M51 = [B000,B010,B110,L0001,L0011,L0110,L1011,L1100]
M52 = [B000,B010,B111,L0001,L0011,L0100,L1010,L1101]
M53 = [B000,B011,B100,L0010,L0100,L1001,L1100,L1111]
M54 = [B000,B011,B101,L0011,L0101,L1010,L1100,L1111]
M55 = [B000,B011,B110,L0000,L0110,L1001,L1100,L1111]
M56 = [B000,B011,B111,L0001,L0111,L1010,L1100,L1111]
M57 = [B000,B100,B110,L0011,L0100,L1001,L1100,L1110]
M58 = [B000,B100,B111,L0001,L0010,L0100,L1001,L1111]
M59 = [B000,B101,B110,L0000,L0011,L0110,L1001,L1111]
M60 = [B000,B101,B111,L0011,L0100,L1010,L1101,L1111]
M61 = [B000,B101,L0011,L0100,L0101,L1010,L1100,L1101]
M62 = [B000,B101,L0011,L0100,L0101,L1010,L1110,L1111]
M63 = [B000,B101,L0011,L0110,L0111,L1010,L1100,L1101]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]
M64 = [B000,B010,L0001,L0011,L0110,L0111,L1000,L1100]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]
M65 = [B000,B010,B100,L0001,L0100,L0110,L1011,L1100]
M66 = [B000,B010,B101,L0011,L0100,L0110,L1010,L1101]
M67 = [B000,B010,B110,L0011,L0100,L0110,L1001,L1110]
M68 = [B000,B010,B111,L0001,L0100,L0110,L1000,L1111]
M69 = [B000,B010,L0001,L0110,L1000,L1011,L1100,L1111]
M70 = [B000,B010,L0011,L0100,L1001,L1010,L1101,L1110]
M71 = [B000,B100,B111,L0001,L0100,L0111,L1010,L1100]
M72 = [B000,B101,B110,L0011,L0101,L0110,L1010,L1100]

v =
[5η

3 −
2
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3

]
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M73 = [B000,B010,B100,B111,L0001,L0100]
M74 = [B000,B010,B101,B110,L0011,L0110]
M75 = [B000,B011,B100,B110,L1001,L1100]
M76 = [B000,B011,B101,B111,L1010,L1111]

5. Having η ∈
(

3
7 , 1
)
.

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
3
8 −

3η
8

]
M77 = [B000,B011,B101,L0000,L0010,L0110,L1000,L1001,L1111]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
3
8 −

3η
8

]

M78 = [B000,B011,B110,L0001,L0011,L0101,L1010,L1011,L1100]
M79 = [B000,B101,B111,L0001,L0010,L0110,L1000,L1001,L1111]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
8 −

η

8 ,
1
4 −

η

4

]
M80 = [B000,B011,B100,L0000,L0010,L0100,L1001,L1110,L1111]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
4 −

η

4 ,
1
8 −

η

8

]

M81 = [B000,B011,B111,L0001,L0011,L0111,L1010,L1100,L1101]
M82 = [B000,B100,B110,L0000,L0011,L0100,L1001,L1110,L1111]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4

]

M83 = [B000,B010,B101,L0000,L0001,L0110,L1000,L1011,L1111]
M84 = [B000,B010,B111,L0010,L0011,L0100,L1001,L1010,L1101]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8

]

M85 = [B000,B010,B100,L0010,L0011,L0100,L1001,L1101,L1110]
M86 = [B000,B010,B110,L0000,L0001,L0110,L1011,L1100,L1111]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
3
8 −

3η
8

]

M87 = [B000,B011,B111,L0010,L0100,L0110,L1000,L1001,L1111]
M88 = [B000,B100,B110,L0001,L0101,L0110,L1010,L1011,L1100]
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v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
3
8 −

3η
8

]
M89 = [B000,B011,B100,L0001,L0101,L0111,L1010,L1011,L1100]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
3
8 −

3η
8 ,

1
8 −

η

8 ,
1
4 −

η

4

]

M90 = [B000,B011,B110,L0000,L0100,L0110,L1001,L1110,L1111]
M91 = [B000,B101,B111,L0011,L0100,L0111,L1010,L1100,L1101]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
3
8 −

3η
8 ,

1
4 −

η

4 ,
1
8 −

η

8

]
M92 = [B000,B011,B101,L0011,L0101,L0111,L1010,L1100,L1101]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
3
8 −

3η
8 ,

1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4

]
M93 = [B000,B101,B110,L0000,L0001,L0110,L1001,L1011,L1111]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
3
8 −

