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Abstract

The correlations generated by measuring quantum systems challenge classical paradigms

and drive research in quantum information theory to identify and quantify nonclassical

properties across various resources. This dissertation focuses on resources generated

in Einstein-Podolsky-Rosen (EPR) scenarios and their generalizations. In a standard

bipartite EPR scenario, nonclassical correlations are produced through local measurements

on half of a system prepared in an entangled state. The nonclassical resource that arises in

this scenario, called an assemblage, is an example of a common-cause resource where the

correlations between parties arise through the shared system (without communication).

In this dissertation, we study the nonclassicality of EPR assemblages through a series of

three research papers [1, 2, 3].

In the first paper [1], we develop a resource theory of assemblages with local operations

and shared randomness as the set of free operations. Within this framework, we investigate

conversions between resources using semidefinite programming and resource monotones.

The second paper [2] focuses on generalizations of the bipartite EPR scenario involving

post-quantum resources. We introduce a resource theory for this case and analyze the

pre-order among quantum and post-quantum resources both analytically and numerically.

Finally, in the third paper [3], we examine the relationship between post-quantumness in

EPR scenarios and Bell scenarios. We propose a protocol that transforms post-quantum

EPR assemblages into a multipartite Bell-type scenario, resulting in post-quantum

device-independent correlations.





Streszczenie

Korelacje wytwarzane przez pomiary systemów kwantowych odbiegają od zasad fizyki

klasycznej, co motywuje badania w teorii informacji kwantowej do zidentyfikowania

i ilościowego określenia nieklasycznych własności różnych zasobów. Głównym obiektem

badań niniejszej rozprawy są zasoby wytwarzane w scenariuszach Einsteina-Podolsky’ego-

Rosena (EPR) i ich uogólnieniach. W standardowym scenariuszu dwupodukładowym

EPR, nieklasyczne korelacje powstają wskutek lokalnych pomiarów jednego z podukładów,

podczas gdy stan łączny jest stanem splątanym. Nieklasyczny zasób wytworzony w ten

sposób, nazywany asamblażem, stanowi przykład korelacji wywołanej przez wspólną

przyczynę, a nie bezpośrednie relacje przyczynowe między podukładami. Wyniki za-

warte w niniejszej rozprawie opierają się na serii trzech artykułów naukowych [1, 2, 3]

przedstawiających badania nieklasyczności asamblaży EPR.

Pierwszy artykuł [1] przedstawia teorię zasobów dla asamblaży, w której zbiór oper-

acji darmowych stanowią operacje lokalne skorelowane przez dzieloną zmienną losową.

W formaliźmie tym zbadane zostały przekształcenia między zasobami za pomocą pro-

gramowania półokreślonego oraz monotonów zasobów. Drugi artykuł [2] skupia się

na uogólnieniach dwupodukładowego scenariusza EPR, w których występują zasoby

postkwantowe. Artykuł przedstawia teorię zasobów dla tych scenariuszy oraz analityczną

i numeryczną analize praporządku zasobów kwantowych i postkwantowych. W trzecim

artykule [3] zbadana została zależność między postkwantowością w scenariuszach EPR

i scenariuszach Bell’a. Artykuł przedstawia procedure przekształcania postkwantowych

asamblaży EPR w wieloukładowe scenariusze typu Bell’a, w których wytwarzane są

korelacje postkwantowe.
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1 Introduction

One of the most fundamental questions in quantum theory pertains to identifying and quantifying

resources that provide evidence of nonclassicality. Bell’s theorem [4] famously highlights the

need to move beyond classical paradigms when interpreting experiments involving quantum

systems. This theorem has led to the development of a research field focused on exploring

correlations that cannot be generated in networks consisting solely of classical systems. An

effective approach for investigating nonclassical correlations, including those beyond quantum

theory, is through the framework of resource theories [5, 6]. This framework focuses on studying

resources relative to a restricted set of operations that are considered to be freely available. The

underlying principle of resource theories is very intuitive: a resource holds greater value if it

is not easily attainable. In the context of studying nonclassical correlations, the resource of

interest is the nonclassicality itself. Correlations achievable using classical systems are considered

invaluable within this framework.

There are different types of correlations that can arise in networks involving physical systems.

Imagine two distant parties that share a common resource and perform space-like separated

actions on it. We will refer to this scenario as a common-cause scenario. As the parties can be

correlated through the shared resource, the results of their manipulations may exhibit some

correlation. For example, if the shared resource is a classical source of randomness, and the two

parties simply output the number generated by it, their outputs will be perfectly correlated. A

more complex form of correlation is entanglement. When the parties share a quantum system

prepared in an entangled state, they exhibit nonclassical correlations. If one party measures

their share of the system, the conditional state of the subsystem of the other party after the

measurement will be correlated with the measurement outcome. This correlation, which we refer

to as the Einstein-Podolsky-Rosen (EPR) correlation, is the central focus of this dissertation.

One can go a step further by having both parties measure their subsystems, which results in the
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Bell scenario, where the correlation of interest is the set of conditional probability distributions

describing the observed outcomes given the measurement settings. All of these considerations

can be extended to cases where the shared system is not quantum but described by a more

general theory. In all cases, the object of interest is some form of correlation between the two

parties induced by the common cause.

To study the nonclassicality of different forms of correlations in a resource-theoretic framework,

one needs to first define what are the free operations of the theory. The set of freely available

operations in a theory reflects the physical constraints in the studied scenario. If the resource of

interest is the nonclassicality of the correlations, the physical structure of the common-cause

scenario imposes that the free operations should consist of classical common-causes (i.e., shared

randomness) and arbitrary local operations. Then, the only correlations that can be generated

between the parties with these free operations are the classical ones, which are deemed invaluable

in this framework. Although local operations and shared randomness (LOSR) are the set of

operations that best reflect the structure of the common-cause scenarios, it was only recently

that they gained attention in the field of quantum foundations. This is because there is no

unique choice of free operations in a resource theory, and previous research has focused on

resource theories that reflect the experimental capabilities of resource manipulation rather than

the fundamental causal structure of the correlations. Currently, there are several developed

resource theories that investigate the transformations of quantum and post-quantum resources

relative to LOSR operations [1, 2, 7, 8, 9, 10].

A general resource theory of quantum common-cause processes was introduced in Refs. [7,

8]. In these works, resources are categorized based on the type of input and output systems

of the local operations. The authors consider bipartite common-cause scenarios where both

parties can locally manipulate their subsystems using processes that have either trivial, classical,

or quantum inputs and outputs. Refs. [7, 8] focus on important resources studied in quantum

information theory like entanglement [11], EPR scenarios [12, 13, 14] or Bell scenarios [4, 15, 16].

The authors study the nonclassicality of these resources relative to LOSR transformations. They

introduce type-independent methods to witnesses and quantify nonclassicality. Moreover, they

adopt a resource-theoretic approach to traditional studies of quantum resources by reframing

quantum games within this framework. This is feasible due to the extensive and versatile nature

of the resource theory, which enables transformations between different types of resources under
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free operations.

A resource theory focused only on Bell scenarios was introduced in Ref. [9]. The authors

are guided by a causal modeling perspective on this resource [17], which departs from some

traditional approaches and leads to LOSR as the natural set of free operations. The framework

of Ref. [9] goes beyond quantum theory and considers all common-cause boxes, i.e., probabilistic

processes from the classical setting variables to the classical outcome variables, where the

parties have access to a common cause of arbitrary type (it can be classical, quantum, or even

post-quantum). Focusing on this single type of resource, rather than the whole type-independent

resource theory like in Refs. [7, 8], the authors derive multiple technical results specific to the Bell

scenario. Ref. [9] includes an efficient algorithm for determining resource conversion, requiring

two instances of a linear program. Moreover, the authors introduce new resource quantifiers and

analyze the relative ordering of resources, with specific results derived for the subset of quantum

resources.

Given that Bell scenarios are well-captured by a resource theory with LOSR as the set of free

operations, a detailed study of entanglement relative to LOSR would allow one to investigate

the interplay between these two resources. This is exactly the intention of Ref. [10], where

LOSR-entanglement is studied. Capturing entanglement and boxes with the same set of free

operations allows one to study state-to-box conversions. The authors of Ref. [10] address

some common concerns about the interplay of entanglement and Bell-nonclassicality (so-called

anomalies of nonlocality) and derive fundamental results regarding the pre-order of states under

LOSR operations. In particular, they provide necessary and sufficient conditions for convertibility

between pure entangled states.

One piece that was missing in the family of resource theories with LOSR as the set of free

operations is a detailed resource theory of EPR scenarios. Although EPR correlations are

formally captured by the type-independent framework of Refs. [7, 8], the work of Refs. [9, 10]

have proven that the investigation of a single resource in this framework can give valuable insights

into the relative nonclassicality of the specific correlations. The main goal of this dissertation is

to study the consequences of framing the EPR scenario as a common-cause resource. This task

naturally leads to defining a resource theory of EPR scenarios and generalizations thereof, with

the set of free operations being LOSR. Moreover, it prompts the question of how EPR scenarios

interplay with correlations generated in Bell-like set-ups, which was previously studied only for
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the multipartite EPR scenario [18]. We address these problems in three research papers that

constitute the main body of this dissertation. Two of the papers are published in a peer-reviewed

journal [1, 2] and one is published in the arXiv repository [3]. Our main objects of study are the

resources associated to the EPR scenario, called assemblages.

The first paper, Quantifying EPR: the resource theory of nonclassicality of common-cause

assemblages [1], is focused on quantum EPR correlations in bipartite and multipartite scenarios.

In this paper, we look at the EPR scenario through the lens of causal modeling and develop

a new perspective on this resource. This leads us to define a resource theory of assemblages

under LOSR and explore the conceptual and technical consequences of this approach. We show

that resource conversion under LOSR operations can be evaluated with a single instance of

a semidefinite program, making the problem numerically tractable. Moreover, we derive new

quantifiers of nonclassicality and use them to study the relative nonclassicality of assemblages.

In the second paper, The resource theory of nonclassicality of channel assemblages [2], we focus

on bipartite generalizations of the EPR scenario, that include post-quantum resources. This is

the first study that analyzes Bob-with-input, measurement-device-independent, and channel EPR

scenarios as common-cause resources. Introducing a resource theory of generalized assemblages

leads us to derive semi-definite programs for assessing resource conversions relative to LOSR

operations. Moreover, studying post-quantum resources with this set of free operations allows

us to highlight the power of quantum entanglement in post-quantum theories by identifying a

conversion between post-quantum resources that is impossible with LOSR, but is possible when

parties share an entangled state.

The third paper, Activation of post-quantumness in bipartite generalized EPR scenarios [3],

addresses the question of the interplay between assemblages and Bell-type correlations. In

this paper, we introduce a protocol for certification of post-quantumness in EPR scenarios by

embedding them in a larger network that generates Bell-like correlations. For a specific class

of post-quantum assemblages that do not generate post-quantum correlations when converted

to bipartite boxes, this protocol serves as a procedure for post-quantumness activation. We

introduce and analyze protocols for generalized bipartite EPR scenarios, including Bob-with-

input, measurement-device-independent, and channel EPR scenarios.

This dissertation consists of three research papers (two of which are published in a peer-

reviewed journal), accompanied by an introduction and a discussion. It is structured as follows:
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In Section 2, we introduce all the ideas and definitions needed to understand the three papers

that constitute the main body of the dissertation. Section 2.1 introduces and motivates the

framework of resource theories. Then, we briefly discuss some examples of previously studied

resource theories. In Section 2.1.1 we focus on entanglement, arguably the most studied resource

in quantum information theory, and in Section 2.1.2 we further motivate the studies of common-

cause resources under local operations and shared randomness. This leads us to find a gap

in the studies of this topic, namely a lack of a detailed resource theory of the EPR scenario,

which we properly introduce in Section 2.2.1. Then, we discuss how it can be generalized in

Section 2.2.2. Finally, one last technical topic that is crucial in this dissertation is semi-definite

programming, which we introduce in Section 2.3. Then, we summarize the papers that constitute

this dissertation. Section 3.1 is focused on the resource theory of the standard EPR scenarios

(bipartite and multipartite) [1]. The resource theory of generalizations of the EPR scenario [2]

is summarized in Section 3.2. Finally, in Section 3.3, we introduce the activation protocol [3].

Section 4 presents the conclusions of the dissertation.
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2 Preliminaries

2.1 Resource theories

Resource theories constitute a comprehensive framework for exploring properties of physical

systems in quantum theory and beyond [5, 6]. The fundamental idea of this formalism relies on

classifying all possible operations on the resources of the theory into two sets: free and non-free.

Then, resources are deemed valuable if they cannot be ‘easily generated’. To define a resource

theory, one needs to identify the enveloping theory, which encompasses all possible resources

and operations in the considered setup, and the free subtheory, consisting of operations on the

resources that are regarded as freely available and can generate the free resources1. The set of

free operations partitions all resources into free and resourceful ones. One of the main problems

studied within the framework of resource theories is establishing the relative value of pairs of

resources. If a resource R1 can be converted to a resource R2 with free operations, we denote it

by R1 −→ R2. If the conversion is not possible, one writes R1 ̸−→ R2. Given a pair of resources

R1 and R2, one of the following four possibilities must hold

R1 is strictly above R2 if R1 −→ R2 and R2 ̸−→ R1,

R1 is strictly below R2 if R2 −→ R1 and R1 ̸−→ R2,

R1 is equivalent to R2 if R1 −→ R2 and R2 −→ R1,

R1 is incomparable to R2 if R1 ̸−→ R2 and R2 ̸−→ R1.

1The choice of the set of free operations for a given enveloping theory is not unique. Sometimes, it is reasonable

to define the set of free operations based on the experimental capabilities, i.e., the ways in which it is physically

possible to manipulate the resources in a laboratory. A different, more fundamental motivation is to choose

the set of free operations solely based on the physical structure of the studied resource. In this dissertation,

we endorse the latter approach and study resources from the perspective dictated by their causal structure.
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These relations provide information about the value of a resource. If R1 −→ R2, then R1 can be

used for the same tasks as R2; hence, R1 is at least as valuable as R2 in the resource theory. In

this dissertation, we focus on single-copy deterministic conversions. However, the framework of

resource theories is well suited to study other types of conversions, such as single-copy stochastic

conversion (where the conversion must not happen with probability 1) or multi-copy conversion

(where more than one copy of the resource is available).

Determining whether conversions under free operations are possible for any pair of resources

determines the pre-order over resources in the theory. A pre-order is a transitive and reflexive

binary relation between resources, i.e., it requires that every resource can be mapped to itself

R −→ R and if R1 −→ R2 and R2 −→ R3, then R1 −→ R3. Equivalent resources in the theory

form equivalence classes. One can also consider conversion relations between these equivalence

classes, which are described by a partial order (the conversion relations between equivalence

classes are antisymmetric).

There are two primary approaches to testing if a conversion is possible. The first approach

relies on designing an algorithm that, when provided with two resources, simply verifies whether

one can be converted into the other. The complexity of this algorithm depends on the resources

under study and the set of free operations of the theory. In some cases, the algorithm may be

fast and straightforward. There also exist resource theories in which formalizing the set of free

operations is notably complex, making it impossible to design an effective general algorithm

for this purpose. The second approach involves employing resource monotones. Formally, a

resource monotone is an order-preserving map from the pre-order of resources to the total

order of real numbers. The monotone function is non-increasing under conversions with free

operations. Let M(R) denote the real number that the monotone M assigns to a resource R.

If for a pair of resources R1 and R2 the following relation holds: M(R1) < M(R2), then the

monotone M witnesses that R1 ̸−→ R2. Typically, a single resource monotone provides only

partial information about the relative order of resources. A collection of resource monotones

is often required to fully characterize the pre-order. Nonetheless, resource monotones serve as

useful tools for studying the resources. For example, the real number assigned to a resource by

the monotone can be viewed as a quantification of its resourcefulness.

In addition to analyzing individual resources, it’s valuable to study the composition of them.

An interesting research direction in the framework of resource theories is resource activation. In
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the context of quantum resource theories, this concept was first studied concerning states and

Bell nonclassicality. In Ref. [19], it was shown that there exist bipartite quantum states ρ and

σ such that neither of them can be converted into a nonclassical box, however, the joint state

ρ⊗ σ can. This phenomenon is observed across various resource theories.

2.1.1 Resource theory of entanglement

The framework of resource theories is often used to study the properties of quantum systems.

There exist multiple quantum resource theories, including those for coherence [20, 21, 22],

quantum reference frames and asymmetry [23], athermality [24, 25, 26, 27, 28, 29], and so

on. One of the most celebrated quantum resource theory is that of entanglement relative

to local operations and classical communication (LOCC) [11, 30, 31, 32]. The set of LOCC

operations was introduced to understand entanglement as a resource for information processing.

In information processing tasks (e.g., teleportation protocol), it’s common for the parties to

have access to classical communication channels. Therefore, it’s reasonable to consider LOCC

as the free operations of the theory, as the parties can, for example, communicate the classical

outcomes of their local measurements to each other. The most general states that can be

generated with LOCC operations alone, i.e., the free states of the theory, are separable states. It

is worth noticing that the popularity of LOCC in entanglement studies motivated similar sets

of operations to be considered for different resources, one example being a resource theory of

‘steering’ under local operations and one-way classical communication (1W-LOCC) [33].

The implications of the resource theory of entanglement under LOCC operations remain an

active area of research. Characterizing the set of LOCC operations is challenging, making it

difficult to study resource conversion in this framework. For example, there is currently no

known method for determining whether a given map belongs to LOCC (it is only known what

are the necessary conditions) [6]. Another topic of active discussion is the number of classical

communication rounds needed in protocols [34, 35, 36]. Due to the technical difficulties inherent

in the characterization of LOCC, significant research efforts have been dedicated to investigating

entanglement theory within a broader set of free operations that are easier to characterize. One

example is the set of separable operations (SEP) [37], which LOCC is a subset of. The set of free

states is the same in resource theories under SEP and LOCC. Considering a broader set of free

operations can be valuable in proving no-go theorems, as any task that surpasses the capabilities
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of the resource theory with a broader set of free operations will also exceed the capabilities of

the weaker one. While theories studying larger sets of free operations are beneficial for practical

applications, it’s important to note that the foundational significance of the chosen set of free

operations is relatively limited.

