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In the following summary, the publications [H1]-[H10] refer to the cycle above,
the publications [AD1], [AD2], [PD1], [PD2] refer to my other publications (page
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7 of this summary), whereas the remaining citations concern publications of other
authors (at the end of the summary).

4.1 INTRODUCTION

The classical knot theory very often makes use of the notion of diagrams, or
projections of knots (or links) from R3 to R?. On the shadows or immersed curves
obtained in this way, the extra information of tunnel-bridge is added for each
crossing. Ambient isotopies of links correspond to series of Reidemeister moves
on diagrams [Rei27]. There are three types of such moves. Link diagrams together
with Reidemeister moves give a very useful way for constructing and studying link
invariants: a map from diagrams to arbitrary objects (set of numbers, polynomials...)
will be an invariant, if its value remains unchanged under Reidemeister moves. The
blossoming in the study of such invariants took place in the eighties of the last
century, then later on, and it starts with the Jones polynomial [Jon85].

The generalization of link invariants discovered after the Jones polynomial, from
links in R? (or S3) to links in other 3-manifolds, was initiated by the introduction
of skein modules [Prz91, Tur88]. The computations of the different types of skein
modules turned out to be quite difficult in general. The most popular of them, the
Kauffman bracket skein module, is computed, until now, for a very modest number
of families of 3-manifolds (for instance, it is not computed for all Seifert fibered
spaces). Other skein modules are not computed even for the simplest families, such
as lens spaces. Thanks to the introduction of the arrow diagrams in [H1], some of
these problems could be partially solved.

In the recent years there has been a great interest in the study of skein modules.
It is worth mentionning the papers [BW16], [FKBL19] which concern Kauffman
bracket skein algebras, or [GJS23], where the authors solve the Witten conjecture
concerning the finiteness of the dimension of the Kauffman bracket skein modules
for closed 3-manifolds (with coefficients in Q(A)).

For links in S® there is a possibility of projecting them to S? by using the
Hopf fibration. This gives naturally arrow diagrams of classical links with six
Reidemeister moves. Such alternative projections of classical links were considered
in [Fie91] and [Tur92]. Except for a few papers from the end of the last century,
such projections were not studied until the papers [H7]-[H10], where new invariants,
moves on links and examples of knots with interesting Jones polynomials were
discovered. Also, a problem from [Fie91] was solved.

4.2 ARROW DIAGRAMS

The arrow diagrams were introduced in [H1]. In that paper, links in manifolds
Fx S, where F is an orientable surface (with or without boundary), are represented
with arrow diagrams. These are closely related to the so called gleams introduced
by Turaev in [Tur92]. Arrow diagrams consist of generically immersed curves on
the surface F', with extra information tunnel-bridge on the crossings and some
additional arrows on the curves, outside the crossings. Except for the arrows, these
diagrams look like classical diagrams for F' x I, where I = [0,1]. Arrow diagrams
are obtained by cutting F' x S* - in the F x I thus obtained, the arrows keep
the information about the places in which the link in F x S' was cut. Ambient
isotopies of links correspond to Reidemeister moves: three classical and two extra
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ones, shown in fig. 1. In this way, the study of links in F' x S! is reduced to the
study of arrow diagrams together with five Reidemeister moves.
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FIGURE 1. Reidemeister moves

The arrow diagrams were extended for links in twisted S! bundles over the
unorientable surfaces and, more generally, for links in Seifert fibered spaces in
[H2] and [H3] (with a summary in [H5]). In each case one adds some appropriate
Reidemeister moves to the basic five moves. The arrow diagrams are a useful tool
for studying links in these different manifolds. They have been mainly used in the
computation of skein modules of some manifolds (section 4.3), as well as in the
study of classical knots, i.e. knots in S (section 4.4).