3η
8 ,

1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8

]
M94 = [B000,B100,B111,L0010,L0011,L0100,L1001,L1101,L1111]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]

M95 = [B000,B010,B100,B110,L0001,L0110,L1011,L1100]
M96 = [B000,B010,B100,B110,L0011,L0100,L1001,L1110]
M97 = [B000,B010,B101,B111,L0001,L0110,L1000,L1111]
M98 = [B000,B010,B101,B111,L0011,L0100,L1010,L1101]
M99 = [B000,B011,B100,B111,L0001,L0111,L1010,L1100]
M100 = [B000,B011,B100,B111,L0010,L0100,L1001,L1111]
M101 = [B000,B011,B101,B110,L0000,L0110,L1001,L1111]
M102 = [B000,B011,B101,B110,L0011,L0101,L1010,L1100]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
8 −

η

8 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4

]
M103 = [B000,B100,B111,L0001,L0110,L0111,L1000,L1010,L1100]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
8 −

η

8 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8

]
M104 = [B000,B101,B110,L0011,L0100,L0101,L1010,L1100,L1110]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
8 −

η

8 ,
1
4 −

η

4

]
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M105 = [B000,B010,B100,L0001,L0110,L0111,L1000,L1011,L1100]
M106 = [B000,B010,B110,L0011,L0100,L0101,L1001,L1010,L1110]

v =
[7η

4 −
3
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
3
8 −

3η
8 ,

1
4 −

η

4 ,
1
8 −

η

8 ,
1
4 −

η

4 ,
1
8 −

η

8 ,
1
8 −

η

8

]

M107 = [B000,B010,B101,L0011,L0100,L0101,L1010,L1101,L1110]
M108 = [B000,B010,B111,L0001,L0110,L0111,L1000,L1100,L1111]

6. Having η ∈
(

4
9 , 1
)
.

v =
[9η

5 −
4
5 ,

1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
2
5 −

2η
5

]

M109 = [B000,B011,B100,B110,L0001,L0101,L1010,L1011,L1100]
M110 = [B000,B011,B101,B111,L0010,L0110,L1000,L1001,L1111]

v =
[9η

5 −
4
5 ,

1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
2
5 −

2η
5 ,

1
5 −

η

5 ,
1
5 −

η

5

]
M111 = [B000,B010,B100,B111,L0010,L0011,L0100,L1001,L1101]
M112 = [B000,B010,B101,B110,L0000,L0001,L0110,L1011,L1111]
M113 = [B000,B011,B100,B110,L0000,L0100,L1001,L1110,L1111]
M114 = [B000,B011,B101,B111,L0011,L0111,L1010,L1100,L1101]

v =
[9η

5 −
4
5 ,

1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
2
5 −

2η
5 ,

1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5 ,
1
5 −

η

5

]

M115 = [B000,B010,B100,B111,L0001,L0110,L0111,L1000,L1100]
M116 = [B000,B010,B101,B110,L0011,L0100,L0101,L1010,L1110]

7. Having η ∈
(

1
2 , 1
)
.

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3

]

M117 = [B000,B100,B110,L0000,L0011,L0100,L0111,L1001,L1110]
M118 = [B000,B100,B110,L0001,L0010,L0101,L0110,L1011,L1100]
M119 = [B000,B101,B111,L0000,L0011,L0100,L0111,L1010,L1101]
M120 = [B000,B101,B111,L0001,L0010,L0101,L0110,L1000,L1111]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3

]
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M121 = [B000,B100,B110,L0011,L0111,L1000,L1001,L1100,L1110]
M122 = [B000,B101,B111,L0011,L0111,L1000,L1010,L1100,L1101]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6

]

M123 = [B000,B100,B110,L0001,L0101,L1010,L1011,L1100,L1110]
M124 = [B000,B100,B110,L0010,L0110,L1001,L1011,L1100,L1101]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M125 = [B000,B010,B111,L0000,L0001,L0100,L1010,L1011,L1101]
M126 = [B000,B010,B111,L0010,L0011,L0100,L1000,L1001,L1101]
M127 = [B000,B010,B111,L0010,L0011,L0100,L1010,L1011,L1101]
M128 = [B000,B011,B110,L0000,L0001,L0101,L1010,L1011,L1100]
M129 = [B000,B011,B110,L0010,L0011,L0101,L1000,L1001,L1100]
M130 = [B000,B011,B110,L0010,L0011,L0101,L1010,L1011,L1100]
M131 = [B000,B101,B111,L0001,L0101,L1000,L1010,L1110,L1111]
M132 = [B000,B101,B111,L0010,L0110,L1000,L1001,L1101,L1111]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6