In this dissertation, we advocate for defining free operations in a resource theory based on the

fundamental structure of the resource. In the case of entanglement, the physical structure of the

scenario (two parties that share a common system) makes the natural choice of free operations to

be LOSR [10], which is a subset of LOCC. The set of LOSR operations proved to be important

when considering state-to-box conversions [38], but it was only recently that a formal resource

theory of entanglement under LOSR was developed [10]. In Ref. [10], a detailed comparison

of the resource theories of entanglement under LOCC and LOSR is presented. One important

feature of the resource theory of entanglement relative to LOSR is that it is a single instance of

a larger resource theory of common-cause scenarios, since LOSR is a valid and well-motivated

set of free operations for a larger class of resources (quantum and post-quantum), including Bell

nonclassicality, EPR scenarios, and more.

2.1.2 Resource theory of common-cause processes

To understand the similarity between different types of common-cause resources, it is useful

to introduce graphical notation [39]. Let single and double lines correspond to classical and

quantum systems, respectively. Thick lines represent systems that could be classical, quantum, or

even post-quantum. Let boxes represent local processes. Then, a box with two output quantum

wires illustrated in Fig. 2.1(a) represents a bipartite quantum state. The two wires represent

the physical systems of Alice and Bob, each of which is in a different, distant laboratory. The

Bell scenario is represented in Fig. 2.1(b), where Alice and Bob each measure their quantum

systems. Single-lined inputs and outputs of their local boxes represent the classical setting of the

measurement and the classical outcome. Boxes can also have quantum inputs or outputs. For

example, in Fig. 2.1(d), Bob has access to a quantum channel – a box with a quantum input and

a quantum output that represents a completely positive and trace preserving (CPTP) map [40,

41]. A common-cause resource is one where distant parties share a common-cause (which can

be classical, quantum, or even post-quantum) and perform local operations on it. The only

restriction on the resource is the no-signaling principle, i.e., the parties cannot communicate with
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each other via local operations on the shared system. The following examples of common-cause

(a)

HA HB

(b)

x

a b

y

(c)

x

a HB

(d)

x

a HBout

HBin

(e)

x

a b

HBin

(f)

x

a HBout

y

(g)

x2

a2

x1

a1 HB

Figure 2.1: Examples of common-cause resources. (a) Quantum state. (b) Bell scenario.

(c) Standard EPR scenario (bipartite). (d) Channel EPR scenario. (e) Measurement-

device-independent EPR scenario. (f) Bob-with-input EPR scenario. (g) Standard

EPR scenario (multipartite). Quantum and classical systems are depicted by double

and single lines, respectively. Thick black lines depict systems that could be post-

quantum.

resources are illustrated in Fig. 2.1:

(a) Quantum state [10, 11]: a bipartite system prepared in a possibly entangled state.

(b) Bell scenario [9, 42]: two parties share a system and perform measurements on it.

(c) EPR scenario [1, 12, 13, 14]: two parties share a system, and Alice performs measurements

on her share of the system.

(d) Channel EPR scenario [2, 43]: a bipartite EPR scenario where Bob has access to a quantum

channel.

(e) Measurement-device-independent EPR scenario [2, 44]: a bipartite EPR scenario where

Bob has a measurement channel with a quantum input and a classical output.

(f) Bob-with-input EPR scenario [2, 45]: a bipartite EPR scenario, where Bob has a classical

input that allows him to locally influence the state preparation of his quantum output
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system.

(g) Multipartite EPR scenario [1, 46]: three parties share a multipartite system and the Alices

perform measurements on their shares of the system.

The nonclassicality (relative to LOSR operations) of all these resources depends on the type

of common cause that Alice and Bob share. If the common cause is classical, the resources

are free. This definition of classicality coincides with the well-known definitions of separable

states, ‘unsteerable’ assemblages, local boxes, and so on for the states, the EPR scenario, the

Bell scenario, and other common-cause resources. If the common cause is a quantum or a

post-quantum system, the resource could be nonclassical. The overall goal of the resource

theories of common-cause processes is to quantify the nonclassicality of resources.

Let us now specify the most general LOSR operations on a bipartite common-cause resource.

The most general local operation that Alice (or Bob) can apply is given by a comb [47].

Additionally, Alice’s and Bob’s local combs can be correlated by classical shared randomness.

A comb, illustrated in Fig. 2.2(a) for a general resource (in green), allows for pre- and post-

processing of the local systems. In general, this operation can change the type of resource.

The pre- and post-processing stages can be connected by a side channel of an arbitrary type;

however, it is often the case that the type of the side channel can be simplified. The precise

structure of the comb will differ depending on the enveloping theory of resources. For example,

if the enveloping theory only consists of quantum states, the most general LOSR processing is

given in Fig. 2.2(b). A different LOSR processing is illustrated in Fig. 2.2(c), which represents a

box-to-box transformation.

One of the key advantages of LOSR resource theories is their universality – they can be

formulated to study specific resources or incorporate all common-cause scenarios and conversions

among them. Recently, a program of characterizing resource theories of common-cause processes

has been very active. A general resource theory of quantum common-cause processes was

introduced in Refs. [7, 8]. Resource theories for specific scenarios were introduced in Ref. [9]

for the Bell scenario and in Ref. [10] for entanglement. In this dissertation, we focus on the

nonclassicality of the EPR scenario, which we formally introduce in the next section.
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(a) (b) (c)

Figure 2.2: LOSR transformations of different types of bipartite common-cause sce-

narios. Resources (in black) are being transformed by local combs correlated by

shared randomness (in green). (a) A generic LOSR transformation of a common-cause

resource. Dashed lines represent arbitrary system types. (b) The most general LOSR

transformation of a quantum state. (c) The most general LOSR transformation of a

Bell scenario.

2.2 EPR scenarios

In this section, we introduce the central object of our study: the EPR scenario and various

generalizations thereof. The technical and conceptual details pertaining to these scenarios are

described in more detail in Refs. [1, 2].

2.2.1 Standard EPR scenario

The bipartite EPR scenario is illustrated in Fig. 2.1(c). It consists of two distant parties,

Alice and Bob, that share a physical system. Alice measures her share of the system: with

probability p(a|x) she observes an outcome a after selecting a measurement setting x. Bob,

contrary to the Bell scenario, does not measure his subsystem, which is now described by

a conditional marginal state ρa|x. This definition of an EPR scenario is a generalization of

the original thought experiment considered by Einstein, Podolsky and Rosen [12, 13]. The

correlations between Alice and Bob in this set-up are sometimes taken to be evidence for spooky

action-at-a-distance, where Alice ‘steers’ Bob’s state. Hence, this scenario is referred to as

‘quantum steering’ in the literature [14, 48]. In this dissertation, we embrace an alternative

13



perspective on this phenomenon in which Alice has no direct causal influence on the physical

state of Bob’s system; rather, her knowledge about the state of Bob’s system is updated upon

measurements performed on a system correlated with his. For this reason, which is explained in

more detail in Ref. [1], we use the term EPR scenario rather than EPR ‘steering’ throughout

the dissertation.

Formally, the relevant object of study in the EPR scenario is an assemblage [49] defined as

ΣA|X = {σa|x}a,x, where each unnormalized state σa|x is given by σa|x := p(a|x)ρa|x 2. Due to

general relativity, a condition called no-signaling principle imposes that Bob’s state is independent

of Alice’s choice of measurement x without the knowledge of her output a, i.e.,
∑

a σa|x = ρB for

all values of x, where ρB is Bob’s reduced state.

In quantum theory, the bipartite system shared between Alice and Bob can be described by a

density matrix ρAB and Alice’s measurements are given by positive operator-valued measures

(POVMs), which we denote by {Ma|x}a,x. Then, the unnormalized states admit a quantum

realization of the form

σa|x = trA{(Ma|x ⊗ I)ρ}. (2.1)

In the case of bipartite EPR scenarios, the GHJW theorem, proven by Gisin [50] and Hughston,

Jozsa, and Wootters [51], shows that all possible assemblages that emerge from Alice and Bob

sharing a common cause can be described in this form. In other words, it means that all

bipartite common-cause assemblages admit a quantum realization. It is worth noticing that the

assemblages generated in this scenario are by definition non-signaling. Since POVMs satisfy∑
aMa|x = I, it is indeed the case that

∑
a σa|x = ρB.

A bipartite assemblage that can be generated using only classical resources can be written as

σa|x =
∑
λ

p(λ)p(a|x, λ)ρλ, (2.2)

with p(a|x, λ) being valid conditional probability distributions for all values of λ. Here, ρλ is

Bob’s local state that is sampled according to p(λ). From the causal perspective, these are the
2In this dissertation, we use the following simplified notation. Each EPR scenario is defined with respect to the

set of possible classical inputs and outputs. In the standard EPR scenario, the sets to be specified are the set of

possible measurement outputs A and the set of measurement settings X. Here, we only consider measurements

that have the same number of outcomes. Then, the assemblage is formally defined as an ensemble of ensembles,

i.e., ΣA|X = {{σa|x}a∈A}x∈X. Instead of this, we write ΣA|X = {σa|x}a,x. The same simplification of notation

is used for the generalizations of the EPR scenario in the later sections of this dissertation.
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assemblages generated by Alice and Bob through a classical common cause, which corresponds to

the variable λ. Traditionally, these assemblages have been referred to as ‘unsteerable’ assemblages.

One possible generalization of the standard EPR scenario is to the multipartite set-up. Here

we consider a case with k+ 1 separated parties, k Alices and one Bob. For the sake of simplicity,

let us now focus on the case of k = 2 (two Alices, one Bob). This EPR scenario is illustrated

in Fig. 2.1(g). Each Alice chooses an input xi and observes an outcome ai with probability

pi(ai|xi); here i ∈ {1, 2}. As Alices perform measurements on their respective subsystems,

Bob’s subsystem is characterized by a conditional marginal state ρa1a2|x1x2 . In this scenario,

the assemblage is defined as ΣA1A2|X1X2 = {σa1a2|x1x2}a1,a2,x1,x2 and its elements are given by

σa1a2|x1x2 := p(a1a2|x1x2)ρa1a2|x1x2 . Similarly to the bipartite scenario, the no-signalling con-

dition is given by
∑

a1 σa1a2|x1x2 =
∑

a1 σa1a2|x′
1x2 and

∑
a2 σa1a2|x1x2 =

∑
a2 σa1a2|x1x′

2
. Bob’s

reduced state in this case is given by
∑

a1,a2 σa1a2|x1x2 = ρB.

If the physical state that the parties share is quantum, which we denote by ρA1A2B, the

elements of the assemblage can be written as

σa1a2|x1x2 = trA1A2{(Ma1|x1 ⊗Ma2|x2 ⊗ I)ρA1A2B}. (2.3)

The elements of the assemblages which can be generated classically in this set-up can be

written as

σa1a2|x1x2 =
∑
λ

p(λ)p1(a1|x1, λ)p2(a2|x2, λ) ρλ, (2.4)

where pi(ai|xi, λ) is a conditional probability distribution for the i-th Alice and ρλ is Bob’s local

state for every λ. An interesting feature of the multipartite EPR scenario is that there exist

non-signaling assemblages that are not compatible with a quantum common-cause [52]. However,

in this dissertation, we focus on a subset of multipartite assemblages that admit a quantum

realization.

2.2.2 Bipartite generalizations of the EPR scenario

In the standard EPR scenario, Alice performs a measurement on her subsystem, and Bob does

not perform any local operation. One possible generalization of the EPR scenario relies on

allowing Bob to process his system in various ways. In this work, we focus of three different
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bipartite generalizations of the standard EPR scenario: the channel EPR scenario [2, 43], the

Bob-with-input EPR scenario [2, 45] and the measurement device-independent EPR scenario [2,

44].

In the channel EPR scenario, Bob has access to a quantum channel, as illustrated in

Fig. 2.1(d). It is possible that this channel is affected by subsystem B of the shared system AB.

Then, Bob applies a process ΓBBin→Bout on the systems in his laboratory. Let Ia|x(·) denote the

instrument applied on Bob’s quantum system Bin to produce a quantum system Bout, given that

Alice has performed measurement labeled by x and obtained the outcome a. The central object

of study is then the channel assemblage of instruments IA|X = {Ia|x(·)}a,x. The no-signaling

condition in the channel EPR scenario is given by

tr
{
Ia|x(ρ)

}
= p(a|x) ∀ a, x, ρ , (2.5)∑

a

Ia|x(·) = ΛBin→Bout(·) ∀x, (2.6)

where ρ represents any normalized state of quantum system Bin and ΛBin→Bout(·) is a quantum

channel. If the system that Alice and Bob share is quantum and denoted by ρAB, the elements

of the channel assemblage are the following:

Ia|x(·) = trA
{
(Ma|x ⊗ IBout)(IA ⊗ ΓBBin→Bout)[ρAB ⊗ (·)Bin ]

}
. (2.7)

If the system that Alice and Bob share is classical, then the elements of the channel assemblage

can be written as

Ia|x(·) =
∑
λ

p(a|x, λ)p(λ)Iλ(·), (2.8)

where Iλ is a CPTP map (from system Bin to Bout) for each λ, and p(a|x, λ) is a valid conditional

probability distributions for all values of λ.

Let us now introduce the measurement-device-independent (MDI) EPR scenario that

is shown in Fig. 2.1(e). When Bob’s input remains quantum but his output is classical, Bob’s

local process is a measurement channel. Then, Bob has access to a processing ΘBBin→Bout

b . The

input of this processing is the input state Bin together with the half of the system AB Bob
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shares with Alice (denoted by B). The output of this process is a classical variable b which

lives in the space Bout. Formally, the relevant MDI assemblages in this scenario are given by

NAB|X = {Nab|x(·)}a,b,x. Here, Nab|x(·) is a channel corresponding to the POVM element with

outcome b given that Alice observed an outcome a upon a setting x. The elements of a valid

MDI assemblage must satisfy the no-signaling conditions

∑
b

Nab|x(ρ) = p(a|x) ∀ a, x, ρ , (2.9)

∑
a

Nab|x(·) = ΩBin→Bout

b (·) ∀ b, x, (2.10)

where {ΩBin→Bout

b (·)}b is a collection of measurement channels and ρ represents any normalized

state of quantum system B′. A quantumly-realisable MDI assemblages are specified by elements

of the form

Nab|x(·) = tr
{
(Ma|x ⊗ IBout)(IA ⊗ΘBBin→Bout

b )[ρAB ⊗ (·)]
}
. (2.11)

When the common cause that Alice and Bob share is classical, the elements of the MDI assemblage

are given by

Nab|x(·) =
∑
λ

p(λ)p(a|x, λ)Nb,λ(·), (2.12)

where the measurement channels Nb,λ depend on the value of the classical common cause λ.

The Bob-with-input EPR scenario is illustrated in Fig. 2.1(f). In this scenario, Bob

has a state preparation channel: he chooses the value of a classical variable y, referred to as

‘Bob’s input’, which influences the state preparation of a quantum system in his laboratory. The

Bob-with-input assemblage is given by ΣA|XY = {σa|xy}a,x,y. To ensure that the assemblage is

non-signaling, it must satisfy the following conditions:

tr
{∑

a

σa|xy

}
= 1 ∀x, y , (2.13)

tr
{
σa|xy

}
= p(a|x) ∀ a, x, y , (2.14)∑

a

σa|xy =
∑
a

σa|x′y ∀x, y, x′. (2.15)

If the common-cause Alice and Bob share is a quantum state ρAB and the most general local

operation Bob’s device can implement is a collection of CPTP maps {ξy}y, the elements of the
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assemblage are the following:

σa|xy = trA{(Ma|x ⊗ ξy)ρAB}. (2.16)

If the common cause shared by Alice and Bob is classical, the elements of the assemblage can be

expressed as

σa|xy =
∑
λ

p(λ)p(a|xλ)ρλ,y. (2.17)

Here, λ is the shared classical variable that is sampled according to p(λ), p(a|xλ) is a well-defined

conditional probability distribution for all values of λ, and the quantum states ρλ,y are locally

generated by Bob, depending on the values of the classical variables y and λ.

For the purpose of this work, it is important to notice that all the generalizations of the

EPR scenario have a common-cause causal structure: Alice and Bob share a common cause and

perform local operations on it. The differentiation among these scenarios is made by specifying

the type of Bob’s input and output systems. In general, we will not take the common cause AB

to be a quantum system. This common cause may be a classical, quantum, or even post-quantum

system.

2.3 Semidefinite programming

In this section, we give an overview of the basics of semidefinite programming (SDP). This

knowledge is useful for understanding the programs we introduce in Refs. [1, 2]. We follow the

presentation of Ref. [53], which is well suited for considering the applications of semidefinite

programming in quantum information. Although here we focus on the simplest problems with a

single optimization variable, all the problems presented in this section can be reformulated to

accommodate multiple optimization variables and constraints.

Semidefinite programs belong to the the class of convex optimization problems. They have a

nice characterization, useful properties, and can often be efficiently solved [54]. They also have

multiple applications in quantum information [55], including studying the properties of EPR

scenarios [53]. Let A and B be Hermitian operators, and Φ(·) be a hermiticity-preserving linear
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map. The primal problem in semidefinite programming is formulated as follows:

given A,Φ(·), B (2.18)

max
X

tr {AX}

s.t. Φ(X) = B

X ≥ 0.

The linear function tr {AX} is referred to as the primal objective function. The maximum value

of the primal objective function, which we denote by α, is referred to as the primal optimal value.

The dual problem can be derived by considering the best possible upper bound on α. Let Φ†(·)

be the conjugate map that satisfies tr {Φ(X)Y } = tr
{
XΦ†(Y )

}
with X and Y being arbitrary

hermitian operators. The dual problem can be formulated as

given A,Φ(·), B (2.19)

min
Y,Z

tr {Y B}

s.t. Z = Φ†(Y )−A

Z ≥ 0.

Here, tr {Y B} is the dual objective function. The result of this minimization problem, which we

denote by β, is the dual optimal value. The primal and dual problems are closely related to each

other. It is always the case that β upper bounds α; this is known as weak duality. Moreover, it

is often the case that the optimal values coincide, i.e., α = β. This condition is called strong

duality.