4.3 SKEIN MODULES

Skein modules where introduced by J. Przytycki [Prz91] and V. Turaev [Tur88|.
Through skein modules, one can generalize in a natural way some invariants of links
in S3 to links in other 3-manifolds, orientable in the majority of cases. On the one
hand, a concrete skein module of some 3-manifold M allows to study links in M; on
the other hand, computing the skein modules of whole families of 3-manifolds can
yield some information about these 3-manifolds. There exist several skein modules,
their definition depending on the chosen skein relation.

The most studied skein modules are the Kauffman bracket skein modules (or
KBSM for short), [Prz99]. Other important cases are HOMFLYPT skein modules
or Kauffman skein modules. In their definition one uses the skein relation of the
HOMFLYPT polynomial [FYHT85, PT88] and, respectively, the definition of the
Kauffman polynomial [Kau90].

The paramount importance of the KBSM’s is due to their relationship with the
representations of the fundamental groups of the 3-manifolds in S Lo (C), discovered
by D. Bullock [Bul97a]. The KBSM’s, which depend on the choice of the coefficients
such as Z[A, A=), C[A, A~ or, possibly, by allowing some elements to be invertible,
have been computed in a few cases only, such as: the lens spaces [HP93], S x
S% [HP95], the complements of torus knots (2,2p + 1) [Bul95], surgeries on the
trefoil [Bul97b], the quaternionic space [GHO7], RP3tRP? [H2], an infinite family
of the prism manifolds [H3], the complements of the torus knots [Mar10] or the
complements of the 2-bridge links [LT14]. For more general families, generating
sets of the KBSM’s have been found, for example for a family of Seifert fibered
spaces in [AF22].

J. Przytycki has studied the relationship beetween the existence of incompressible
nonboundary surfaces in a 3-manifold and the torsion in the Kauffman bracket



skein module of this 3-manifold. He has exhibited such a relationship under some
assumptions [Prz99]. Here, an interesting case is the manifold M = F x S', where
F'is a disk with two holes. M contains an immersed torus, but it does not contain
an embedded one. Przytycki was interested in the presence of torsion in the KBSM
of M. In the paper [H1] this skein module has been computed: it is free with an
infinite basis. The main tool in the proof is the notion of arrow diagrams, introduced
in this paper. In several steps are computed the KBSM’s of: the solid torus, the
thickened torus (these cases were computed before) and, finally, the manifold M.
Thanks to the arrow diagrams it is possible to keep track of all the skein relations
in the module, which allows to find the generators and prove that the skein module
is free.

In the papers [H2] and [H3] the arrow diagrams were extended for links in twisted
S! bundles over unorientable surfaces and, more generally, for links in Seifert fibered
spaces. In [H2], the KBSM of the twisted S bundle over the real projective plane,
homeomorphic to RP3RP3, was computed. It was the first complete computation
of the KBSM of a connected sum of two 3-manifolds, as well as of a manifold
containing a separating surface. The structure of this skein module is relatively
complicated: it contains torsion elements and it does not split into a sum of cyclic
modules. Also in [H2] are re-computed the KBSM’s of the lens spaces Ly ; and of
52 x S'. In the second case, especially, the proof is much shorter and simpler than
in [HP95].

By adding fibers to RP3$RP?2, one gets prism manifolds. In some simple cases,
when the fiber is of type (p, 1) so that it is not special, one gets the prims manifolds
with first homology group of order 4. For this family of manifolds, the KBSM’s
have been computed in [H3]. In this case they have a simple structure: they are
free, finitely generated, and the dimension depends in a simple way on p. It is
worth mentionning, that this family of prism manifolds contains the quaternionic
manifold, for which the KBSM has been computed in [GHOT7].

The arrow diagrams method has been used by other authors. Carrega has shown
in [Car17], that the Kauffman bracket skein module with coefficients in Q(A) (thus
allowing all polynomials in A to be invertible) of the 3-torus is generated by 9
elements. This result has been generalized by Detcherry and Wolff, in [DW21], to
the product of S' and an arbitrary orientable surface without boundary. In both
papers arrow diagrams are essential in the proofs. Also, Arand and Ferguson have
made use in [AF22] of arrow diagrams to find some sets of generators for the KBSM’s
of some family of Seifert fibered spaces.

