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Abstract

In a plethora of physical situations one can distinguish a mediator—a system that couples
other, non-interacting systems. In this thesis, we analyze such scenarios from a quantum
information theory standpoint by exploring the relation between correlations and mediated
dynamics. We start with a unified description of various types of correlations in the context
of resource theories. Then we concentrate on negativity, which is distinguished as one of
the few computable entanglement monotones. We construct a hierarchy of distance-based
correlation measures that are comparable to negativity. Then we study the correlations in
two probes interacting via a mediator. We define classical interactions through commuta-
tivity of the interaction Hamiltonians. We propose methods to detect nonclassicality of the
interaction solely through the correlations in the probes. Finally, we discuss applications of
this formalism to restrict possible theories of gravity in a Hilbert space and to the theory of
quantum simulators.
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Streszczenie

W wielu układach fizycznych można wyróżnić pośrednika — podukład, który sprzęga inne,
bezpośrednio nieoddziałujące ze sobą podukłady. Niniejsza rozprawa poświęcona jest anal-
izie dynamiki z pośrednikiem z punktu widzenia kwantowej teorii informacji, ze szczegól-
nym uwzględnieniem korelacji. Rozpoczynamy od unifikacji różnych rodzajów korelacji w
ramach ogólnej teorii zasobów. Następnie skupiamy się na tzw. ujemności, gdyż spośród
wielu miar splątania wyróżnia ją łatwość obliczania. Wprowadzamy hierarchię różnych form
korelacji, opartych na pojęciu odległości, które można bezpośrednio porównać do ujemności.
Następnie stosujemy te i inne miary korelacji w układzie dwóch próbek oddziałujących przez
pośrednika. Definiujemy klasyczne oddziaływania poprzez komutację Hamiltonianów oddzi-
aływania pomiędzy każdą próbką i pośrednikiem. Następnie wprowadzamy metody wykry-
wania nieklasycznych oddziaływań wyłącznie za pomocą korelacji pomiędzy próbkami. Na
koniec opisujemy zastosowanie tych metod do ograniczenia możliwych teorii grawitacji w
przestrzeni Hilberta i do kwantowych symulatorów.
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Notation

We shall use the following notation:

Symbol Definition
H Hilbert space
D set of density matrices
S set of free states
F set of free operations
11 identity map, or identity matrix
{|i〉} computational basis
{|ei〉} basis
|ψ〉 pure quantum state
|Φ〉 maximally entangled state, |Φ〉 =

∑
i

1√
d
|ii〉

ρ, σ quantum states
ψ density matrix of a pure quantum state, ψ = |ψ〉 〈ψ|
TrX trace of the operator X
TrAXAB partial trace over A, TrAXAB =

∑
i (〈i| ⊗ 11)XAB (|i〉 ⊗ 11)

TA(X) partial transposition in the computational basis of subsystem A,
TA(X) =

∑
ij(|i〉 〈j| ⊗ 11)X(|j〉 〈i| ⊗ 11)

|X| absolute of the operator X, |X| =
√
X†X

(X) + positive part of operator X, (X) + = 1
2 (X + |X|)

(X)− negative part of operator X, (X)− = 1
2 (X − |X|)

‖X‖1 trace norm
‖X‖∞ spectral norm
‖X‖α Schatten norm of order α, ‖X‖α = (Tr |X|α)

1/α

dtr(ρ, σ) trace distance, dtr(ρ, σ) = 1
2‖ρ− σ‖1

S(ρ‖σ) quantum relative entropy, S(ρ‖σ) = Tr ρ(log ρ− log σ)
dT (ρ, σ) partial transpose distance, dT (ρ, σ) = 1

2‖TA(ρ)− TA(σ)‖1
PROD set of product states
CC set of classically correlated states, CC = {

∑
i pi |eifi〉 〈eifi|}

QC set of quantum-classical states, QC = {
∑
i piρi ⊗ |ei〉 〈ei|}

SEP set of separable states
PPT set of states that are positive under partial transposition
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Chapter 1

Introduction

Today, we believe that all physical theories satisfy the locality principle. Roughly stated, the
principle says “two space-like separated events must be independent.” The main motivation
behind the acceptance of this principle comes from the success of special relativity and
experimental observation of retardation of physical interactions.

Although intuitive, locality combined with other properties produces counter-intuitive
consequences. For example, the EPR paradox [EPR35] comes from the interplay between
locality, quantum theory, and hidden variables—or as Einstein called it “elements of reality”.
As we strongly believe in locality and quantum theory has passed many experimental tests,
this necessitates us to reject local hidden variable models.

However, we do see distant objects interact in the real world. How is their interaction
modeled within physical theories satisfying locality? Classical physics resolves this by pos-
tulating the existence of a field, permeating through space, acting as the “mediator” of the
interaction. As a result, distant objects that interact only locally with the field admit an
effective interaction mediated by changes in the field.

The situation in quantum theory does not differ much—we just promote the fields to
operators. Effectively, it is as if there is a quantum object that is delocalized in space that
mediates the interaction between two other objects. Let us state this formally. Suppose we
have two quantum objects A,B that interact via a mediator M . Assuming that the system
is closed—which can be ensured by considering purifications—the dynamics of the system is
governed by a Hamiltonian of the form H = HAM +HBM . The state of the system evolves
according to the usual unitary evolution ρt = e−itHρ0e

itH (throughout this thesis, we will
set ~ = 1).

One might ask, what happens when the mediator is a classical system? To answer this,
first we must define what it means for a mediator to be classical. There are many different
proposals on how to define classicality of a quantum system [PT01, Ter06, HR18]. In this
thesis, we define classicality by commutativity—a quantum system is classical if all of its
observables commute. Therefore, a classical mediator is a mediator whose coupling to other
systems commute, i.e. [HAM , HBM ] = 0. This is consistent with the defining feature of
quantum systems, that there exists observables that do not commute.

Of course, this is not the only possible notion of nonclassicality. It is entirely possible to
define classical interactions through, for example, the operator Schmidt rank. Recall that
any bipartite operatorX can always be written as a linear combination of product operators,
X =

∑r
i=1Ai ⊗ Bi. The operator Schmidt rank of an operator is the smallest r among all

such decompositions [MHN18]. We can define classical interactions as those interactions
that have operator Schmidt rank 1, i.e. they are of the form A ⊗ B. Therefore, within
this definition, it is possible for the interaction with a single object and the mediator to
be nonclassical—for example the interaction XAXM + YAYM has operator Schmidt rank 2.
However, when the interaction term has operator Schmidt rank 1, say A⊗B, the interaction
between two objects of the same kind with the mediator must commute [A1⊗B,A2⊗B] = 0.

1



2 CHAPTER 1. INTRODUCTION

This shows that interactions that are classical in the operator Schmidt rank sense must also
be classical in the commutative sense.

An important motivation to study the classicality of mediated dynamics comes from the
possibility of observing nonclassical features of gravitational interaction between massive
objects [BMM+17, MV17]. In order to provide meaningful restrictions on quantum theories
of gravity, we need to formulate a method that makes minimal assumptions about the
quantum model of the gravitational field. This is because it is still unclear how to quantize
gravity, with different proposals having different problems [DB22, HR18]. Yet, there is one
feature that these proposals have in common: they are all local theories—each particle only
interact with the gravitational field at a point, not globally. In some proposals, there is also
a Hilbert space associated with the gravitational field. Although these theories resemble
standard quantum mechanics, there is an added difficulty due to the inaccessibility of the
gravitational subsystem. We aim to fill exactly this gap.

The essential goal of this thesis is the study of the quantumness of the mediator assuming
that we do not have access to the mediating system experimentally. To do this, we will
examine the correlations between A and B when we assume that the mediatorM is classical.
We will show that if the dimension of the mediator M is bounded, then the maximum
correlation that A and B can obtain is also bounded above. We will show that this bound
can be violated if the mediator is nonclassical. Furthermore, we will show that the violation
of this bound gives a lower bound on a distance to the set of maps implementable with a
classical mediator. We will also give a simple lower bound on the norm of the commutator
of interaction terms, and give generalizations of these bounds to open systems.

1.1 Why correlations?

Given the definition of nonclassicality as non-commutativity, we define classically mediated
interactions as those interactions whose couplings to the mediator commute. Note that this
notion of classicality of interactions is inherently multipartite—it does not make sense to
ask whether the interaction of a single object and the mediator is classical or not. When
there is only a single object A coupled to the mediatorM , there is only one interaction term
HAM , so of course [HAM , HAM ] = 0. Thus, it is natural to consider two objects interacting
via the mediator.

There have been indications that we can detect nonclassicality through the correlations
between two objects. Consider the formalism of quantum field theory in curved spacetime,
where the gravitational field is modeled as a background metric to the quantum fields. It
is known that some information about the metric is imprinted into the propagators of the
quantum fields [SAK16]. It is widely accepted that for quantum fields, propagators are a
measure of correlation. In fact, this imprinted information is sufficient to reconstruct the
metric from the correlations.

A more suggestive indication comes from the problem of entanglement distribution or
more broadly of quantum communication—two parties A,B would like to obtain some cor-
relation by sending a small “mediator” system M from one laboratory to the other. See
Figure 1.1 for illustration. The gain of entanglement in one round of exchange is then the
difference between the final entanglement EA:MB(ρ) when the mediator M is in the labora-
tory together with system B and the initial entanglement EAM :B(ρ) beforeM is transmitted.
If entanglement is measured by the relative entropy of entanglement [VPRK97], it was shown
that the gain in entanglement is bounded by the discord DAB|M (ρ) [SKB12, CMM+12], i.e.
|EA:MB(ρ)−EAM :B(ρ)| ≤ DAB|M (ρ). Therefore, any observation of entanglement gain be-
tween the laboratories caused by the exchange of the mediator M must mean DAB|M > 0.
Since DAB|M (ρ) quantifies the distance from ρ to the set of states where M is classical,
we conclude that in this scenario entanglement gain certifies that the mediator is nonclas-
sically correlated to the other systems. Here, classicality of a state means it is possible
to write the total tripartite state using the states of only one basis in the Hilbert space



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Discrete exchange of mediator vs. continuous. In (a), the interaction is relayed
through a discrete exchange of a mediator system M . In (b), the interaction is relayed by
continuous coupling to a mediator system M .

of M , i.e. ρABM =
∑
i piρ

i
AB ⊗ |ei〉 〈ei|M , where pi’s are probabilities, ρiAB are quantum

states on AB and {|ei〉M} forms a basis of HM . This result has also been extended to
continuous-in-time dynamics: Ref. [KZPP17, PBK+21] showed that if the discord DAB|M
is zero throughout the dynamics, then entanglement EA:BM cannot increase. A weaker, but
fascinating formulation is also provided—if DAB|M is zero throughout the dynamics, then
EA:B(t) ≤ S0

A + S0
B . Here S

0
A,B denotes the von Neumann entropy of the initial state. This

demonstrates the possibility of inferring something about the classicality of the mediator—
in this case discord—even though we do not have access to it. Furthermore, the exact
form of the coupling between the probes A,B and the mediator M is left unknown, so the
formalism is applicable to uncharacterized systems. Note that this is a different notion of
classicality from our definition. In these works, the classicality lies in the state instead of
the interaction.

Although different, the classicality of the state and of the interaction are closely related.
By definition, a state has zero discord DAB|M (ρABM ) if and only if there exists a rank-1
projection πM acting on subsystem M such that πM (ρABM ) = ρABM . When the state has
zero discord throughout the dynamics, then we can find πtM such that ρtABM = πtM (ρtABM ).
Note that these projectors πtM can be different at different times. Now, suppose the rank-1
projection πtM is time-independent, i.e. πtM = πM . Then, the HamiltonianH ′ = πM (HAM )+
πM (HBM ) produces the same evolution as the original Hamiltonian H = HAM+HBM . This
is because Lemma 1.1 implies that πM (ρtABM ) = ρtABM together with πM ([H, ρtABM ]) =
[H, ρtABM ] implies [H, ρtABM ] = [πM (H), ρtABM ] = [H ′, ρtABM ]. This modified Hamiltonian
has the additional property that the interaction terms commute, and therefore the mediator
is classical in the commutative sense.

Lemma 1.1. Let XAB , YAB be linear operators acting on HA ⊗HB, and

ΠB(Z) =
∑
i

|ei〉 〈ei|Z |ei〉 〈ei| (1.1)

a rank-1 projective map, where {|ei〉} forms a basis of HB.
If

(11A ⊗ΠB)(YAB) = YAB , and (1.2)
(11A ⊗ΠB) ([XAB , YAB ]) = [XAB , YAB ], (1.3)

then [XAB , YAB ] = [(11A ⊗ΠB)(XAB), YAB ].
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Proof. Let us write XAB , YAB in the following block form

XAB =
∑
ij

Xij ⊗ |ei〉 〈ej | , (1.4)

YAB =
∑
ij

Yij ⊗ |ei〉 〈ej | , (1.5)

where Xij , Yij are linear operators acting on HA. Eq. (1.2) implies that YAB is block
diagonal, i.e. YAB =

∑
k Ykk ⊗ |ek〉 〈ek|. Computing the commutator, we have

[XAB , YAB ] =

∑
ij

Xij ⊗ |ei〉 〈ej | ,
∑
k

Ykk ⊗ |ek〉 〈ek| ,

 (1.6)

=
∑
ij

(XijYjj − YiiXij)⊗ |ei〉 〈ej | . (1.7)

However, Eq. (1.3) implies that [XAB , YAB ] =
∑
l Zl⊗ |el〉 〈el| for some matrices Zl, i.e. the

commutator must be block diagonal. Therefore, we must have XijYjj − YiiXij = 0 if i 6= j.
This leaves us with

[XAB , YAB ] =
∑
ij

(XijYjj − YiiXij)⊗ |ei〉 〈ej | . (1.8)

=
∑
i

(XiiYii − YiiXii)⊗ |ei〉 〈ei| (1.9)

=
∑
i

[Xii, Yii]⊗ |ei〉 〈ei| (1.10)

=

∑
i

Xii ⊗ |ei〉 〈ei| ,
∑
j

Yjj ⊗ |ej〉 〈ej |

 (1.11)

= [(11A ⊗ΠB)(XAB), YAB ] , (1.12)

which proves the claim.

Therefore we see that in some cases, classicality of the state implies classicality of the
interaction. In this thesis, we will extend this line of research to study the quantumness of
the interaction, instead of the joint state of the systems.

1.2 Why (quantum) mediators?
Since physical interactions are defined by the behavior of the mediator, studying the me-
diator allows us to conclude some things about the interactions themselves. The canon-
ical example is the study of the interaction between matter and light fields, resulting in
the formulation of the theory of quantum electrodynamics. For the past few decades, we
witnessed many extensions of quantum theory to incorporate gravity, but proposed exper-
iments testing these theories are mostly out of the reach of current experimental capabili-
ties [DB22, CBPU19]. Recently, there is an interest in bringing techniques from quantum
information to provide predictions testable on table-top experiments that can invalidate
some models of quantum gravity [BMM+17, MV17, KZPP17]. With the advance of control
over massive systems [Asp22], such table-top gravitational experiments are reaching feasi-
bility. Therefore, with further development of methods to test nonclassicality of mediators,
we can put further constraints on the quantum nature of gravity.

Besides answering foundational questions, there are also more modest implications of
this study. As a motivating example, let us examine a quantum optics setup. Suppose
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systems A,B,M are single mode light fields. The interaction Hamiltonian is given by
H = a†AaM + a†BaM+ h.c., where a, a† are the ladder operators. Furthermore, suppose the
initial state shared by AB is in a product state with M , with a coherent state at M , i.e.
|ψ0〉 = |ψAB〉 ⊗ |αM 〉. If the amplitude of the state at M is very large, i.e. αM � 1, then
a†M |αM 〉 ≈ α∗M |αM 〉, and effectively the interaction can be described by the Hamiltonian
H = a†AαM + a†BαM+ h.c.. This is exactly the Hamiltonian that describes two quantum
fields A,B interacting with a classical field M . Notice that the Hamiltonian splits into
two local parts, so effectively the whole evolution is described by a local unitary acting
on A and separately a local unitary on B. Because correlations must be monotonic under
local operations, the correlation between A and B cannot increase. Therefore, to distribute
entanglement through a light field, the amplitude at the mediator M cannot be too large—
otherwise we cannot even correlate A and B. We can understand this phenomenon as a
continuous interaction analogue of the paradigm of local operations and classical communi-
cation (LOCC)—quantum systems cannot get entangled by classical communication.

Another application is in the quantum simulation of many-body systems. Suppose we
have a quantum simulator—a quantum system that we can control to some degree—and we
would like to simulate a many body system withN -parties. We do this by applying a series of
gates to our simulator, such that the resulting map is equivalent to the evolution of the many-
body system. In general, simulating a system with an arbitrary Hamiltonian necessitates
an exponential amount of resources, making the problem intractable. Fortunately, the
Hamiltonian for most systems of interest is k-local—that is, the Hamiltonian if of the form
H =

∑
iHi, where each Hi term acts on at most k-subsystems. The restricted problem of

simulating k-local Hamiltonians turns out to be much simpler than the general one—it is
even tractable [Llo96]. Recent results [CST+21] show that the error in simulating a k-local
Hamiltonian is asymptotically bounded by the sum of the norm of N nested commutators∑N
a1,...,aN=1 ‖[HaN , . . . , [Ha2 , Ha1 ]]‖∞. In this context, we are studying the correlation in the

simplest systems with 2-local Hamiltonians, and its relation to the commutators [Hi, Hj ].
Since our result provides a lower bound on the norm of the commutator of interaction
terms, this bounds the asymptotic error scaling in simulating N -body dynamics described
by a 2-local Hamiltonian.

1.3 Summary of results

These examples show that the physics of mediators is incredibly rich, and has broad appli-
cability to a number of problems. We will explore these issues in the following chapters.

In Chapter 2, we discuss the theory of correlations. We start by reviewing the framework
of resource theories and propose a definition of resource theory of correlations. We continue
by defining correlation measures as resource monotones and review typical constructions
of correlation measures. We show that these definitions are consistent with the correlation
measures typically used in the literature, with some caveats on quantum discord. We finish
by commenting on computability of these measures.

Chapter 3 discusses negativity and its relation to distance-based correlation measures.
We show that we can define a distance—we call it the partial transpose distance—on the set
of states, such that correlation measures based on this distance are comparable to negativity.
We conjecture that negativity is in fact equal to the partial transpose distance to PPT states
and provide supporting evidence. This allows us to fairly compare negativity to measures of
other types of correlations, because they are constructed from the same distance. We close
this chapter by investigating the geometry of correlations with partial transpose distance,
and show a subadditivity relation for total correlations in a pure state. This chapter is based
on the results presented in Ref. [GMPZ22].