]

M133 = [B000,B100,B110,L0000,L0100,L1001,L1011,L1110,L1111]
M134 = [B000,B101,B111,L0000,L0100,L1010,L1011,L1101,L1111]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M135 = [B000,B010,B110,L0000,L0001,L0110,L1011,L1100,L1101]
M136 = [B000,B010,B110,L0000,L0001,L0110,L1011,L1110,L1111]
M137 = [B000,B010,B110,L0010,L0011,L0110,L1011,L1100,L1101]
M138 = [B000,B011,B111,L0000,L0001,L0111,L1010,L1100,L1101]
M139 = [B000,B011,B111,L0000,L0001,L0111,L1010,L1110,L1111]
M140 = [B000,B011,B111,L0010,L0011,L0111,L1010,L1100,L1101]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]
M141 = [B000,B100,B111,L0000,L0001,L0100,L0111,L1010,L1110]
M142 = [B000,B101,B110,L0000,L0011,L0100,L0101,L1010,L1110]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]
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M143 = [B000,B100,B111,L0001,L0010,L0100,L0101,L1011,L1111]
M144 = [B000,B101,B110,L0010,L0011,L0101,L0110,L1000,L1100]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M145 = [B000,B010,B110,L0011,L0100,L0101,L1000,L1001,L1110]
M146 = [B000,B010,B110,L0011,L0100,L0101,L1010,L1011,L1110]
M147 = [B000,B010,B110,L0011,L0110,L0111,L1000,L1001,L1110]
M148 = [B000,B011,B111,L0010,L0100,L0101,L1000,L1001,L1111]
M149 = [B000,B011,B111,L0010,L0100,L0101,L1010,L1011,L1111]
M150 = [B000,B011,B111,L0010,L0110,L0111,L1000,L1001,L1111]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M151 = [B000,B010,B111,L0001,L0100,L0101,L1000,L1110,L1111]
M152 = [B000,B010,B111,L0001,L0110,L0111,L1000,L1100,L1101]
M153 = [B000,B010,B111,L0001,L0110,L0111,L1000,L1110,L1111]
M154 = [B000,B011,B110,L0000,L0100,L0101,L1001,L1110,L1111]
M155 = [B000,B011,B110,L0000,L0110,L0111,L1001,L1100,L1101]
M156 = [B000,B011,B110,L0000,L0110,L0111,L1001,L1110,L1111]
M157 = [B000,B100,B111,L0001,L0010,L0110,L0111,L1000,L1100]
M158 = [B000,B101,B110,L0000,L0001,L0101,L0110,L1011,L1111]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M159 = [B000,B100,B111,L0010,L0011,L0100,L0111,L1001,L1101]
M160 = [B000,B101,B110,L0000,L0011,L0110,L0111,L1001,L1101]

v =
[
2η − 1, 1

3 −
η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M161 = [B000,B100,B111,L0001,L0111,L1000,L1010,L1100,L1110]
M162 = [B000,B100,B111,L0010,L0100,L1001,L1011,L1101,L1111]
M163 = [B000,B101,B110,L0000,L0110,L1001,L1011,L1101,L1111]
M164 = [B000,B101,B110,L0011,L0101,L1000,L1010,L1100,L1110]