Further computations of the KBSM’s with coefficients in Q(A), such as carried
out in [Det21], reinforced the so called Witten hypothesis, which states, that the
KBSM with coefficiens in Q(A) of a closed 3-manifold M is finite dimensional (for
a formulation sce for instance [Det21]). The Witten hypothesis has been recently
proved in [GJS23]. This opens new fields for some very interesting research on 3-
manifolds. In particular, the computation and interpretation of the finite dimension
for concrete manifolds is in its beginnings.

Also in [Det21] some generalizations of the Witten hypothesis to manifolds with
boundary are proposed (Conj. 3.2 i 3.3). In this paper, the manifold M from [H1]
constitutes an important example reinforcing hypothesis 3.3.

The Witten hypothesis has been also extended in a different direction, namely
to the KBSM of a closed manifold with coefficients in R = Z[A, A~!] (Marche
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hypothesis or hypothesis 1.1 in [DW21]). This extended hypothesis says, that the
KBSM splits into B¢ (d a natural number) and a sum (possibly infinite) of modules
Ny, where Ny, is a A¥ — A~ *-torsion module. It was observed in [BP22], that there is
a counterexample to this extended hypothesis, namely the manifold M = RP3{RP3,
for which the KBSM has been computed in [H2]. It was shown in [H2] (Prop. 4.19),
that the KBSM of M does not split into free and cyclic modules (such as the
modules Ng). It follows that Marche hypothesis is not true - the skein module
structure may be more complicated.

Apart from the Kauffman bracket skein modules, other important examples
are, as was mentionned at the beginning of this section, the HOMFLYPT and
the Kauffman skein modules. The computations of these skein modules are more
complicated than in the case of the Kauffman bracket: there are very few cases
of 3-manifolds with such computations carried out completely. None of these skein
modules has been computed for all lens spaces [DLP16,DL17,DL19]. An important
result in this direction is the computation in [H4] of the HOMFLYPT skein module
of the lens spaces L, 1, p > 1. These skein modules are free. Infinite bases are
given for each of them. For the lens spaces L,, 4, with ¢ > 1, the situation gets very
complicated. The methods from [H4] may be used only to find a set of generators
for Ly 2. When g > 2, these methods do not yield even such a set of generators.

By extending the methods of [H4], it was possible in [H6] to compute the
Kauffman skein modules of Ly, 1, for odd p. It was also shown, that there is torsion
in these skein modules when p is even. There exists a variant of the Kauffman
polynomial, the so called Dubrovnik polynomial. For classical links, it is equivalent
to the Kauffman polynomial. By using in [H6] the Dubrovnik skein relation instead
of the Kauffman one, the Dubrovnik skein modules of all lens spaces L, 1, p > 1,
have been computed. It turns out, that in this case all modules are free, infinitely
generated, similarly to the case of HOMFLYPT skein modules from [H4].

Both in [H4] and [H6], the computation of the skein modules relies completly on
arrow diagrams and the related Reidemeister moves.

4.4 KNOTS AND THE HOPF FIBRATION

Another important use of arrow diagrams is the study of classical knots or links
(i.e. in S?). Traditionally, the links in R?® (which is equivalent to links in S3) are
studied with the help of diagrams - these are projections of links from R3 to R2,
keeping the extra information tunnel-bridge on the crossings. Another possibility
is to use the Hopf fibration p : S — S? with which one may project links along
the fibers S' onto the sphere S2. By cutting the fibers, one gets in a natural way
arrow diagrams in a disk, with an extra Reidemeister move, fig. 2. This is explained
in detail in [H7]. By studying some properties of the arrow diagrams of knots, for
example the minimal number of the crossings, one gets new invariants of classical
knots (and links).