Chapter 4 discusses mediated dynamics, where we have two systems A,B whose inter-
action is relayed through a mediator M . We start by defining classical interactions and
relate them to a decomposability property of maps. We provide a necessary criterion for
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correlations in decomposable dynamics and show examples of violation of this criterion,
witnessing the nondecomposability of the dynamic. We extend this analysis to the scenario
where the mediator is inaccessible, in view of restricting quantum theories of gravity. More
specifically, we formulate a necessary condition for a map to have a decomposable dilation,
phrased only in terms of correlations between A and B and the dimension ofM . This condi-
tion is independent of the actual coupling to the mediator, making it suitable for scenarios
where we do not have a full characterization of the dynamics. We then define measures
of nondecomposability along with methods to estimate lower bounds from the violation of
these criteria. We close by discussing the implications for the theory of quantum simulators
and the Bose-Marletto-Vedral experiment. This chapter is partially based on the results
presented in Ref. [KGL+18].



Chapter 2

Correlations

Poincaré said that mathematics is the art of giving the same name to different things [Poi18].
True to the quote, there exist many different definitions of what correlations are—a statis-
tician would say covariance quantifies the correlation between two random variables, but
an information theorist would say we should quantify it by mutual information. Quantum
theory does not help to clarify the situation, instead it exacerbates the problem—we get
even more notions of correlations. For example, some people call the conditional probability
of outcomes that you get in a Bell scenario as correlation. If you talk to people working
with quantum field theories, they will talk about (n-point) correlation functions. A quan-
tum information theorist says correlations truly exist within quantum states, and they take
various forms such as entanglement, discord, dissonance, etc.

Reflecting back on the quote, there is something unifying these different things. After
all, there is an art to the name-giving. In this chapter, we will explore what we mean by
correlation measures, review some common constructions, and comment on some aspects of
computability. We will draw heavily from the resource theoretic perspective presented in
Ref. [CG19] while noting the special details that make it a theory of correlations instead of
resources.

2.1 Resource theory and correlations
In this thesis, when we say correlations we mean the correlation that is contained in a
quantum state. For simplicity, consider a bipartite system with Hilbert space HA ⊗ HB .
Suppose the system is in some state ρ, and we have two local observables OA, OB . By
correlation in a quantum state, we mean the statistical relation between the measurement
outcomes of OA and OB . When we only have one local observable for each subsystem, then
the relation can be described by classical probability theory—there exists a joint probability
distribution that describes the outcomes. Furthermore, we can always choose this joint
probability distribution to be local—the measurement outcome at A does not depend on B
except indirectly through some local hidden variable. Such a joint probability distribution
is also called a local hidden variable model. However, if we consider the correlations in at
least two local observables for each subsystem, this is not necessarily true. This is the point
of Bell’s theorem [Bel64]—for some quantum states, we cannot reproduce the correlation
between measurement outcomes with local hidden variable models. In other words, while
for any pair of local observables the joint probability clearly exists, it cannot be extended to
a joint probability of outcomes for all observables. It was found that these “stronger-than-
classical” correlations are related to entanglement [Wer89].

Since entanglement was the first example of a kind of correlation that is only exhibited in
quantum systems, for a long time it was equated with all quantum correlations. Part of the
reason is that for bipartite pure states, all correlations take the same form—if a pure state is
correlated (not product), then it must be entangled. However, over the years we have learned

7
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Figure 2.1: Illustration of a resource theory. A free operation ϕ ∈ F must map a free state
σ ∈ S to another free state ϕ(σ) ∈ S. A resourceful/non-free state can be mapped to either
a free state (as for ρ1) or a non-free state (as for ρ2). In a resource theory of correlations, we
identify the set of uncorrelated states as the free states and a physically-motivated subset
of non-correlating operations as the free operations.

that separable states can also exhibit nonclassical forms of correlations, e.g. discord [HV01,
OZ01, Zur00]. Today, we understand that correlations in a quantum state can take many
forms, including total correlation [GPW05, MPS+10], discord [MBC+12, BDS+17], entan-
glement [HHHH09], steering [GA15], and Bell-nonlocality [WSS+20] among others. These
different forms of correlations are useful in different ways—entanglement allows us to tele-
port quantum states [BBC+93], while Bell-nonlocality is linked to an advantage in certain
communication tasks [BŻPZ04, BCMdW10].

With these developments, some patterns emerged in different theories of correlations.
Namely, correlations behave like resources that can be manipulated. An abstraction of
these resource manipulations lead to the formulation of resource theory [CG19]. Today, we
understand correlations as a special type of resource theory. The resource theory that is
associated with a correlation is one whose free states are the uncorrelated states and whose
free operations are a set of physically-motivated operations that do not correlate the systems.
For example, we understand entanglement as a resource theory where the free states are the
separable states and the free operations are the LOCC maps [Wer89, HHHH09].

However, not all resource theories are about correlations. For example, it is hard to think
of coherence [SAP17] or resource theory of quantum thermodynamics [GHR+16, GMN+15]
as correlation—there is only a single system involved in these scenarios. A theory of corre-
lations must be a resource theory with some multiparty structure.

To formulate this point precisely, let us review the basic notions in a resource theory
(see Figure 2.1).

Definition 2.1. A resource theory (S,F) consists of a set of free states S ⊆ D and a set of
free operations F such that

1. 11 ∈ F .

2. F is closed under composition.

3. For all ϕ ∈ F , we have ϕ(S) ⊆ S.

Example 2.1. 1. Entanglement: the free states are separable states and the free oper-
ations are LOCC maps [Wer89, HHHH09].
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2. Coherence: the free states are incoherent states and the free operations are incoherent
operations [SAP17].

3. Discord: the free states are classical-quantum states and the free operations are
classical-quantum operations [MBC+12, BDS+17].

4. Total correlations: the free states are product states and the free operations are prod-
uct maps [GPW05, MPS+10].

5. PPT entanglement: the set of free states are PPT states and the free operations are
PPT operations [Rai99, Rai01].

6. Steering: the set of free states are unsteerable assemblages and the free operations are
one-way LOCC [GA15].

The multipartite structure is expressed by resource theories that admit a tensor product
structure [CG19].

Definition 2.2. A resource theory (S,F) admits a tensor product structure if:

1. All free operations are completely free, i.e. for all ϕ ∈ FX→Y , we have 11Z ⊗ ϕ ∈
FZX→ZY .

2. Appending free states is a free operation, i.e. for all σ ∈ SY , ϕσ(ρ) = ρ ⊗ σ, we have
ϕσ ∈ FX→XY .

3. Discarding a subsystem is a free operation, i.e. TrXY→X ∈ FXY→X .

The relevance of these conditions to a theory of correlations is evident. Condition 1 says
that applying a free operation to a correlated subsystem is still a free operation. Conditions
2 and 3 combined mean that we can freely create and discard free states. All resource
theories shown in Example 2.1 admit a tensor product structure.

However, we already argued that coherence should not be a correlation. The missing
ingredient is this—correlation is the separation between the actual state and something that
can be produced from an uncorrelated state by acting locally on each subsystem and some
permitted version of collaboration. For example, we say a state is entangled if we cannot
reproduce the state by applying some LOCC map to a separable state. This means that
for any resource theory of correlation, the set of free operations must include all product
maps—otherwise we can create correlation by performing some local operation. Since some
local operations are not free in the resource theory of coherence, it cannot be a theory of
correlation. We propose the following definition for a resource theory of correlation:

Definition 2.3. A resource theory (S,F) is a theory of correlation if it admits a tensor
product structure and the set of free operations includes all product maps.

Most of the examples above—entanglement, PPT entanglement, and total correlations—
fulfill this definition. The difference is only in the allowed type of collaboration—entanglement
allows classical communication, whereas total correlation does not allow any collaboration.
However, the resource theory of quantum discord does not satisfy Definition 2.3. We know
that discord quantifies how far is our system from a classical-quantum description. However,
we can increase the discord in a state by performing a quantum operation on the classical
part. By our definition, the resource theory of discord is not a theory of correlation.

Another notable example of a theory that is excluded by Definition 2.3 is the resource
theory of Bell nonlocality. Suppose we define a resource theory of Bell nonlocality by saying
the free operations are LOCC, and the free states are those states that do not exhibit Bell
nonlocality. It is known that this resource theory exhibits superactivation—there are states
ρ, σ that are free, yet ρ⊗σ is not [Pal12]. This implies appending free states is not necessarily
a free operation, which means it does not admit any tensor product structure.
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2.2 Correlation measures

Since correlation can be seen as a special form of resource, we can use the standard techniques
in the formalism. A standard way to quantify the amount of resource in a state is through
the use of resource monotones.

Definition 2.4. A resource monotone for a given resource theory (S,F) is a function
Q : D → R such that for any state ρ and any free operation ϕ ∈ F , we have Q(ρ) ≥ Q(ϕ(ρ)).

Initially, monotones are formulated in the context of the transformability problem—
given ρ, σ, is there a free operation ϕ ∈ F such that ϕ(ρ) = σ? If there exists a resource
monotone Q such that Q(σ) > Q(ρ), then we know such a transformation is impossible.
Note that the ordering imposed by different monotones might not be unique—we might
have Q1(ρ) > Q1(σ) and Q2(ρ) < Q2(σ). This is already shown for several entanglement
measures [VP00, MG04]. We relate this definition to correlation measures as follows:

Definition 2.5. A correlation measure is a resource monotone for some theory of correla-
tion.

Note that this definition elevates monotonicity as the essential property of correlation
measures—although other properties discussed in the literature such as positivity, faith-
fulness, convexity, additivity, and continuity are useful, they are of secondary importance.
From this definition, we can already show that for a correlation measure must be constant
on the set of uncorrelated states. If we set this constant to be zero, then the resulting
measure will be positive.

In the literature, there are many different measures of correlation [HHHH09, MBC+12,
CG19]. However, we can understand the broad categories by looking at several common
constructions. Since entanglement theory is one of the most widely studied resource theory,
many of these measures were first defined for entanglement. Often, the construction can be
generalized to other types of correlations.

2.2.1 Information theoretic measures

Information theory is fundamentally a theory of information processing tasks [CT05]. One
of the basic problems is the following—suppose we have a noisy channel, what is the optimal
rate of transmission through this channel? Superficially, it is very similar to the basic task
in resource theory—what is the optimal rate of transformation between two states? Thus,
we will call measures that stem from rates of information processing tasks as information
theoretic measures.

As stated before, initially resource monotones were used to detect the impossibility of a
certain transformation under free operations. One of the first examples was in the theory
of entanglement measures. For pure bipartite states, the conditions for the possibility of
LOCC transformations are known [Nie99]. In addition, there exists a collection of measures
that fully characterize the possible transformations for pure states [Vid99]. The measures
are defined as follows—let |ψ〉 =

∑
i

√
pi |eifi〉 be a pure state in its Schmidt basis, with

pi ordered from largest to smallest. We define Ek to be the sum of the (d − k)-smallest
Schmidt coefficients Ek(ψ) =

∑
i>k pi. Then there is an LOCC transformation that takes

ψ to ϕ if and only if Ek(ψ) ≥ Ek(ϕ) for all k.
This characterization implies that there exists a maximally entangled state—a state that

maximizes the entanglement measure. The maximally entangled state is a pure state whose
Schmidt coefficients are all equal: |Φ〉 =

∑
i

1√
d
|eifi〉. More interestingly, because this set

of monotones completely characterizes the possible transformations, we can transform the
maximally entangled state to any pure state. When we have many copies of a state, we can
also concentrate the entanglement into some smaller number of maximally entangled states.
This phenomenon is known as entanglement distillation [BBPS96, BDSW96, BBP+96].
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Entanglement cost is an entanglement measure that is related to the phenomenon of
quantum teleportation [BBC+93, BBP+96, BBPS96, BDSW96, PV07]. Recall the scenario—
Alice and Bob share a Bell state Φ and Alice would like to send a qubit in the state ρ. Alice
performs a joint measurement on both qubits in her possession, and communicates the out-
come classically to Bob. Bob then applies a unitary correction that depends on Alice’s
outcome and the final state of the qubit in his lab will be ρ. By using multiple copies of
Bell states, the protocol can be adapted to send higher-dimensional systems. This means
that with LOCC operations, Alice and Bob can prepare any quantum state if they have an
unlimited supply of Bell states—Alice can simply prepare the full state in her lab, then send
one part to Bob through the teleportation protocol. However, this is not optimum because
we would need log dB Bell pairs to create every state, whereas we know that preparing
product states can be done without using up any Bell pairs at all. The entanglement cost
EC(ρ) is defined as the minimum asymptotic rate of entanglement needed to prepare ρ

EC(ρ) = lim
ε→0,n→∞

sup{m/n | dtr
(
ρ⊗n, ϕm(Φ⊗m)

)
≤ ε, ϕm LOCC}, (2.1)

where we start with m Bell states and obtain n copies of ρ. The dual measure—distillable
entanglement—measures the maximum asymptotic rate of entanglement that we can distill

ED(ρ) = lim
ε→0,n→∞

sup{m/n | dtr
(
ϕn(ρ⊗n),Φ⊗m

)
≤ ε, ϕn LOCC}, (2.2)

when we start with n copies of ρ and obtainm copies of Bell states. From the definitions, it is
easy to see that these quantities are resource monotones for entanglement theory. However,
they are generally not equal, as shown recently in Ref. [LR21].

These quantities can also be defined in other resource theories that admit a golden unit—
a state that serves as a unit of resource. The crucial property is that given an unlimited
supply of golden units, the restriction to free operations is lifted and we can prepare any
state.

2.2.2 Convex roof measures

For many measures, it is easy to define and compute them for pure states and rather difficult
at first glance to extend their definitions to mixed states (e.g. the Schmidt rank). However,
there are many schemes to extend a function on pure states to mixed states. A particu-
larly common construction is the “convex roof” extension, because the correlation measure
obtained will be convex. Furthermore, if the correlation measure is asymptotically contin-
uous on pure states, then the extension automatically inherits this property. Monotonicity
also follows automatically from monotonicity on pure states. In fact, it is characterized
by being the largest measure among all convex measures that take the same value on pure
states [Uhl98]. This means that the convex roof extension f̃(ρ) of a measure f(ψ) satisfies

f̃(ρ) = sup
g(ψ)=f(ψ),

g(
∑

i piρi)≤
∑

i pig(ρi)

g(ρ). (2.3)

The canonical example of a convex roof measure is the entanglement of formation [BDSW96].
For pure states |ψAB〉, it is defined as the von Neumann entropy of a subsystem Ef (ψAB) =
S(ψA). Next we extend the measure to ensembles of pure states through convexity, i.e.
Ef ({(pi, ψi)}) =

∑
i piEf (ψi). For mixed states, we take infimum over all ensembles that

produce the given mixed state, Ef (ρ) = inf∑
i piψi=ρEf ({(pi, ψi)}). It is clear that en-

tanglement of formation gives an upper bound on the entanglement cost, as the optimum
decomposition is a particular way of preparing the state through LOCC.

Some convex roof measures can be related to other classes of measures. For example,
Ref. [SKB10] showed that the convex roof of the geometric measure of entanglement is
related to the Bures’ distance to separable states.
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2.2.3 Distance-based measures
The idea of measuring correlations by distances was proposed in Ref. [VPRK97], which
develops a related idea in quantum optics [Hil87]. The authors defined an entanglement
measure—relative entropy of entanglement—by taking the relative entropy to the set of
separable states, and showed that it is monotonic under LOCC. Although relative entropy
is not a metric, it has operational meaning in hypothesis testing that translates to bounds
on the rate of several information processing tasks.

More generally, the idea is the following—we take a contractive distance on the set of
states and define the measure by simply taking the distance to the set of free states

Q(ρ) = inf
σ∈S

d(ρ, σ). (2.4)

By contractive we mean that for any CPTPmap ϕ and any states ρ, σ, we have d(ϕ(ρ), ϕ(σ)) ≤
d(ρ, σ). Since the distance is contractive, it is easy to verify that the constructed measure
is a monotone. Furthermore, Q(ρ) is zero if and only if ρ ∈ S, so the resulting measure is
faithful. The measure also inherits the operational meaning of the distance whenever it is
defined. For example, trace distance between two states dtr(ρ, σ) = 1

2‖ρ− σ‖1 determines
the minimum error of distinguishing two states given a single copy as shown by the Hel-
strom’s bound [Hel76]. Then Qtr(ρ) = infσ∈S dtr(ρ, σ) determines the minimum error of
distinguishing ρ from a free state. When considering many copies in the asymptotic limit,
the analogue of trace distance is the quantum relative entropy as shown by quantum Stein’s
lemma [HP91, NO00]. Therefore, relative entropy-based measures such as relative entropy of
entanglement acquire an operational interpretation as the optimal error rate of asymptotic
distinguishability. In fact, relative entropy of entanglement is an upper bound to distillable
entanglement by the argument outlined in Ref. [VP98].

Measures constructed in this fashion allow us to compare the relative amount of different
kinds of correlation in the same state. If we compare two measures that are constructed
from the same distance, then the comparison is meaningful. This is not necessarily true for
information theoretic measures or convex roof measures.

2.2.4 Minkowski functional and related measures
Some resource theories that we have encountered admit a convex structure—the set of free
states and free operations are convex. In this case, we can use techniques from convex
analysis to quantify correlations.

In convex analysis, the natural measure of distance to a set is the Minkowski functional
(also known as gauge) [Roc70]. Therefore, we can apply the formalism in the previous
subsection with the Minkowski functional. By choosing different sets, we obtain many
quantities that have been extensively studied in quantum information theory [VW02]: base
norms [PV07, Reg17], robustness [VT99], best separable approximation [LS98], etc. Given
a subset K, the Minkowski functional measures the minimum amount of scaling such that
x is contained in the scaled set rK (see Figure 2.2 for illustration).

Definition 2.6. Let K be a subset of a vector space V . The Minkowski functional of K is

pK(x) = inf
r>0,x∈rK

r (2.5)

By convention, we will take the infimum of the empty set as ∞. These functionals are
related to norms on the vector space—given a norm ‖x‖, the Minkowski functional of the
unit ball B = {x | ‖x‖ = 1} is equal to the norm, i.e. pB(x) = ‖x‖. In the literature, this
construction is also known as the base norm [Nag, Reg17].

Now, consider the Minkowski functional of the set of free states pS . It is easy to show
that pS is a resource monotone, because free operations preserve the free states.

Robustness [VT99] is defined as R(ρ) = inf{s | s ≥ 0, 1
1+s (ρ + sσ) ∈ SEP, σ ∈ SEP}.

We can relate robustness to the Minkowski functional of a suitable set [VW02].
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Figure 2.2: Geometrical illustration of the Minkowski functional pK(x). By considering
different subsets K, we recover various correlation measures considered in the literature,
including robustness and best separable approximation.