v =
[
2η − 1, 1

2 −
η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]
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M165 = [B000,B010,L0000,L0001,L0100,L0110,L1011,L1101]
M166 = [B000,B010,L0001,L0011,L0100,L0101,L1000,L1110]
M167 = [B000,B010,L0001,L0011,L0110,L0111,L1000,L1110]
M168 = [B000,B010,L0001,L0110,L1000,L1011,L1100,L1101]
M169 = [B000,B010,L0001,L0110,L1000,L1011,L1110,L1111]
M170 = [B000,B010,L0010,L0011,L0100,L0110,L1011,L1101]
M171 = [B000,B010,L0011,L0100,L1000,L1001,L1101,L1110]
M172 = [B000,B010,L0011,L0100,L1010,L1011,L1101,L1110]
M173 = [B000,B011,L0000,L0001,L0101,L0111,L1010,L1100]
M174 = [B000,B011,L0000,L0010,L0100,L0101,L1001,L1111]
M175 = [B000,B011,L0000,L0010,L0110,L0111,L1001,L1111]
M176 = [B000,B011,L0000,L0111,L1001,L1010,L1100,L1101]
M177 = [B000,B011,L0000,L0111,L1001,L1010,L1110,L1111]
M178 = [B000,B011,L0010,L0011,L0101,L0111,L1010,L1100]
M179 = [B000,B011,L0010,L0101,L1000,L1001,L1100,L1111]
M180 = [B000,B011,L0010,L0101,L1010,L1011,L1100,L1111]
M181 = [B000,B100,L0000,L0001,L0100,L0111,L1001,L1110]
M182 = [B000,B100,L0001,L0010,L0100,L0101,L1011,L1100]
M183 = [B000,B100,L0001,L0010,L0110,L0111,L1011,L1100]
M184 = [B000,B100,L0001,L0111,L1000,L1001,L1100,L1110]
M185 = [B000,B100,L0001,L0111,L1010,L1011,L1100,L1110]
M186 = [B000,B100,L0010,L0011,L0100,L0111,L1001,L1110]
M187 = [B000,B100,L0010,L0100,L1001,L1011,L1100,L1101]
M188 = [B000,B100,L0010,L0100,L1001,L1011,L1110,L1111]
M189 = [B000,B101,L0000,L0001,L0101,L0110,L1000,L1111]
M190 = [B000,B101,L0000,L0011,L0100,L0101,L1010,L1101]
M191 = [B000,B101,L0000,L0011,L0110,L0111,L1010,L1101]
M192 = [B000,B101,L0000,L0110,L1000,L1001,L1101,L1111]
M193 = [B000,B101,L0000,L0110,L1010,L1011,L1101,L1111]
M194 = [B000,B101,L0010,L0011,L0101,L0110,L1000,L1111]
M195 = [B000,B101,L0011,L0101,L1000,L1010,L1100,L1101]
M196 = [B000,B101,L0011,L0101,L1000,L1010,L1110,L1111]
M197 = [B000,B110,L0000,L0001,L0101,L0110,L1011,L1100]
M198 = [B000,B110,L0000,L0011,L0100,L0101,L1001,L1110]
M199 = [B000,B110,L0000,L0011,L0110,L0111,L1001,L1110]
M200 = [B000,B110,L0000,L0110,L1001,L1011,L1100,L1101]
M201 = [B000,B110,L0000,L0110,L1001,L1011,L1110,L1111]
M202 = [B000,B110,L0010,L0011,L0101,L0110,L1011,L1100]
M203 = [B000,B110,L0011,L0101,L1000,L1001,L1100,L1110]
M204 = [B000,B110,L0011,L0101,L1010,L1011,L1100,L1110]
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M205 = [B000,B111,L0000,L0001,L0100,L0111,L1010,L1101]
M206 = [B000,B111,L0001,L0010,L0100,L0101,L1000,L1111]
M207 = [B000,B111,L0001,L0010,L0110,L0111,L1000,L1111]
M208 = [B000,B111,L0001,L0111,L1000,L1010,L1100,L1101]
M209 = [B000,B111,L0001,L0111,L1000,L1010,L1110,L1111]
M210 = [B000,B111,L0010,L0011,L0100,L0111,L1010,L1101]
M211 = [B000,B111,L0010,L0100,L1000,L1001,L1101,L1111]
M212 = [B000,B111,L0010,L0100,L1010,L1011,L1101,L1111]

v =
[
2η − 1, 1

2 −
η

2 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]
M213 = [B000,B010,B100,L0001,L0100,L1011,L1110]
M214 = [B000,B010,B101,L0011,L0110,L1000,L1101]
M215 = [B000,B010,B110,L0011,L0110,L1011,L1110]
M216 = [B000,B010,B111,L0001,L0100,L1000,L1101]
M217 = [B000,B011,B100,L0010,L0111,L1001,L1100]
M218 = [B000,B011,B101,L0000,L0101,L1010,L1111]
M219 = [B000,B011,B110,L0000,L0101,L1001,L1100]
M220 = [B000,B011,B111,L0010,L0111,L1010,L1111]
M221 = [B000,B100,B110,L1001,L1011,L1100,L1110]
M222 = [B000,B100,B111,L0001,L0010,L0100,L0111]
M223 = [B000,B101,B110,L0000,L0011,L0101,L0110]
M224 = [B000,B101,B111,L1000,L1010,L1101,L1111]

v =
[
2η − 1, 1

2 −
η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2

]