In Refs. [1, 2] we focus on a class of SDPs known as feasibility problems, in which the objective

function vanishes. A feasibility problem can be written as

given Φ(·), B (2.20)

find X

s.t. Φ(X) = B

X ≥ 0.

This program checks if the feasible set is equal to the empty set. If this is the case, which means

that there exists no X that satisfies the relevant constraints, the optimal value is equal to −∞.
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If the feasible set is not equal to the empty set, the optimal value is equal to zero, and the

problem is feasible. Any feasibility problem can be reformulated as a feasible one by relaxing

the semidefinite constraint as follows:

given Φ(·), B (2.21)

max
X

µ

s.t. Φ(X) = B

X ≥ µI.

In this case, a non-negative optimal value implies that the problem was feasible. If the optimal

value is negative, the problem was infeasible.
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3 Summary of the dissertation

3.1 Quantifying EPR: the resource theory of nonclassicality of

common-cause assemblages

In Ref. [1], we develop a resource theory of nonclassicality of standard bipartite and multipartite

EPR scenarios. We take the enveloping theory to be quantum resources, i.e., we only focus on

assemblages that admit a quantum realization. The main motivation behind this resource theory

is a causal approach to the correlations generated in EPR scenarios. Considering assemblages as

common-cause resources implies that the free operations that best reflect the physical structure of

the scenario are local operations and shared randomness. Therefore, we derive the most general

LOSR operation on a standard EPR assemblage and study the nonclassicality of resources

relative to these free operations. In this summary of Ref. [1], our primary focus is on bipartite

scenarios. The results regarding the multipartite case are based on very similar techniques;

hence, we will not recall all the technical details here.

3.1.1 The resource theory

The enveloping theory of this resource theory consists of all bipartite assemblages generated

in standard EPR scenarios. The free operations are LOSR. Consequently, the free subtheory

consists of assemblages that can be generated with LOSR operations, as illustrated in Fig. 3.1(a).

In this figure, Alice’s outcome a depends on the measurement setting x and the value of the

common cause λ. Bob’s quantum state ρλ is generated locally depending on the value of λ. Free

assemblages admit a decomposition of the form specified in Eq. (2.2), as they correspond to the

set of ‘unsteerable’ assemblages.

The most general LOSR transformation of a standard assemblage consists of a local comb on

Alice’s side and a local comb on Bob’s side [47], both correlated by shared randomness. Alice’s
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Figure 3.1: (a) LOSR-free standard bipartite assemblage. (b) The most general LOSR operation

on a standard bipartite assemblage.

comb consists of a classical pre- and post-processing of her input and output variables. As Bob

has no input, his comb can be simplified to only include a post-processing of his quantum state

that can be described by a CPTP map. These operations are illustrated in Fig. 3.1(b), where

the classical variable λ represents the shared randomness. In Ref. [1, Section 2.2], we show that

this operation transforms the elements of one assemblage ΣA|X into a new assemblage Σ′
A′|X′

with elements:

σ′
a′|x′ =

∑
λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ)Eλ(σa|x). (3.1)

Here, Eλ is a CPTP map and D(·) represents deterministic probability distributions, i.e.,

D(a′|a, x′, λ) = δa′,fλ(a,x′) and D(x|x′, λ) = δx,gλ(x′).

To study resource conversions under LOSR, it is useful to rewrite Eq. (3.1) using the Choi-

Jamiołkowski isomorphism [56, 57]. Let E : HB → HB′ be a CPTP map. Define the operator W

on HB ⊗HB′ as W = (E ⊗ IB′) |Ω⟩ ⟨Ω|, with |Ω⟩ = 1√
dB

∑dB
i=1 |ii⟩. Then, the map applied on an

arbitrary quantum system ρB with dimension dB can be written as

E(ρB) = dB trB
{
W ( IB′ ⊗ ρTB)

}
. (3.2)

We will refer to W as a Choi matrix (or a Choi state) of the map E . Recall that the following

two conditions are equivalent: (i) E is a CPTP map, (ii) W ≥ 0 (W is a positive semidefinite

matrix) and trB′ {W} = 1
dB

IB.
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Using the Choi-Jamiołkowski isomorphism, we can rewrite Eq. (3.1) as

σ′
a′|x′ =

∑
λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) dB trB
{
Wλ ( IB′ ⊗ σT

a|x)
}
. (3.3)

Here, the Choi matrix Wλ is a (dB × dB′) by (dB × dB′) matrix.

3.1.2 Properties of the pre-order

The resource theory we have introduced can be used to study the relative nonclassicality of

assemblages. In Ref. [1, Section 2.3], we show that deciding whether one assemblage can be

converted to another with LOSR operations requires a single instance of a semidefinite program.

This SDP is a feasibility problem and has the following formulation:

SDP 1. ΣA|X
LOSR−→ Σ′

A′|X′.

The assemblage ΣA|X can be converted into the assemblage Σ′
A′|X′ under LOSR operations,

denoted by ΣA|X
LOSR−→ Σ′

A′|X′, if and only if the following SDP is feasible:

given {{σa|x}a}x , {{σ′
a′|x′}a′}x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {(Wλ)BB′}λ

s.t.



Wλ ≥ 0 ,

trB′ {Wλ} ∝ 1
d IB ∀λ ,∑

λ trB′ {Wλ} = 1
d IB ,

σ′
a′|x′ =

∑
λ

∑
a,xD(a′|a, x′, λ)D(x|x′, λ) dB trB

{
Wλ ( IB′ ⊗ σT

a|x)
}
.

(3.4)

When the conversion is not possible, we denote it by ΣA|X
LOSR
̸−→ Σ′

A′|X′.

A few comments pertain to the formulation of the program. To obtain SDP 1, it is crucial to

rewrite the LOSR processing using the Choi-Jamiołkowski isomorphism, as the optimization

variables, {(Wλ)BB′}λ, represent the Choi matrices of Bob’s local processing. The constraints of

the SDP ensure that {(Wλ)BB′}λ correspond to a CPTP map. Moreover, the formulation of this

program relies on the fact that Eq. (3.3) involves only finite sums. The variable λ encodes the

(finite) number of deterministic distributions D(a′|a, x′, λ) and D(x|x′, λ). Here, the number of

deterministic strategies is equal to |A′||A|×|X′| × |X||X′|.
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SDP 1 can be used to study conversions between assemblages that are hard to evaluate

analytically. In Ref. [1, Section 2.4], we use it to study conversions among assemblages from

an infinite family index by two parameters. The code in Matlab [58] (which uses the software

CVX [59, 60], the solver SDPT3 [61] and the toolbox QETLAB [62]) is available in an online

repository [63]. In this summary, however, we will only focus on the analytical results regarding

the pre-order.

The main result of Ref. [1] regarding the pre-order of assemblages is the existence of an infinite

number of incomparable resources. We now define these assemblages and outline the proof of

their incompatibility.

Assume that Alice and Bob share a quantum system prepared in a state |θ⟩ = cos θ |00⟩ +

sin θ |11⟩, with θ ∈ (0, π/4]. Define Alice’s measurements on her subsystem as Ma|0 = 1
2{I +

(−1)aσz} and Ma|1 = 1
2{I+ (−1)aσx}, where σz and σx are Pauli matrices. This EPR scenario

is characterized by the dimension of Bob’s quantum state, dB = 2, and Alice’s input and output

space, A = X = {0, 1}. We denote this infinite family of assemblages by Σθ
A|X. The elements of

Σθ
A|X are given by

σθ
a|x = trA

{
Ma|x ⊗ I |θ⟩ ⟨θ|

}
. (3.5)

To witness that the assemblages index by the angle {θ} are all pairwise incomparable, we derive

an infinite family of resource monotones. We start by defining an EPR functional Sη[Σ] that

is uniquely maximized by an assemblage from the family Σθ
A|X with a fixed parameter θ = η,

hereon denoted by Ση
A|X.

Definition 2. EPR functional Sη[Σ]

The EPR functional Sη[Σ] is defined as

Sη[Σ] = tr

 ∑
a∈A, x∈X

Fa,x σa|x

 , (3.6)

with the operators Fa,x given by

F0,0 = αI+B0 +B1 = −F1,0 = , F0,1 = B0 −B1 = −F1,1 , (3.7)
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with

α = 2√
1 + 2 tan2(2η)

, (3.8)

B0 = cos(µ)σz + sin(µ)σx ,

B1 = cos(µ)σz − sin(µ)σx ,

tan(µ) = sin(2η) .

This construction is inspired by the family of Bell inequalities presented in Ref. [64, Eq. (1)],

that are uniquely maximized by the states |θ⟩ (via a self-testing result of Ref. [64]). Then, we

use a yield-based construction [65] to define the monotone Mη:

Definition 3. The resource monotone Mη, for η ∈ (0, π/4], is defined as

Mη[Σ] := max
Σ̃

{Sη[Σ̃] : Σ LOSR−−−−→ Σ̃}. (3.9)

Each of the monotones Mη[Σ] is uniquely maximized by the assemblage Ση
A|X. Therefore, for

every pair θ1 ̸= θ2, the monotones Mθ1 and Mθ2 given by Definition 3 certify the incompatibility

of the pair Σθ1
A|X and Σθ2

A|X. It follows that the assemblages in the family {Σθ
A|X}θ∈(0,π/4] are

incomparable, as summarized in the corollary below.

Corollary 4. The infinite family of EPR monotones M = {Mη | η ∈ (0, π/4]} certifies that the

infinite family of assemblages {Σθ
A|X}θ∈(0,π/4] is composed of pairwise unordered resources.

This result is given in Ref. [1, Corollary 8] and the complete proof can be found in Ref. [1,

Section 2.4.2 and Appendix B]. Although the complete analytical proof of this result uses

resource monotones, it is also possible to check the incomparability of any pair of assemblages

Σθ1
A|X and Σθ2

A|X with θ1 ̸= θ2 using SDP 1.

3.1.3 Multipartite EPR scenario

In Ref. [1], we also introduce a resource theory of multipartite EPR scenarios with the free

operations being LOSR. Since the techniques employed in the multipartite case resemble those

used in the bipartite scenario, we omit the specific details here. In Ref. [1], we conceptualize

multipartite EPR scenarios as common-cause resources. We derive the most general LOSR

operation for the multipartite EPR assemblage in Ref. [1, Eq. (24)], and show that resource
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conversion in this scenario can be evaluated with a single instance of a semi-definite program,

which we specify in Ref. [1, SDP 10]. In Ref. [1, Section 3.4] we derive resource monotones that

certify that the pre-order of multipartite assemblages contains an infinite number of incomparable

resources.

3.1.4 Comparison to prior work

Comparison of the results of Ref. [1] to previous literature allows us to get a deeper understanding

of the nonclassicality of EPR scenarios. In Ref. [1, Section 4.1], we discuss the resource theory of

‘steering’ under stochastic local operations and one-way classical communication (S-1W-LOCC)

introduced in Ref. [33]. We show that the two resource theories (under LOSR and under

S-1W-LOCC) have different pre-orders. Moreover, in Ref. [1, Sections 4.2 and 4.3], we discuss

the importance of consistency between the set of free operations and the set of free resources.

We show that the principled approach given by a resource-theoretic framework allows us to give

a well-motivated definition of the set of classically-explainable assemblages in the multipartite

EPR scenario. Inconsistencies in defining these sets can result in apparent phenomena like

‘steering exposure’ [66].

3.2 The resource theory of nonclassicality of channel assemblages

Bipartite generalizations of the EPR scenario are common-cause processes that can exhibit

post-quantumness. In Ref. [2], we develop a resource theory of nonclassicality of channel

assemblages under local operations and shared randomness. The enveloping theory consists of

all non-signaling channel assemblages (including the post-quantum ones), and the free subtheory

is the set of assemblages generated by classical common causes. Special cases of this resource

theory include the Bob-with-input EPR scenario and the measurement-device-independent EPR

scenario, which we also study in detail. In this summary, we revisit each of the three scenarios,

recalling the form of a free resource, specifying the most general LOSR operations, and discussing

the pre-order of relevant assemblages.
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3.2.1 Channel EPR scenario

A channel assemblage generated solely by LOSR operations is illustrated in Fig. 3.2(a). Alice’s

wing is the same as in the standard EPR scenario. Bob has access to a CPTP map IBin→Bout

λ

that depends on the value of the classical common cause λ. All LOSR-free channel assemblages

admit a decomposition of the form of Eq. (2.8).
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λ

HBout

HBin

(a)

x

a

HB′
out′

x′

a′

I ′
a′|x′(·)

HBout

HB′
in′

HBin

λ

(b)

Figure 3.2: (a) LOSR-free channel assemblage. (b) The most general LOSR operation on a

channel assemblage.

Similarly to the standard EPR scenario, the most general LOSR transformation of a channel

assemblage consists of local combs correlated by shared randomness. However, the most general

local processing on Bob’s side is more complex than in the standard EPR scenario, as he now has

access to quantum input and output systems. Bob’s comb consists of pre- and post-processing

stages that transform the input and output of the quantum channel, as illustrated in Fig. 3.2(b).

For a fixed value of λ, let Bob’s local comb be encoded in a single completely positive and trace

non-increasing (CPTNI) map ξ
B′

in′Bout→BinB′
out′

λ , with a Choi matrix Jξ λ. The collection of maps

{ξ
B′

in′Bout→BinB′
out′

λ }λ must then form a CPTP map given by
∑

λ ξ
B′

in′Bout→BinB′
out′

λ . As this

map takes the systems HB′
in′

⊗HBout as inputs and outputs systems defined on HB′
out′

⊗HBin , it

must satisfy no-signaling conditions that reflect the causal structure of the comb. In particular,

the input of Bob’s post-processing HBout cannot have a direct causal influence on the output of

Bob’s pre-processing HBin , a condition formalized as

∀λ ∃ F
B′

in′→Bin

λ s.t. trB′
out′

{
ξ
B′

in′Bout→BinB′
out′

λ

}
= F

B′
in′→Bin

λ ⊗ IBout . (3.10)
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Then, the most general LOSR transformation on a channel assemblage transforms the elements

of one assemblage IA|X into a new assemblage I′A′|X′ with elements:

J ′
a′|x′ =

∑
λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ , (3.11)

where the Choi states of the maps I ′
a′|x′ and Ia|x, denoted by J ′

a′|x′ and Ja|x, are composed using

the link product ∗ defined in Ref. [47] as

Ja|x ∗ Jξ λ = dBin dBout trBinBout

{
(IB′

in′B
′
out′

⊗ J
TBout

a|x ) JTBin
ξ λ

}
. (3.12)

In Ref. [2, Section 2.2], we use this form of the LOSR transformation to derive a feasibility SDP

that tests if a conversion between two channel assemblages is possible. We recall the program

below.

SDP 5. The channel assemblage IA|X can be converted to the channel assemblage I′A′|X′ under

LOSR operations, denoted by IA|X
LOSR−→ I′A′|X′, if and only if the following SDP is feasible:

given {Ja|x}a,x , {J ′
a′|x′}a′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {(Jξ λ)BinB′
in′BoutB′

out′
}λ , {(JF λ)BinB′

in′
}λ

s.t.



Jξ λ ≥ 0 ∀λ ,

trB′
out′

Bin
{Jξ λ} ∝ IBoutB′

in′
∀λ ,∑

λ trB′
out′

Bin
{Jξ λ} = 1

dBoutdB′
in′

IBoutB′
in′

,

JF λ ≥ 0 ∀λ ,

trBin {JF λ} ∝ IB′
in′

∀λ ,∑
λ trBin {JF λ} = 1

dB′
in′

IB′
in′

,

trB′
out′

{Jξ λ} = JF λ ⊗ 1
dBout

IBout ∀λ ,

J ′
a′|x′ =

∑
λ

∑
a,xD(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ .

(3.13)

When the conversion is not possible, we denote it by IA|X
LOSR
̸−→ I′A′|X′.

In the channel EPR scenario, the total number of deterministic strategies that λ encodes is given

by |A′||A|×|X′| × |X||X′|. It is worth mentioning that in Ref. [2, Appendix B], we converted SDP 5
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into an optimization problem (where the optimization is performed relative to the objective

function).

The code of SDP 5 in Matlab [58] is available in an online repository [63]. In Ref. [2], we

use SDP 5 to study conversions between channel assemblages. For the subset of quantum

channel assemblages, one interesting result is that we find an infinite number of equivalence

classes. Moreover, we define two post-quantum assemblages that are incomparable under LOSR

operations. These results are described in Ref. [2, Section 2.3.1] and Ref. [2, Section 2.3.2],

respectively.

3.2.2 Bob-with-input EPR scenario

A Bob-with-input assemblage generated only with free operations, which can be decomposed as

in Eq. (2.17), is illustrated in Fig. 3.3(a). Here, Bob’s quantum state ρλ,y is generated depending

on the value of Bob’s input y and shared randomness λ.
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σ′
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Figure 3.3: (a) LOSR-free Bob-with-input assemblage. (b) The most general LOSR operation

on a Bob-with-input assemblage.

Let us now specify the most general LOSR processing of a Bob-with-input assemblage, which

is illustrated in Fig. 3.3(b). In the Bob-with-input scenario, Bob again has a pre- and post-

processing of his input and output systems. As Bob’s input is a classical variable, the form of his

local comb can be significantly simplified from the one in the channel EPR scenario. Let Jξ λ y′

be a Choi matrix that corresponds to Bob’s post-processing stage. In Ref. [2, Section 3.1], we
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show that the most general LOSR operation on a Bob-with-input assemblage takes the elements

of one assemblage ΣA|XY into a new assemblage Σ′
A′|X′Y′ with elements:

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ) dB trB
{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
. (3.14)

Writing the LOSR transformation in this form allows us then to construct a semidefinite program

that tests whether a conversion between two Bob-with-input assemblages is possible.

SDP 6. ΣA|XY
LOSR−→ Σ′

A′|X′Y′.

The assemblage ΣA|XY can be converted into the assemblage Σ′
A′|X′Y′ under LOSR operations if

and only if the following SDP is feasible:

given {σa|xy}a,x,y , {σ′
a′|x′y′}a′,x′,y′ , {D(x|x′, λ)}λ,x,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(y|y′, λ)}λ,y,y′

find {(Jξ λ y′)BB′}λ,y′

s.t.