Proposition 2.1. Let K be the Minkowski difference between separable states, i.e. K =
{σ − σ′ |σ, σ′ ∈ SEP}. Then R(ρ) = (pK(ρ)− 1) /2.

Proof. Since K is convex, by the Krein-Milman theorem it must be generated by the convex
hull of its extreme points [Rud91]. Using the fact Tr ρ = 1, we have

pK(ρ) = inf {s | ρ = s(aσ + b(−σ′)), a+ b = 1, a, b ≥ 0, σ, σ′ ∈ SEP} (2.6)
= inf {a+ b | ρ = aσ − bσ′, a, b ≥ 0, σ, σ′ ∈ SEP} . (2.7)
= inf {2s+ 1 | ρ = (1 + s)σ − sσ′, σ, σ′ ∈ SEP} (2.8)
= 2R(ρ) + 1 (2.9)

Simple rearrangement proves the claim.

The measure obtained from the best separable approximation has a related construc-
tion [LS98]. The measure is defined as Ebsa(ρ) = inf{1−p | 0 ≤ p ≤ 1, ρ−pσ ≥ 0, σ ∈ SEP}.
It is related to the Minkowski functional as follows [Reg17]:

Proposition 2.2. Let K be the Minkowski sum K = { 1
2σ + σ′ |σ ∈ D, σ′ ∈ SEP}. Then

Ebsa(ρ) = pK(ρ)− 1.

Proof. Using the fact that K is convex and Tr ρ = 1, we have

pK(ρ) = inf
{
s | ρ = s(a 1

2σ + bσ′), a+ b = 1, a, b ≥ 0, σ ∈ D, σ′ ∈ SEP
}

(2.10)
= inf {2a+ b | ρ = aσ + bσ′, a, b ≥ 0, σ ∈ D, σ′ ∈ SEP} (2.11)
= inf {a+ 1 | ρ = aσ + (1− a)σ′, 0 ≤ a ≤ 1, σ ∈ D, σ′ ∈ SEP} . (2.12)

Simple rearrangement proves the claim.

Like distance-based measures, this construction allows us to compare the amount of
different types of correlations in a quantum state. For example, we can compare robustness
of separability to “robustness of productness” of the same state. However, since they are
constructed with tools from convex analysis, they are guaranteed to behave well only for
convex theories. This makes it hard to quantify the correlations related to non-convex sets,
such as total correlations. As a particular example, let us define the analogue of robustness
for total correlationsRPROD(ρ) = (pK(ρ)−1)/2, where we takeK = {σ−σ′ |σ, σ′ ∈ PROD}
to be the Minkowski difference between the set of product states. Note thatK is not a convex



14 CHAPTER 2. CORRELATIONS

set. Then the following lemma [GMPZ22] implies that the “robustness of productness”
RPROD(ψ) = ∞ must be infinite for all pure entangled states and hence is not useful as a
quantifier of correlations.

Lemma 2.1. Let ψ be an entangled pure state. Then for any χA, χB ≥ 0, p > 0,

ρ = pψ + (1− p)χA ⊗ χB (2.13)

is not a product state.

Proof. Clearly if p = 1, ρ cannot be product because ρ = ψ is entangled. So without loss of
generality, we assume that 0 < p < 1.

We prove by contradiction. Let us assume that ρ can be written as a product ρ =
ρA ⊗ ρB . Then ρA = pα + (1 − p)χA and ρB = pβ + (1 − p)χB , where α and β are the
marginals of ψ. Since ψ is entangled, it has at least two terms in the Schmidt decomposition
|ψ〉 = r0 |00〉 + r1 |11〉 + . . .. Note that in this basis, the reduced states α and β are fully
diagonal. We compute the matrix element 〈01| ρ |10〉 in two ways: first using ρ = ρA ⊗ ρB
and second using the expansion in Eq. (2.13). One finds

(1− p)2 〈0|χA |1〉 〈1|χB |0〉 = 〈01| ρ |10〉 = (1− p) 〈0|χA |1〉 〈1|χB |0〉 . (2.14)

If both local states χA and χB admit off-diagonal elements, this implies either p = 0 or p = 1,
which contradicts our assumptions. Therefore, at least one of them has to be diagonal in
the Schmidt basis. However, a similar computation of the matrix element 〈00| ρ |11〉 then
implies that pr0r1 = 0, which contradicts the assumption that ψ is entangled. Therefore for
any p > 0, ρ is not a product.

2.3 Computability
The measures presented are generally hard to compute, as most of them involve optimiza-
tion problems that are hard to solve analytically. Although most of them admit a closed
analytical expression for pure states, generally for mixed states they have to be approxi-
mated numerically. A notable exception to this is the entanglement of formation for two
qubits [HW97], with the formulation of another entanglement monotone called concurrence.
Another one is negativity, which is a quantitative version of the PPT separability crite-
rion [Per96, HHH96]. As one of the few entanglement monotones that can be computed for
arbitrary mixed state, we will examine negativity and its relation to distance-based measures
further in the next chapter.

Recent works have studied various other correlation measures that are computable
through semi-definite programming (SDP) [FF18, WW20a, FF21]. Usually they are con-
structed in the distance-based approach, where the distance measure can be computed
through SDP. When the set of uncorrelated states also has an SDP characterization, then
we can combine the optimizations into a larger SDP and solve it numerically. Although
the solution to the optimization problem remains unsolved analytically, often they are nu-
merically feasible. This also applies to robustness-type measures—if the set of uncorrelated
states has an SDP characterization, then the robustness of that correlation is an SDP.

Another property that helps the evaluation of many measures is the convexity of the op-
timization problem that has to be solved. Convexity makes the optimization much simpler,
since any local optimum must be a global optimum. Therefore, to solve such problems, it
is enough to use algorithms which guarantee convergence to a local minimum, e.g. gradient
descent.
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Partial transpose distance

As one of the few computable entanglement measures, negativity is widely used to char-
acterize the entanglement of an arbitrary state. It originates from Peres’ observation that
positivity under partial transposition provides a simple necessary but not sufficient con-
dition for entanglement [Per96]. This was later generalized into Horodecki’s positive map
criterion which is both necessary and sufficient [HHH96]. Even though the partial trans-
pose criterion does not generally detect all entangled state, it is known to be sufficient for
two-qubit systems. The equivalence between entanglement and the partial transpose crite-
rion for two-qubit systems implies that the entanglement in PPT states cannot be distilled
into Bell pairs [Hor97] and demonstrates a close connection between partial transpose and
distillable entanglement.

A quantitative version of Peres’ observation was first formulated by Życzkowski et al.
[ŻHSL98, Życ99], who called it “degree of entanglement”. The name negativity and proof of
monotonicity under LOCC operations came later in a paper by Vidal and Werner [VW02].
Negativity is defined as

N(ρAB) = 1
2 (‖TA(ρAB)‖1 − 1), (3.1)

where TA(ρAB) denotes the partial transpose of ρAB in the computational basis of system
A. While Peres’ criterion checks whether TA(ρAB) is positive, negativity takes the sum of
the negative eigenvalues of TA(ρAB). There is also a logarithmic version called logarithmic
negativity

LN(ρAB) = log ‖TA(ρAB)‖1. (3.2)

Vidal and Werner also described a connection to base norms, and two operational interpre-
tations of logarithmic negativity: as a lower bound on the singlet distance and upper bound
on distillable entanglement. Subsequently, Plenio showed that they are monotonic under a
broader set of operations—PPT operations [Ple05].

Generally, negativity provides an easy-to-compute measure of entanglement given the
quantum state. We can also understand negativity as a measure derived from Minkowski
functional. Let K be the Minkowski difference between partially transposed states, i.e.
K = {TA(σ − σ′) |σ, σ′ ∈ D}. Then N(ρ) = 1

2 (pK(ρ) − 1). Because of this, we can also
construct other correlation measures that are comparable to negativity [VW02]. However,
this approach has several problems—it is unclear which Minkowski functional should be
chosen and it only works if the set of uncorrelated states is convex. Indeed, it will have the
same problems that “robustness of productness” suffers from.

In this chapter, we introduce a family of distance-based correlation measures that are
related to negativity, i.e. they can be meaningfully compared to negativity. We show that
these measures satisfy the usual axioms and provide their operational interpretations. Then
we formulate a conjecture for a relation between these measures and negativity, and show

15
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cases where this relation holds. We end with a discussion of the geometry of correlations in
this distance measure. This chapter is based on Ref. [GMPZ22].

3.1 Introduction

Let us start by motivating a relation between negativity and distance-based measures.
In the quantum information community, there is a widespread belief that coherence and

entanglement theory are intimately related. Many of the major ideas in each theory translate
well to the other, starting from measures, transformation conditions, existence of golden
units, distillation/dilution task, etc. Looking specifically at the resource monotones, we can
construct a coherence monotone from a given entanglement measure and vice versa [SSD+15,
ZMC+17]. Sometimes, we can even show that there is an analogue of a specific entanglement
measure in coherence theory. For example, relative entropy of coherence is closely related to
relative entropy of entanglement, as both of them bound distillable coherence/entanglement
and coherence/entanglement cost.

Remarkably, negativity also admits such an analogue. Let us start with a correspon-
dence in states between coherence and entanglement theory. To a “coherence theory” state
ρ =

∑
ij aij |i〉 〈j|, we associate an “entanglement theory” state ρ̃ =

∑
ij aij |ii〉 〈jj|. We can

view ρ̃ as mixtures of pure states that have the same Schmidt basis, also known as Schmidt-
correlated states. Note that under this correspondence, incoherent states are mapped to
separable states—they are even classically-correlated. Ref. [KKS07] showed that the nega-
tivity of Schmidt correlated states is equal to the `1 distance to separable states that are
diagonal in the Schmidt basis:

N

ρ̃ =
∑
ij

aij |ii〉 〈jj|

 = 1
2

∑
i 6=j

|aij | = inf
σ̃=

∑
ij pij |ij〉〈ij|

d`1(ρ̃, σ̃), (3.3)

where d`1 is the basis-dependent `1-distance d`1(ρ, σ) = 1
2

∑
i6=j | 〈ei| (ρ−σ) |ej〉 |, computed

in the product Schmidt basis. Compare this expression with the `1-distance coherence
measure [BCP14]:

C`1

ρ =
∑
ij

aij |i〉 〈j|

 = 1
2

∑
i 6=j

|aij | = inf
σ=

∑
i pi|i〉〈i|

d`1(ρ, σ), (3.4)

where d`1 is computed in the coherence basis. We see that the negativity of ρ̃ is closely
related to C`1(ρ). Recent works strengthened this connection by showing that coherence
distillation rate is also bounded by C`1 , mirroring the bound on distillable entanglement
from logarithmic negativity [RPL16, RPWL17]. When we consider coherence measures
that are constructed from entanglement measures [SSD+15], it was shown that C`1 is the
measure generated by negativity [ZHC18].

These results suggest that negativity is the image of C`1 under the entanglement-
coherence correspondence. In particular, negativity may be related to some distance-based
measure, i.e. N(ρ) = infσ∈S?

d?(ρ, σ) for some distance d? and set of states S?. Although
Refs. [KKS07, NPA13] effectively showed this statement holds for some special states, the
distance used was not well-behaved. For example, the distance was basis-dependent, so its
value may change if we apply a local unitary to our state. This clearly does not hold for
negativity, since it is an entanglement monotone. Therefore, we expect that the distance
should also possess similar characteristics to negativity. Since negativity is zero if and only
if the state is PPT, this means S? must be the set of PPT states. Ref. [WW20a] showed
that logarithmic negativity can be related to a distance-based measure, where the distance
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is related to the sandwiched Rényi relative entropy D̃α:

LN(ρ) = lim
α→1

inf
σ∈PPT

α− 1

α
D̃α(TA(ρ)‖TA(σ)), (3.5)

D̃α(X‖Y ) =
α

α− 1
log
∥∥∥Y (1−α)/2αXY (1−α)/2α

∥∥∥
α
, (3.6)

where ‖X‖α = (Tr |X|α)
1/α is the Schatten norm of order α. Since the sandwiched Rényi

relative is monotonic under CPTP maps [Bei13, MLDS+13, FL13], we can generalize this
construction to define measures for other kinds of correlations by replacing the PPT states in
the infimum. These measures can be meaningfully compared against logarithmic negativity
as they are constructed from the same distance. The problem with this generalization is that
the distance to any PPT state is constant. This can be seen by noting that for TA(σ) ≥ 0,
we have

lim
α→1

α− 1

α
D̃α(TA(ρ)‖TA(σ)) = log ‖TA(ρ)‖1, (3.7)

i.e. the distance is independent of σ. Therefore, it is impossible to distinguish different kinds
of correlations with this distance—all of the correlation measures have the same value. Nev-
ertheless, it shows that negativity may be related some distance-based correlation measure.

3.2 Constructing distance from negativity
Let us start by using triangle inequality to relate negativity to a variational expression:

inf
σ∈D

1
2‖TA(ρ)− σ‖1 ≥ inf

σ∈D
1
2 (‖TA(ρ)‖1 − ‖σ‖1) = N(ρ). (3.8)

Furthermore, if we choose σ∗ = (TA(ρ))+
Tr (TA(ρ))+

, then the inequality is saturated. Therefore, we
have

N(ρ) = inf
σ∈D

1
2‖TA(ρ)− σ‖1, (3.9)

capturing the idea that negativity measures how much partially transposed matrix fails to
be a state.

Let us define the following distance:

Definition 3.1. The partial transpose distance between two bipartite states ρ, σ is defined
as

dTA
(ρ, σ) = 1

2 (‖TA(ρ)− TA(σ)‖1) . (3.10)

Although partial transposition is a basis-dependent map, the partial transpose distance
is basis-independent because trace norm is invariant under unitaries. Similarly, it does not
matter on which subsystem we perform the transposition—only the bipartition matters.
When the bipartition is clear from context, we will drop the subscript A for legibility.

Now, Eq. (3.9) can also be written as the partial transpose distance to the set of “partially
transposed” density matrices TA(D), i.e.

N(ρ) = inf
σ∈TA(D)

1
2‖TA(ρ)− TA(σ)‖1 = inf

σ∈TA(D)
dT (ρ, σ). (3.11)

Our main conjecture is this optimum is always achieved on the set of PPT states (see
Figure 3.1 for illustration).

Conjecture 3.1. For all states ρ, we have

N(ρ) = inf
σ∈PPT

dT (ρ, σ). (3.12)
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Figure 3.1: Illustration of the conjectured relation between negativity and partial transpose
distance (see Conjecture 3.1). The solid line denotes the set of states, and the dashed line
denotes the set of partially transposed states. Negativity is equal to the length a, measured
through trace distance (see Eq. (3.9)). The state σ∗ (see discussion below Eq. (3.8)) achieves
this minimum. We conjecture that this length a is always equal to length b, the partial
transpose distance to the set of PPT states. Theorem 3.1 shows that the distances are
equal when TA(σ∗) is positive semi-definite, i.e. a state. However, in general, the PPT state
achieving the minimum partial transpose distance is unknown, as marked by a question
mark. We emphasize that this is just an illustration as partial transposition of σ∗ can
produce matrices with negative eigenvalues, i.e. outside the set of states.
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3.3 Evidence for conjecture
We have conjectured that negativity is equal to the partial transpose distance to the set of
PPT states. We can prove that this statement holds for a broad class of states that satisfy
a particular property.

Definition 3.2. We say the state ρ has positive binegativity if TA(|TA(ρ)|) ≥ 0.

Theorem 3.1. Let ρ be a quantum state that has positive binegativity. Then N(ρ) =
infσ∈PPT dT (ρ, σ).

Before proving Theorem 3.1, let us note that many states have positive binegativ-
ity [ADMVW02, Ish04]. For example, it is known that all pure states, all two-qubit states,
two-mode Gaussian states, and Schmidt-correlated states have positive binegativity. Thus,
we can understand the results of Ref. [KKS07, NPA13, ZHC18, RPWL17] as showing that
Eq. (3.12) holds for particular states. States with positive binegativity are special because
we have a closed expression for the exact PPT entanglement cost—that is, how much en-
tanglement is needed to prepare the state with PPT operations in the asymptotic limit. For
these states, the cost is exactly logarithmic negativity [APE03, Ish04].

To prove Theorem 3.1, let us start by formulating an alternative form of Conjecture 3.1.

Conjecture 3.2 (alternate form of Conjecture 3.1). For all states ρ, there exists a PPT
state σ such that (TA(ρ)) + ≥ σ.

Proof. We will show that Eq. (3.12) holds if and only if one can find a PPT state σ such
that (TA(ρ)) + ≥ σ. The proof in one direction is easy—if there is a PPT state σ such that
(TA(ρ)) + ≥ σ, then we can verify that dT (ρ, TA(σ)) = N(ρ). Therefore, we only have to
show that Eq. (3.12) implies there exists a PPT state σ such that (TA(ρ)) + ≥ σ.

Suppose Eq. (3.12) holds, i.e. there exists σ ∈ PPT such that dT (ρ, σ) = N(ρ). Let us
choose the optimal σ and show that this implies (TA(ρ)) + ≥ TA(σ). We have

‖TA(ρ)− TA(σ)‖1 = 2dT (ρ, σ) = 2N(ρ) = ‖TA(ρ)‖1 − ‖TA(σ)‖1. (3.13)

Let us write TA(σ) in the blocks corresponding to (TA(ρ)) + and (TA(ρ))−, that is

TA(σ) =

(
X Z
Z† Y

)
, with X,Y ≥ 0, By using the monotonicity of trace norm under projec-

tion onto these diagonal blocks, we have

‖TA(ρ)− TA(σ)‖1 =

∥∥∥∥ ((TA(ρ)) + 0
0 (TA(ρ))−

)
−
(
X Z
Z† Y

)∥∥∥∥
1

(3.14)

≥
∥∥∥∥ ((TA(ρ)) + 0

0 (TA(ρ))−

)
−
(
X 0
0 Y

)∥∥∥∥
1

(3.15)

= ‖(TA(ρ)) + −X‖1 + ‖(TA(ρ))− − Y ‖1. (3.16)

We have reduced the problem to showing that ‖(TA(ρ)) + −X‖1 + ‖(TA(ρ))− − Y ‖1 =
‖TA(ρ)‖1 − ‖TA(σ)‖1 implies (TA(ρ)) + ≥ TA(σ). Using the inequality ‖A‖1 ≥ TrA for the
first term in Eq. (3.16) and triangle inequality for the second, we have

‖(TA(ρ)) + −X‖1 + ‖(TA(ρ))− − Y ‖1 ≥ Tr ((TA(ρ)) + −X) + ‖(TA(ρ))−‖1 − ‖Y ‖1
(3.17)

= ‖TA(ρ)‖1 − ‖TA(σ)‖1. (3.18)

Because we chose σ such that ‖TA(ρ)− TA(σ)‖1 = ‖TA(ρ)‖1 − ‖TA(σ)‖1, the inequalities
applied to the first and second term must be saturated. Therefore, the following conditions
must be satisfied:

1. ‖(TA(ρ)) + −X‖1 = Tr ((TA(ρ)) + −X), and
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2. ‖(TA(ρ))− − Y ‖1 = ‖(TA(ρ))−‖1 − ‖Y ‖1,

Since (TA(ρ))− − Y ≤ 0, condition 2 implies

−Tr ((TA(ρ))− − Y ) = ‖(TA(ρ))− − Y ‖1 (3.19)
= ‖(TA(ρ))−‖1 − ‖Y ‖1 = −Tr (TA(ρ))− − TrY, (3.20)

i.e. TrY = 0. However since Y ≥ 0, this can only be true if Y = 0. Since Y = 0 and

TA(σ) =

(
X Z
Z† 0

)
≥ 0, we must have Z = 0 and TA(σ) = X. Therefore condition 1

becomes ‖(TA(ρ)) + − TA(σ)‖1 = Tr ((TA(ρ)) + − TA(σ)), which holds true if and only if
(TA(ρ)) + ≥ TA(σ).