M225 = [B000,L0000,L0001,L0100,L0101]
M226 = [B000,L0000,L0001,L0110,L0111]
M227 = [B000,L0000,L0100,L1001,L1101]
M228 = [B000,L0001,L0101,L1000,L1100]
M229 = [B000,L0010,L0011,L0100,L0101]
M230 = [B000,L0010,L0011,L0110,L0111]
M231 = [B000,L0010,L0110,L1011,L1111]
M232 = [B000,L0011,L0111,L1010,L1110]
M233 = [B000,L1000,L1001,L1100,L1101]
M234 = [B000,L1000,L1001,L1110,L1111]
M235 = [B000,L1010,L1011,L1100,L1101]
M236 = [B000,L1010,L1011,L1110,L1111]

v = [2η − 1, 1− η, 1− η]

M237 = [B000,B010,B011]
M238 = [B000,B100,B101]
M239 = [B000,B110,B111]
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8. Having η ∈
(

5
9 , 1
)
.

v =
[9η

4 −
5
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2

]

M240 = [B000,B010,B100,B110,L0011,L0111,L1000,L1001,L1110]
M241 = [B000,B010,B101,B111,L0000,L0100,L1010,L1011,L1101]

v =
[9η

4 −
5
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4

]

M242 = [B000,B010,B100,B110,L0010,L0110,L1011,L1100,L1101]
M243 = [B000,B010,B101,B111,L0001,L0101,L1000,L1110,L1111]
M244 = [B000,B011,B100,B111,L0000,L0001,L0111,L1010,L1110]
M245 = [B000,B011,B101,B110,L0010,L0011,L0101,L1000,L1100]

v =
[9η

4 −
5
4 ,

1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]

M246 = [B000,B011,B100,B111,L0010,L0100,L0101,L1011,L1111]
M247 = [B000,B011,B101,B110,L0000,L0110,L0111,L1001,L1101]

9. Having η ∈
(

4
7 , 1
)
.

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
2 −

η

2

]

M248 = [B000,B010,B111,L0000,L0010,L0100,L1010,L1011,L1101]
M249 = [B000,B100,B110,L0000,L0011,L0111,L1000,L1001,L1110]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
2 −

η

2

]

M250 = [B000,B010,B100,L0001,L0011,L0111,L1000,L1001,L1110]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M251 = [B000,B010,B110,L0000,L0010,L0110,L1011,L1100,L1101]
M252 = [B000,B101,B111,L0001,L0010,L0101,L1000,L1110,L1111]
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v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
3 −

η

3 ,
1
6 −

η

6

]

M253 = [B000,B010,B101,L0001,L0011,L0101,L1000,L1110,L1111]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M254 = [B000,B100,B111,L0000,L0001,L0111,L1000,L1010,L1110]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M255 = [B000,B101,B110,L0010,L0011,L0101,L1000,L1100,L1110]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
2 −

η

2

]

M256 = [B000,B010,B101,L0000,L0100,L0110,L1010,L1011,L1101]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
2 −

η

2

]

M257 = [B000,B010,B110,L0011,L0101,L0111,L1000,L1001,L1110]
M258 = [B000,B101,B111,L0000,L0100,L0111,L1010,L1011,L1101]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
2 −

η

2 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M259 = [B000,B010,B100,L0010,L0100,L0110,L1011,L1100,L1101]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
2 −

η

2 ,
1
3 −

η

3 ,
1
6 −

η

6

]

M260 = [B000,B010,B111,L0001,L0101,L0111,L1000,L1110,L1111]
M261 = [B000,B100,B110,L0010,L0101,L0110,L1011,L1100,L1101]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
2 −

η

2 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M262 = [B000,B011,B100,L0000,L0001,L0111,L1001,L1010,L1110]
M263 = [B000,B011,B110,L0010,L0011,L0101,L1000,L1011,L1100]
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v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
2 −

η

2 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M264 = [B000,B011,B101,L0010,L0011,L0101,L1000,L1100,L1111]
M265 = [B000,B011,B111,L0000,L0001,L0111,L1010,L1101,L1110]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
3 −

η

3

]

M266 = [B000,B010,B100,B111,L0001,L0111,L1000,L1110]
M267 = [B000,B010,B100,B111,L0010,L0100,L1011,L1101]
M268 = [B000,B010,B101,B110,L0000,L0110,L1011,L1101]
M269 = [B000,B010,B101,B110,L0011,L0101,L1000,L1110]
M270 = [B000,B011,B100,B110,L0000,L0111,L1001,L1110]
M271 = [B000,B011,B100,B110,L0010,L0101,L1011,L1100]
M272 = [B000,B011,B101,B111,L0000,L0111,L1010,L1101]
M273 = [B000,B011,B101,B111,L0010,L0101,L1000,L1111]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]