Jξ λ y′ ≥ 0 ∀λ, y′ ,

trB′
{
Jξ λ y′

}
∝ IB ∀λ, y′ ,∑

λ trB′
{
Jξ λ y′

}
= 1

d IB ∀ y′ ,

trB′

{
Jξ λ y′1

}
= trB′

{
Jξ λ y′2

}
∀λ , y′1, y

′
2 ,

σ′
a′|x′y′ =

∑
λ

∑
a,x,y D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ) dB trB

{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
.

(3.15)

When the conversion is not possible, we denote it by ΣA|XY
LOSR
̸−→ Σ′

A′|X′Y′.

In SDP 6, the total number of deterministic strategies labeled by λ is |A′||A|×|X′|×|X||X′|×|Y||Y′|.

In Ref. [2, Section 3.2], we study the pre-order of Bob-with-input assemblages. The main

result regards the incompatibility of two post-quantum resources, which we introduce below.

Consider the post-quantum Bob-with-input assemblage introduced in Ref. [45, Eq. (6)] that

can be written as

ΣPTP
A|XY =

{
σPTP
a|xy

}
a∈A, x∈X, y∈Y

, (3.16)

with


σPTP
a|xy = ξy {trA

{
(Ma|x ⊗ IB) |φ⟩ ⟨φ|

}
} ,

Ma|1 =
I+(−1)aσx

2 , Ma|2 =
I+(−1)aσy

2 , Ma|3 =
I+(−1)aσz

2 .
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Here, |φ⟩ = |00⟩+|11⟩√
2 and σx, σy, and σz are the Pauli operators. Bob’s local map ξy depends on

the value of y. For y = 0, Bob applies identity, and for y = 1, Bob transposes his local system1.

A different post-quantum Bob-with-input assemblage introduced in Ref. [45, Eq. (5)] is the

following:

ΣPR
A|XY =

{
σPR
a|xy

}
a∈A, x∈X, y∈Y

, (3.17)

with σPR
a|xy =

 |a⊕ xy⟩ ⟨a⊕ xy| if x ∈ {0, 1}
I
2a if x = 2.

In Ref. [2], we analytically prove that ΣPTP
A|XY and ΣPR

A|XY are incomparable resources (this result

can be checked with SDP 6).

Corollary 7. The two post-quantum assemblages ΣPR
A|XY and ΣPTP

A|XY are unordered resources in

the LOSR resource theory of common-cause assemblages.

The proof of Corollary 7, given in Ref. [2, Section 3.2 and Appendix E], relies on two observations.

Firstly, ΣPR
A|XY can generate post-quantum correlations when Bob decides to measure his quantum

system. This is not the case for ΣPTP
A|XY. Secondly, the ‘steering’ functional constructed in Ref. [45,

Eq. (D3)] is minimized by ΣPTP
A|XY and cannot be minimized by ΣPR

A|XY.

This result is particularly interesting for the following reason: In Ref. [67], the relation between

ΣPR
A|XY and ΣPTP

A|XY was studied relative to local operations and shared entanglement (LOSE).

LOSE is a much more powerful set than LOSR, where two parties are allowed to share quantum

common causes for free. In Ref. [67], it was shown that ΣPR
A|XY can be transformed to ΣPTP

A|XY with

LOSE operations2. Therefore, a conversion between post-quantum resources, that is impossible

under LOSR, is possible when the parties share entanglement. This result shows that quantum

entanglement is a powerful resource, even in post-quantum theories.

1The assemblage ΣPTP
A|XY is post-quantum; hence, it does not admit a quantum realization. Here we use the

transpose operation (which is not CPTP) simply for convenience, to describe the elements of the assemblage

mathematically.
2Technically, the authors of Ref. [67] have shown that a PR-box can be transformed to ΣPTP

A|XY . It is straight-

forward to show that the assemblage ΣPR
A|XY can be transformed to a PR-box with local operations; hence

ΣPR
A|XY can be transformed to ΣPTP

A|XY with LOSE.
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3.2.3 Measurement-device-independent EPR scenario

A free measurement-device-independent assemblage is depicted in Fig. 3.4(a). In this EPR

scenario, Bob has access to a measurement channel Nb,λ which depends on the value of λ and

is indexed by the classical outcome b. Such assemblages admit a realization of the form of

Eq. (2.12).
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Figure 3.4: (a) LOSR-free measurement-device-independent assemblage. (b) The most general

LOSR operation on a measurement-device-independent assemblage.

The most general LOSR processing of a measurement-device-independent assemblage consists

of two local combs correlated by shared randomness, as illustrated in Fig. 3.4(b). Similarly

to other generalized EPR scenarios, Bob’s processing can be expressed as a single CPTNI

map ζ
B′

in′→Bin

b b′ λ , which is non-signaling from Bob’s classical output b to his input state Bin, i.e.,∑
λ,b′ ζ

B′
in′→Bin

b b′ λ is a CPTP map. Let J ′
a′b′|x′ , Jab|x and Jζ b b′ λ correspond to the Choi states of

maps N ′
a′b′|x′ , Nab|x and ζb b′ λ, respectively. In Ref. [2, Section 4.1], we show that transforming an

assemblage NAB|X with the most general LOSR operations results in a new assemblage N′
A′B′|X′

with elements:

J ′
a′b′|x′ =

∑
λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) Jab|x ∗ Jζ b b′ λ , (3.18)

with the link product given by

Jab|x ∗ Jζ b b′ λ = dBin trBin

{
(IB′

in′
⊗ Jab|x) J

TBin
ζ b b′ λ

}
. (3.19)
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This form of the transformation is then suitable to be a constraint in a semidefinite program,

which decides whether one assemblage can be converted to another with LOSR transformations.

SDP 8. The MDI assemblage NAB|X can be converted to the MDI assemblage N′
A′B′|X′ under

LOSR operations, denoted by NAB|X
LOSR−→ N′

A′B′|X′ , if and only if the following SDP is feasible:

given {Jab|x}a,b,x , {J ′
a′b′|x′}a′,b′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {Jζ b b′ λ}b ,b′ ,λ

s.t.



Jζ b b′ λ ≥ 0 ∀ b, b′, λ ,∑
b′ trBin

{
Jζ b b′ λ

}
∝ IB′

in′
∀ b, λ ,∑

λ,b′ trBin

{
Jζ b b′ λ

}
= 1

dB′
in′

IB′
in′

∀ b ,

∑
b′ Jζ b b′ λ ≥ 0 ∀ b, λ ,

J ′
a′b′|x′ =

∑
λ

∑
a,b,xD(a′|a, x′, λ)D(x|x′, λ) Jab|x ∗ Jζ b b′ λ .

(3.20)

When the conversion is not possible, we denote it by NAB|X
LOSR
̸−→ N′

A′B′|X′.

In the MDI scenario, the total number of deterministic strategies that λ encodes is given by

|A′||A|×|X′| × |X||X′|.

To study the pre-order of post-quantum resources, one needs to first construct a method for

certifying if a measurement-device-independent assemblage is post-quantum or admits a quantum

realization. In Ref. [2, Appendix D] we outline an SDP method that tests a membership of a MDI

assemblage to the relaxation of the quantum set. Then, we run it to certify post-quantumness of

a particular MDI assemblage and use SDP 8 to study the pre-order of post-quantum resources

in the MDI scenario in Ref. [2, Section 4.2].

3.3 Activation of post-quantumness in bipartite generalized EPR

scenarios

In Ref. [3], we develop protocols for certification of post-quantumness in bipartite Bob-with-input,

measurement-device-independent, and channel EPR scenarios. One method to verify whether an

assemblage is post-quantum is by transforming it into a Bell-type scenario (with classical inputs

and outputs) and testing if the correlations generated in this set-up admit a quantum realization.
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The main idea of the protocol is to embed the bipartite assemblage in a larger network and test

the generated correlations with tailored Bell inequalities.

There exist post-quantum assemblages that can only generate quantum correlations when

transformed to bipartite Bell-like scenarios [3, 52]. The protocols introduced in Ref. [3] can be

used to activate their post-quantumness. Therefore, the results of Ref. [3] provide a mapping

between post-quantum assemblages and post-quantum Bell-like correlations. The protocol is

inspired by an activation protocol for the multipartite EPR scenario introduced in Ref. [18],

which is based on the results of Refs. [68, 69].

In this section, for the sake of simplicity, we focus on the case of qubit assemblages (where

Bob’s output state is a qubit system). We recall the protocols for the Bob-with-input and

measurement-device-independent scenarios. The protocol for the channel EPR scenario is a

combination of the two.

3.3.1 Bob-with-input EPR scenario

There exist post-quantum assemblages in the Bob-with-input scenario which can only lead

to quantum correlations if Bob decides to measure his local quantum state. Formally, when

Bob performs a measurement {NB
b } on a post-quantum assemblage with elements {σa|xy}, it

is possible that the observed correlations p(ab|xy) = tr
{
Nbσa|xy

}
belong to the quantum set.

We denote this set of assemblages ΣQC . In the activation protocol, a bipartite post-quantum

assemblage is distributed in a multipartite network such that it is possible to generate post-

quantum correlations in this new set-up. If the Bob-with-input assemblage embedded in the

protocol belongs to the set ΣQC , we refer to this phenomenon as activation of post-quantumness,

as it activates the post-quantum nature of the underlying assemblage.

The set-up of the protocol is illustrated in Fig. 3.5. It consists of three parties: Alice, Bob and

Charlie. Alice and Bob share a (possibly post-quantum) bipartite Bob-with-input assemblage

ΣA|XY. Bob and Charlie share a standard quantum assemblage ΣC|W, with C := {0, 1} and

W := {1, 2, 3} defined on HB′ . Moreover, Bob has access to a measurement device {MBB′

b|z } with

input and output sets b ∈ B := {0, 1} and z ∈ Z := {1, 2, 3, 4, ⋆}. The protocol involves two

steps:

Step 1: Self-testing of ΣC|W.

In this step of the protocol, we use the results of Refs. [69, 70] to certify that the state
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Figure 3.5: Set-up of the activation protocol for the Bob-with-input scenario.

of Bob’s quantum system HB′ is prepared in the assemblage Σ(r)
C|W with elements σ

(r)
c|w =

rσ̃c|w + (1− r)(σ̃c|w)T . Here, 0 ≤ r ≤ 1 is an unknown parameter, and σ̃c|1 = (I+ (−1)cZ)/2,

σ̃c|2 = (I + (−1)cX)/2, σ̃c|3 = (I + (−1)cY )/2, with X,Y, Z being the Pauli operators3. This

step corresponds to z ∈ {1, 2, 3, 4}.

Step 2: Certification of post-quantumness.

The second step of the protocol is to measure the system onHB⊗HB′ and evaluate an appropriate

Bell functional to certify post-quantumness of the correlations. This step relies on the following

Theorem:

Theorem 9. There always exists a Bell functional of the form

I∗BwI [p] =
1
2

∑
a,x,y,c,w

ξaxycw p(a, b = 0, c|x, y, z = ⋆, w), (3.21)

for which I∗BwI [p] ≥ 0 when evaluated on any correlations p = {p(a, b, c|x, y, z, w)} arising from

quantum Bob-with-input assemblage with elements {σa|xy}a,x,y as p(a, b = 0, c|x, y, z = ⋆, w) =

tr
{
MBB′

b=0|z=⋆(σa|xy ⊗ σ̃c|w)
}
.

In Ref. [3, Section 2.2], we provide a step-by-step derivation of the functional specified in

Eq. (3.21) and we prove that its quantum bound is equal to zero under the assumption that

the self-testing stage of the protocol was successful. Hence, observing I∗BwI [p] < 0 certifies that

the underlying assemblage is post-quantum. Here, we outline the proof without recalling all the

technical details.
3In the previous sections, Pauli operators are denoted by σx, σy, σz. In this section, we change the notation to

be consistent with Ref. [3].
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Consider a fixed post-quantum Bob-with-input assemblage with elements {σ∗
a|xy}a,x,y. There al-

ways exists an EPR functional defined by Hermitian operators {Faxy}a,x,y with a quantum bound

equal to zero. Therefore, tr
{∑

a,x,y Faxyσa|xy
}
≥ 0 for any quantum assemblage {σa|xy}a,x,y,

and the functional evaluated on the particular post-quantum assemblage gives

tr
{∑

a,x,y

Faxyσ
∗
a|xy

}
< 0. (3.22)

The operators {Faxy}a,x,y can be decomposed as Faxy =
∑

c,w ξaxycw πc|w for some real numbers

{ξaxycw }a,x,y,c,w and {πc|w}c,w being a basis of the set of Hermitian operators in a two-dimensional

Hilbert space. Here, we take the following basis: for w ∈ {1, 2, 3}, πc|w is the projector onto the

eigenspace of the eigenstates of Pauli Z, X and Y operators with eigenvalue (−1)c. Define the

following Bell functional on the correlations generated in the set-up of the activation protocol:

I∗BwI [p] ≡
∑

a,x,y,c,w

ξaxycw p(a, b = 0, c|x, y, z = ⋆, w). (3.23)

Under the assumptions that Bob’s measurement is given by MBB′

b=0|z=⋆ = |φ+⟩ ⟨φ+|, with |φ+⟩ =

(|00⟩+ |11⟩)/
√
2, and Charlie’s state is self-tested to be prepared in the assemblage {σ̃c|w}c,w,

one can show that

I∗BwI [p] =
∑

a,x,y,c,w

ξaxycw tr
{
MBB′

b=0|z=⋆(σa|xy ⊗ σ̃c|w)
}
, (3.24)

=
∑

a,x,y,c,w

ξaxycw
1
2tr

{
(σ̃c|w)Tσa|xy

}
,

= 1
4
∑
a,x,y

tr
{(∑

c,w

ξaxycw πc|w

)
σa|xy

}
,

= 1
4tr

{∑
a,x,y

Faxyσa|xy

}
.

By noticing the relation between the Bell functional in Eq. (3.24) and the EPR functional in

Eq. (3.22), one can see that the quantum bound of the Bell functional (under the assumptions

given above) is equal to zero. Furthermore, the Bell functional evaluated on the fixed post-

quantum assemblage {σ∗
a|xy}a,x,y evaluates to I∗BwI [p*] < 0. To complete the proof of Theorem 9,

it is necessary to show that the quantum bound does not change when MBB′

b=0|z=⋆ ≠ |φ+⟩ ⟨φ+|,

which we prove in Ref. [3, Appendix C]. Moreover, we assumed that Charlie’s state is self-tested

to be prepared in the assemblage {σ̃c|w}. As the first step of the protocol can only self-test

the assemblage {σ(r)
c|w}c,w, not {σ̃c|w}c,w, in Ref. [3, Appendix B] we show that this assumption

cannot create a false-positive detection in the protocol.
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3.3.2 Measurement-device-independent EPR scenario

In the measurement-device-independent EPR scenario, there exist post-quantum assemblages

that can only lead to quantum correlations if Bob’s input consists of a set of fixed quantum

states {ρy}y. Formally, there exist post-quantum assemblages with elements Nab|x(·) such that

the observed correlations p(ab|xy) = Nab|x(ρy) belong to the quantum set.

x

a b

y
HB′

c

z

Figure 3.6: Set-up of the activation protocol for the measurement-device-independent scenario.

The activation protocol for the MDI scenario is presented in Fig. 3.6. It consists of three parties

– Alice, Bob and Charlie. Alice and Bob share a bipartite measurement-device-independent

assemblage NAB|X. Bob’s input state is prepared by Charlie through a standard quantum

assemblage ΣC|Z on the Hilbert space HB′ , with C := {0, 1} and W := {1, 2, 3}. Finally, Bob

has a measurement device {MBB′

b|y } with b ∈ B and y ∈ Y := {1, 2, 3, 4, ⋆}. Similarly to the

Bob-with-input scenario, the protocol consists of two steps:

Step 1: Self-testing of ΣC|Z.

For y ∈ {1, 2, 3, 4}, Bob measures the quantum system HB′ to certify that Bob and Charlie

share an assemblage Σ(r)
C|Z with elements σ(r)

c|z = rσ̃c|z + (1− r)(σ̃c|z)T .

Step 2: Certification of post-quantumness.

The second step of the protocol is to evaluate the MDI assemblage with the reduced state of

ΣC|Z as Bob’s quantum input. Then, one can calculate an appropriate Bell functional to certify

post-quantumness of the correlations based on the following Theorem:

Theorem 10. There always exists a Bell functional of the form

I∗MDI [p] =
∑

a,b,x,c,z

ξabxcz p(a, b, c|x, y = ⋆, z), (3.25)
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for which I∗MDI [p] ≥ 0 when evaluated on any correlations p = {p(a, b, c|x, y, z)} arising

from quantum measurement-device-independent assemblage with elements {Nab|x(·)}a,b,x as

p(a, b, c|x, y = ⋆, z) = Nab|x(σ̃c|z).

The derivation of the functional given in Eq. (3.25), as well as a proof of its quantum bound

(when the self-testing stage of the protocol is successful), is given in Ref. [3, Section 2.2].

Theorem 10 implies that observing I∗MDI [p] < 0 certifies that the underlying assemblage is post-

quantum. The proof of Theorem 10 is based on the same idea as the proof for the Bob-with-input

scenario, as we outline below.

Let {N ∗
ab|x(·)}a,b,x be a fixed post-quantum MDI assemblage. One can always find an EPR

functional defined by Hermitian operators {Fabx}a,b,x with a quantum bound equal to zero,

which certifies post-quantumness of the assemblage {N ∗
ab|x(·)}a,b,x as

tr

∑
a,b,x

Fabx J(N ∗
ab|x)

 < 0. (3.26)

Similarly to the Bob-with-input scenario, we can decompose the operators {Fabx}a,b,x as Fabx =∑
c,z ξ

abx
cz πc|z. Then, consider the following Bell functional on the correlations p = {p(a, b, c|x, y =

⋆, z)}:

I∗MDI [p] ≡
∑

a,b,x,c,z

ξabxcz p(a, b, c|x, y = ⋆, z). (3.27)

Under the assumption that the assemblage that Bob and Charlie share is self-tested to be

{σ̃c|w}c,w, Eq. (3.27) can be rewritten as

I∗MDI [p] =
∑

a,b,x,c,z

ξabxcz Nab|x(σ̃c|z), (3.28)

=
∑

a,b,x,c,z

ξabxcz tr
{
M̃C

c|z J(Nab|x)
}
,

=
∑
a,b,x

tr
{(∑

c,z

ξabxcz πc|z

)
J(Nab|x)

}
,

= tr

∑
a,b,x

Fabx J(Nab|x)

 .