Now, the proof of Theorem 3.1 is immediate.

Proof of Theorem 3.1. Since ρ is a state with positive binegativity, then TA((TA(ρ)) +) ≥ 0.
It is easy to verify σ = 1

Tr (TA(ρ))+
(TA(ρ)) + satisfies the condition given in Conjecture 3.2.

Theorem 3.1 does not prove the conjecture is true in general, as there exist states that
do not have positive binegativity. A simple example of such a state is given by an equal
mixture of |00〉+ |01〉+ |12〉 and |10〉+ |21〉+ |22〉. However, a numerical check still confirms
that for this particular state, Eq. (3.12) holds. The numerical check can be performed by
noting that the partial transpose distance to the set of PPT states is an SDP problem.
Furthermore, the alternate version of the conjecture provides a simpler formulation as an
SDP feasibility problem. By solving the SDP problem instance corresponding to a given
state, we can verify whether Eq. (3.12) holds. The numerical check was implemented in
Python, using PICOS [SS22] as a high-level interface and MOSEK as the solver backend.

Nevertheless, we have shown that for a large class of states whose exact PPT entangle-
ment cost is equal to logarithmic negativity, Eq. (3.12) holds. One might ask whether
Eq. (3.12) holds for all states whose exact PPT entanglement cost is related to nega-
tivity. The problem of computing exact PPT entanglement cost was recently closed in
Ref. [WW20b]. The cost is given by the following quantity, called κ-entanglement:

Eκ(ρ) = log inf {TrS |S ≥ 0,−TA(S) ≤ TA(ρ) ≤ TA(S)} . (3.21)

It was shown that both the lower and upper bound from logarithmic negativity given in
Ref. [APE03] are not tight in general, by giving an example of a state whose κ-entanglement
is strictly between these bounds. Numerical checks using the same method as explained
above for these states confirm that Eq. (3.12) holds for this example.

We have also checked whether Eq. (3.12) holds for mixed states chosen randomly ac-
cording to the recipe given in Refs. [ZS01, Bra96, Hal98]. We sampled two qudit states
with local dimension d = 2 to d = 6, with 106 random mixed states for each dimension. In
all cases, we have never observed a counterexample to the conjecture—that is, where the
negativity is significantly above the partial transpose distance.

In principle, we can attribute the lack of counterexamples to two things: the set of
counterexamples might have zero measure, or the negative eigenvalues of TA((TA(ρ)) +)
are typically very small. Nonetheless, a simple application of triangle inequality shows
that N(ρ) ≤ infσ∈PPT dT (ρ, σ). From the calculations on random states, we found that
the difference between negativity and the computed partial transpose distance is typically
within 10−8, which reflects the precision of the SDP solver. Thus we conclude that negativity
provides a good lower bound to the partial transpose distance for a typical state.
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3.4 Properties and operational interpretation
Because the partial transpose distance was constructed in relation to negativity, the distance
should be contractive in order to guarantee monotonicity (as discussed in Section 2.2.3).
However, the following counterexample shows that this distance is not contractive under
general CPTP operations. Consider two d-level systems and let |ψ〉 = |00〉, |ϕ〉 = |01〉, such
that dT (ψ,ϕ) = 1. Observe that the distance between |Φ〉 = 1√

d

∑
i |ii〉 and σ = 1

d

∑
i |ii〉 〈ii|

is (d− 1)/2. Since ψ and ϕ are orthogonal, there exists a CPTP map Λ that maps |ψ〉 to Φ
and |ϕ〉 to σ. Then dT (ψ,ϕ) = 1 < (d− 1)/2 = dT (Λ(ψ),Λ(ϕ)) for d > 3.

This does not pose a problem for monotonicity of negativity, because the partial trans-
pose distance is still contractive under PPT operations.

Proposition 3.1. For any PPT operation ϕ and density matrices ρ, σ, we have dT (ρ, σ) ≥
dT (ϕ(ρ), ϕ(σ)).

Proof. By the definition of PPT operations, ρ 7→ TA(ϕ(TA(ρ))) is a positive map. Since
trace norm is monotonic under positive, trace-preserving maps [Rus94], we have

dT (ρ, σ) = 1
2‖TA(ρ)− TA(σ)‖1 (3.22)

≥ 1
2‖TA(ϕ(TA(TA(ρ))))− TA(ϕ(TA(TA(σ))))‖1 (3.23)

= dT (ϕ(ρ), ϕ(σ)), (3.24)

proving the claim.

Since partial transpose distance and trace norm are closely related, we expect that the
operational interpretation of these two quantities must also be connected. The operational
interpretation of trace distance comes from the task of one-shot distinguishability, in a result
commonly known as Helstrom’s bound [Hel76]. Suppose we are given one copy of a quantum
state out of two known choices ρ, σ that are equally likely. Our task is to guess which state
we are given, and we are only allowed to do one POVM measurement on our state. If we
associate the POVM element P with guessing ρ and 11−P with guessing σ, the probability
of a correct guess is given by

PPOVM = 1
2 (TrPρ+ Tr (11− P )σ) (3.25)

= 1
2 (1 + TrP (ρ− σ)) . (3.26)

Optimizing P over all possible POVM elements, we have the Helstrom’s bound PPOVM ≤
1
2 (1 + dtr(ρ, σ)).

Now, suppose the states that we are given are bipartite, and there are restrictions on
the possible measurements that we can perform. If we can only implement LOCC measure-
ments, the optimum probability of success is also a norm, called LOCC distinguishability
norm [MWW09]. Since negativity is a monotone in the theory of PPT entanglement, it is
more relevant to consider restrictions to PPT POVM’s, which are POVM’s where all the
POVM element are PPT operators.

Then the optimum probability of success in this task is

PPPT ≤ sup
{

1
2 (1 + Tr (P (ρ− σ))) | 0 ≤ P ≤ 11, 0 ≤ TA(P ) ≤ 11

}
(3.27)

= sup
{

1
2 (1 + Tr (TA(P ) TA(ρ− σ))) | 0 ≤ P ≤ 11, 0 ≤ TA(P ) ≤ 11

}
(3.28)

≤ sup
{

1
2 (1 + Tr (P TA(ρ− σ))) | 0 ≤ P ≤ 11

}
(3.29)

= 1
2 (1 + dT (ρ, σ)) . (3.30)

Unlike Helstrom’s bound, this bound is not always achievable. The maximum partial
transpose distance between two bipartite states generally grows linearly with the local di-
mensions, so for dT (ρ, σ) > 1 this bound is trivial. However, if the states ρ, σ are PPT, then
dT (ρ, σ) ≤ 1 and we always get a non-trivial bound.
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Since the partial transpose distance provides an upper bound to PPT distinguishability,
it also provides an upper bound to the distinguishability under any less powerful operations,
e.g. one-way LOCC, two-way LOCC, separable operations, etc. This has relevance for data
hiding protocols [TDL01, DLT02, EW02].

3.5 Geometry of correlations

We have related negativity to a correlation measure based on the partial transpose distance
and in Conjecture 3.1 we hypothesized they are always equal. Indeed, Theorem 3.1 showed
that Eq. (3.12) holds for a large class of states. We have also shown that the partial
transpose distance is contractive under PPT operations. Now we can construct distance-
based correlation measures that are comparable to negativity.

Definition 3.3. Let ρ be a quantum state. The partial-transpose correlation measure is
defined as

QS(ρ) = inf
σ∈S

dT (ρ, σ), (3.31)

where S is the set of uncorrelated states.

In this section we will study the properties of this family of measures, and the geometry
of correlations. We will also provide closed forms for some of these measures. When possible,
we will compare them to relative-entropy based quantities for intuition.

We know that for pure states, all correlations take the same form—if a pure state has
any correlation at all, then it must be entangled. Furthermore, any nonclassical correlation
in a pure state must be entanglement. When we quantify these correlations using relative
entropy, this is reflected by the fact that for a pure state, the minimum distance to the set
of separable states is achieved by a classically correlated state:

inf
σ∈SEP

S(ψ‖σ) = inf
σ∈CC

S(ψ‖σ). (3.32)

In particular, the classically correlated state that is obtained by dephasing the pure state
in the Schmidt basis achieves this minimum. The next theorem shows that this statement
also holds for partial-transpose based measures

Theorem 3.2. Let ψ be a pure quantum state. Then QPPT (ψ) = QCC(ψ) = N(ψ).

Proof. Recall that pure states have positive binegativity [ADMVW02] and therefore N(ψ) =
QPPT (ψ) ≤ QCC(ψ). Thus, we only need to show that there is a classically correlated state
σ such that dT (ψ, σ) = N(ψ). To this end, we write ψ in its Schmidt basis |ψ〉 =

∑
i

√
pi |ii〉,

and define σ =
∑
i pi |ii〉 〈ii|. Then

dT (ψ, σ) =
1

2
‖TA(ψ)− TA(σ)‖1 (3.33)

=
1

2

∥∥∥∥∥∥
∑
ij

√
pipj |ij〉 〈ji| −

∑
i

pi |ii〉 〈ii|

∥∥∥∥∥∥
1

(3.34)

=
1

2

∥∥∥∥∥∥
∑
i 6=j

√
pipj |ij〉 〈ji|

∥∥∥∥∥∥
1

. (3.35)

Notice that the matrix
∑
i 6=j
√
pipj |ij〉 〈ji| has eigenvalues ±

√
pipj with eigenvectors |ij〉±

|ji〉, for i < j. Thus dT (ψ, σ) =
∑
i<j

√
pipj = N(ψ).
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We have computed the value of nonclassical correlations QCC for pure states. Thus to
have a complete picture of all types of correlations in a pure state, we only need to compute
total correlations, i.e. the distance to the set of product states. When we use quantifiers
based on relative entropy, this is a simple task since the closest product state is simply given
by the product of its marginals. However, this is not necessarily true if we use other distance
measures. For example, if we use trace distance based quantities, there are states whose
product of marginals does not achieve the minimum distance to product states [AFCA13].
The question now is, what happens for partial transpose distance? The following example
shows that the product of marginals might not achieve the minimum distance either.

Consider the two-qubit state ρ = 1
2 |00〉 〈00| + 1

2 |11〉 〈11|. The marginals are clearly

maximally mixed, and the distance is dT
(
ρ, 11

4

)
= 0.5. However the distance to the state

χ =
(

1√
2
|0〉 〈0|+

(
1− 1√

2

)
|1〉 〈1|

)⊗2

is given by dT (ρ, χ) =
√

2 − 1 < 0.5. We can show
that this χ is indeed the closest product state to ρ.

Theorem 3.3. Let σ =
∑
i pi |ii〉 〈ii| be a classically-correlated state, with pi in non-

increasing order. Let m = max
{
n|
∑
i<n

√
pi ≤ 1

}
. Then

QPROD(σ) = 1−
∑
i<m

pi −

(
1−

∑
i<m

√
pi

)2

, (3.36)

and the closest product state is given by:

χ =

(∑
i<m

√
pi |i〉 〈i|+

(
1−

∑
i<m

√
pi

)
|m〉 〈m|

)⊗2

. (3.37)

Proof. Note that the state σ is diagonal in the basis |ij〉, so it is invariant under the projec-
tion A 7→

∑
ij |ij〉 〈ij|A |ij〉 〈ij|. Since the projection takes product states to product states,

a standard argument using contractivity of the distance shows that the closest product state
to σ must also be diagonal in the basis |ij〉:

χ =

(∑
i

ri |i〉 〈i|

)
⊗

∑
j

sj |j〉 〈j|

 , (3.38)

with ri, sj ≥ 0 and
∑
i ri =

∑
j sj = 1.

We will optimize over χ and show that the minimum is given by Eq. (3.36). We have

‖σ − χ‖1 =

∥∥∥∥∥∥
∑
i

pi |ii〉 〈ii| −
∑
ij

risj |ij〉 〈ij|

∥∥∥∥∥∥
1

(3.39)

=
∑
ij

|piδij − risj | . (3.40)

Separating out the i = j terms from i 6= j, we have

‖σ − χ‖1 =
∑
i

|pi − risi|+
∑
ij

(1− δij)risj (3.41)

=
∑
i

|pi − risi|+
∑
i

ri(1− si) (3.42)

=
∑
i

|pi − risi|+ 1−
∑
i

risi (3.43)

=
∑
i

|pi − risi|+
∑
i

(pi − risi). (3.44)
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Using the identity |x|+ x = max{0, 2x}, we get

‖σ − χ‖1 =
∑
i

max{0, 2(pi − risi)}. (3.45)

Writing ui = (ri + si)/2, vi = (ri − si)/2, we have

‖σ − χ‖1 =
∑
i

max{0, 2(pi − (ui + vi)(ui − vi))} (3.46)

=
∑
i

max{0, 2(pi − u2
i + v2

i )}. (3.47)

We now find conditions under which this distance is minimized. Minimization over vi’s gives
all vi = 0, i.e. the local states are the same ri = si = ui. Hence

QPROD(σ) = inf
ri,sj

1
2‖σ − χ‖1 (3.48)

= inf
ui

∑
i

max{0, pi − u2
i }. (3.49)

We will show that the minimum over ui is achieved when ũi =
√
pi for i < m, ũm =

1−
∑
i<m

√
pi, and zero otherwise. Indeed, suppose at first that for some index i0, we have

ui0 >
√
pi0 . We could then consider another state χ′ represented by the coefficients u′i such

that u′i0 =
√
pi0 , u

′
j0

= uj0 + ui0 −
√
pi0 , where j0 is an arbitrary index not equal to i0,

and u′i = ui whenever i0 6= i 6= j0. Then clearly
∑
i u
′
i = 1, and

∑
i max{0, pi − u′2i } <∑

i max{0, pi − u2
i }. Hence, for a state that minimizes Eq. (3.49), we must have ui ≤

√
pi

for all i. The problem of finding the optimal set of coefficients ui in Eq. (3.49) reduces to
maximization of the expression

∑
i u

2
i under the constraints: 0 ≤ ui ≤

√
pi, for all i, and∑

i ui = 1.
Suppose now that u1 <

√
p1. We can assume without loss of generality that u1 > u2 as

otherwise we would swap the two numbers and the new set of coefficients would still satisfy
the constraints because pi’s are assumed to be in non-increasing order. Consider a new set
u′i, defined as u′1 = u1 + ε, u′2 = u2− ε, where 0 < ε <

√
p1−u1, and u′i = ui whenever i > 2

(if u′2 is negative we set u′2 = 0 and choose u′3 = u3 − (ε− u2) and so on). With this choice∑
i (u′i)

2
>
∑
i u

2
i . Therefore, in the maximal case we must have ũ1 =

√
p1. By repeating

the same argument, ũi =
√
pi for all i < m. It is now easy to see that the maximum for the

sum of the remaining coefficients,
∑
i≥m u

2
i , is achieved for ũm = 1−

∑
i≤m
√
pi and ũi = 0,

for i > m.
Thus, Eq. (3.49) becomes

QPROD(σ) = pm − ũ2
m +

∑
i>m

pi (3.50)

= 1−
∑
i<m

pi −

(
1−

∑
i<m

√
pi

)2

, (3.51)

which completes the proof.

Note that the state σ that appears in Theorem 3.3 is exactly the closest classically
correlated state to a pure state |ψ〉 =

∑
i

√
pi |ii〉. Now, let us compute the total correlation

in a pure state to complete the hierarchy. As we saw earlier, it is not a straightforward task
because the closest product state is not necessarily the product of marginals. However, since
we are using a distance that satisfies the triangle inequality, it is easy to provide an upper
bound. Given a pure state ψ, let us denote the classically correlated state that is obtained
by dephasing ψ in its Schmidt basis by σ. Let us also denote the total correlation in ψ by
IT (ψ) and the total correlation in σ by CT (ψ), because it is the “classical correlations” that
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is contained in ψ. Then applying triangle inequality gives the following upper bound for the
total correlation in ψ:

IT (ψ) ≤ N(ψ) + CT (ψ), (3.52)

where we have an analytic expression for all the quantities on the right-hand side. Compare
this to the relative entropy analogues [MPS+10], where

I(ψ) = E(ψ) + C(ψ). (3.53)

Interestingly, we can show that the inequality (3.52) is always strict and a stronger
inequality holds, exhibiting the non-trivial geometry of correlations in the partial transpose
distance.

Theorem 3.4. Let ψ be a pure state. Then

IT (ψ) ≤ N(ψ) + 1
2CT (ψ). (3.54)

If ψ is maximally entangled, then we have equality.

Let us first gather the tools necessary to prove Theorem 3.4. We shall repeatedly use
the following proposition to compute the trace norm of 2× 2 matrices.

Proposition 3.2. Suppose A is a 2× 2 Hermitian matrix

A = a011 + axσx + ayσy + azσz, (3.55)

with a0, ax, ay, az ∈ R.
Then ‖A‖1 = 2 max

{
|a0|,

√
a2
x + a2

y + a2
z

}
We will use the inequality shown in the following lemma.

Lemma 3.1. Let ψ be a pure state. Let χS be a product state that is diagonal in the Schmidt
basis of ψ. Then

dT (ψ, χS) ≥ N(ψ) + 1
2CT (ψ). (3.56)

Proof. Let |ψ〉 =
∑
i

√
pi |ii〉 be the Schmidt decomposition of ψ. Then σ =

∑
i pi |ii〉 〈ii|

is the closest classically-correlated state to ψ (see Theorem 3.2). Let χS =
∑
ij risj |ij〉 〈ij|

be an arbitrary product state that is diagonal in the Schmidt basis of ψ. We will show that
the inequality holds by direct computation.