The idea of studying knots with the help of the Hopf fibration has been Fiedler’s
in [Fie91]. Later, Turaev introduced in [Tur92] the notion of gleams - diagrams in
52 with the corresponding 2-cells being colored with integer numbers. Such gleams
correspond to arrow diagrams of links in S' bundles over S? without special fibers
(i.e. of links in lens spaces L, 1, in particular L1 = S3). Two interesting results
about gleams are related to Vassiliev invariants (or finite type invariants). In 1990,
Viro formulated the following hypothesis: the Vassiliev invariants are polynomials



FIGURE 2. extra Reidemeister move

in the gleams (meaning, that they are polynomials in the variables assigned to
the 2-cells of a fixed diagram, taking integer values). Burri in [Bur97] has shown
that the hypothesis is true for some special Vassiliev invariants coming from the
Jones polynomial. In particular, he obtained an interesting formula for the Vassiliev
invariant of degree 2: it is a polynomial of degree 4 in the gleams. Then Goussarov,
in [Gou98], has proven the Viro hypothesis, by showing that any Vassiliev invariant
of degree n is a polynomial of degree 2n in the gleams. In the following years, there
were no studies on classical knots using the Hopf fibration. Such studies were only
renewed in papers [H7]-[H10].

In [Fie91], Fiedler considers two types of crossing numbers for algebraic knots (i.e.
knots obtained from singularities of algebraic curves). For an algebraic knot K, the
first crossing number, Cyiq(K), is the minimal number of crossings of K under the
Hopf fibration, where we allow only the realizations of K coming from algebraic
curves, whereas for the second crossing number, A(K) (the notation is not from
[Fie91]), we allow any (topological) realization of K. Obviously, h(K) < Cyqe(K).
Fiedler finds some lower bounds for Cyq(K) for some algebraic knots K and asks
the question, whether this inequality is always an equality. He also observes, that
almost nothing is known about the invariant h.

In [H7], using arrow diagrams, all knots K with h(K) < 1 are classified. Tt
is possible thanks to a closed formula for the Jones polynomial of such knots,
which distinguishes them all (except for a pair that can be easily distinguished in a
different way). The knots from the Rolfsen table (up to 10 classical crossings) with
h(K) <1 are identified. It is also shown, that h(K) = Cq4(K) for algebraic knots
which satisfy h(K) < 1. In particular, this requires the classification of all algebraic
knots satisfying h(K) < 1.

It turns out, that, in general, for algebaric knots the equality h(K) = Cyq(K)
does not always hold. In [H9] examples of knots K are constructed for which
Caig(K)—h(K) can be arbitrarly large. This answers the question posed by Fiedler.
The proof is based on the realization that for a classical diagram of a knot K with
c(K) crossings, containing a twist with m crossings, h(K) is lower thant ¢(K) by
an amount of at least (roughly) m/2. This yields examples for which Cgqy(K) is
estimated from below (thanks to an inequality in [Fie91]), h(K) from above and
the difference between the estimates can be arbitrarly large. It follows also, that
there is a large gap between ¢(K) and h(k) for torus knots K = T'(2,n) or twist
knots (roughly h(K) < ¢(K)/2). However, no lower bounds for h(K) are known for
these knots.

In knot theory one considers often different families of moves which divide links
or knots into equivalence classes (two links being in the same class if one can pass
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from one to the other with a series of the chosen moves). Examples of such moves
appear already in Fox [Fox58]. Some of the simplest such moves, the so called
tr moves, which consist in adding or removing a twist with k£ crossings between
two strands in a link, are analyzed in [Prz88|. It is shown there, that the values
of the Jones polynomial in some appropriate roots of unity (depending on k) are
unchanged (or change in a highly controled way), when one performs t; moves.