M274 = [B000,B011,B101,L0000,L0110,L0111,L1001,L1010,L1101]
M275 = [B000,B011,B111,L0010,L0100,L0101,L1000,L1011,L1111]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]

M276 = [B000,B011,B100,L0010,L0100,L0101,L1011,L1100,L1111]
M277 = [B000,B011,B110,L0000,L0110,L0111,L1001,L1101,L1110]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
6 −

η

6 ,
1
3 −

η

3

]
M278 = [B000,B101,B110,L0000,L0110,L0111,L1001,L1011,L1101]

v =
[7η

3 −
4
3 ,

1
3 −

η

3 ,
1
3 −

η

3 ,
1
2 −

η

2 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
3 −

η

3 ,
1
6 −

η

6 ,
1
6 −

η

6

]
M279 = [B000,B100,B111,L0010,L0100,L0101,L1011,L1101,L1111]

10. Having η ∈
(

3
5 , 1
)
.

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2

]

M280 = [B000,B110,L0000,L0011,L0101,L0111,L1000,L1001,L1110]
M281 = [B000,B111,L0000,L0010,L0100,L0111,L1010,L1011,L1101]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4

]
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M282 = [B000,B110,L0000,L0010,L0101,L0110,L1011,L1100,L1101]
M283 = [B000,B111,L0001,L0010,L0101,L0111,L1000,L1110,L1111]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
2 −

η

2

]

M284 = [B000,B010,L0000,L0010,L0100,L0110,L1011,L1101]
M285 = [B000,B010,L0001,L0011,L0101,L0111,L1000,L1110]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
2 −

η

2

]
M286 = [B000,B010,L0010,L0110,L1000,L1011,L1100,L1101]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
4 −

η

4

]
M287 = [B000,B010,L0000,L0100,L1010,L1011,L1101,L1110]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]

M288 = [B000,B110,L0010,L0011,L0101,L1000,L1011,L1100,L1110]
M289 = [B000,B111,L0000,L0001,L0111,L1000,L1010,L1101,L1110]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2

]

M290 = [B000,B010,L0011,L0111,L1000,L1001,L1101,L1110]
M291 = [B000,B100,L0000,L0001,L0111,L1000,L1001,L1110]
M292 = [B000,B100,L0000,L0001,L0111,L1010,L1011,L1110]
M293 = [B000,B100,L0010,L0011,L0111,L1000,L1001,L1110]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4

]
M294 = [B000,B010,L0001,L0101,L1000,L1011,L1110,L1111]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4

]

M295 = [B000,B101,L0000,L0001,L0101,L1000,L1110,L1111]
M296 = [B000,B101,L0010,L0011,L0101,L1000,L1100,L1101]
M297 = [B000,B101,L0010,L0011,L0101,L1000,L1110,L1111]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4

]
M298 = [B000,B011,L0000,L0010,L0100,L0101,L1011,L1111]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]
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M299 = [B000,B110,L0000,L0110,L0111,L1001,L1011,L1101,L1110]
M300 = [B000,B111,L0010,L0100,L0101,L1000,L1011,L1101,L1111]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2

]

M301 = [B000,B010,B100,L0001,L0111,L1000,L1011,L1110]
M302 = [B000,B010,B101,L0000,L0110,L1000,L1011,L1101]
M303 = [B000,B010,B110,L0011,L0101,L1000,L1011,L1110]
M304 = [B000,B010,B111,L0010,L0100,L1000,L1011,L1101]
M305 = [B000,B100,B110,L0000,L0111,L1001,L1011,L1110]
M306 = [B000,B101,B111,L0000,L0111,L1000,L1010,L1101]
M307 = [B000,B101,L0000,L0100,L0101,L1010,L1011,L1101]
M308 = [B000,B101,L0000,L0110,L0111,L1000,L1001,L1101]
M309 = [B000,B101,L0000,L0110,L0111,L1010,L1011,L1101]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4

]