By comparing the Bell functional in Eq. (3.28) and the EPR functional in Eq. (3.26), it is easy to

see that the quantum bound (when the self-testing stage is successful) of I∗MDI [p] is equal to zero.
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Moreover, for the fixed post-quantum assemblage {N ∗
ab|x(·)}a,b,x, the Bell functional evaluates to

I∗MDI [p*] < 0. In Ref. [3, Appendix B], we show that the assumption that assemblage self-tested

in the first step of the protocol is given by {σ̃c|w}c,w, and not {σ(r)
c|w}c,w, does not limit the

application of the protocol.

3.3.3 Other results

In this section, we presented the activation protocols for the Bob-with-input and measurement-

device-independent EPR scenarios. The protocol for the channel EPR scenario consists of

applying the BwI protocol to the output of Bob’s channel and the MDI protocol to the input

of Bob’s channel. As the methods used in this protocol are very similar to the ones described

above, we do not present it here. The protocol, its technical description, and all related results

are given in Ref. [3, Section 4].

Finally, one last simplification that we employed in this section was focusing only on qubit

assemblages. All the protocols described above can be extended to the beyond-qubit case by

adjusting the self-testing stage of the protocol. If Bob’s local quantum system is not a qubit,

the basis of the EPR functional is not defined simply by Pauli operators, but by their tensor

product. Let us illustrate it for the Bob-with-input scenario. We start by embedding Bob’s

system in a higher-dimensional Hilbert space, where each qudit lives on a Hilbert space that

results from a parallel composition of n qubits. Then, the self-testing stage of the protocol must

guarantee that the self-tested assemblage is of the form

σ
(r)
c|w = r

n⊗
i=1

σ̃ci|wi
+ (1− r)

n⊗
i=1

(σ̃ci|wi
)T . (3.29)

Here, c = (c1, ..., cn) with ci ∈ {0, 1} and w = (w1, ..., wn) with wi ∈ {1, 2, 3}. Self-testing of this

assemblage is possible due to results of Ref. [69]. When the first step of the protocol certifies an

assemblage of the form given in Eq. (3.29), the second step can be adjusted to construct a Bell

functional for the beyond-qubit assemblages. All the technical details can be found in Refs. [3,

18, 69].
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4 Discussion

EPR correlations are one of the fundamental resources of nonclassicality in quantum information

theory. In this dissertation, we explored how viewing EPR assemblages as common-cause resources

shapes our understanding of their nonclassicality. This approach is the key motivation behind

the resource theory of standard EPR assemblages under LOSR, which we developed in Ref. [1],

and the resource theory of channel assemblages under LOSR, developed in Ref. [2]. A resource-

theoretic framework provides the tools to clearly define the nonclassicality of assemblages and

study their pre-order. For all types of EPR scenarios of interest, we derived semidefinite programs

for assessing resource conversions. The form and complexity of the programs significantly differ

depending on the type of Bob’s local input and output systems. These semidefinite programs

are the first tools that allow one to explore the conversions between assemblages systematically.

Moreover, we derived multiple analytical results regarding the pre-order in different EPR

scenarios, both for quantum and post-quantum assemblages.

Going forward, there are many relevant questions one can ask in the resource-theoretic

framework. For example, deriving resource monotones that quantify how useful particular

assemblages are in certain quantum information processing protocols is a valuable direction to

study. Moreover, as all the resource theories introduced in this dissertation form one coherent

resource theory with LOSR as the set of free operations, it would be interesting to explore the

properties of the pre-order of assemblages when type-changing LOSR operations are allowed.

Finally, some concepts from quantum information theory can be translated into the language of

resource theories, one example being self-testing [10]. It would be interesting to explore this idea

for self-testing of quantum assemblages [70, 71, 72] and see if the SDP programs we developed

in Refs. [1, 2] could be used to improve existing results.

Generalized EPR scenarios provide a playground for studying post-quantumness in bipartite

non-signaling resources. To study whether there is a mapping between post-quantumness in
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EPR scenarios and post-quantum Bell-like correlations, we examined their interplay in Ref. [3].

We demonstrated that post-quantumness of bipartite assemblages can be certified by embedding

them in larger networks that produce Bell-like correlations. We derived tailored Bell inequalities

with a quantum bound violated by the correlations generated in the protocol. This protocol

activates post-quantumness for assemblages that can only generate quantum correlations in

bipartite Bell scenarios. Therefore, as of now, there are no known examples of post-quantum

assemblages that do not generate post-quantum correlations in Bell-like set-ups.

Although the protocols we derived do not rely on shared randomness and solely utilize local

operations, their structure is well-suited to the study of common-cause resources. It would be

interesting to explore whether other common-cause resources exist that do not demonstrate

post-quantumness in bipartite Bell scenarios and investigate activation protocols for them.

Furthermore, a natural extension of our work would be to investigate how the protocols change

for multipartite Bob-with-input, measurement-device-independent, and channel EPR scenarios.
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Einstein-Podolsky-Rosen (EPR) steering is often (implicitly or explicitly) taken
to be evidence for spooky action-at-a-distance. An alternative perspective on steer-
ing is that Alice has no causal influence on the physical state of Bob’s system; rather,
Alice merely updates her knowledge of the state of Bob’s system by performing a
measurement on a system correlated with his. In this work, we elaborate on this per-
spective (from which the very term ‘steering’ is seen to be inappropriate), and we are
led to a resource-theoretic treatment of correlations in EPR scenarios. For both bi-
partite and multipartite scenarios, we develop the resulting resource theory, wherein
the free operations are local operations and shared randomness (LOSR). We show
that resource conversion under free operations in this paradigm can be evaluated
with a single instance of a semidefinite program, making the problem numerically
tractable. Moreover, we find that the structure of the pre-order of resources fea-
tures interesting properties, such as infinite families of incomparable resources. In
showing this, we derive new EPR resource monotones. We also discuss advantages
of our approach over a pre-existing proposal for a resource theory of ‘steering’, and
discuss how our approach sheds light on basic questions, such as which multipartite
assemblages are classically explainable.

1 Introduction
The notion of Einstein-Podolsky-Rosen (EPR) ‘steering’ [1–3] refers to a form of nonclassical
correlations that arise when one considers measurements performed on half of a bipartite sys-
tem prepared on an entangled state. Such correlations have multiple applications in quantum
information [4, 5]; for example, they allow for the certification of entanglement under relaxed
assumptions [6, 7], and constitute an information-theoretic resource for various cryptographic
tasks [8, 9]. For these reasons, many previous works [3, 10–13] have begun the process of
characterizing the resourcefulness of such correlations.

In this paper, we develop a novel resource-theoretic approach to quantifying the nonclassi-
cality of a given correlation in an EPR scenario. Our approach is conceptually motivated by a
particular perspective on EPR correlations arising from the language of causal modelling [14, 15].
In this approach, it is assumed that the relevant causal structure contains no directed causal
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influences between the parties that share the quantum system, which implies that ‘steering’
is not a form of action-at-a-distance, but rather is a form of inference through a nonclassical
common cause. This view leads to a ‘resource theory of steering’ which is distinct from that
proposed in previous works [13]. Our approach follows the recent developments of resource
theories for studying nonclassicality of common-cause processes wherein the free operations are
local operations and shared randomness (LOSR) [16–23].

We now motivate our approach and compare it to prior approaches. Readers already familiar
with the conceptual framework of Refs. [20, 21] may wish to skip to Section 1.4, where we
summarize our main technical results.

1.1 Reimagining (and renaming) EPR ‘steering’
Consider a scenario wherein two parties (Alice and Bob) share a bipartite quantum system
prepared in an entangled state, and where Alice then chooses a measurement, performs it
on her share of the system, and obtains an outcome. Conditioned on the outcome of the
measurement, Alice updates her description of the quantum state that corresponds to Bob’s
system. Consequently, each of Alice’s possible measurements leads to an ensemble of potential
updated states of Bob’s system together with their associated probabilities of arising. The
collection of these ensembles – an ‘ensemble of ensembles’ – is termed an assemblage [10].
Depending on which measurement she chooses to carry out, then, Alice chooses from which of
these ensembles the quantum state of Bob’s system will be drawn from.

Schrödinger considered this dependence of the wavefunction describing Bob’s system on
Alice’s measurement choice to be ‘magic’ [2], and termed this phenomena quantum steering.
This terminology is motivated by the idea that Alice’s choice of measurement exerts a causal
influence on Bob’s system, even when the two are at an arbitrary distance. If one instead
considers the quantum state to be merely a representation of one’s information about a system,
then Alice’s ability to update this information conditioned on her measurement outcome is not
in itself surprising. When Alice learns something about the true state of Bob’s system, by virtue
of her measurement on a system correlated with it, it is only natural that she would adjust her
description of it (as a wavefunction), accordingly.

In this work we do not view ‘quantum steering’ as evidence for nonlocal causal influences.
Since the term ‘steering’ has an intrinsic bias towards action-at-a-distance, in this manuscript
we forgo its use in favor of more neutral terminology.1 For example, we will refer to a ‘steering
scenario’ as an EPR scenario. This attitude towards terminology follows the lines of Ref. [20],
which avoided the use of the term ‘nonlocality’ since it similarly suggests the existence of
superluminal causal influences. We will only use the term ‘steering’ when referring to prior
work, and even then we will write it between quotations marks.

With this in mind, without loss of generality, we recast the EPR scenario as follows. Firstly,
the fundamental causal structure underpinning an EPR scenario is that depicted in Fig. 1(a),
wherein Alice and Bob are connected only by a common cause, with no causal influence between
them. This is exactly the causal structure suggested by relativity theory. Second, we assume
Alice has access to a classical input system and a classical output system, while Bob has access
to a quantum output system 2. A process with these two features defines an assemblage, and
can be depicted as in Fig. 1(a).

1The importance of thinking clearly about the distinction between causation and inference has been argued
(and demonstrated) in many previous works [14, 24–29].

2Considering Bob to have access to a quantum system can be thought of as Bob having a characterized (or
‘trusted’) quantum device.
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(a) (b)

Figure 1: Depiction of a bipartite EPR scenario. Quantum systems are represented by double lines, while
classical systems are depicted as single lines. (a) A generic quantum assemblage requires Alice and Bob to
share a quantum common cause. (b) Free assemblages are those which can be generated when Alice and Bob
share a classical common cause.

A fundamental question about assemblages in an EPR scenario is which assemblages admit
a classical description, that is, one in terms of an underlying classical system that generates
the observed correlations and that always takes a definite value. In the next section, we discuss
that there exist assemblages which cannot be understood as being prepared with a shared
classical random variable while setting up the relevant resource theory of nonclassicality in
EPR scenarios.

1.2 The resource theory of nonclassicality in EPR scenarios
We follow the standard approach to quantifying the resourcefulness of given processes, namely,
the framework of resource theories [30, 31]. In this approach, one determines two defining
features of the resource theory: the enveloping theory, which is the set of all possible resources
one can produce in the setup; and the free subtheory – the set of operations on the resources
that are considered to be freely available, as dictated by the physical constraints in the scenario
under study. From this, one can directly determine the relative value of any pair of resources:
if resource R can be converted to resource S, then R is at least as valuable as S, since (in the
context of these free operations) R can clearly be used for any purpose that S can be used
for. There are by now many useful resource theories, including those for entanglement (relative
to local operations and classical communication [32–34] or relative to local operations and
shared randomness [21, 35]), for nonclassicality in Bell scenarios [20] and other common-cause
processes [22, 23], for post-quantumness [36–38], for coherence [39–41], for athermality [42–47],
and so on.

Historically, the EPR scenario has been viewed as a means of indirectly studying the prop-
erties of entangled states [4]. More recently, researchers have begun to study assemblages as
processes in and of themselves, since these contain all the relevant information for character-
izing an EPR scenario. Here, we will follow this latter approach3, and so the resources in our

3To quantify resources in EPR scenarios, there are three particularly natural options. (i) One may quantify
the value of bipartite quantum states, as these are necessary resources for achieving nonclassical assemblages;
this has been studied in Ref. [21]. (ii) One may quantify the value of incompatible measurements, as these are
also necessary resources for achieving nonclassical assemblages; this resource theory has been studied in Ref. [48].
(iii) One may quantify the value of assemblages as resources in and of themselves. This is in some sense the most
direct way of studying resources for nonclassicality, as motivated in the previous paragraph, and this is the sort
of resource theory we develop in this paper.
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resource theory are taken to be assemblages. We will only consider assemblages which can be
realized within quantum theory (as opposed to those which can be realized with post-quantum
resources [36, 49, 50]), and so we take our enveloping theory to be given by assemblages that
can be generated by quantum common causes as in Fig. 1(a).

The critical step in defining any resource theory is to determine the relevant set of free
operations. It has previously been argued that the relevant free operations for studying non-
classicality in common-cause scenarios are given by the set of local operations and shared ran-
domness [20–23]. In this work, we also adopt this approach. In other words, free resources and
free transformations on resources are those which can be generated by classical common causes.
In doing so, our approach unifies the study of ‘steering’ resources with resources of ‘nonlocal-
ity’ and (LOSR-)entanglement, showing that these are all simply different manifestations of
nonclassicality of common-cause processes.

We now briefly reiterate the basic motivations for taking LOSR as free operations, while
specializing these arguments to the case of EPR scenarios. Our choice of free operations is
guided by our assumptions about the causal structure, depicted in Fig. 1(a). Firstly, we do not
allow Alice or Bob to freely exert causal influences on one another, thus ruling out both classical
and quantum communication. We place no limitations on the local quantum operations that
each can carry out on the systems in their lab. Finally, as we wish to quantify the nonclassical
properties of assemblages, we restrict the set of common causes which are taken to be free to
be the classical common causes, so that a resource may be valuable only by virtue of having a
nonclassical common cause. In other words, we take the set of free operations to include local
operations and classical common causes. Since a more common term synonymous to ‘classical
common cause’ is ‘shared randomness’, we refer to the set of free operations as local operations
and shared randomness.

From the perspective endorsed in this manuscript, then, the notion of resourcefulness embod-
ied in a useful assemblage is nonclassicality of its common-cause. The free (classically explain-
able) assemblages are all and only those which can be generated by classical common causes,
i.e., those of the form shown in Fig. 1(b). As we will see, this class of assemblages coincides
exactly with the set of “unsteerable” assemblages—those that admit of so-called “hidden-state
models”, i.e., classical common-cause explanations. For such assemblages, Bob’s system can
always be viewed as locally prepared in a state that depends on a classical random variable
which always takes a definite classical value, and Alice’s choice of measurement can then be
viewed as simply providing her information about this classical value, which in turn allows her
to refine her description of the state of Bob’s quantum system.

In contrast, the common cause generating any nonfree assemblages is necessarily nonclassical
(i.e., cannot be viewed as a shared classical random variable), and so Alice’s refinements of her
knowledge about Bob’s system are not compatible in this sense. However, there is currently
no agreed-upon framework for formalizing Alice’s refinements of her knowledge in this sense.
Indeed, to fully understand how inferences are made through such a nonclassical common cause
would presumably require a nonclassical generalization of the classical theory of inference. While
some first attempts at such a program have been made [24, 27, 51], arguably with some success
when applied specifically to EPR scenarios, this ambitious problem remains very much unsolved.
A convenient feature of our resource theoretic approach is that it does not require us to resolve
these difficult issues. This is because the structure of the resource theory is entirely determined
by the free set of classical common-cause processes, which are well-understood even without
such a novel theory of inference.
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1.3 Comparison to prior work
A resource theory of ‘steering’ in bipartite scenarios, distinct from ours, was defined a few years
ago [13]. Therein, the free operations were taken to be (stochastic) local operations together
with classical communication from Bob to Alice. This set of free operations was motivated
by one particular application for which assemblages are known to serve as resources – namely,
this set is the most general one that does not compromise the security of one-sided device-
independent quantum key distribution protocols. In contrast, our resource theory is developed
based on the natural physical limitations arising in any common-cause scenario. As such, our
approach follows a recent body of work [20–23] which demonstrates the importance of studying
nonclassicality in common-cause scenarios (like the Bell scenario) within a resource-theoretic
perspective underpinned by LOSR operations.

We compare these two approaches further in Section 4.1.2. In particular, we note that our
approach has the technical advantage that its set of free transformations is simpler to charac-
terize and study. More importantly, our resource theory has the conceptual advantage that it
allows for the unification of every type of nonclassical correlation in Bell-like scenarios, since
all of these (including entanglement, ‘steering’, and ‘nonlocality’) can be viewed as resources of
nonclassicality of common-cause processes. We expect this unification to be useful for better
understanding the relationships between entanglement, EPR nonclassicality, and Bell nonclas-
sicality, as well as for understanding the possibilities for interconversion between these (and
many other [22, 23]) forms of nonclassicality in common-cause scenarios. Furthermore, the
principled approach we follow here to distill the essence of nonclassicality allows us to directly
and uniquely generalize our framework to the case of multipartite EPR scenarios (which we pro-
vide a resource theory for in this work) and to Bob-with-input EPR scenarios [50] and channel
EPR scenarios [52]4 (which we provide a resource theory for in a follow-up work).

1.4 Summary of main results
In this paper, we construct a resource theory of bipartite and multipartite ‘steering’ under LOSR
operations. This is the first time a resource-theoretic approach has been applied to the latter
scenario. Even within the traditional bipartite scenario, our approach differs from previous
approaches to resource theories of ‘steering’ [13], and clarifies some issues which arose within
them.

This paper is divided into three main sections, where we discuss the definition and im-
plications of the LOSR resource-theoretic approach to bipartite EPR scenarios (Section 2),
multipartite EPR scenarios (Section 3), and the relation of this resource theory to previous
work (Section 4). In Sections 2 and 3, we first recall the definition of the scenario of interest,
and explicitly specify its most general LOSR processing of the corresponding EPR assemblage.
Next, we show that resource conversion under free operations in the corresponding scenario
can be evaluated with a single instance of a semidefinite program. We conclude each of these
sections by highlighting properties of the pre-order of resources. In Section 4, we discuss the
advantages of our LOSR approach in relation to the problem of choosing the set of free op-
erations in a resource theory (Section 4.1.2) and consistently defining the set of free resources
(Sections 4.2 and 4.3).