By definition, the partial transpose distance is dT (ψ, χS) = 1
2‖TA(ψ)− TA(χS)‖1. Notice

that TA(ψ) and TA(χS) decompose into blocks {Πii = |ii〉 〈ii|}, {Πij = |ij〉 〈ij|+ |ji〉 〈ji|}i<j ,
so we can sum the contribution from each block. For the Πii blocks, we have

〈ii|TA(ψ)− TA(χS) |ii〉 = pi − risi, (3.57)

so their total contribution to the norm is∑
i

‖Πii (TA(ψ)− TA(χS))‖1 =
∑
i

|pi − risi|. (3.58)

For the Πij blocks, we obtain the following 2× 2 submatrices

Πij (TA(ψ)− TA(χS)) =

(
−risj

√
pipj√

pipj −rjsi

)
(3.59)

= −
(
risj + rjsi

2

)
11 +
√
pipjσx −

(
risj − rjsi

2

)
σz. (3.60)
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By Proposition 3.2,

‖Πij (TA(ψ)− TA(χS))‖1 = 2 max

risj + rjsi
2

,

√
pipj +

(
risj − rjsi

2

)2
 (3.61)

≥ 2 max

{
risj + rjsi

2
,
√
pipj

}
. (3.62)

The total norm reads

‖TA(ψ)− TA(χS)‖1 =
∑
i

‖Πii (TA(ψ)− TA(χS))‖1 +
∑
i<j

‖Πij (TA(ψ)− TA(χS))‖1

≥
∑
i

|pi − risi|+
∑
i<j

2 max

{
risj + rjsi

2
,
√
pipj

}

=
∑
ij

δij

∣∣∣∣√pipj − risj + rjsi
2

∣∣∣∣+
∑
ij

(1− δij) max

{
risj + rjsi

2
,
√
pipj

}
.

(3.63)

Let cij =
risj+rjsi

2 . Using the identity 2 max{a, b} = |a+ b|+ |a− b| inside the second sum,
we have

‖TA(ψ)− TA(χ)‖1 ≥
∑
ij

δij |cij −
√
pipj |+

∑
ij

(1− δij)
(
cij +

√
pipj

2
+

∣∣∣∣cij −√pipj2

∣∣∣∣)

=
∑
ij

(1 + δij)

∣∣∣∣cij −√pipj2

∣∣∣∣+
∑
ij

(1− δij)
(
cij +

√
pipj

2

)

=
∑
ij

(1 + δij)

∣∣∣∣cij −√pipj2

∣∣∣∣+
1−

∑
i risi

2
+

(∑
i

√
pi
)2 − 1

2

=
∑
ij

∣∣∣∣cij −√pipj2

∣∣∣∣+
∑
i

∣∣∣∣risi − pi2

∣∣∣∣+
1−

∑
i risi

2
+

(∑
i

√
pi
)2 − 1

2
.

(3.64)

By direct computation, we have

‖TA(ψ)− TA(σ)‖1 =

(∑
i

√
pi

)2

− 1, (3.65)

‖TA(σ)− TA(χS)‖1 =
∑
i

|risi − pi|+ 1−
∑
i

risi. (3.66)

We thus have

‖TA(ψ)− TA(χS)‖1 ≥ ‖TA(ψ)− TA(σ)‖1 + 1
2‖TA(σ)− TA(χS)‖1

+
∑
ij

∣∣∣∣cij −√pipj2

∣∣∣∣−
(∑

i

√
pi
)2 − 1

2
. (3.67)

In the next step, we show that
∑
ij

∣∣cij −√pipj∣∣ + 1 −
(∑

i

√
pi
)2 ≥ 0. Since

∑
ij cij = 1,
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we have∑
ij

∣∣cij −√pipj∣∣+ 1−

(∑
i

√
pi

)2

=
∑
ij

∣∣cij −√pipj∣∣+
∑
ij

cij −
∑
ij

√
pipj (3.68)

=
∑
ij

∣∣cij −√pipj∣∣+
(
cij −

√
pipj

)
(3.69)

=
∑
ij

2 max{0, cij −
√
pipj} (3.70)

≥ 0. (3.71)

For any χS that is diagonal in the Schmidt basis, we therefore obtain

dT (ψ, χS) ≥ dT (ψ, σ) + 1
2dT (σ, χS). (3.72)

In the last step we note that the first term on the right-hand side is equal to N(ψ) and the
second term is the upper bound on CT (ψ) as the state χS might not be the closest product
state to σ. This completes the proof.

Now we have the necessary tools to prove Theorem 3.4.

Theorem. Let ψ be a pure state. Then

IT (ψ) ≤ N(ψ) + 1
2CT (ψ).

If ψ is maximally entangled, then we have equality.

Proof. Let us write ψ in its Schmidt basis |ψ〉 =
∑
i

√
pi |ii〉 and let us define

m = max

{
n |
∑
i<n

√
pi ≤ 1

}

χ =

(∑
i<m

√
pi |i〉 〈i|+

(
1−

∑
i<m

√
pi

)
|m〉 〈m|

)⊗2

σ0 =
∑
i

pi |ii〉 〈ii| . (3.73)

Recall that Theorem 3.2 showed that σ0 is the closest classically-correlated state to ψ and
Theorem 3.3 showed that χ is the closest product state to σ0. We now prove a strict equality

dT (ψ, χ) = dT (ψ, σ0) + 1
2dT (σ0, χ). (3.74)

and the final inequality follows by noting that the state χ might not be the closest product
state to the pure state ψ.

First, notice that TA(ψ) decomposes as

TA(ψ) =
∑
i

pi |ii〉 〈ii|+
∑
i 6=j

√
pipj |ij〉 〈ji| , (3.75)

with blocks {Πii = |ii〉 〈ii|} and {Πij = |ij〉 〈ij|+ |ji〉 〈ji|}i<j . Furthermore, χ is also di-
agonal in the basis {|ij〉}, and TA(χ) = χ. Thus to compute ‖TA(ψ)− TA(χ)‖1, we can
compute the contributions from each block, and then sum them all up.

First, we look at the Πii blocks. We have

〈ii| (TA(ψ)− TA(χ)) |ii〉 = pi − 〈ii|χ |ii〉 (3.76)

=


0, for i < m,

pm −
(
1−

∑
i<m

√
pi
)2
, for i = m,

pi, for i > m.

(3.77)
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Since√pm > 1−
∑
i<m

√
pi ≥ 0 by the definition ofm, we must have pm−

(
1−

∑
i<m

√
pi
)2 ≥

0. So the total contribution to the norm from the Πii blocks is

∑
i

‖|ii〉 〈ii| (TA(ψ)− TA(χ)) |ii〉 〈ii|‖1 =
∑
i≥m

pi −

(
1−

∑
i<m

√
pi

)2

. (3.78)

In the Πij blocks, we have the following submatrix

Πij (TA(ψ)− TA(χ)) =

(
−〈ij|χ |ij〉 √

pipj√
pipj −〈ji|χ |ji〉

)
. (3.79)

Since 〈ij|χ |ij〉 depends on i, j, we look at each case individually.

• i < j < m:

We have 〈ij|χ |ij〉 = 〈ji|χ |ji〉 =
√
pipj , and hence ‖Πij (TA(ψ)− TA(χ))‖1 = 2

√
pipj .

• i < m, j = m:

We have 〈im|χ |im〉 = 〈mi|χ |mi〉 =
√
pi
(
1−

∑
i<m

√
pi
)
. The Πim sub-matrix reads

Πim (TA(ψ)− TA(χ)) =

(
−√pi

(
1−

∑
i<m

√
pi
) √

pipm√
pipm −√pi

(
1−

∑
i<m

√
pi
)) (3.80)

=
√
pi

(
−
(
1−

∑
i<m

√
pi
) √

pm√
pm −

(
1−

∑
i<m

√
pi
)) . (3.81)

We get ‖Πim (TA(ψ)− TA(χ))‖1 = 2
√
pipm.

• i ≤ m, j > m:

We have 〈ij|χ |ij〉 = 〈ji|χ |ji〉 = 0. Thus

Πij (TA(ψ)− TA(χ)) =

(
0

√
pipj√

pipj 0

)
, (3.82)

and ‖Πij (TA(ψ)− TA(χ))‖1 = 2
√
pipj .

• i > m, j > m:

We have 〈ij|χ |ij〉 = 〈ji|χ |ji〉 = 0, and ‖Πij (TA(ψ)− TA(χ))‖1 = 2
√
pipj .

Summarizing, in all the cases we have ‖Πij (TA(ψ)− TA(χ))‖1 = 2
√
pipj .

Therefore,

‖TA(ψ)− TA(χ)‖1 =
∑
i

‖Πii (TA(ψ)− TA(χ))‖1 +
∑
i<j

‖Πij (TA(ψ)− TA(χ))‖1

=
∑
i≥m

pi −

(
1−

∑
i<m

√
pi

)2

+
∑
i<j

2
√
pipj

= 1−
∑
i<m

pi −

(
1−

∑
i<m

√
pi

)2

+
∑
i<j

2
√
pipj . (3.83)

Note that
∑
i<j 2
√
pipj = 2dT (ψ, σ0) and 1−

∑
i<m pi−

(
1−

∑
i<m

√
pi
)2

= dT (σ0, χ). We
therefore obtain Eq. (3.74).

To prove equality for maximally entangled states, our strategy is to use the result of
Lemma 3.1. It shows that the distance from ψ to a product state diagonal in the Schmidt
basis is lower bounded by some combination of negativity and classical correlations in ψ.
On the other hand, the theorem shows that the distance from ψ to its closest product
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state is upper bounded by the same combination of negativity and classical correlations.
Accordingly, showing that the closest product state is diagonal in the Schmidt basis proves
the anticipated equality.

We proceed as follows. Since ψ is maximally entangled, there exists local unitaries U, V
such that (U⊗V ) |ψ〉 = |Φ〉, where |Φ〉 =

∑
i

1√
d
|ii〉. The partial transpose distance and the

set of product states are invariant under local unitaries, so we must have IT (ψ) = IT (Φ).
Suppose χ = χA ⊗ χB is the closest product state to Φ. Recall the identity (11 ⊗ A) |Φ〉 =
(AT ⊗ 11) |Φ〉. Therefore (U ⊗ U∗) |Φ〉 = |Φ〉 for any unitary U , and we can perform an
operation U ⊗ U∗ that makes χA =

∑
i ai |i〉 〈i| diagonal in the Schmidt basis of Φ. The

closest product state written in the Schmidt basis now reads:

χTB =
∑
ijk

aibjk |ij〉 〈ik| . (3.84)

We show a projective map Π that preserves the partial transposition of Φ, dephases the
closest product state in the Schmidt basis, and preserves the product structure. The con-
tractivity of trace norm [Rus94] under positive trace-preserving maps then shows that the
distance to Φ cannot increase:

IT (Φ) =
1

2
||ΦTB − χTB ||1 ≥

1

2
||Π(ΦTB )−Π(χTB )||1 =

1

2
||ΦTB −Π(χTB )||1. (3.85)

Accordingly, there always exists a product state achieving the minimum distance that is
diagonal in the Schmidt basis.

The relevant projectors are as follows: Πii = |ii〉 〈ii| and Πij = |ij〉 〈ij|+ |ji〉 〈ji|. Indeed
the matrix ΦTB is preserved by this operation whereas the product state remains product
and is dephased:

∑
i

Πii(χ
TB ) +

∑
i<j

Πij(χ
TB ) =

(∑
i

ai |i〉 〈i|

)
⊗

∑
j

bjj |j〉 〈j|

 . (3.86)

This completes the proof.

To summarize, we have related negativity to a family of correlation measures constructed
from the partial transpose distance. We provided an operational interpretation of this dis-
tance as a bound on the optimal probability of success in PPT data hiding. We conjectured
that negativity is in fact a member of this family and provide supporting evidence. Then
we investigated the geometry of correlations in this family and showed that the structure of
the correlations is different from the relative entropy based picture.
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Chapter 4

Mediated dynamics

Mediated interactions are ubiquitous in physics. The simplest scenario to consider is when
there are only two objects interacting via the mediator. Modeled abstractly, we take three
systems that admit an A −M − B interaction scheme. In particular, the systems A and
B do not interact directly, but only through M . We assume that all three systems can be
described by the quantum theory, i.e. there is a Hilbert space associated for each system.

At this stage, there are already some interesting questions that we can ask—what prop-
erties must the mediator have so that we can say that the interaction is quantum? Is there
a difference between the quantumness of the state of the mediator and the quantumness of
the interactions? Is it possible to infer some quantum properties of the mediator without
measuring it? Because these questions are stated on a general level, any answer will be
applicable across many fields.

We are interested in these questions primarily because we would like to put restrictions
on the possible theories on quantum gravity. But there are also more practical applications
of this framework. In particular, let us elaborate on the implications for quantum simulators.
A quantum simulator is a quantum system with a sufficient level of control, that we can
use it to simulate the dynamics of any other quantum system [Fey82, Llo96]. Generally,
such a system consists of many qubits along with a universal set of quantum gates. Since
single qubit gates and CNOT are known to be universal [NC09, DiV95], it is common to
build simulators where the set of gates consists of single qubit gates and two qubit gates.
To simulate a given dynamics, we need to compile the unitary to a sequence of the available
gates (see Figure 4.1). Now, suppose we want to simulate a 2-local Hamiltonian H =

∑
iHi,

where each Hi acts on at most 2 subsystems. There are many approaches to simulate this on
a quantum simulator. A common way is through the use of product formulas—also known
as Suzuki-Trotter formula [CST+21]:

e−itH = lim
n→∞

∏
j

e−i
t
nHj

n

(4.1)

This means we can approximate the full unitary e−itH arbitrarily well if we take enough
Trotter steps. When we truncate the formula at a certain number of steps r, then the error
is bounded by some function of r. In general, to obtain a simulation error ε, the number of
Trotter steps that must be taken scales inversely to ε, i.e. r = O(ε−1). Interestingly, there
exists a class of dynamics where this error scaling does not hold—we can always simulate
the dynamics exactly using a fixed number of gates. When all the terms in the Hamiltonian
commute [Hi, Hj ] = 0, then the Suzuki-Trotter formula gives

e−itH =
∏
j

e−itHj , (4.2)

31
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Figure 4.1: Compilation of quantum simulation. The evolution generated by a 2-local
Hamiltonian can be compiled to a sequence of one qubit and two qubit gates from a universal
gate set through the use of Suzuki-Trotter formula.

i.e. a single Trotter step is sufficient. This means the problem of simulating commuting
2-local Hamiltonians is much simpler than the general problem. By continuity, we expect
the error in simulating Hamiltonians that are almost commuting to be small. Indeed, this
is what Ref. [CST+21] showed by providing a bound on the asymptotic error in terms of
the commutators

ε = O

t2∑
ij

‖[Hi, Hj ]‖∞

 . (4.3)

Therefore, to obtain a simulation error of at most ε, the number of Trotter steps needed is at
least r = O

(
ε−1t2

∑
ij ‖[Hi, Hj ]‖∞

)
. We will show that

∑
ij ‖[Hi, Hj ]‖∞ is directly linked

to the correlations in the system, showing a quantitative relation between the complexity of
the simulation and the correlations in the system.

First, we review what was known about mediated systems and what properties can we
deduce about an inaccessible mediator. Then we formulate the notion of decomposability,
discuss its relation to classicality of interaction as well as its operational interpretation. In
addition, we provide a method to witness the nondecomposability of dynamics through the
correlation between two probes and define measures of nondecomposability for maps. We
outline an experimentally-friendly scheme to provide lower bounds on these nondecompos-
ability measures. This chapter is partially based on Ref. [KGL+18].

4.1 Learning about the mediator
In a sense, the problem of learning about an inaccessible object is everywhere. After all, the
goal of physics is to characterize an object and make predictions about its future behavior.
Generally, we do this by performing measurements on the system to characterize it, and
use our models to predict the future behavior. However, when we say that an object is
inaccessible, this implies that we cannot perform measurements on the object. But not all
hope is lost—generally the inaccessible object still interacts with other systems. When the
inaccessible object does not interact with any other system, then it simply does not matter to
our physical models. Therefore, to learn about an inaccessible object, we couple a probe to
it, and then perform measurements on the probe. In this way, we can deduce the properties
of the inaccessible object. In fact, this is how we model quantum measurements [Pre04,
Chapter 3].

Part of the reason of why it is hard to obtain conclusive statements about the quantum
features of gravity is because it is not clear what the Hilbert space corresponding to the
gravitational field is—perhaps the final theory will not even use Hilbert spaces. We do not
have any ways to perform direct measurements on the gravitational system, which rules out
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Figure 4.2: The Bose-Marletto-Vedral experiment. Two massive probes A and B are in-
dependently prepared in a spatial superposition |L〉 + |R〉. The gravitational interaction
produces different phases in each component of the superposition, which can be tuned by
changing the size of the superposition, the separation between the probes or the interaction
time. By tuning these parameters, in principle it is possible to entangle the probes maxi-
mally. Left panel: initial configuration. Right panel: the situation at time t > 0.

performing any direct Bell tests to see quantum features. Another reason is the magnitude
of the gravitational interaction is very small for table-top experiments, practically making
detection of gravitational effects very difficult for small quantum objects [Asp22].

Nevertheless, there are several different proposals to witness the nonclassicality of grav-
ity. The famous Colella-Overhauser-Werner (COW) experiment [COW75] confirms that a
quantum mechanical system couples to a classical gravitational field ~g = gẑ simply through
the potential V = mgz. The Bose-Marletto-Vedral (BMV) experiment [BMM+17, MV17]
proposed to look at the entanglement between two probes. The idea is the following: we
prepare two massive probes, each in a state of spatial superposition (see Figure 4.2). Ini-
tially, the joint state of the probes and the gravitational field is in a product state. They
argued that if the gravitational field is classical—the joint state of the probes and the gravi-
tational field always has zero discord—then the two probes cannot get entangled. However,
when the gravitational interaction is modeled by a quantized Newtonian potential, the two
probes do get entangled. Therefore, observation of entanglement between the probes allows
us to conclude that gravity has quantum features. In contrast, Ref. [CBPU19] suggests that
gravity will induce some decoherence in our probe, which has different spectral characteristic
depending on whether the gravitational field is quantum or semiclassical.

At this point, we should draw a distinction between the quantumness of the state of the
mediator and the quantumness of the interaction with the mediator. The BMV experiment
shows that we can witness the quantumness of the state of the mediator simply by looking
at the entanglement between the probes. Recalling the discussion in Chapter 1 (see the
discussion before Lemma 1.1), this also means the interaction is classical. However, it is
possible that the state of the gravitational field is nonclassical, yet the interaction is. For
example, a quantum state can have non-zero discord, even though the interaction is classical.
Concretely, consider the dynamics generated by the Hamiltonian XAXM + XBXM , with
the initial state |ψ0〉 = |000〉ABM . At time t = π/4, the mediator will be entangled with
the probes, even though the interaction is completely classical (in the sense of commuting
interaction). This distinction raises the question: is it possible to witness the classicality of
the interaction instead of the state? How should we even define classical interactions?