M310 = [B000,B010,B100,L0010,L0100,L1011,L1101,L1110]
M311 = [B000,B010,B101,L0011,L0101,L1000,L1101,L1110]
M312 = [B000,B010,B110,L0000,L0110,L1011,L1101,L1110]
M313 = [B000,B010,B111,L0001,L0111,L1000,L1101,L1110]
M314 = [B000,B011,B100,L0000,L0010,L0111,L1001,L1110]
M315 = [B000,B011,B101,L0000,L0010,L0101,L1000,L1111]
M316 = [B000,B011,B110,L0000,L0010,L0101,L1011,L1100]
M317 = [B000,B011,B111,L0000,L0010,L0111,L1010,L1101]
M318 = [B000,B011,L0000,L0001,L0101,L0111,L1010,L1110]
M319 = [B000,B011,L0000,L0010,L0110,L0111,L1001,L1101]
M320 = [B000,B100,B110,L0010,L0101,L1011,L1100,L1110]
M321 = [B000,B100,B111,L0001,L0010,L0111,L1000,L1110]
M322 = [B000,B100,L0010,L0100,L0101,L1011,L1100,L1101]
M323 = [B000,B100,L0010,L0100,L0101,L1011,L1110,L1111]
M324 = [B000,B100,L0010,L0110,L0111,L1011,L1100,L1101]
M325 = [B000,B101,B110,L0000,L0011,L0101,L1000,L1110]
M326 = [B000,B101,B111,L0010,L0101,L1000,L1101,L1111]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]
M327 = [B000,B011,L0010,L0011,L0101,L0111,L1000,L1100]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4 ,
1
4 −

η

4

]
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M328 = [B000,B011,B100,L0010,L0101,L0111,L1011,L1100]
M329 = [B000,B011,B101,L0000,L0101,L0111,L1010,L1101]
M330 = [B000,B011,B110,L0000,L0101,L0111,L1001,L1110]
M331 = [B000,B011,B111,L0010,L0101,L0111,L1000,L1111]
M332 = [B000,B011,L0000,L0111,L1001,L1010,L1101,L1110]
M333 = [B000,B011,L0010,L0101,L1000,L1011,L1100,L1111]
M334 = [B000,B100,B111,L0010,L0100,L0111,L1011,L1101]
M335 = [B000,B101,B110,L0000,L0101,L0110,L1011,L1101]

v =
[5η

2 −
3
2 ,

1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2

]

M336 = [B000,B010,B100,B110,L1011,L1110]
M337 = [B000,B010,B101,B111,L1000,L1101]
M338 = [B000,B011,B100,B111,L0010,L0111]
M339 = [B000,B011,B101,B110,L0000,L0101]

11. Having η ∈
(

2
3 , 1
)
.

v =
[
3η − 2, 1

2 −
η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2

]

M340 = [B000,L0000,L0001,L0101,L0111,L1000,L1110]
M341 = [B000,L0000,L0010,L0100,L0101,L1011,L1101]
M342 = [B000,L0000,L0010,L0110,L0111,L1011,L1101]
M343 = [B000,L0000,L0111,L1000,L1001,L1101,L1110]
M344 = [B000,L0000,L0111,L1010,L1011,L1101,L1110]
M345 = [B000,L0010,L0011,L0101,L0111,L1000,L1110]
M346 = [B000,L0010,L0101,L1000,L1011,L1100,L1101]
M347 = [B000,L0010,L0101,L1000,L1011,L1110,L1111]

v =
[
3η − 2, 1− η, 1

2 −
η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2

]

M348 = [B000,B010,L1000,L1011,L1101,L1110]
M349 = [B000,B011,L0000,L0010,L0101,L0111]
M350 = [B000,B100,L0010,L0111,L1011,L1110]
M351 = [B000,B101,L0000,L0101,L1000,L1101]
M352 = [B000,B110,L0000,L0101,L1011,L1110]
M353 = [B000,B111,L0010,L0111,L1000,L1101]

12. Having η ∈
(

3
4 , 1
)
.

v =
[
4η − 3, 1

2 −
η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2 ,
1
2 −

η

2

]
M354 = [B000,L0000,L0010,L0101,L0111,L1000,L1011,L1101,L1110]
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List of Symbols and abbreviations:
PP: Purification postulate.
CEP: Complete extension postulate.
A: Access property.
G: Generation property.
EU: Essential uniqueness.
ONSEA: Overcomplete non-signaling extension
with access.
NSEA: Complete non-signaling extension
with access.
NSCE: Non-signaling complete extension.
GPT: Generalised probabilistic theory.
G : A generalized probabilistic theory.
Syst[G] : Systems associated with G.
⊗: Composition rule in a GPT.
×: Cartesian product.
VA: A finite dimensional real vector space
associated to system A.
V ∗A: Dual space of VA.
RΛ: Vector space of real valued functions
for some finite sample space Λ in classical

theory.
ΩA: Convex set within the vector space VA,
represents the state space of system A.
Ω∗A: subset of dual vectors in V ∗A which
evaluate to (a subset of) the unit interval
on ΩA.
EA: Convex set within the dual space V ∗A,
represents the effect space of system A.
KA: Convex cone associated with ΩA.
e: An instance of an effect in the effect
space EA.
e(ΩA): Image of e when its domain is restricted
to ΩA.
uA: Unit effect on ΩA.
T BA : Space of transformations from system
A to system B.
M : Measurement, belongs to T BA .
∆I : Classical systems contained in every
GPT, where I denotes the set of classical
(deterministic) states.
δi: a vertex of ∆I .
εi: a vertex of ∆∗I .