4Motivated by our common-cause description of an EPR scenario, we refer to so-called channel ‘steering’
scenarios [52] as channel EPR scenarios. Bob-with-input EPR scenarios [50] and channel EPR scenarios [52] are
generalizations of the traditional EPR scenario in which Bob is also allowed to have a (classical or quantum)
input that further influences the state preparation of his quantum system.
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2 The bipartite EPR scenario
In this section, we define the resource theory of nonclassicality of bipartite assemblages under
LOSR operations. We begin by formalizing the set of free (LOSR) operations. Then, we
explicitly show that a resource conversion in this paradigm can be decided with a single instance
of a semidefinite program. This is the first tool that allows one to systematically determine the
relative nonclassicality of assemblages, that is, the convertibility relations that hold among
them. We use this semidefinite program to study the possible conversions among a family of
infinite assemblages. Moreover, we define new EPR measures and study the properties of the
pre-order analytically.

2.1 Definition of the scenario and free assemblages
The bipartite EPR scenario (see Fig. 2(a)) consists of two distant parties, Alice and Bob, that
share a physical system and perform local actions on it. Alice performs (possibly incompatible)
measurements on her subsystem: upon choosing a measurement setting denoted by x, she
obtains a classical outcome a with probability p(a|x). We denote by X the set of classical labels
that denote Alice’s choice of measurement, and by A the set of labels for her measurement
outcomes. Without loss of generality, we assume all the measurements to have the same outcome
cardinality. By measuring her system, Alice refines her knowledge of Bob’s system, which
is now described by a conditional marginal state ρa|x. The relevant object of study is the
ensemble of ensembles of quantum states, dubbed an assemblage [10], that contains all the
information characterizing an EPR scenario. It is defined as ΣA|X = {{σa|x}a∈A}x∈X, where
each unnormalised state σa|x is given by σa|x := p(a|x)ρa|x. That is, the probability that an
updated state arises is given by the normalization factor for the corresponding state in the
assemblage.

One can depict an assemblage as in Fig. 2(a), where the classical and quantum systems
are depicted with single and double lines, respectively. It is worth noticing that, even though
we have chosen our enveloping theory to consist only of quantumly-realizable assemblages,
the results derived in this section also apply to broader enveloping theories including those
generated by arbitrary (e.g. post-quantum) common-causes. In fact, in the bipartite case, there
is no difference between the assemblages5 that can be realized by quantum common causes and
those that can be realized by arbitrary common causes. This follows from the GHJW theorem,
proven by Gisin [53] and Hughston, Jozsa, and Wootters [54], which (in our causal language)
shows that all bipartite common-cause assemblages are quantumly-realizable.

In quantum theory, the state of the shared system can be described by a density matrix ρ and
Alice implements generalised measurements, i.e., positive operator-valued measures (POVMs),
which we denote by {{Ma|x}a∈A}x∈X. In this case, the unnormalised states admit a quantum
realisation of the form σa|x = trA{(Ma|x ⊗ I)ρ}. This is formalised as follows:

Definition 1. Quantumly-realizable assemblage.
An assemblage ΣA|X = {{σa|x}a∈A}x∈X has a quantum realisation iff there exists a Hilbert space
HA, a state ρ in HA ⊗HB, and POVMs {{Ma|x}a∈A}x∈X on HA such that

σa|x = trA{(Ma|x ⊗ I)ρ} (1)

5It is worth noticing that in this definition of an EPR scenario – which is just a generalisation of EPR’s original
thought experiment – the system in Bob’s laboratory remains quantum, or in other words, effectively admits a
quantum description. Hence, even if post-quantum common causes are allowed, Bob’s system does not require a
post-quantum treatment. This is formally the same requirement as when Alice and Bob share a classical common
cause: we still describe Bob’s system with the language of quantum theory. Of course, one can define other types
of experiments, where now Bob’s system is allowed to be post-quantum.
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Figure 2: Depiction of a bipartite EPR scenario. Quantum systems are represented by double lines, while
classical systems are depicted as single lines. (a) Quantum assemblage: Alice and Bob share a quantum
common cause. (b) The most general LOSR operation on an assemblage in a bipartite EPR scenario.

for all x ∈ X and a ∈ A.

Finally, we consider the question of which assemblages admit a classical explanation: that
is, which assemblages can be understood as a classical common-cause process. As argued in the
introduction, these are all and only those that can be constructed freely from LOSR operations.
Assemblages of this form are depicted in Fig. 1(b). Now, one can associate:

• a probability distribution p(λ) with the box representing the state of the common cause
(where we imagine that λ is sampled according to this distribution, copied, and shared
with both parties),

• a conditional probability distribution p(a|x, λ) with the box representing the process by
which Alice’s outcome is generated (depending on her setting and the value of λ),

• a normalized quantum state ρλ with the process by which Bob’s quantum state is locally
generated (depending on λ).

Hence, the elements of an LOSR-free assemblage can be written as σa|x =
∑
λ p(λ)p(a|x, λ)ρλ,

with p(a|x, λ) being valid conditional probability distributions for all values of λ, which is the
classical variable corresponding to the shared classical common cause. Traditionally, these
LOSR-free assemblages have been referred to as ‘unsteerable’ assemblages and are mathemati-
cally expressed in terms of the so-called ‘local hidden states’ σλ := p(λ) ρλ6.

6The ‘local hidden states’ terminology is motivated by the ‘local hidden variable’ terminology in Bell scenarios.
In our view, this terminology is not ideal. Firstly, the states σλ are local in the sense that Bob produces them
locally, but the word local itself has a connotation in the context of ‘quantum nonlocality’ and so could be
misleading. Secondly, it is irrelevant for the freeness of an assemblage whether or not the state describing Bob’s
system is ‘hidden’. As such, it is better to refer to free resources as ‘classical common-cause resources’, as this
highlights precisely which feature of them is critical to their nonfreeness.
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2.2 LOSR transformations between bipartite assemblages
The most general LOSR transformation of an assemblage is illustrated in Fig. 2(b). It consists
of a comb (which locally pre- and post-processes the classical variables in Alice’s wing) [55] and a
completely positive [28, 56] trace preserving (CPTP) map (which post-processes Bob’s quantum
system). Both operations are correlated by a classical variable λ. Formally, a generic LOSR
transformation illustrated in Fig. 2(b) transforms one assemblage ΣA|X into a new assemblage
Σ′A′|X′ as follows:

σ′a′|x′ =
∑
λ,c

∑
a,x

p(λ) p(c, x|x′, λ)p(a|x)p(a′|a, c)Eλ(ρa|x) , (2)

where
• p(c, x|x′, λ) encodes the classical pre-processing of Alice’s input x as a function of x′ and

the shared classical randomness λ. Here c denotes the variable to be transmitted through
Alice’s classical side channel toward the post-processing stage.

• p(a′|a, c) encodes the classical post-processing of Alice’s output a, as a function of the
classical information c kept from the pre-processing stage. The output of the process is
Alice’s new outcome a′.

• Eλ[·] is the CPTP map corresponding to Bob’s local post-processing of his quantum system,
as a function of the shared classical randomness λ.

Notice that if ΣA|X is free, then Σ′A′|X′ is free as well – that is, the set of free assemblages
is closed under LOSR operations. This highlights the basic property of a resource theory:
applying a free transformation on a free resource cannot create a resourceful object. Any
assemblage that cannot be realised by local operations and shared randomness is nonfree and
constitutes a resource of LOSR nonclassicality.

The local pre- and post-pocessings of Alice’s classical variables are represented by the prod-
uct p(c, x|x′, λ) p(a′|a, c) in Eq. (2). Notice, however, that the classical variable c is a function
only of the classical values x′ and λ, and that we have no constraints on the dimension of the
classical variable c. Therefore, Eq. (2) can be written as

σ′a′|x′ =
∑
λ

∑
a,x

p(λ) p(a′|a, x′, λ) p(x|x′, λ) p(a|x) Eλ(ρa|x) . (3)

Notice that this expression satisfies the condition of no-retrocausation – the variable a cannot
influence the value of the variable x.

A final remark pertains to a particular way to express a generic LOSR transformation, based
on Fine’s argument [57] and discussed in Ref. [20]. In the central point of this expression is the
fact that the set of LOSR operations is convex and its extremal elements are deterministic [20].
This implies that Alice’s pre- and post-processing can be decomposed as a convex combination
of deterministic operations:

p(a′|a, x′, λ) p(x|x′, λ) =
∑
λ̃

p(λ̃|λ)D(a′|a, x′, λ̃)D(x|x′, λ̃). (4)

Here, D(a′|a, x′, λ̃) assigns a fixed outcome a′ for each possible choice of a, x′, and λ̃, i.e.,
D(a′|a, x′, λ̃) = δa′,fλ̃(a,x′). Similarly, D(x|x′, λ̃) assigns a fixed outcome x for each measurement

x′ and value of λ̃, i.e., D(x|x′, λ̃) = δx,gλ̃(x′). Let us define a new completely positive and trace
non-increasing (CPTNI) map

Ẽλ̃(σa|x) =
∑
λ

p(λ)p(λ̃|λ)Eλ(p(a|x)ρa|x). (5)

8



Notice that
∑
λ̃ Ẽλ̃(σa|x) forms a CPTP map. We are now in the position to rewrite Eq. (3) as

follows

σ′a′|x′ =
∑
λ̃

∑
a,x

D(a′|a, x′, λ̃)D(x|x′, λ̃)Ẽλ̃(σa|x), (6)

which yields the simplified characterisation of a generic LOSR transformation that we will use
throughout.

2.3 A semidefinite test for deciding resource conversions
An assemblage ΣA|X can be converted into a different assemblage Σ′A′|X′ under LOSR operations

if and only if there exist a collection of CPTNI maps Ẽλ such that Σ′A′|X′ can be decomposed

as in Eq. (6). Therefore, deciding whether ΣA|X can be converted into Σ′A′|X′ under LOSR
operations is equivalent to checking whether this decomposition is possible. We will now show
that this can be decided with a single instance of a semidefinite program (SDP).

Recall that due to Choi-Jamio lkowski isomorphism [58, 59] every CPTP map E : HB → HB′
can be associated with an operator W on HB⊗HB′ such that E(ρB) = dB trB

{
W ( IB′ ⊗ ρTB)

}
,

where dB is the dimension of the system ρB. Conversely, the operator W can be written as
W = (E ⊗ IB′) |Ω〉 〈Ω|, with |Ω〉 = 1√

dB

∑dB
i=1 |ii〉. This isomorphism is crucial for reformulating

our problem as an SDP. For Eq. (6) to hold, each σ′a′|x′ must admit the following decomposition

σ′a′|x′ =
∑
λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) dB trB
{
Wλ ( IB′ ⊗ σTa|x)

}
. (7)

Here, the map Ẽλ(σa|x) is written in the operator form with Wλ being the Choi state, i.e.,

Ẽλ(σa|x) = dB trB
{
Wλ ( IB′ ⊗ σTa|x)

}
, with Wλ being a (dB × dB′) by (dB × dB′) matrix. Notice

also that Eq. (7) involves only finite sums, since the variable λ enumerates the finitely-many
deterministic distributions D(a′|a, x′, λ) and D(x|x′, λ). The total number of the deterministic
strategies encoded in λ is equal to |A′||A|×|X′| × |X||X′|. This correspondence between elements
σ′a′|x′ and σa|x enables us to construct an SDP that checks whether ΣA|X can be converted into

Σ′A′|X′ under LOSR operations:

SDP 2. ΣA|X
LOSR−→ Σ′A′|X′.

The assemblage ΣA|X can be converted into the assemblage Σ′A′|X′ under LOSR operations,
denoted by ΣA|X

LOSR−→ Σ′A′|X′, if and only if the following SDP is feasible:

given {{σa|x}a}x , {{σ′a′|x′}a′}x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {(Wλ)BB′}λ

s.t.


Wλ ≥ 0 ,
trB′ {Wλ} ∝ 1

d IB ∀λ ,∑
λ trB′ {Wλ} = 1

d IB ,
σ′a′|x′ =

∑
λ

∑
a,xD(a′|a, x′, λ)D(x|x′, λ) dB trB

{
Wλ ( IB′ ⊗ σTa|x)

}
.

(8)

When the conversion is not possible, we denote it by ΣA|X
LOSR
6−→ Σ′A′|X′.
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SDP 2 is a feasibility problem, i.e., it checks if the feasible set is equal to the empty set. If
this is the case, the primal optimal value is equal to −∞, which means that there exists no set
{Wλ}λ that satisfies the constraints specified by Eq. (6). If the feasible set is not equal to the
empty set, the optimal value is equal to zero, and the problem is feasible. Therefore, checking
whether ΣA|X can be converted into Σ′A′|X′ under LOSR operations requires a single instance of
an SDP.

2.4 Properties of the pre-order
When one assemblage can be freely converted into another, then the former is said to be at least
as nonclassical as the latter. Therefore, the pre-order of assemblages gives information about
their relative nonclassicality. In this section, we study the nonclassicality among members of
an infinite family of assemblages defined below.

Consider an EPR scenario where A = X = {0, 1}, and Bob’s dimension is 2. Imagine Alice
and Bob share an entangled state of the form |θ〉 = cos θ |00〉 + sin θ |11〉, where θ ∈ (0, π/4].
The measurements that Alice performs on her share of the entangled state are given by M̃a|0 =
1
2{I + (−1)aσz} and M̃a|1 = 1

2{I + (−1)aσx}, with σz and σx being Pauli matrices. Then, the
assemblage elements can be written as

σθa|x = trA
{
M̃a|x ⊗ I |θ〉 〈θ|

}
. (9)

This infinite family of assemblages is indexed by one parameter – the angle {θ}. We will now
introduce one more parameter to this family. The new parameter {p} is responsible for mixing
the elements σθa|x with noise. Let us define a family of assemblages S as:

S =
{
Σθ,p

A|X

∣∣∣ θ ∈ (0, π/4] , p ∈ [0, 1]
}
, (10)

where Σθ,p
A|X =

{{
p σθa|x + (1− p) I

4

}
a∈A

}
x∈X

.

This family of assemblages has an infinite number of elements. Each element is indexed
by two parameters – the angle and the probability, {θ, p} respectively. We will sometimes
focus on a subset of S with a fixed value of p. In such cases, for p = %, we define S% ={
Σθ,%

A|X

∣∣∣ θ ∈ (0, π/4] , p = %
}

. For example, for p = 1, we have the following family of assemblages:

S1 =
{
Σθ,1

A|X

∣∣∣ θ ∈ (0, π/4] , p = 1
}
, (11)

where Σθ,1
A|X =

{{
σθa|x

}
a∈A

}
x∈X

.

For simplicity, we denote Σθ,p
A|X = Σθ,p in this section.

We now study the properties of the pre-order among the resources in S. First, we run the
SDP 2 and test which conversions between resources parametrized by different values of {θ, p}
are possible. Second, in Section 2.4.2, we focus on S1 and confirm the results obtained from the
SDP analytically.

To test whether two assemblages in S can be converted into each other, we check if they
satisfy the constraints specified by Eq. (2). The solutions to the SDP (computed in Mat-
lab [60], using the software CVX [61, 62], the solver SDPT3 [63] and the toolbox QETLAB
[64]; see the code at [65]) are illustrated in Fig. 3. In this figure, each dot represents one
assemblage Σθ,p. For example, the point indexed by {θ = π/6, p = 0.9} corresponds to
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Figure 3: Possible conversions between elements of S. The black dots represent the assemblages Σθ,p. The
arrows represent possible conversions.

Σπ/6,0.9 =
{{

0.9σπ/6
a|x + 0.1 I

4

}
a∈A

}
x∈X

. The black dots correspond to nonfree assemblages,

and the grey dot represents a free assemblage. Note that the assemblage Σπ/4,1 is one obtained
when Alice and Bob share a quantum system prepared in a ‘maximally entangled’7 state, and
Alice performs two suitable Pauli measurements in her share of the system. The arrows rep-
resent possible conversions, e.g., the arrow pointing from Σπ/4,1 to Σπ/6,0.8 means that Σπ/4,1

can be converted into Σπ/6,0.8 under LOSR operations. The grey, dashed lines represent trivial
conversions. For the sake of simplicity, Fig. 3 represents only nine assemblages, which is already
sufficient to illustrate some interesting features of the pre-order among assemblages in S.

Fig. 3 displays some elements of S1 that are unordered in our LOSR resource theory of
assemblages; e.g., notice that no conversions are possible among assemblages where p = 1. In
contrast, some conversions are possible among assemblages for which p = 0.9, and among as-
semblages for which p = 0.8. Moreover, this figure is not symmetric: conversions of assemblages
with higher value of θ to those with lower value of θ are more common. For example, Σπ/4,1 can
be converted into Σπ/12,0.9, but Σπ/12,1 cannot be converted into Σπ/4,0.9. Finally, all arrows
point in one direction only, suggesting that there are no equivalent assemblages in this family.

Notice that we used the SDP 2 to study the pre-order of assemblages in S, where A = X =
{0, 1}, and Bob’s dimension is 2. However, the SDP is not constrained to such simple examples.
In principle, resource conversion can be evaluated via the SDP 2 for families of assemblages
with an arbitrary cardinality of A and X, and arbitrary Bob’s dimension.

2.4.1 EPR monotones

A common approach to unraveling the pre-order of resources in a resource theory is by employing
so-called resource monotones. Formally, a resource monotone is a function which is monotonic
under free operations. Resource monotones enable comparison of resources and identification of

7Here, by a ‘maximally entangled’ quantum state we mean one where entanglement is quantified as per a
resource theory based on local operations and classical communication as the free operations [21, 66], which is
the standard approach. In the case of two qubits this may be the singlet state.
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conversion relations and equivalence classes. That is, if the real numbers that resource monotone
M assigns to the pair of resources R1 and R2 satisfy M(R1) < M(R2), then one can conclude
that the monotone M witnesses that R1 6−→ R2. Strictly speaking, hence, a resource monotone
usually gives only partial information about the pre-order of resources, and one generically may
need a collection of resource monotones (called a complete set of them) to have the complete
information to fully specify the pre-order of resources based on them. Nevertheless, resource
monotones are friendly ways to explore the pre-order of resources, and the real numbers in their
co-domain are interpreted as a (possibly incomplete) quantification of the nonfreeness of the
resources in its domain.