In this work, we define the quantumness of interactions through the non-commutativity
of the interaction Hamiltonians. As discussed in Chapter 1, we argue that this is a reasonable
notion of quantumness for interactions. When we model classical systems by a system with
a commuting algebra of observables as in the Koopman-von Neumann formalism [Per02], all
classical Hamiltonians will have commuting interaction terms. Therefore, any interaction
that has non-commuting terms cannot be simulated by having such a classical mediator.
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4.2 Decomposable evolution
Let us start with a closed, tripartite system ABM whose evolution is described by the
Hamiltonian HABM = HAM +HBM . We say the interaction is classical if [HAM , HBM ] = 0,
i.e. the interaction terms commute. This implies that the unitary operator e−itHABM can
be decomposed as

e−itHABM = e−itHAM e−itHBM = e−itHBM e−itHAM , (4.4)

which can be seen from the Suzuki-Trotter formula. This property of decomposability turns
out to be central in witnessing nonclassical interactions.

Definition 4.1. Let U be a unitary acting on a tripartite system HA⊗HB ⊗HM . We say
U is decomposable if there exist unitaries UAM , UBM such that

U(ρABM ) = UBMUAM (ρABM ) . (4.5)

Intuitively, decomposable unitaries are those that can be simulated by coupling system A
to the mediator M , and then coupling B to the mediator. Although Suzuki-Trotter formula
shows that any unitary can be approximated by a sequence of Trotter steps, decomposable
unitaries are special because we can implement the exact unitary with only a single Trotter
step.

Now let us assume that we have a unitary that is generated by a Hamiltonian HABM =
HAM +HBM . Is the classicality of the interaction equivalent to the decomposability of the
unitary? The following proposition shows that this is not enough—classical interaction is
equivalent to the unitary having a commuting decomposition.

Proposition 4.1. The unitary generated by the Hamiltonian HABM has a commuting
decomposition eiHABM = UAMUBM = UBMUAM if and only if there exist Hamiltonians
HAM , HBM such that HABM = HAM +HBM and [HAM , HBM ] = 0.

Proof. Using the Baker-Campbell-Haussdorf (BCH) [Hal15] formula one easily sees that if
such HAM , HBM exists, then U = eiHAM eiHBM = eiHBM eiHAM , showing that the unitary
has a commuting decomposition.

To show the other direction, suppose the unitary eiHABM has a commuting decompo-
sition. By definition, there exists UAM , UBM such that [UAM , UBM ] = 0 and eiHABM =
UAMUBM . Let HAM = −i logUAM , HBM = −i logUBM . Then, these interaction Hamilto-
nians must commute, because we can write the commutator using the series representation
log (11−X) = −

∑∞
n=1

1
nX

n to get

[HAM , HBM ] = −[logUAM , logUBM ] (4.6)

= −

[ ∞∑
n=1

(11− UAM )
n

n
,

∞∑
m=1

(11− UBM )
m

m

]
(4.7)

= 0. (4.8)

Using the BCH formula, we obtain

exp itHABM = exp itHAM exp itHBM = exp it (HAM +HBM ). (4.9)

Differentiating the expression above with respect to t and using the identity d
dt exp (tA)

∣∣
t=0

=
A shows that HABM = HAM +HBM , which proves the claim.

Therefore, the unitary generated from classical interactions HABM = HAM +HBM with
[HAM , HBM ] = 0 are decomposable, with the added property that the decomposition must
commute [UAM , UBM ] = 0. Because of this commutation, it does not matter whether we
define the decomposition order as UBMUAM or UAMUBM . However, in general these orders
are not equivalent, as the following proposition shows.
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Proposition 4.2. Let UAM = 1√
2

(11 + iZAXM ), UBM = 1√
2

(11 + iZBZM ). Then there are
no unitaries VAM , VBM such that UAMUBM = VBMVAM .

Proof. We prove by contradiction. Suppose that there exist unitaries VAM , VBM such that
UAMUBM = VBMVAM . Note that we can write UAM , UBM as

UAM = |0〉 〈0|A ⊗
1√
2

(11M + iXM ) + |1〉 〈1|A ⊗
1√
2

(11M − iXM ) , (4.10)

UBM = |0〉 〈0|B ⊗
1√
2

(11M + iZM ) + |1〉 〈1|B ⊗
1√
2

(11M − iZM ) . (4.11)

Therefore we have

UAMUBM = |00〉 〈00|AB ⊗
1
2 (11 + iXM + iYM + iZM )

+ |01〉 〈01|AB ⊗
1
2 (11 + iXM − iYM − iZM )

+ |10〉 〈10|AB ⊗
1
2 (11− iXM − iYM + iZM )

+ |11〉 〈11|AB ⊗
1
2 (11− iXM + iYM − iZM ) , (4.12)

i.e. UAMUBM |ijk〉ABM = |ij〉AB ⊗ |ψk〉M . Observe that we can always write VAM =∑1
i,j=0 |i〉 〈j|A ⊗ V

A,ij
M for some matrices V A,ijM , and similarly for VBM . However, because

we assumed VBMVAM = UAMUBM , we must have

VAM = |0〉 〈0|A ⊗ V
A,0
M + |1〉 〈1|A ⊗ V

A,1
M (4.13)

VBM = |0〉 〈0|B ⊗ V
B,0
M + |1〉 〈1|B ⊗ V

B,1
M , (4.14)

where V A,0M , V A,1M , V B,0M , V B,1M are unitaries on M . This is because if V A,10
M is non-zero,

then VBMVAM |000〉ABM must have a component along |1〉A, which contradicts Eq. (4.12).
Therefore, we have

VBMVAM = |00〉 〈00|AB ⊗ V
B,0
M V A,0M

+ |01〉 〈01|AB ⊗ V
B,1
M V A,0M

+ |10〉 〈10|AB ⊗ V
B,0
M V A,1M

+ |11〉 〈11|AB ⊗ V
B,1
M V A,1M . (4.15)

Comparing Eqs. (4.12) and (4.15), we must have

V B,0M V A,0M = 1
2 (11 + iXM + iYM + iZM ) (4.16)

V B,1M V A,0M = 1
2 (11 + iXM − iYM − iZM ) (4.17)

V B,0M V A,1M = 1
2 (11− iXM − iYM + iZM ) (4.18)

V B,1M V A,1M = 1
2 (11− iXM + iYM − iZM ) (4.19)

This leads to (
0 1
−1 0

)
=
(
V B,0M V A,0M

)(
V B,1M V A,0M

)†
(4.20)

=
(
V B,0M V A,1M

)(
V B,1M V A,1M

)†
=

(
0 −1
1 0

)
, (4.21)

which is clearly a contradiction.

Note that Proposition 4.2 also shows that there exists a unitary that is decomposable, yet
it is not generated by a classical interaction. Despite this, we will define decomposability in
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the order UBMUAM , keeping in mind that the essential property is decomposable unitaries
can be implemented exactly with a single Trotter step.

Does this notion of classicality—or decomposability—restrict the set of possible couplings
in any meaningful way? Suppose A and B are same kind of physical system, say both are
electrons. Then we expect that they couple to the mediator in the same way. What does
it mean for the coupling if the interaction is classical? Well, it is easy to see that if the
coupling is of the form XA ⊗ YM + XB ⊗ YM , where XA,B acts on the A,B system and
YM acts on the mediator, then the interaction terms must commute and the interaction
is always classical. As discussed in Chapter 1, such couplings have operator Schmidt rank
1. Therefore, if we witnessed that the interaction cannot be classical, we know that the
coupling cannot have operator Schmidt rank 1.

Now, suppose we consider systems that are open to some local environment. In this case,
the system does not evolve by some unitary evolution—instead, the evolution of the system
is described by a dynamical map {Λt}t≥0. When the initial state of the system is ρ0, the
state of the system at time t is given by ρt = Λt(ρ0). To ensure the map is well-behaved,
usually we require that for every ρ, the function t 7→ Λt(ρ) is continuous, and Λ0 = 11. To
describe decomposability in this setting, let us generalize the definition of decomposability
to quantum maps.

Definition 4.2. Let Λ be a map acting on a tripartite system HA ⊗HB ⊗HM . We say Λ
is decomposable if there exist maps ϕAM , ϕBM , such that

Λ(ρABM ) = ϕBMϕAM (ρABM ) . (4.22)

We denote the set of all decomposable maps as DEC.

Let us say a few words about the consistency between Definitions 4.1 and 4.2. Clearly, if
a unitary is decomposable according to Definition 4.1, then it is also decomposable according
to Definition 4.2. The contentious point is the other way around—suppose there exist two
maps ϕAM , ϕBM such that UABM = ϕAMϕBM . It is not clear a priori that both ϕAM and
ϕBM have to be unitaries. Intuitively, we expect that they must be unitaries because any
map that maps any pure state to a pure state, even when acting only on a subsystem, must
be unitary. We see this from the Choi state—the Choi state of such a map must be pure,
which implies the map is unitary. However, we do not know whether ϕAM and ϕBM are
individually unitaries, so this reasoning is not conclusive. Heuristically, we can also argue
that if ϕAM is not unitary, then the purity of the output state must be strictly less than
that of the input state. But again, this does not constitute a proper proof of the claim, and
we will leave this question open. In any case, we will work exclusively with Definition 4.2,
and treat the unitary case as a motivating example.

Another point about the consistency of the two definitions—recall that any quantum map
has a unitary dilation, also known as Stinespring dilation [NC09]. Is the decomposability of
a map Λ equivalent to the decomposability of its unitary dilation? We can show that this
holds in at least one direction.

Proposition 4.3. Let Λ be a decomposable map. Then there exists a Stinespring dilation
of Λ

Λ(ρABM ) = TrR UABMR(ρABM ⊗ σR)U†ABMR, (4.23)

such that UABMR is decomposable.

Proof. Because Λ is decomposable, there exist maps ϕAM , ϕBM such that Λ = ϕBMϕAM .
The map ϕAM must have a Stinespring dilation

ϕAM (ρAM ) = TrRA
UAMRA

(ρAM ⊗ σRA
)U†AMRA

, (4.24)
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where RA is the purifying system for ϕAM , Similarly, ϕBM must have a dilation with
purifying system RB . Writing the Stinespring dilation for ϕAM and ϕBM , we get

Λ(ρABM ) = TrRARB
UBMRB

UAMRA
(ρABM ⊗ σRA

⊗ σRB
)U†AMRA

U†BMRB
, (4.25)

which proves the claim by identifying R = RARB , UABMR = UBMRB
UAMRA

, and σR =
σRA

⊗ σRB
.

We do not know whether decomposability of the Stinespring dilation is also sufficient for
decomposability, and we will leave it as an open question.

This notion of decomposability is related to the notion of divisibility in the litera-
ture [WC08]. The basic question is the following: given a map Λ, are there quantum
maps Λ1,Λ2 such that Λ = Λ1Λ2? As is, all quantum maps trivially satisfy this property
because we can take Λ1 or Λ2 to be the identity map. More generally, we can take Λ1 = ΛU
and Λ2 = U†, where U is any unitary. Therefore, we say Λ is a divisible map if there exists
Λ1,Λ2 such that Λ = Λ1Λ2 and both Λ1,Λ2 are not unitaries.

Predating this is the notion of CP-divisibility, studied in the context of Markovian dy-
namics [Lin76, Gor76, Lid19]. CP-divisibility goes one step further than divisibility—a
dynamical map Λt is CP-divisible if for any 0 < s < t, there exists a CP map Vt,s such that
Λt = Vt,sΛs. Interestingly, the set of CP-divisible maps is not convex [WECC08].

It is worth noting that the divisibility that we consider here has a specific multipartite
structure, that was not considered in previous studies. The first work where this multipartite
structure arose is in the study of entanglement distribution [SADL15]. It was shown that
the maximum entanglement that can be distributed with decomposable maps is bounded
by discord in a “virtual” state. We will show that we can generalize this result to detect the
nondecomposability of a map, even when we are only given access to some “shadow”.

Proposition 4.1 shows that the unitaries generated by classical interactions are a subset
of decomposable maps. Therefore, if we can experimentally verify that a given map is not
decomposable, we can safely conclude that the interaction is not classical. However, we
claimed that we would like to detect it just through the correlations in the probes. To
connect these two concepts, we need a notion of “marginals” of decomposable maps, acting
only on AB (see Figure 4.3 for illustration).

Definition 4.3. Let ϕ : DA → DA′ be a map. We call (ϕ̃ : DAR → DA′R, σR) a dilation of
ϕ if

ϕ(ρ) = TrR ϕ̃(ρ⊗ σR). (4.26)

We denote the set of all dilations of ϕ as DIL(ϕ).

Definition 4.4. We say the map ϕ : AB → AB has a decomposable m-dilation if there
exists a dilation ϕ̃ : ABM → ABM of ϕ such that ϕ̃ is decomposable and dimHM ≤ m.
We denote the set of all maps with a decomposable m-dilation as DEC(m).

With these definitions, we can state our goal precisely: we wish to infer whether a
particular map on AB has any decomposablem-dilation, through the correlations generated
between AB. If it does not have any decomposable dilation, then the interaction that
generates this map must be nonclassical.

4.3 Detection techniques
Using the results from Ref. [SADL15], we can already formulate a scheme to detect whether
a map does not have any decomposable m-dilation. The authors showed that given a
decomposable map ϕ = ϕBMϕAM , the gain in entanglement is bounded by discord

EA:MB(ϕ(ρ))− EAM :B(ρ) ≤ DAB|M (ρ̃), (4.27)
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Figure 4.3: Decomposable dilation of a map ΛAB(ρAB) into TrM ϕBMϕAM (ρAB⊗σM ). We
provide a witness to detect whether a map has a decomposable dilation with dimHM ≤ m
by looking at the gain of correlations QA:B . When ΛAB has a decomposable dilation then the
maximum output correlation is bounded by the maximum “capacity” of M and a correction
from initial correlations (see Corollary 4.1).

where ρ̃ = ϕAM (ρ) is a so-called virtual state. We say ρ̃ is virtual because it does not
represent an actual state in the laboratory, even though it is a proper density matrix. This
is because ρ̃ is obtained by applying only the map ϕAM to the initial state. Here, discord and
entanglement are quantified by distance-based measures constructed from relative entropy.
Combining this with the simple bound on the maximum discord, logm ≥ supσDAB|M (σ) ≥
DAB|M (ρ̃), we get a necessary condition for decomposability: if ϕ is decomposable, then for
any ρ we have

EA:MB(ϕ(ρ)) ≤ logm+ EAM :B(ρ). (4.28)

The condition is most restrictive when dimHM ≤ dimHA dimHB . In particular, if we
choose the initial state to be pure in AB, then it has to be product with M , i.e. ρ = ψAB ⊗
σM . This implies EAM :B(ψAB ⊗ σM ) = EA:B(ψAB), because attaching an uncorrelated
subsystem is a reversible local operation. We can also bound the first term by monotonicity,
EA:MB(ϕ(ψAB⊗σM )) ≥ EA:B(TrM ϕ(ψAB⊗σM )). Therefore, we can formulate a necessary
criterion for decomposable maps, purely in terms of quantities that can be measured on AB:
if ϕ is a decomposable map, then for all ψAB we have

EA:B(TrM ϕ(ψAB ⊗ σM )) ≤ logm+ EA:B(ψAB). (4.29)

The key observation is Eq. (4.29) contains only correlations in the subsystems AB.
Furthermore, we can ensure that the initial state has the form ψAB ⊗ σM by preparing a
pure state in AB. Therefore, given access only to subsystems AB, we can use violation
of Eq. (4.29) to witness when a map cannot have any decomposable m-dilation. As a side
remark, note that by a similar reasoning but starting from the results of Ref. [PBK+21],
a violation of Eq. (4.29) also detects the presence of discord in the probe-mediator-probe
state.

The main result of this chapter is a generalization of this criterion to other continuous
correlation quantifiers, as well as a method to estimate measures of nondecomposability.
We start by proving a necessary condition for any correlation measure assuming the initial
state is product.

Theorem 4.1. Let ϕ ∈ DEC be a decomposable map. Then for any correlation measure Q,
we have

QA:BM (ϕ(ρAM ⊗ ρB)) ≤ sup
σAM

QA:M (σAM ). (4.30)

Proof. Since ϕ is decomposable, by definition we can find maps ϕAM , ϕBM such that
ϕ(ρABM ) = ϕBMϕAM (ρABM ). Using the monotonicity of correlations and the definition of



CHAPTER 4. MEDIATED DYNAMICS 39

decomposability, we have

QA:BM (ϕ (ρAM ⊗ ρB)) = QA:BM (ϕBMϕAM (ρAM ⊗ ρB)) (4.31)
≤ QA:BM (ϕAM (ρAM ⊗ ρB)). (4.32)

Now, note that system B is in a product state with AM . Since Q is a correlation mea-
sure, it must be invariant under invertible local operation. In particular, adding or dis-
carding an uncorrelated system must not change the value of Q. Therefore we must
have QA:BM (ϕAM (ρAM ⊗ ρB)) = QA:M (ϕAM (ρAM )). Combining this with the bound
QA:M (ϕAM (ρAM )) ≤ supσAM

QA:M (σAM ) finishes the proof.

Let us see whether this criterion can detect any nondecomposability. For many corre-
lation measures, supσAM

QA:M (σAM ) depends only on the dimension of the smaller Hilbert
space. This takes the role of “maximum discord” in Eq. (4.29). For example, it is well-known
that for relative entropy of entanglement, supσAM

EA:M (σAM ) = log min{dA, dM}. To ex-
hibit an example where bound is violated, let us take dA = dB > dM , and Q to be relative
entropy of entanglement. The criterion in Theorem 4.1 becomes identical to the bound in
Eq. (4.28) if we assume that the initial state is ρAM ⊗ ρB : for any decomposable map ϕ, we
have

EA:BM (ϕ(ρAM ⊗ ρB)) ≤ log dM . (4.33)

Now, suppose we take a product state as the initial state ρABM = |000〉 〈000|ABM and ϕ
sends it to a maximally entangled state on AB, ϕ(|000〉 〈000|ABM ) = ΦAB ⊗ |0〉 〈0|M . We
have

log dA = EA:BM (ϕ(|000〉 〈000|ABM )) > log dM , (4.34)

showing that the maximally entangling map ϕ cannot be decomposable. However, the
criterion does not detect all nondecomposable maps, as it becomes trivial when m is large.