Using arrow diagrams, new moves were introduced in [H8], the k-moves, defined
in a simple way by adding or removing k arrows on a single strand (without crossings
separating such arrows). In that paper, it is shown that the values of the Jones
polynomial in the k-th roots of unity do not change under a k-move, if k is odd,
whereas they are multiplied by —1, if & is even. One of the fundamental questions to
consider for some chosen moves it the question whether all knots lie in a single class,
in other words, whether any knot can be made trivial by applying a series of the
chosen moves. Simiarly to the ¢, moves, it truns out that for the k-moves the most
difficult cases are k = 3 and k = 4, the only cases for which the above question
is open. When k < 3 any knot can be made trivial with k-moves. When k& > 4
there are infinitely many equivalence classes of knots under k-moves. If studying
the k-moves is interesting in itself, they appear also as a useful tool in studying the
invariant h, since an infinite number of knots with bounded h gives a finite number
of equivalence classes after dividing with k-moves. This tool may be very useful
in the computations of h for concrete knots (for instance the knots from Rolfsen’s
table).

By studying knots with small h and their Jones polynomials, interesting families
of knots with cyclotomic Jones polynomials were discovered in [H10]. Such knots
were considered in [CKO05] i [CKO06]. In both papers the authors study the Mahler
measure of the Jones polynomial. It is shown, that under some operations this
measure behaves in a similar way to the hyperbolic volume. In [CK05], the authors
pose the problem of constructing knots that have Jones polynomials with Mahler
measure 1 (so that these polynomials are cyclotomic or products of cyclotomic
polynomials). The paper [H10] gives a solution to this problem: four infinite families
of knots having Jones polynomials with Mahler measure 1 are constructed. It is also
shown, that inifinitely many roots of unity are zeros of Jones polynomials of knots.
Furthermore, such zeros are dense in the unit circle. This can be compared to the
theorem of [JZDT10], whch states that zeros of Jones polynomials are dense in C.
The knots in [H10] have relatively simple arrow diagrams. This is a good motivation
to study such simple diagrams, for example when the number of crossings is low.
In some cases, it is possible to get closed formulas for the Jones polynomial.

5. Summary of other research achievements.

Articles in journals before the PhD

[AD1] M. Mroczkowski, Diagrammatic unknotting of knots and links in the projective
space, Journal of Knot Theory and Ramifications 12 (2003), no. 5. 637-651.

[AD2] M. Mroczkowski, Polynomial invariants of links in the projective space,
Proceedings of Knots in Poland 2003, Fundamenta Mathematicae 184 (2004),
223-267.

Articles in journals after the PhD

[PD1] J. Malesic, M. Mroczkowski Meridional number of a link and skein modules
of the solid torus, Topology and its Applications 159 (2012), no. 8, 2021-2031.



[PD2] B. Gabrovsek, M. Mroczkowski, Knots in the solid torus up to 6 crossings,
Journal of Knot Theory and Ramifications 21 (2012), no. 11. 1-43.

5.1 KNOTS AND LINKS IN THE REAL PROJECTIVE SPACE

The papers [AD1] and [AD2], forming the doctorate, are about links in the
real projective space RP3. The research on links in this 3-manifold was initiated
by J. Drobotukhina in [Dro90, Dro91, Dro94]. It is based on diagrams of links in
the real projective space: these are diagrams in a disk consisting of closed curves
and arcs; the endpoints of the arcs lie on the boundary of the disk, grouped into
antipodal pairs. Ambient isotopies of links correspond to five Reidemeister moves
on such diagrams (three classical and two extra moves, which are not related to
the Reidemeister moves of arrow diagrams). Using a generalization of the Jones
polynomial to links in RP3 [Dro90], Drobotukhina obtains the classification of links
up to 6 crossings [Dro94].

In [AD1] the problem of descending diagrams for knots and links in RP? is
considered. Since H,(RP3) = Zy, there are 2 types of knots. A natural choice of 2
trivial knots are knots which have diagrams with no crossings. In the case of links
which consist of at least two non homologically trivial components, the choice of
a trivial link is not obvious, though one can choose a definition of such a link in
a natural way. It is shown in [AD1], that from any diagram of any knot one can
obtain the trivial knot in the homology class of the original knot, by changing some
subset of the crossings of the diagram. This is no longer possible with links, which
is demonstrated with a counterexample consisting of 4 non homologically trivial
components. In [AD2], the tools from [AD1] are used to generalize the HOMFLYPT
polynomial to links in RP3. As an application, a conctruction of knots with any
distance from affinity is given. This invariant is defined as the minimal number of
antipodal pairs of endpoints of arcs amongst all diagrams of a knot (or link).