In the particular case of our resource theory, an EPR monotone is a function from the
space of assemblages into real numbers, whose value does not increase under LOSR operations.
Among the existing measures of bipartite assemblages, the ‘steerable’ weight [11], robustness of
’steering’ [12], and relative entropy [13] were shown to be EPR monotones in a resource theory
of ‘steering’ with stochastic local operations assisted by one-way classical communication (S-
1W-LOCC) being the set of free operations [13]. The set of S-1W-LOCC operations allows,
in particular, for one party to generate randomness and share it with the second party by
classical communication; hence, the set of S-1W-LOCC operations strictly includes the set of
LOSR operations. It follows that all EPR monotones defined for S-1W-LOCC are therefore
also monotones for LOSR. It has moreover been shown that the first two of these monotones
– ‘steerable’ weight and robustness of ‘steering’ – can be reformulated in a type-independent
form, i.e., they can be used to compare the LOSR-nonclassicality of resources of arbitrary types
(where an EPR assemblage is one specific type of a resource) [23]. Let us now recall their formal
definitions for the case of study in this section.

Definition 3 (‘Steerable’ weight [11]). The ‘steerable’ weight of an assemblage ΣA|X is given
by the minimum µ such that ΣA|X can be decomposed as

ΣA|X = µΣS
A|X + (1− µ) Σfree

A|X, (12)

where ΣS
A|X is an arbitrary nonfree assemblage and Σfree

A|X is an arbitrary free assemblage.
We provide the following intuition for this definition. Imagine Alice wants to prepare a

given assemblage ΣA|X using the minimal amount of a nonfree resource. To achieve her goal,

she prepares a free assemblage Σfree
A|X most of the time (that is, a 1−µ fraction of the rounds), and

sometimes (a µ fraction of the rounds), she prepares a nonfree assemblage ΣS
A|X. On average,

hence she prepares ΣA|X. The ‘steerable’ weight quantifies the minimal amount of ΣS
A|X needed

to generate the desired assemblage in this way.

Definition 4 (Robustness of ‘steering’ [12]). The ‘steering’ robustness of an assemblage ΣA|X
is given by the minimum ν such that the assemblage

Σfree
A|X = 1

1 + ν
ΣA|X + ν

1 + ν
Σ′A|X (13)

is free, with Σ′A|X being an arbitrary assemblage.
Robustness of ‘steering’ can be understood as follows. Imagine Alice holds an assemblage

ΣA|X and she wants to make it free by mixing it with some other assemblage Σ′A|X. Robustness
of ‘steering’ quantifies the minimal amount of mixing needed to make ΣA|X a free assemblage. If
one optimises Σ′A|X over all assemblages, this leads to mixing ΣA|X with worst-case noise. If one
restricts the type of noise that can be added to the original assemblage, this measure is referred
to as generalized robustness or random robustness, depending on the type of noise added.

We conjecture that relative entropy could be defined in a type-independent way as well, as
similar measures exist for states and Bell scenarios [18].
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2.4.2 New EPR monotones

We now develop a method for obtaining EPR monotones from Bell inequalities and use it to
construct a family of monotones that certify the incomparability of elements of S1. We only
focus on S1 in this section, hence we drop the index p = 1 and denote Σθ,1 = Σθ.

To prove that the elements of S1 are unordered as per the LOSR resource theory of assem-
blages, it suffices to find a set of EPR LOSR monotones M = {Mj} such that, for every pair
(θ1, θ2) there exists a pair (Mθ1 ,Mθ2) with the following properties:Mθ1(Σθ1) > Mθ1(Σθ2) – which implies Σθ2 6 LOSR−−−−→ Σθ1 ,

Mθ2(Σθ1) < Mθ2(Σθ2) – which implies Σθ1 6 LOSR−−−−→ Σθ2 .
(14)

To construct such a family of monotones, we will make use of the EPR inequalities [3] con-
structed from the Bell inequalities presented in Ref. [67, Eq. (1)]. These Bell inequalities, which
we recall in the Appendix A, are uniquely maximized by the states |θ〉 (via a self-testing re-
sult [67]). In the Appendix B, we use these inequalities to construct an EPR functional, which
we denote Sη[Σ]. This functional defines a family of EPR inequalities that are uniquely maxi-
mized by assemblages living in S1. For a formalization of this statement and definition of Sη[Σ],
see Appendix B and Definition 15 therein.

We construct the monotone Mη from the EPR functional Sη[Σ] following a yield-based
construction:

Definition 5. The resource monotone Mη, for η ∈ (0, π/4], is defined as

Mη[Σ] := max
Σ̃
{Sη[Σ̃] : Σ LOSR−−−−→ Σ̃}. (15)

We will now show that each of the monotones Mη[Σ], when evaluated on assemblages in S1,
is uniquely maximized by Ση. First, note that

Mη[Σ] ≤ Sη[Ση] ∀ η ∈ (0, π/4] , (16)

since all assemblages in this traditional bipartite scenario admit a quantum realisation. Hence,
Sη[Σ̃] is upperbounded by its maximum quantum violation, which is given by Sη[Ση]. Moreover,

Mη[Ση] = Sη[Ση] . (17)

We now show that that equality in Eq. (17) only holds when Mη and Sη are evaluated on the
same assemblage.

Theorem 6. Let Mη be an EPR monotone from Definition 5 and Sη be an EPR functional
given in Definition 15. Then, if θ 6= η, Mη[Σθ] < Sη[Ση].

Proof. Let us prove this by contradiction. Our starting assumption is that there exists a pair
(θ , η) with θ 6= η, such that Mη[Σθ] = Sη[Ση]. Then, one of the two should happen:

First case: Mη[Σθ] = Sη[Σθ].
In this case, the solution to the maximisation problem in the computation of Mη is achieved by
Σθ itself.
Our starting assumption then tells us that Sη[Σθ] = Sη[Ση] = Smax

η .
From Remark 17 (see Appendix B) it follows that necessarily θ = η, which contradicts our
initial condition.
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Second case: Mη[Σθ] = Sη[Σ̃], with Σθ LOSR−−−−→ Σ̃ .
In this case, the solution to the maximisation problem in the computation of Mη is achieved by
an LOSR processing of Σθ.
Our starting assumption then tells us that Sη[Σ̃] = Sη[Ση] = Smax

η .
Let ρ and {{Ma|x}a∈A}x∈X be any quantum state and measurements that realise the quantum
assemblage Σ̃. From Remark 18 (see Appendix B), we know that ρ is equivalent to |η〉 up to
local isometries. But since local isometries are free LOSR operations, this means that |θ〉 is
more LOSR-entangled8 than |η〉, which contradicts the result of Ref. [21] that all two-qubit
pure entangled states are LOSR-inequivalent.

We can now prove that S1 is composed of pairwise unordered resources by identifying a pair
of monotones that satisfies Eqs. (14). As we see next, this is achieved by choosing Mj = Mθj .

Theorem 7. For every pair θ1 6= θ2, the monotones Mθ1 and Mθ2 given by Definition 5 satisfy

Mθ1(Σθ1) > Mθ1(Σθ2) , (18)
Mθ2(Σθ1) < Mθ2(Σθ2) . (19)

Proof. Let us first prove Eq. (18). On the one hand, Mθ1(Σθ1) = Sθ1 [Σθ1 ]. On the other hand,
since θ1 6= θ2, Theorem 6 implies that Mθ1(Σθ2) < Sθ1 [Σθ1 ]. Therefore, Eq. (18) follows.
The proof of Eq. (19) follows similarly.

Corollary 8. The infinite family of EPR monotones M = {Mη | η ∈ (0, π/4]} certifies that the
infinite family of assemblages S1 is composed of pairwise unordered resources.

We defined new measures of EPR assemblages and showed that they certify that the elements
of S1 are unordered in the resource theory of assemblages under LOSR operations. As we showed
using the SDP 2, this property of the pre-order appears to be unique to assemblages Σθ,p with
p = 1.

3 The multipartite EPR scenario
We now develop a resource theory for multipartite EPR scenarios under LOSR operations.
This is the first time multipartite EPR scenarios have been studied in a resource-theoretic
framework. Similarly to the bipartite case, we show that resource conversion can be decided
with a single instance of an SDP in this paradigm. Moreover, we define new measures of
multipartite nonclassicality and use them to analytically study the properties of the pre-order.
Our results show that multipartite scenarios are easier and more natural to understand from
an LOSR perspective rather than an LOCC one; we elaborate on this in Section 4.1.2.

In this paper, we focus on one particular type of multipartite EPR scenario with multiple
Alices and one Bob. However, the number of quantum parties (Bobs) can also be increased.
Indeed, one possible multipartite setup consists of a single Alice and multiple Bobs. In such
a scenario, results from bipartite scenarios may sometimes directly generalise. However, this
generalisation might not be straight-forward and a detailed analysis of this multipartite scenario
is beyond the scope of this work. For a description of a scenario with multiple Bobs, we refer
the reader to Refs. [6, 68]. Focusing on scenarios with more-than-one Alice is however necessary

8We say that a state |θ〉 is more LOSR-entangled than a different state |η〉 if |θ〉 can be converted freely to |η〉
with LOSR operations.
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when one wants to allow for post-quantum assemblages, which is crucial when exploring ways
to single out quantum phenomena from basic principles – a.k.a. studying quantum ‘from the
outside’.

3.1 Definition of the scenario and free assemblages
In the multipartite EPR scenario of interest to us, k+1 separated parties share a physical system.
In analogy to the bipartite scenario, we consider k parties called Alices that hold measurement
devices. Each Alice, labeled by Ai∈{1...k}, decides on a classical input xi from the set xi ∈
{1, ...,mA} =: X and generates a classical outcome ai from the set ai ∈ {0, ..., oA−1} =: A with
probability pi(ai|xi). Without loss of generality, we will take the sets X and A to be the same
for all the Alices. When Alices perform the measurements on their subsystems, they update
their knowledge about Bob’s subsystem which is now described by a conditional marginal state
ρa1...ak|x1...xk , which depends on all Alices inputs and outputs. In this scenario, the elements
of the assemblage ΣA1...Ak|X1...Xk = {{σa1...ak|x1...xk}a1...ak}x1...xk are given by σa1...ak|x1...xk :=
p(a1...ak|x1...xk)ρa1...ak|x1...xk . The multipartite EPR scenario is illustrated in Fig. 4(a) for
k = 2 (two Alices, one Bob).

In this paper, we are interested in studying the common-cause processes between multiple
parties, hence we focus on the global object given by the assemblage, and not on the individual
agents. Nevertheless, we would like to note that it is always possible to recover the individual
parties by tracing out the irrelevant subsystems. It would be interesting to study what inferences
each Alice can make about the other parties. However, this problem is related to the quantum
marginal problem [69] and is beyond the scope of our framework.

x1

a1

x2

a2 ρa1a2|x1x2

(a)

x1 x2

a1 a2

c2c1

λ

ρa1a2|x1x2

x′1 x′2

a′2a′1 ρa′1a′2|x′1x′2

(b)

Figure 4: Depiction of a multipartite EPR scenario for k = 2 (two Alices, one Bob). Quantum systems are
depicted by double lines, classical systems by single lines. A system that may be classical or quantum is
depicted by a thick line. (a) Quantum assemblage: Bob receives a quantum system, and the Alices receive
systems that may be quantum or classical. Each Alice performs measurements labeled by classical variables
x1 and x2, and obtains classical measurement outputs a1 and a2. (b) The most general LOSR operation on
a quantum assemblage in a multipartite EPR scenario.

In a quantum common-cause multipartite EPR scenario, then, Bob and the Alices share a
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quantum system, and for each i ∈ {1, . . . , k}, the i-th Alice is allowed to perform on her share
of the system generalised measurements represented by the set {{Mai|xi}ai}xi . Then, Bob’s
unnormalised states can be realised as σa1...ak|x1...xk = trA1...Ak{(Ma1|x1 ⊗ ... ⊗Mak|xk ⊗ I)ρ},
where ρ is the quantum state of the shared system. These quantumly-realised assemblages are
formalised as follows:

Definition 9. Multipartite quantum assemblage.
An assemblage ΣA1...Ak|X1...Xk has a quantum realisation iff there exist Hilbert spaces HAi with
i ∈ {1, . . . , k}, a state ρ in HA1 ⊗ . . .⊗HAk ⊗HB, and a POVM {Mai|xi}ai∈A on HAi for each
xi ∈ X and i ∈ {1, . . . , k}, such that

σa1...ak|x1...xk = trA1...Ak{(Ma1|x1 ⊗ ...⊗Mak|xk ⊗ I)ρ} (20)

for all a1, . . . , ak ∈ A and x1, . . . , xk ∈ X.

In analogy to the bipartite case, a multipartite assemblage is LOSR-free if the parties
(Alices and Bob) can generate it using local operations (classical and quantum) and clas-
sical shared randomness. The elements of an LOSR-free assemblage can be decomposed as
σa1...ak|x1...xk =

∑
λ p(λ)p1(a1|x1, λ) . . . pk(ak|xk, λ)σλ, where pj(aj |xj , λ) is a conditional proba-

bility distribution for the j-th Alice for every λ, and σλ are unnormalised quantum states which,
similarly to the bipartite case, satisfy tr {

∑
λ σλ} = 1. Notice that this definition of a free mul-

tipartite assemblage coincides with the definition of an “unsteerable multipartite assemblage”
in Refs. [6, 68, 70], in the sense of “fully unsteerable”9. Therefore our LOSR underpinning of
the resource-theoretic understanding of assemblages coincides with what people in the literature
understand as a “totally-useless assemblage”. Notice, however, that unlike in Ref. [71], we do
not render unsteerable assemblages where the correlations observed among the Alices’ measure-
ment outputs are non-classical. In Section 4.2, we review different definitions of a multipartite
free assemblage and compare them to our approach.

3.2 LOSR transformations between multipartite assemblages
The most general LOSR transformation of a multipartite assemblage consists of a comb for each
Alice (which locally pre- and post-processes the variables on each Alice’s wing), and a CPTP
map (which post-processes Bob’s quantum system), with all these actions being coordinated by
a classical random variable λ. Formally, a generic LOSR operation is illustrated in Fig. 4(b),
and transforms an assemblage ΣA1...Ak|X1...Xk into a new one as follows:

σ′a′1...a′k|x
′
1...x

′
k

=
∑
λ

c1...ck

∑
a1...ak
x1...xk

p(c1, x1|x′1, λ) . . . p(ck, xk|x′k, λ) p(a′1|a1, c1) . . . p(a′k|ak, ck)

p(λ) p(a1, . . . , ak|x1, . . . , xk) Eλ(ρa1...ak|x1...xk) , (21)

where, similarly to the bipartite case,
• p(ci, xi|x′i, λ) encodes the classical pre-processing of the i-th Alice’s input xi as a function

of x′i and the shared classical randomness λ. Here, ci denotes the variable to be transmitted
through the i-th Alice’s classical side channel towards her post-processing stage.

• p(a′i|ai, ci) encodes the classical post-processing of the i-th Alice’s output ai, as a function
of the classical information ci kept from the pre-processing stage. The output of the
process is the i-th Alice’s new outcome a′i.

9This is in analogy to a fully-separable quantum state [66].
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• Eλ[·] is the CPTP map corresponding to Bob’s local post-processing of his quantum system,
as a function of the shared classical randomness λ.

Now recall that, similarly to the bipartite case, an LOSR-free assemblage is one that can
be created from local operations and shared randomness. Hence, classical assemblages are
all and only the ones that can be generated through the free operations of choice, consistent
with the unifying assessment of ‘free of cost’ that this resource-theoretic underpinning brings.
Moreover, if ΣA1...Ak|X1...Xk is free, Σ′A′1...A′k|X′1...X′k is free as well, hence the set of free multipartite

assemblages (our free resources) is closed under LOSR operations, as it should be.
A final remark pertains to a particular way to express a generic LOSR transformation,

similarly to the discussion in the bipartite scenario. Let us represent each Alice’s local comb
with a single probability distribution p(a′i, xi|ai, x′i, λ). By Fine’s argument [57] and discussion
in Ref. [20], such local combs can be decomposed as a convex combination of deterministic
combs as follows

p(a′i, xi|ai, x′i, λ) =
∑
λ̃

p(λ̃|λ)D(xi|x′i, λ̃)D(a′i|ai, x′i, λ̃). (22)

Here, each deterministic probability distribution assigns a fixed outcome a′i (resp. xi) for each
possible choice of ai, x

′
i, and λ̃ (resp. x′i and λ̃). Let us now use this observation to rewrite

Eq. (21); for clarity in the presentation let us focus on the tripartite case (two Alices, one Bob).
Define the CPTNI map Ẽλ̃ as:

Ẽλ̃(σa1a2|x1x2) =
∑
λ

p(λ)p(λ̃|λ)Eλ(p(a1a2|x1x2)ρa1a2|x1x2). (23)

A generic LOSR operation transforms an assemblage ΣA1A2|X1X2 into a new one as follows:

σ′a′1a′2|x′1x′2
=
∑
λ̃

∑
a1a2
x1x2

D(x1|x′1, λ̃)D(a′1|a1, x
′
1, λ̃)D(x2|x′2, λ̃)D(a′2|a2, x

′
2, λ̃) Ẽλ̃(σa1a2|x1x2). (24)

Eq. (24) provides the simplified characterisation of a generic multipartite LOSR transformation
that we will use throughout.

3.3 Resource conversion as a semidefinite test
For clarity in the presentation, we will still focus on the specific multipartite scenario, illustrated
in Fig. 4(a). Our method, however, extends to scenarios with an arbitrary number of Alices.
Given two assemblages generated in this setup, ΣA1A2|X1X2 and Σ′A′1A′2|X′1X′2 , testing whether

ΣA1A2|X1X2 can be converted into Σ′A′1A′2|X′1X′2 under LOSR operations amounts to checking if

Σ′A′1A′2|X′1X′2 admits a decomposition as per Eq. (24) for the case of two Alices. Similarly to the

bipartite scenario, the possibility of the conversion can be decided with a single instance of an
SDP.