To see whether we can witness nondecomposability in a less contrived example, consider
a two-level system M acting as a mediator, coupled independently to two cavity light fields
A,B acting as probes. We describe the coupling of each field to the mediator by the Jaynes-
Cummings model,

HABM = g(aσ+ + a†σ−) + g(bσ+ + b†σ−) (4.35)

where a, a†, b, b† denotes the ladder operator for the fields A,B and σ± denotes the rais-
ing/lowering operator of the two-level systemM . Such models have been studied extensively,
both theoretically [Mes02, BP03] and experimentally [RBO+01, HTWR18]. For simplicity,
we have assumed the coupling strength of each field to the two-level system is equal. Note
that we can write HABM = HAM + HBM as a sum of two terms: HAM = g(aσ+ + a†σ−)
acting on subsystems A and M , and HBM = g(bσ+ + b†σ−) acting on subsystems B and
M . It is easy to verify that for this decomposition, we have [HAM , HBM ] 6= 0, showing
this interaction might be nonclassical. However, it is not clear a priori that a commuting
decomposition of HABM does not exist—there are infinitely many ways to write HABM as
a sum of two terms. To wit, take H ′AM = HAM +X and H ′BM = HBM −X, where X is an
operator acting only on M . Then HABM = H ′AM +H ′BM is also a decomposition of HABM

into two terms, each acting only on AM/BM . Theorem 4.1 provides a method to witness
the nondecomposability of this Hamiltonian. Combined with Proposition 4.1, this shows
that the interaction must be nonclassical. Even more, it is enough to look at the A : B
correlation because QA:B(TrM ϕ(ρAM ⊗ ρB)) ≤ QA:BM (ϕ(ρAM ⊗ ρB)).

Figure 4.4 shows the evolution of several correlation measures, defined in Table 4.1.
Mutual information and negativity are computed directly, while lower bounds are provided
for classical correlation and relative entropy of discord. The classical correlation CA:B is
lower bounded by the classical correlation in the computational basis C̃A:B , without the
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Figure 4.4: Nonclassicality of the Jaynes-Cummings interaction, shown by a violation
of the criterion in Theorem 4.1. We simulate the dynamics of several correlation measures
(solid curves) and compare them with the corresponding bounds for decomposable evolution
(dashed lines). (a) Mutual information, (b) lower bound on the classical correlation (see the
main text) (c) lower bound on the relative entropy of discord (see the main text), and (d)
negativity. These measures are defined in Table 4.1. In all cases, time is rescaled with the
interaction strength g and the initial state of ABM is varied: |1A1B0M 〉 (red), |1A0B1M 〉
(black), |2A1B0M 〉 (green), and |2A2B0M 〉 (blue).
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optimization over all bases. For relative entropy of discord DB|A, we note the following
chain of inequalities: negative conditional entropy −SA|B(ρAB) is a lower bound to distil-
lable entanglement ED(ρAB) [DW05], which in turn lower bounds the relative entropy of
entanglement [HHH00] and the relative entropy of discord:

−SA|B(ρAB) ≤ ED(ρAB) ≤ EA:B(ρAB) ≤ DB|A(ρAB). (4.36)

We observe that if we start with the initial state |1A1B0M 〉 (red curves), the nondecom-
posability is only detected by mutual information, whereas if we start with the initial state
|1A0B1M 〉 (black curves), it is detected only by negativity. We also note that for the
initial states |2A1B0M 〉 (green curves) and |2A2B0M 〉 (blue curves), we can witness the
nondecomposability—and therefore, nonclassicality—of the dynamics even when we only
have access to the classical correlations in the probes.

Recall that we discussed whether discord is a form of correlation in Chapter 2. We
concluded that it is not, because it can be increased with local operations on the classical
subsystem. However, a closer inspection reveals that Theorem 4.1 is applicable to discord,
because we only need the correlation measure to be monotonic under all local operations on
one party. When we apply this to the resource theory of discord and choose system A as
the classical side, the argument follows through.

We would like to generalize Theorem 4.1 to allow any initial state for the following
reason: sometimes in experiments we cannot always perfectly decorrelate two systems—
there might be some residual correlations. Therefore, we would like to obtain a statement
that is robust to residual correlations. If the correlation measure is continuous, then we
expect that continuity will provide some criterion on non-product initial state too. However,
there are many variants of continuity—continuity, uniform continuity, asymptotic continuity,
etc.—with asymptotic continuity being the most commonly encountered type of continuity
in quantum information [Rud64, SRH06]. It is clear that continuity alone is not enough
to provide good bounds, as the robustness may depend on which initial state we started
with. For a state-independent bound, we need at least uniform continuity. Recall that a
function f is called uniformly continuous if for any ε > 0, there exists δ(ε) > 0 such that
for all x, y, d(x, y) < δ(ε) implies |f(x) − f(y)| < ε. A function f is called asymptotically
continuous if for any sequences {ρn}, {σn} such that ‖ρn − σn‖1 → 0 as n → ∞, we have
|f(ρn)−f(σn)|

log dn
→ 0, where dn is the dimension of the Hilbert space containing ρn, σn. This

notion of continuity often occurs when considering the asymptotic regime, that is quantities
of the form 1

nf(ρ⊗n) as n→∞.
The canonical example of an asymptotically continuous function in quantum information

is entropy, shown by the Fannes-Audenaert inequality [Fan73, Aud07].

|S(ρ)− S(σ)| ≤ T log (d− 1) +H({T, 1− T}), (4.37)

where T = 1
2‖ρ− σ‖1, d is the dimension of the Hilbert space, and H({p, 1 − p}) =

−p log p − (1 − p) log (1− p) is the binary entropy function. Many correlation measures
considered in the literature are asymptotically continuous. Mutual information is asymp-
totically continuous as a consequence of Eq. (4.37). Distance-based measures are automat-
ically asymptotically continuous if the distance is bounded. More generally, many relative
entropy based measures such as relative entropy of entanglement have also been shown to be
asymptotically continuous [DH99], as are convex roof measures that are constructed from
asymptotically continuous functions [SRH06]. In fact, these results prove a stronger version
of continuity, because they show that there is an invertible, monotonically non-decreasing
function g such that |f(x)− f(y)| ≤ g(d(x, y)), and lims→0 g(s) = 0.

Definition 4.5. We say f is (g, d)-continuous if there exists a function g such that

|f(x)− f(y)| ≤ g(d(x, y)) (4.38)

for all x, y, where g is invertible, monotonically non-decreasing, and lims→0 g(s) = 0.
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The results cited above show that many correlation measures are also (g, d)-continuous.
It is easy to show that this implies the function f is uniformly continuous—we simply
choose δ(ε) = g−1(ε). If the function g is most linear in log dn, then f is also asymptotically
continuous. Any distance-based correlation measure is (g, d)-continuous because of triangle
inequality. However, this does not mean that any (g, d)-continuous function is also Lipschitz
continuous (or more generally Hölder continuous) for some metric, because g(d(x, y)) is not
necessarily a proper distance. It is also strictly stronger than uniform continuity. To see this,
consider functions on the real line equipped with the discrete metric [Mun00]. Recall the
definition of the discrete metric: d(x, y) = 0 if and only if x = y and d(x, y) = 1 otherwise.
With this metric topology, all functions are continuous. However, for a function f to be
(g, d)-continuous, we must have |f(x) − f(y)| < g(d(x, y)) for some function g, which does
not hold if f is unbounded.

For (g, d)-continuous correlation measures where d is a contractive distance, we can prove
the following theorem.

Theorem 4.2. Let ϕ ∈ DEC be a decomposable map. Then for any (g, d)-continuous corre-
lation measure Q where d is a contractive distance, we have

QA:BM (ϕ(ρABM )) ≤ sup
σAM

QA:M (σAM ) + IAM :B(ρABM ), (4.39)

where IAM :B = infσAM⊗σB
g(d(ρABM , σAM ⊗σB)) is a measure of AM : B total correlation

in the state ρABM .

Proof. Since QA:BM is (g, d)-continuous, there exists g such that it is invertible, monotonic,
lims→0 g(s) = 0. Therefore for any σAM ⊗ σB , we have

|QA:BM (ϕ(ρABM ))−QA:BM (ϕ(σAM ⊗ σB))|
≤ g(d(ϕ(ρABM ), ϕ(σAM ⊗ σB))). (4.40)

Using the monotonicity of g and contractivity of d, we can bound the right-hand side as
g(d(ϕ(ρABM ), ϕ(σAM ⊗σB))) ≤ g(d(ρABM , σAM ⊗σB)). Combining these two inequalities,
rearranging the terms, and taking infimum over all σAM ⊗ σB , we get

QA:BM (ϕ(ρABM )) ≤ QA:BM (ϕ(σAM ⊗ σB)) + IAM :B(ρABM ). (4.41)

Finally, we use Theorem 4.1 to bound QA:BM (ϕ(σAM ⊗ σB)), thus proving the claim.
Using of the properties of g and d, it is easy to verify that the quantity IAM :B(ρABM ) =

infσAM⊗σB
g(d(ρABM , σAM ⊗σB)) is monotonic under local operations, and it is zero if and

only if ρABM is product in the bipartition AM : B. Therefore, IAM :B is a measure of
AM : B total correlation.

With this, we get the following necessary criterion for maps that have a decomposable
m-dilation. This generalizes Eq. (4.29) to any continuous correlation measure, at the cost
of substituting EA:B(ψAB) with IA:B(ψAB) in the upper bound.

Corollary 4.1. Let ϕ ∈ DEC(m) be a map that has a decomposable m-dilation. Then for
any (g, d)-continuous correlation measure Q where d is a contractive distance, we have

QA:B(ϕ(ψAB)) ≤ sup
σAM

QA:M (σAM ) + IA:B(ψAB), (4.42)

where the supremum runs over all σAM ∈ D(HA⊗HM ) with dimHM ≤ m, and IA:B(ψAB) =
infσA⊗σB

g(d(ψAB , σA ⊗ σB)) is a measure of A : B total correlation in the state ψAB.

Proof. Since ϕ has a decomposable m-dilation, there exist a decomposable map ϕ̃ and a
state σM ∈ D(HM ), such that dimHM ≤ m and ϕ(ρAB) = TrM ϕ̃(ρAB ⊗ σM ). Let us
choose the initial state ρABM = ψAB ⊗ σM . Applying Theorem 4.2 to ϕ̃, we get

QA:BM (ϕ̃(ψAB ⊗ σM )) ≤ sup
σAM

QA:M (σAM ) + IAM :B(ψAB ⊗ σM ). (4.43)
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Noting that TrM ϕ̃(ψAB ⊗ σM ) = ϕ(ψAB) and IAM :B(ψAB ⊗ σM ) = IA:B(ψAB), we have

QA:B(ϕ(ψAB)) ≤ QA:BM (ϕ̃(ψAB ⊗ σM )) (4.44)
≤ sup
σAM

QA:M (σAM ) + IA:B(ψAB), (4.45)

which proves the claim.

Recalling the example of a violation of the criterion for decomposability in Theorem 4.1,
Corollary 4.1 also implies that the maximally entangling map cannot have any decomposable
m-dilation when m < min{dA, dB}. Again, this shows that the criterion in Corollary 4.1
can witness that some maps do not have any decomposable m-dilation. Moreover, this can
be witnessed with states that are close to product ρABM = ψAB ⊗ σM ≈ ψA ⊗ ψB ⊗ σM ,
showing the witness is robust to residual correlations in AB. But similarly to Theorem 4.1,
the witness becomes trivial when m is large.

Let us discuss the intuitive origin of such a bound for decomposable evolution. Recall
that for any unitary evolution generated by HABM = HAM + HBM , the Suzuki-Trotter
formula says that

e−itHABM = lim
n→∞

(
e−i

t
nHBM e−i

t
nHAM

)n
. (4.46)

Thus we can view the evolution as a sequence of discrete exchanges: first A interacts with
M for time t/n, and then sends the mediator M over to B. Then B interacts with M
and sends the mediator back to A. The evolution is reproduced when we repeat these
exchanges n → ∞ times. However, for a decomposable unitary, all of these interactions
commute, making the maximum correlation gain equal to the maximum correlation that
“M can carry” in a single Trotter step. For a nondecomposable unitary, the correlations
from each exchange can accumulate, enabling it to go higher than the decomposable bound.

In view of this, we might think that the limitation of dimension of the mediator is
arbitrary—a priori, it is completely plausible that all maps have a decomposable dilation
if the dimension of the mediator is unbounded. Remarkably, we can show that it is not
true—there exists a map that does not have any decomposable dilation, even when we allow
the dimension of the mediator to be unbounded.

Proposition 4.4. The map SWAP on two qubits has no decomposable m-dilation for any m.

Proof. We will prove this by contradiction. Suppose that SWAP has a decomposable m-
dilation. By definition, there exists two maps ϕAM , ϕBM and some initial state σM such
that

|00〉 〈00|AB = SWAP(|00〉 〈00|AB) = TrM ϕBMϕAM (|00〉 〈00|AB ⊗ σM ) , (4.47)
|10〉 〈10|AB = SWAP(|01〉 〈01|AB) = TrM ϕBMϕAM (|01〉 〈01|AB ⊗ σM ) . (4.48)

Let us define σ0
AM = ϕAM (|0〉 〈0|A ⊗ σM ). Now, let us compare the action of SWAP on

|00〉AB and |01〉AB . By Eqs. (4.47) and (4.48), we have

|0〉 〈0|A = TrB SWAP(|00〉 〈00|AB) = TrBM ϕBM
(
|0〉 〈0|B ⊗ σ

0
AM

)
, (4.49)

|1〉 〈1|A = TrB SWAP(|01〉 〈01|AB) = TrBM ϕBM
(
|1〉 〈1|B ⊗ σ

0
AM

)
. (4.50)

But ϕBM is trace preserving and because TrB factors out when applied to product states,
we have

TrBM ϕBM
(
|0〉 〈0|B ⊗ σ

0
AM

)
= TrBM

(
|0〉 〈0|B ⊗ σ

0
AM

)
(4.51)

= TrM σ0
AM (4.52)

= TrBM ϕBM
(
|1〉 〈1|B ⊗ σ

0
AM

)
. (4.53)
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Figure 4.5: An implementation of SWAPAB with two Trotter steps. Proposition 4.4 shows
that SWAP does not have any decomposable m-dilation, so it is impossible to implement it
with a single Trotter step, even if the mediator M is of infinite dimension. By changing
the SWAPBM step, this protocol shows that any map can be implemented with two Trotter
steps.

Combining this with Eqs. (4.49) and (4.50), we obtain

|0〉 〈0|A = TrBM ϕBM
(
|0〉 〈0|B ⊗ σ

0
AM

)
(4.54)

= TrBM ϕBM
(
|1〉 〈1|B ⊗ σ

0
AM

)
(4.55)

= |1〉 〈1|A , (4.56)

which is clearly a contradiction.

This implies the peculiar conclusion that classical interactions cannot produce SWAP. The
intuitive reason behind this statement is it takes at least two Trotter steps to implement
SWAP with dA = dB = dM—first we exchange systems A andM , then we exchange B andM .
Finally, we must exchange A andM again to complete the implementation (see Figure 4.5).
In fact, this protocol shows that any map can be implemented with two Trotter steps.

Proposition 4.4 shows that the set of maps that admit a decomposable m-dilation⋃
m DEC(m) does not include all maps—SWAP is not contained within this set. Clearly,

DEC(m) forms a nested sequence of sets since DEC(m) ⊆ DEC(m + 1). Furthermore, we can
show that all the inclusions are strict. This is because the criterion in Corollary 4.1 can
always be saturated for some map in DEC(m). Let us fix m and take dA = dB > dM =
m. Let ϕm(ρAB) = TrM SWAPBMϕAM (ρAB ⊗ |0〉 〈0|M ), where ϕAM is a maximally en-
tangling map. By construction, ϕm has a decomposable m-dilation, i.e. ϕm ∈ DEC(m).
Choosing ρAB = |00〉 〈00|AB and Q to be relative entropy of entanglement, we obtain
EA:B(ϕm(|00〉 〈00|AB)) = logm, whereas by Corollary 4.1, for all maps ϕ ∈ DEC(m − 1)
we must have

EA:B(ϕ(|00〉 〈00|AB)) ≤ sup
σAM

EA:M (σAM ) + IA:B(|00〉 〈00|AB) (4.57)

= log (m− 1). (4.58)

Therefore ϕm 6∈ DEC(m− 1), and the inclusion DEC(m) ( DEC(m+ 1) is strict for all m.

4.4 Measures

We have shown how to detect whether a map cannot have any decomposable m-dilation, i.e.
Λ 6∈ DEC(m). But often, we would like to measure how far it is from any element of DEC(m).
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For example, a practical motivation would be to bound the error of approximating such a
map with an element of DEC(m). To this end, let us start by defining a distance measure on
maps that is induced by a distance on states.

Definition 4.6. Given two maps ϕ1, ϕ2 : D → D and a distance measure on states d :
D ×D → R, the operator distance is given by

dop(ϕ1, ϕ2) = sup
σ∈D

d(ϕ1(σ), ϕ2(σ)). (4.59)

With this, we can already lower bound the distance to DEC based on the violation of the
criterion in Theorem 4.2.

Theorem 4.3. Let Q be a (g, d)-continuous correlation measure, where d is a contractive
distance. Let ΛABM : DABM → DABM be a map. The distance from ΛABM to the set DEC
is bounded as

inf
ϕABM∈DEC

dop(ΛABM , ϕABM )

≥ sup
ρABM

g−1

(
QA:BM (ΛABM (ρABM ))−

(
sup
σAM

QA:M (σAM ) + IAM :B(ρABM )

))
, (4.60)

where IAM :B(ρABM ) = infσAM⊗σB
g(d(ρABM , σAM ⊗ σB)) measures the AM : B total cor-

relation in ρABM .

Proof. We will prove the theorem by following the steps in the proof of Theorem 4.2, com-
bined with continuity bounds. Let us take a fixed, but arbitrary decomposable map ϕABM .
Because of the (g, d)-continuity of QA:BM , we have

QA:BM (ΛABM (ρABM ))−QA:BM (ϕABM (ρABM ))

≤ |QA:BM (ΛABM (ρABM ))−QA:BM (ϕABM (ρABM ))| (4.61)
≤ g(d(ΛABM (ρABM ), ϕABM (ρABM ))). (4.62)

Because ϕABM is decomposable, Theorem 4.2 yields

QA:BM (ϕABM (ρABM )) ≤ sup
σAM

QA:M (σAM ) + IAM :B(ρABM ), (4.63)

where IAM :B(ρABM ) = infσAM⊗σB
g(d(ρABM , σAM ⊗ σB)) is a measure of AM : B total

correlation. Combining with Eq. (4.62), we get

QA:BM (ΛABM (ρABM ))−
(

sup
σAM

QA:M (σAM ) + IAM :B(ρABM )

)
≤ g(d(ΛABM (ρABM ), ϕABM (ρABM ))). (4.64)

Taking supremum over ρABM and using the monotonicity of g, we get

sup
ρABM

QA:BM (ΛABM (ρABM ))−
(

sup
σAM

QA:M (σAM ) + IAM :B(ρABM )

)
≤ g(dop(ΛABM , ϕABM )). (4.65)

Since ϕABM is an arbitrary decomposable map, we can take the infimum over all decom-
posable maps ϕABM ∈ DEC to get the tightest bound

sup
ρABM

QA:BM (ΛABM (ρABM ))−
(

sup
σAM

QA:M (σAM ) + IAM :B(ρABM )

)
≤ inf
ϕABM∈DEC

g(dop(ΛABM , ϕABM )). (4.66)

Now, since g is monotonic and invertible, g−1 must also be monotonic. Applying g−1 to
both sides of Eq. (4.66) proves the claim.
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Since this distance bound is built on the necessary criterion in Theorem 4.2, whenever
the criterion is satisfied then the bound on distance must be trivial. Conversely, whenever a
violation of the criterion witnesses nondecomposability, Theorem 4.3 will give a non-trivial
bound on the distance to decomposable maps. Therefore, the examples given showing the
non-triviality of Theorem 4.2 also show the non-triviality of this bound on the distance to
decomposable maps.