5.2 KNOTS AND LINKS IN THE SOLID TORUS

In [PD1] the meridional number of links in the solid torus T is considered. It was
introduced in [Mal95]. For a given link L, this number, denoted v(L), is the maximal
number of meridional disks in 7" such that L can be isotoped into a link for which
no arc is joining two different discs. For instance, taking a simple chain C,, going
aroung 1" with n components, v(C,,) = n. To get bounds from below for v, one has
to construct an appropriate number of disks so that no arc joins two different discs.
The bounds from above for v are obtained from appropriate coefficients of links in
different skein modules of the solid torus: the HOMFLYPT, Kauffman, Kauffman
bracket and homotopy skein modules. Using the Kauffman bracket skein module,
it is shown, that v(B,,) = 2n for the Bing links B,,.

In [PD2] the prime knots up to 6 crossings in the solid torus where classified
(there are 526 such knots). In this case the knots are presented with classical
diagrams in the annulus (and not arrow diagrams in a disk). To distinguish between
diagrams skein modules are used, mostly KBSM but, in a few cases, also Kauffman
and HOMFLYPT skein modules. Amphicheiral knots are detected (24 cases). For a
knot K in the solid torus, its wrapping numberis the minimal number of intersections
between K and a meridional disk, up to isotopy. The wrapping conjecture states,
that the wrapping number equals the degree in x of K expressed in the KBSM of
the solid torus (where 2F stands for k concentric circles going around the torus).
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From the computations in [PD2] it follows, that the wrapping conjecture is true for
knots up to 6 crossings.

6. Presentation of significant scientific or artistic activity carried out at more than
one university, scientific or cultural institution, especially at foreign institutions

e Cooperation with M. Dgbkowski from UT Dallas resulting in the paper [H1]. As
part of this cooperation I gave the following talks during seminars at UT Dallas:

- Skein modules of twisted I bundles over unoriented surfaces, September 2007

- KBSM of the product of a disk with two holes and S*, September 2008

e Cooperation for several years with J. Malesic and B. Gabrovsek from the University
of Ljubljana, resulting in papers [H4], [H5], [PD1], [PD2]. As a result of this
cooperation, I was also a co-promotor for the doctorate of B. Gabrovsek. During
this cooperation, I gave a talk in Ljubljana, February 2009, Kauffman bracket skein
module of the product of a disk with two holes and S*.

e Cooperation with S. Lambropoulou and I. Diamantis from National Technical
Univeristy of Athens and B. Gabrovsek from the University of Ljubljana during the
project: THALIS - NTUA - Algebraic modeling of topological and computational
structures and applications, since 2015, in progress.

7. Presentation of teaching and organizational achievements as well as achievements
in popularization of science or art

e Promotor (auxilliary) for the doctorate of Bostjan Gabrovsek of the University
of Ljubljana, 2013

e Promotor for 9 MSe and several BSc students.

e During many years I have taught several courses (lectures and exercise sessions)
in mathematics and computer sciences both before my PhD at the University of
Uppsala, and after at the University of Gdansk: Fourier series, functional analysis,
differential geometry, general topology, number theory, calculus, linear algebra,
introduction to programming, data bases...

e Co-organizer of 3 conferences Knots in Gdansk, during 2017-2019, with, as participants,
world specialists in knot theory.

e Jury member for the contest: mathematical fairy tale, organized by the University
of Gdansk in 2015.

e Organizer of the contest: mathematical comics during The Year of Mathematics
in Pomerania 2015.

(Applicant’s signature)
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