1∆I
: Identity transformation for system

∆I .
ωA: Arbitrary state of system A.
εAB: A non-signalling extension of ωA to
system B.
EωA : The set of all states that purify ωA.
TrB: Partial trace over systemB, of a composite
system.
T (T ′): A system type in Syst[G].
s: An arbitrary state in a GPT.
s(T ): An arbitrary state of type T .
{(pi, si)}: An ensemble of states.
Ens[s]: The set of all possible ensembles
for a state s.
EnsP [s]: The set of all pure ensembles of
s.
Face[s]: Face of a state s.
Ext[s]: The set of extensions of s.
ExtP [s]: The set of all pure extensions of
s.
Extclass[s]: A class of extension of s, where
the extending system is classical.
Vert[∆I ]: The set of vertices of ∆I .
σp: A purification of system s, belongs to
ExtP [s].
Σ: Arbitrary extension of system s, belongs
to Ext[s].
T1→2: A reversible transformation in the
extending system.
p∗A: Alice’s cheating probability in integer-
commitment.
p∗B: Bob’s cheating probability in integer-
commitment.
TrB: Partial trace on systemB of a composite
quantum state ρAB.
Tr6=Ai

: Partial trace on all systems despite
of systemAi of a composite state ρA1A2...AN

.
V : Number of the vertices within a theory.
ℵ0: The cardinality of the set of natural
numbers.
c: The cardinality of the continuum.
P: A partition of a composite system into
mutually non-signaling subsystems.
SPi : An ith system of a partition P.
ρA: Arbitrary quantum state of system A.
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|ψAE〉: A pure quantum state of the composite
system A and E.
ΘE : Quantum channel in part of system E.
{(pi, ρiA)}: Ensemble of a quantum state.
PA: A behaviour of system A.
PAE : A composite behaviour of system A
and E.
{pi, P iA}: Ensemble of the behaviour of system
A.
pA|X (a|x): A conditional probability distribution.
pAE|XZ(ae|xz): A bipartite conditional probability
distribution.
X : The set of all input {x}, of the conditional
probability distribution pA|X (a|x).
Z: The set of all input {z}, of the bipartite
conditional probability distribution
pAE|XZ(ae|xz).
A: The set of all output {a}, of the conditional
probability distribution pA|X (a|x).
E : The set of all output {e}, of the bipartite
conditional probability distribution
pAE|XZ(ae|xz).

PE : Classical pre(post)-processing channel
acting on the inputs(outputs) of system E.
PE: A behaviour which is an extremal point.
E (P ): An arbitrary ensemble of the behaviour
P .
V (E ): The set of members of the ensemble
E .
Epure(P ): Pure members ensemble of the
behaviour P .
M (P ): Minimal ensemble of the behaviour
P .
E(P )AE : Non-signaling Extension with Access
of behaviour PA.
Dj : A dice, characterized by the probability
distribution p̃(k|z′ = j).
Cj : Classical post-processing channel, characterized
by conditional distribution
pc(m|e, z′ = j).
B: A behaviour polytope.
dimB: Dimension of a behaviour polytope.
PPR: Popescu-Rohrlich box.
Pm: Maximally mixed behaviour.
PA′ : Conjugate behaviour of behaviour PA.

Lαβγδ: Local vertices of the polytope of
binary input out behaviours, α, β, γ, δ ∈
{0, 1}.
Brst: Non-local vertices of the polytope of
binary input out behaviours, r, s, t ∈ {0, 1}.
B(η): Arbitrary behaviour on the line joining
PR box and anti-PR box.
β(P ): Linear map on the behaviour P , computing
the CHSH functional.
V(P ): Set of the sets of members of minimal
ensembles.
C3: The set of maximal contexts for the
three-cycle contextuality scenario.
N Cj : jth non-contextual vertex of the no-
disturbance polytope.
Cj : jth contextual vertex of the no-disturbance
polytope.
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