Let us briefly discuss the implication of this bound to the theory of quantum simula-
tors [CST+21]. Suppose we would like to simulate a unitary, generated by the Hamiltonian
HABM = HAM +HBM . We would like to do this by truncating the Suzuki-Trotter formula
to r Trotter steps

e−itHABM ≈
(
e−i

t
rHAM e−i

t
rHBM

)r
. (4.67)

The Suzuki-Trotter formula shows that as r →∞, this approximation becomes exact. But
how do we know when our approximation is good enough? Let us quantify the (additive)
error in the simulation by the spectral norm∥∥∥e−itHABM −

(
e−i

t
rHAM e−i

t
rHBM

)r∥∥∥
∞
. (4.68)

Ref. [CST+21, Corollary 7] shows that to get the error less than ε, the number of Trotter
steps needed scales as the norm of the commutator

r = O

(
t2

ε
‖[HAM , HBM ]‖∞

)
. (4.69)

Note that the norm of the commutator ‖[HAM , HBM ]‖∞ behaves as a measure of non-
decomposability in this bound—the smaller the commutator, the fewer Trotter steps are
needed.

Theorem 4.3 relates the correlation in the system to infϕ∈DEC dop(e
−itHABM , ϕ). Can we

relate ‖[HAM , HBM ]‖∞ and infϕ∈DEC dop(e
−itHABM , ϕ)? Clearly, when ‖[HAM , HBM ]‖∞ =

0, then infϕ∈DEC dop(e
−itHABM , ϕ) = 0. We will show a quantitative relation between these

two quantities, thus relating the correlations in the system to the number of Trotter steps
needed to simulate the dynamics.

Recall that for finite-dimensional systems, all metrics generate the same topology [Rud91,
Section 1.19], i.e. for any two distances d1, d2, there exists a constant C such that

1

C
d2(ρ, σ) ≤ d1(ρ, σ) ≤ Cd2(ρ, σ). (4.70)

In particular, there exists a constant C relating any distance d to the trace distance
dtr(ρ, σ) = 1

2‖ρ− σ‖1. Therefore, if a correlation quantifier on finite dimensional systems
is (g, d)-continuous with respect to some distance d, it is also (g, d)-continuous with respect
to trace distance. But trace distance is contractive, so Theorem 4.3 applies to any distance
d for finite-dimensional systems, at the cost of some constants in g. Now, take the distance
derived from the spectral norm d∞(ρ, σ) = ‖ρ− σ‖∞. Ref. [CST+21, Proposition 9] shows
that ∥∥∥e−it(HAM+HBM ) − e−itHAM e−itHBM

∥∥∥
∞
≤ t2

2
‖[HAM , HBM ]‖∞. (4.71)

Because e−itHAM e−itHBM is a particular decomposable map, we also have

inf
ϕABM∈DEC

d∞,op
(
e−itHABM , ϕABM

)
≤ d∞,op

(
e−itHABM , e−itHAM e−itHBM

)
(4.72)

Therefore the following lemma is sufficient to prove the claim.

Lemma 4.1. Let U, V be unitaries. Then d∞,op(U, V ) ≤ 2‖U − V ‖∞.
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Proof. By simple algebra, we easily verify

UρU† − V ρV † = 1
2 (U − V )ρ(U + V )† + 1

2 (U + V )ρ(U − V )†, (4.73)

where ρ is a density matrix. Taking the spectral norm on both sides, we get∥∥UρU† − V ρV †∥∥∞ =
∥∥ 1

2 (U − V )ρ(U + V )† + 1
2 (U + V )ρ(U − V )†

∥∥
∞ (4.74)

≤ 1
2

∥∥(U − V )ρ(U + V )†
∥∥
∞ + 1

2

∥∥(U + V )ρ(U − V )†
∥∥
∞ (4.75)

≤ ‖U − V ‖∞‖ρ‖∞‖U + V ‖∞ (4.76)

where we used triangle inequality and submultiplicativity of spectral norm ‖AB‖∞ ≤
‖A‖∞‖B‖∞. Using the bounds ‖ρ‖∞ ≤ ‖ρ‖1 = 1 and ‖U + V ‖∞ ≤ ‖U‖∞ + ‖V ‖∞ = 2 on
the last inequality finishes the proof.

At this point, Theorem 4.3 is already useful to provide error bounds on the simulation
of a general map by decomposable ones. It shows a direct link between correlations and the
number of Trotter steps needed—the higher the correlations possible between A and B, the
more Trotter steps we need to keep the error small. Note that the analysis above can be
extended to simulations of 2-local Hamiltonians on spin chains or many-body systems by
considering composite systems as A,B, and M .

This suggests an interesting question: given a unitary U , is the closest element of DEC
to U also a unitary? We do not have an answer, but we suspect that the answer highly
depends on which distance measure is used.

Recalling the necessary criterion for classical interactions, we would like to extend The-
orem 4.3 to bound the distance to DEC(m). This is because when we perform experiments,
the operationally meaningful quantities should be measurable on AB, whereas Theorem 4.3
provides distances on the ABM operator distance.

Clearly, the ABM operator distance to DEC and the AB operator distance to DEC(m)
are closely related. Assuming that the distance on states d is contractive to fulfill the
assumptions of Theorem 4.3, we have dop(ΛABM , ϕABM ) ≥ dop(ΛAB , ϕAB). Therefore, we
cannot directly obtain a bound on the operator distance to DEC(m), because the inequality
is opposite of what we need. To obtain such a bound, let us introduce a completely bounded
variant of the operator distance [Pau03].

Definition 4.7. Given two maps ϕ1, ϕ2 : DA → DA and a distance measure on states
d : D ×D → R, the completely bounded operator distance is given by

dcb(ϕ1, ϕ2) = sup
σ∈DAA′

d ((ϕ1 ⊗ 11A′) (σ), (ϕ2 ⊗ 11A′) (σ)) , (4.77)

where the supremum is taken over all states σ ∈ DAA′ , and A′ is a finite dimensional Hilbert
space with arbitrary dimension.

Proposition 4.5. Given two maps on finite dimensional systems ϕ1, ϕ2 : DA → DB, we
have

dcb(ϕ1, ϕ2) = dop(ϕ1 ⊗ 11A′ , ϕ2 ⊗ 11A′), (4.78)

where the Hilbert space for system A′ is finite dimensional with arbitrary dimension.

Proof. Substituting the definition of dop into the definition of dcb proves the claim.

The benefit of the completely bounded operator distance is it behaves nicely with respect
to dilations. This makes it easier to jump from the distance to DEC to the distance to DEC(m).

Lemma 4.2. Let d : D×D → R be a contractive distance. Given two maps ϕ1, ϕ2, we have

dcb(ϕ1, ϕ2) = inf
ϕ̃i∈DIL(ϕi)

dcb(ϕ̃1, ϕ̃2). (4.79)



CHAPTER 4. MEDIATED DYNAMICS 49

Proof. By contractivity of d, we have dcb(ϕ1, ϕ2) ≤ infϕ̃i∈DIL(ϕi) dcb(ϕ̃1, ϕ̃2). To show the
other direction, we simply observe that (ϕ̃i = ϕi ⊗ 11, σi) are particular dilations of ϕi, and
the claim follows from Proposition 4.5.

Now we have enough tools to relate Corollary 4.1 to the distance to DEC(m).

Theorem 4.4. Let Q be a (g, d)-continuous correlation measure, where d is a contractive
distance. Let ΛAB : DAB → DAB be a map. The distance from ΛAB to the set of maps with
a decomposable m-dilation DEC(m) is bounded as

inf
ϕAB∈DEC(m)

dcb(ΛAB , ϕAB)

≥ sup
ψAB

g−1

(
QA:B(ΛAB(ψAB))−

(
sup
σAM

QA:M (σAM ) + IA:B(ψAB)

))
, (4.80)

where IA:B(ψAB) measures the A : B total correlation in ψAB.

Proof. We will essentially continue the proof from Theorem 4.3 and use the completely
bounded distance instead of the operator distance.

Let us choose (Λ̃ABM , σM ) as a fixed but arbitrary dilation of ΛAB , and ϕ̃ABM as a
fixed but arbitrary decomposable map. Applying Eq. (4.64) to Λ̃ABM and ϕ̃ABM , we have

d(Λ̃ABM (ρABM ), ϕ̃ABM (ρABM ))

≥ g−1

(
QA:BM (Λ̃ABM (ρABM ))−

(
sup
σAM

QA:M (σAM ) + IAM :B(ρABM )

))
. (4.81)

Now if we take the initial state as a product state that is pure on AB ρABM = ψAB ⊗ σM ,
we have

d(Λ̃ABM (ψAB ⊗ σM ), ϕ̃ABM (ψAB ⊗ σM ))

≥ g−1

(
QA:BM (Λ̃ABM (ψAB ⊗ σM ))−

(
sup
σAM

QA:M (σAM ) + IAM :B(ψAB ⊗ σM )

))
(4.82)

≥ g−1

(
QA:B(TrM Λ̃ABM (ψAB ⊗ σM ))−

(
sup
σAM

QA:M (σAM ) + IA:B(ψAB)

))
(4.83)

= g−1

(
QA:B(ΛAB(ψAB))−

(
sup
σAM

QA:M (σAM ) + IA:B(ψAB)

))
, (4.84)

where we use the monotonicity of Q and I under local operations and that (Λ̃ABM , σM ) is
a dilation of ΛAB . Taking supremum over initial states ψAB , we have

sup
ψAB

g−1

(
QA:B(ΛAB(ψAB))−

(
sup
σAM

QA:M (σAM ) + IA:B(ψAB)

))
≤ sup
ψAB

d(Λ̃ABM (ψAB ⊗ σM ), ϕ̃ABM (ψAB ⊗ σM )) (4.85)

≤ dop(Λ̃ABM , ϕ̃ABM ) (4.86)

≤ dcb(Λ̃ABM , ϕ̃ABM ). (4.87)

Recall that Λ̃ABM is an arbitrary dilation of ΛAB , and ϕ̃ABM is an arbitrary decomposable
map. Since Eq. (4.87) holds for all dilations Λ̃ABM ∈ DIL(ΛAB) and all decomposable maps
ϕ̃ABM ∈ DEC, we can take infimum to get the tightest bound. Let us define ϕAB(ρAB) =
TrM ϕ̃ABM (ρAB ⊗ σM ). By construction, ϕAB has a decomposable m-dilation ϕ̃ABM , i.e.
ϕAB ∈ DEC(m). If we vary ϕ̃ABM over all decomposable maps, ϕAB runs over all maps that
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admit a decomposable m-dilation. Therefore, taking the infimum and using Lemma 4.2, we
get

sup
ψAB

g−1

(
QA:B(ΛAB(ψAB))−

(
sup
σAM

QA:M (σAM ) + IA:B(ψAB)

))
(4.88)

≤ inf
ϕ̃ABM∈DEC

Λ̃ABM∈DIL(ΛAB)

dcb(Λ̃ABM , ϕ̃ABM ) (4.89)

= inf
ϕAB∈DEC(m)

ϕ̃ABM∈DIL(ϕAB)

Λ̃ABM∈DIL(ΛAB)

dcb(Λ̃ABM , ϕ̃ABM ) (4.90)

= inf
ϕAB∈DEC(m)

dcb(ΛAB , ϕAB), (4.91)

which proves the claim.

A small remark about triviality: similar to the relation between Theorem 4.3 and The-
orem 4.2, Theorem 4.4 is built on Corollary 4.1. Since there exist maps that violate the
criterion in Corollary 4.1, Theorem 4.4 will provide non-trivial bounds on the distance to
DEC(m) for those maps.

Let us discuss the connection between Corollary 4.1, Theorem 4.4, and the BMV exper-
iment. As previously discussed, the BMV experiment shows that the entanglement between
the probes AB implies that the joint state ρABM of the probes and the mediator must
be nonclassical, in the sense of non-zero discord DAB|M (ρABM ) > 0. In contrast to Corol-
lary 4.1, their argument is independent of the dimension of the Hilbert space of the mediator.
Is it possible to derive such a criterion from our results? Without any restrictions on the
joint state, no such criterion can exist because there is always a decomposable map that sat-
urates the inequality (recall the argument showing that the inclusion DEC(m) ( DEC(m+ 1)
is strict). Let us examine what happens when we assume that the joint state ABM must al-
ways have zero discord DAB|M (σABM ) = 0. Using entanglement as our correlation measure,
Corollary 4.1 gives

EA:B(ϕ(ψAB)) ≤ sup
σAM

EA:M (σAM ) + IA:B(ψAB), (4.92)

for all maps ϕ that has a decomposable m-dilation, where σAM runs over all allowed joint
states of AM . Choosing the initial state ψAB = ψA⊗ψB to be a pure product state, we get

EA:B(ϕ(ψA ⊗ ψB)) ≤ sup
σAM

EA:M (σAM ). (4.93)

In particular, if we assume that the discord DAB|M (σABM ) = 0 must vanish for all allowed
joint states σABM , we must have supσAM

EA:M (σAM ) = 0 and therefore

EA:B(ϕ(ψA ⊗ ψB)) ≤ 0, (4.94)

for all maps ϕ with a decomposable m-dilation for some m. This is exactly the conclusion of
BMV’s analysis. However, Eq. (4.93) says much more—if we measured some entanglement
between the probes EA:B(ϕ(ψA ⊗ ψB)) > 0, and we know that the interaction must be
classical (and therefore ϕ has a decomposable dilation), then the AB : M entanglement
must be bounded as

0 < EA:B(ϕ(ψA ⊗ ψB)) ≤ sup
σAM

EA:M (σAM ) ≤ sup
σABM

EAB:M (σABM ) (4.95)

where σABM runs over the allowed joint states of ABM . So assuming that the interaction
is classical, any entanglement between the probes implies that the joint state between the
probes and the mediator must be able to carry at least the same amount of entanglement
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too. In particular, even if we relax the assumption of zero discord DAB|M (σABM ) = 0
to zero entanglement, EAB|M (σABM ) = 0, the conclusion of the BMV analysis still holds.
Another way that our results extend the BMV analysis is we provide quantitative bounds
on the nonclassicality of the interaction, through Theorem 4.4.

To summarize, we have defined nonclassicality of mediated interactions through commu-
tativity. We outlined a method to detect the nondecomposability of maps, independently of
the actual interactions. The bound generally only depends on the dimension of the media-
tor, which makes the criterion applicable to situations where the coupling is not sufficiently
characterized yet to write down the Hamiltonian. As an application, we related the amount
of correlations in the system to the number of Trotter steps needed in a quantum simulator.
Furthermore, to provide testable predictions of possible theories of quantum gravity, we also
formulated a criterion detecting whether a map can have a decomposable dilation with a
mediator with bounded dimension. Finally, we defined measures of nondecomposability of
maps and outlined a way to estimate these measures linked to the detection techniques.
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Chapter 5

Conclusions

We have discussed various aspects of correlations and their connections to mediated dy-
namics. Specifically, we formulated a witness of nonclassicality of interactions based on the
correlations in two probes. However, many open problems remain.

In Chapter 2, we proposed that correlations are simply a special form of resource theories.
We proposed an axiomatic definition to distinguish the typical theories of correlations—
entanglement, total correlations, classical correlations, etc.—from general resource theories.
Furthermore, we identified correlation measures simply as resource monotones. However,
some theories such as discord and Bell nonlocality are left out. Is there a set of “natural”
axioms that distinguish theories of correlations from resource theories more generally?

Chapter 3 analyzed the relation between negativity and distance-based correlation mea-
sures. In view of suggestive results showing correspondence between coherence theory and
entanglement theory, we hypothesized that negativity can be constructed as a distance-
based measure. To this end, we conjectured that the partial transpose distance is closely
related to negativity (Conjecture 3.1). While we showed that this relation holds in some
special cases (see Theorem 3.1), the general case remains an open problem. This conjectured
relation allows us to construct distance-based measures for other types of correlation that
are comparable to negativity. We presented closed forms of these measures for select cases.
Unfortunately, we were unable to obtain a closed formula for the total correlation in pure
states. At a more general level, these results suggest that perhaps the correct correspondence
is not between coherence theory and entanglement theory, but rather PPT entanglement
theory. It seems that further investigation in this direction is needed.

Chapter 4 explored correlations in mediated dynamics, as well as notions of classical
interaction. We considered two probe systems whose interactions are relayed through a
mediator. We proposed that classical interactions can be defined through commutativity—
when the interaction terms in the Hamiltonian commute, then the interaction is classical.
In relation to this, we defined decomposability of dynamics and showed that it is a necessary
condition for classicality. However, the connection between these two concepts as well as
various subtleties regarding the definition of decomposability were not yet fully answered in
this thesis. We moved on to formulating a necessary criterion for decomposability in terms of
correlations in the probes, independent of the exact coupling to the mediator. While this is
primarily the approach taken in this thesis, other alternatives are also worth exploring. We
formulated measures of nondecomposability, along with methods of estimation. We related
this framework to the theory of quantum simulators, showing a link between correlations and
the number of Trotter steps needed in a simulation. In the remaining part of Chapter 4, we
extended the analysis to cases where the mediator is inaccessible. We discussed the relation
between our results to BMV’s analysis and generalized their argument. Namely, not only
non-zero entanglement witnesses quantum features of gravity, if we assume the interaction
is classical then it also provides a lower bound to the amount of entanglement that the
gravitational field can hold. If we do not assume classicality of the interactions, then we
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obtain a lower bound to the set of classical interactions. The main assumption that we used
is that the dimension of the mediator is bounded. Another approach taken in our analysis
is in the initial state, the probes are uncorrelated with the mediator, which is enforced by
assuming that initially our probes are in a pure state. It would be interesting to extend the
analysis to scenarios where there are some initial correlations present.
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