First, notice that the map Ẽλ(σa1a2|x1x2) can be represented in the operator form in terms
of its Choi state Wλ as follows:

Ẽλ(σa1a2|x1x2) = dB trB
{
Wλ ( IB′ ⊗ σTa1a2|x1x2

)
}
, (25)

where dB is the dimension of Bob’s Hilbert space. Therefore, for Σ′A′1A′2|X′1X′2 to decompose as
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in Eq. (24), each σ′a′1a′2|x′1x′2
must admit the following decomposition:

σ′a′1a′2|x′1x′2
=
∑
λ

c1,c2

∑
a1a2
x1x2

D(x1|x′1, λ)D(a′1|a1, x
′
1, λ)D(x2|x′2, λ)D(a′2|a2, x

′
2, λ)

dB trB
{
Wλ ( IB′ ⊗ σTa1a2|x1x2

)
}
.

(26)

This relation between elements σ′a′1a′2|x′1x′2
and σa1a2|x1x2 can be tested via an SDP. The SDP

that tests whether ΣA1A2|X1X2 can be converted into Σ′A′1A′2|X′1X′2 under LOSR operations reads

as follows.

SDP 10. ΣA1A2|X1X2
LOSR−→ Σ′A′1A′2|X′1X′2.

The assemblage ΣA1A2|X1X2 can be converted into the assemblage Σ′A′1A′2|X′1X′2 under LOSR
operations if and only if the following SDP is feasible

given {{σa1a2|x1x2}a1,a2}x1,x2 , {{σ′a′1a′2|x′1x′2}a′1,a′2}x′1,x′2 ,

{D(a′1|a1, x
′
1, λ)}λ,a′1,a1,x′1

, D(x1|x′1, λ)}λ,x1,x′1
,

{D(a′2|a2, x
′
2, λ)}λ,a′2,a2,x′2

, D(x2|x′2, λ)}λ,x2,x′2

find {(Wλ)BB′}λ

s.t.



Wλ ≥ 0 ,
trB′ {Wλ} ∝ 1

d IB ∀λ ,∑
λ trB′ {Wλ} = 1

d IB ,
σ′a′1a′2|x′1x′2

=
∑
λ

∑
a1a2
x1x2

D(a′1|a1, x
′
1, λ)D(x1|x′1, λ)D(a′2|a2, x

′
2, λ)

D(x2|x′2, λ) dB trB
{
Wλ ( IB′ ⊗ σTa1a2|x1x2

)
}
.

(27)

Similarly to SDP 2, SDP 10 is a feasibility problem.

3.4 Properties of the pre-order
The properties of the pre-order of multipartite assemblages can be studied numerically, with
the SDP 10, or analytically, with EPR LOSR monotones. The SDP 10 can be used to test
conversions between multipartite assemblages, and a plot similar to that in Fig. 3 can be made
to illustrate the pre-order of any multipartite family. Hence, we will not repeat this analysis
for the multipartite case. In this section, we study the pre-order analytically, but the results
can be easily verified with SDP 10. Although our methods apply to general assemblages, here
we focus on quantumly-realisable assemblages, and study the properties of the pre-order for a
particular family of resources therein.

Consider an EPR scenario with N = k+1 parties, where Ai = Xi = {0, 1} for i ∈ {1, ..., N−
1}. Assume all parties share the state ρθN defined as

ρθN = |GHZθN 〉 〈GHZθN | , (28)
with |GHZθN 〉 = cos θ |0〉⊗N + sin θ |1〉⊗N ,

and the measurements that Alices perform upon an input xi ∈ X are given by

M̃ai|0 = I + (−1)aiσz
2 , M̃ai|1 = I + (−1)aiσx

2 . (29)
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Let us define a family of assemblages S(N) as:

S(N) =
{
Σθ

A1...AN−1|X1...XN−1

∣∣∣ θ ∈ (0, π/4]
}
, (30)

where Σθ
A1...AN−1|X1...XN−1

=
{{
σθa1...aN−1|x1...xN−1

}
ai∈Ai

}
xi∈Xi

,

with σθa1...aN−1|x1...xN−1
= trA1...AN−1

{
M̃a1|x1 ⊗ ...⊗ M̃aN−1|xN−1 ⊗ I ρθN

}
.

For simplicity in the notation, we here denote Σθ
N := Σθ

A1...AN−1|X1...XN−1
and ΣN :=

ΣA1...AN−1|X1...XN−1 .

This family S(N), for fixed N , has an infinite number of elements. We claim that the elements
of S(N) are unordered as per the LOSR resource theory of assemblages. To show this, we define

a set of EPR monotones {S(N)
η }η using the Bell inequalities derived in Ref. [72, Eq. (13)]. This

procedure is presented in the Appendix D, and the EPR functional is given in Definition 20.

For each value of η, we construct the monotone M(N)
η from the EPR functional S

(N)
η following

a yield-based construction:

Definition 11. The EPR monotone M(N)
η , for η ∈ (0, π/4], is defined as

M(N)
η [ΣN ] := max

Σ̃N

{S(N)
η [Σ̃N ] : ΣN

LOSR−−−−→ Σ̃N}. (31)

In Appendix D, we show that the monotones M(N)
η [ΣN ] satisfy properties analogous to these

given in Eqs. (16) and (17), and Theorems 6 and 7, for the monotones Mη[Σ]. It follows that:

Corollary 12. The infinite family of EPR monotones M(N) = {M(N)
η | η ∈ (0, π/4]} certifies that

the infinite family of assemblages S(N) is composed of pairwise unordered resources.

This result shows how, when LOSR are considered to be free operations in a resource theory,
methods used in the bipartite scenarios can be leveraged to the multipartite case.

4 Related Work
Although the causal approach we take in this paper is not the standard description of the
EPR scenario, the objects that we study, i.e., assemblages, have been widely investigated for
their information-theoretic and foundational relevance. In particular, their role in one-side
device-independent quantum key distribution (1S-DI-QKD) protocols motivated a formulation
of the resource theory of ‘steering’, where the set of free operations is deemed to be stochastic
local operations assisted by one-way classical communication (S-1W-LOCC) [13]. This set of
operations – just like LOSR – is a valid set of free operations in a resource theory of assemblages,
as it maps free resources to free resources. However, the conceptual underpinnings of our
resource theory of nonclassicality of assemblages and of the resource theory of ‘steering’ under
S-1W-LOCC operations are very different. In this section, we discuss some conceptual and
technical differences between these two resource theories. Moreover, we show that the choice
of free operations in a resource theory has significant consequences for the definition of a free
multipartite assemblage.

4.1 S-1W-LOCC as the set of free operations
4.1.1 Formalisation of S-1W-LOCC operations

To start with, let us recall the formal definition of a S-1W-LOCC operation [13] which is
illustrated in Fig. 5. Consider a bipartite EPR scenario. First, Bob performs an instrument
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on his subsystem that produces both a classical system represented by the variable ω, and a
quantum system. This action corresponds to a completely-positive, trace-non-increasing map
Eω on Bob’s quantum system. Next, he communicates a classical message that depends on ω
to Alice; without loss of generality, we can take the communicated message to be ω itself. In
the second laboratory, Alice at first generates the classical input variable x′. Once she has
received ω, she generates the new input variable x which can depend on both x′ and ω. Then,
she performs the measurement labelled by x on her share of the system; she will then obtain
a measurement outcome a. Finally, Alice classically processes the variables x′, ω and a, to
produce the classical output a′ of her measurement process. In the S-1W-LOCC operations,
the instrument does not necessary need to be complete, i.e., if the probability for each outcome
ω is Pω, then the only guarantee on the sum of these probabilities is 0 <

∑
ω Pω ≤ 1. It means

that the total S-1W-LOCC operation does not need to happen with certainty, but with some
non-zero probability. It was shown in Ref. [13] that these bipartite S-1W-LOCC operations
map free assemblages to free assemblages in bipartite EPR scenarios; hence, they are formally
a valid set of free operations in a resource theory of assemblages therein.

ω

x

x′

a

a′ Eω(ρa|x)

ρa|x

Figure 5: The most general 1W-LOCC operation (in green) applied to an EPR assemblage (in black).

4.1.2 Comparing S-1W-LOCC and LOSR

The resource theory of ‘steering’ under S-1W-LOCC and our resource theory of nonclassicality
of assemblages are both formally valid resource theories that quantify nonclassicality in the
bipartite EPR scenario. In this subsection, we will argue that the causal view on assemblages
has several advantages over the S-1W-LOCC approach.

The set of free operations in any resource theory should be motivated by natural physical
constraints in the scenario of interest. The set of S-1W-LOCC operations is hence a meaningful
choice in scenarios wherein one-way classical communication is possible. Indeed, the choice of S-
1W-LOCC as the set of free operations was motivated by the fact that it is the most general set
that does not compromise the security of 1S-DI-QKD protocols [13]. In contrast, the motivation
behind our LOSR approach is fundamentally different. Rather than using a methodology which
singles out one particular task for which assemblages are known to be useful, we take a principled
approach that applies to any scenario with a common-cause causal structure. In particular, we
follow a general construction that can be applied to study nonclassicality in arbitrary causal
networks, as first introduced in Ref. [20] (see in particular Appendix A3 therein). Indeed, our
resource theory of EPR assemblages is simply a type-specific instance of the type-independent
resource theory introduced in Ref. [22]. This is the most significant conceptual advantage of
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our LOSR approach – it unifies the study of nonclassicality of assemblages with the study of
nonclassicality of arbitrary processes in common-cause (e.g., Bell) scenarios. This unified view
leads to a deeper understanding of nonclassical correlations, as well as to new technical tools
for studying them [21–23].

It is also worth noting that, at a technical level, LOSR conversions of assemblages are much
easier to characterize and study than the S-1W-LOCC conversions.

The fact that we have taken a principled approach to constructing our resource theory
also implies a final advantage: our framework extends naturally and uniquely to more general
scenarios, including multipartite EPR scenarios, as well as EPR scenarios where the processes
about which Alice is learning are dynamic (e.g., general channels or Bob-with-input processes10).
It is not clear how prior approaches generalize to these cases; indeed, in past work there is no
consensus even on the simplest question of how to define free assemblages in multipartite EPR
scenarios (we discuss this point further in the following sections).

Finally, for completeness, we note that the LOSR and S-1W-LOCC resource theories do in
fact lead to different pre-orders, and hence give different answers to questions about the relative
value of assemblages.

Proposition 13. The pre-order of assemblages under LOSR operations is different than the
pre-order of assemblages under S-1W-LOCC operations.

The proof of this proposition is given in Appendix F. The main idea is to find a conversion
that is possible with S-1W-LOCC operations and is impossible with LOSR operations. In the
proof we focus on the family Σθ,p

A|X defined in Eq. (10). We show that for S-1W-LOCC operations,

the assemblage Σπ/4,1
A|X is above all others in the family; whereas in LOSR, all assemblages Σθ,1

A|X
are incomparable for θ ∈ (0, π/4]. In Appendix F we provide an S-1W-LOCC map that maps

Σπ/4,1
A|X to Σθ,1

A|X for θ ∈ (0, π/4). This result is analogous to the difference in the pre-order in the

resource theories of LOCC-entanglement and LOSR-entanglement [21]11.
In proving Proposition 13, we note a deficiency in Theorem 5 in Ref. [13]. The theorem

claims that there is no universal assemblage in a particular setting from which we obtain any
other assemblage in the same setting with S-1W-LOCC maps. The proof applies if one assumes

that the universal assemblage is not Σπ/4,1
A|X , thus limiting the applicability of the theorem.

Therefore, the proof given in Ref. [13] is incomplete.

4.2 Multipartite free assemblages
Historically, a bipartite assemblage would be considered nonfree or nonclassical12 if Alice and
Bob need to share a quantum system prepared in an entangled state in order to produce it.
If the assemblage could be generated by performing measurements on a system prepared on a
separable state, then the assemblage is free.

Both for bipartite and multipartite scenarios, this is exactly the distinction between free and
nonfree in our approach: an assemblage is free if and only if it can be generated by measurements
on a fully-separable state. Although the definition of a free multipartite assemblage coincides

10Bob-with-input processes are those in which Bob can locally influence the state preparation of his system [50].
11There are two different resource theories of entanglement established in the literature. If one allows local

operations and classical communication (LOCC) as the set of free operations, it is well known that a maximally
entangled state can be converted into any partially entangled pure state of the same Schmidt rank [66]. However,
if one takes LOSR to be the set of free operations, such states are incomparable [21]. Here, we use the terms
LOCC-entanglement and LOSR-entanglement to distinguish these two resource theories [21, 66].

12In the literature, nonfree assemblages are referred to as ‘steerable’ assemblages.
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with our approach in some past literature [6, 68, 70], alternative approaches to studying multi-
partite EPR scenarios also exist . We now discuss some of the different sets of assemblages that
have been proposed as free sets in the multipartite case, and contrast them with our proposal.

For simplicity, we will focus on the case of a tripartite EPR scenario with two Alices and
one Bob, although the three definitions easily generalise to EPR scenarios with more than two
Alices. In this setup, one proposal is given in Ref. [5], where an assemblage is called free if it
can be decomposed as

σa1a2|x1x2 =
∑
λ

p(λ)p(a1, a2|x1, x2, λ)ρλ, (32)

where p(λ) is a normalised probability distribution on λ, ρλ is a normalised quantum state for
each λ, and p(a1, a2|x1, x2, λ) is only required to be a valid conditional probability distribution.
Indeed, here p(a1, a2|x1, x2, λ) is allowed to even be a signalling correlation between the Alices,
for each λ, as long as this signalling is averaged out in Eq. (32) to give rise to a valid quantum
assemblage {{σa1a2|x1x2}a1,a2∈A}x1,x2∈X. This condition for {p(a1, a2|x1, x2, λ)} is a form of fine-
tuning [15], and is conceptually problematic. Furthermore, it is clear that any assemblage that
is nontrivially fine-tuned in this manner is not consistent with our hypothesis about the causal
structure of an EPR scenario. Note also that, by this definition, there exist assemblages that
are free and yet for which the correlations shared by the Alices (when one marginalizes over
Bob’s system) are highly nonclassical– e.g., a Popescu-Rohrlich box correlations [73]. As such,
this approach is not suited to studying nonclassicality in general, but could only be suitable
for studying nonclassicality across the Alices-vs-Bob partition. A different proposal for the
definition of a free assemblage is given in Ref. [71], where an assemblage is deemed free if it can
be expressed as

σa1a2|x1x2 =
∑
λ

p(λ)pA1→A2(a1, a2|x1, x2, λ)ρλ

=
∑
λ

p′(λ)pA2→A1(a1, a2|x1, x2, λ)ρ′λ,
(33)

where for each value of λ, the probability distribution pA1→A2(a1, a2|x1, x2, λ) is non-signalling
from Alice2 to Alice1, and the probability distribution pA2→A1(a1, a2|x1, x2, λ) is non-signalling
from Alice1 to Alice2. Such a decomposition is called the time-ordered local hidden state model
(TO-LHS) of an assemblage. This set has been motivated by the fact that it is the largest set
of free assemblages for which an anomalous phenomenon termed ‘exposure of steering’ [71] does
not occur (under particular assumptions about the set of free operations, distinct from those
we have advocated for), and we elaborate further on this point in Section 4.3. In particular,
we note that in any standard resource theory (i.e., in the sense of Ref. [30]), both the free
resources and the free transformations on them should be derivable from a single set of free
operations. What this implies here is that it should be the case that the assemblages which
admit of TO-LHS models constitute all and only those assemblages which can be constructively
generated using S-1W-LOCC operations. This is, however, not the case, since the set of TO-
LHS assemblages includes some post-quantum tripartite assemblages (e.g., where the Alices
share a Popescu-Rohrlich box; see the next subsection), and these cannot be generated by a
S-1W-LOCC protocol.

These two definitions of free assemblage contrast with our LOSR resource theory of non-
classicality of assemblages, where an assemblage is LOSR-free if it can be written as

σa1a2|x1x2 =
∑
λ

p(λ)p(a1|x1, λ)p(a2|x2, λ)σλ. (34)

22



Classicality in our resource-theoretic approach is captured by the structure of the network, and
imposes that the assemblage is free, i.e., classical, if the parties – Alices and Bob – are related
solely by a shared classical common cause. This definition of a free assemblage has indeed
appeared in the literature before in the context of EPR scenarios, and not from a resource-
theoretic perspective: in Refs. [6, 68, 70], a free assemblage is defined as one that arises when
all parties share a quantum system prepared in a fully separable state, and the Alices perform
local measurements on their subsystems – this leads to all and only assemblages of the form of
Eq. (34).

Finally, it is worth noting that in this discussion we have focused on multipartite EPR
scenarios with multiple Alices and one Bob. However, a possible multipartite EPR scenario
comprises also multiple Bobs. Such a multipartite scenario is beyond the scope of this work,
however, it would be interesting to see which other approaches to defining free assemblages it
gives rise to13.

4.3 Exposure of ‘steering’
Exposure of ‘steering’ refers to a process in which a resourceful assemblage in an EPR scenario
can be created from a free assemblage in a multipartie EPR scenario, by performing a global
operation on the Alices. Notice that such an operation may change the type of scenario under
study; e.g., it may transform a tripartite assemblage into a bipartite one.

A type-changing transformation of this nature is considered in Ref. [71], where Taddei et
al. focus on a tripartite EPR scenario with two Alices and one Bob. As a case study, they take a
free tripartite assemblage to be defined as per Eq. (32), when no extra constraints are imposed
on p(a1, a2|x1, x2, λ) other than the implicit fine tuning condition. The global operation on
the two Alices is a wiring operation – the measurement outcome of one Alice is taken as the
choice of measurement for the other Alice. Taddei et al. argue that this global operation should
not increase the Alices’ capability to remotely ‘steer’ Bob’s system, since no global action is
performed across the Bob-vs-Alices divide, i.e., this global operation should be a free operation
(at least relative to the Bob-vs-Alices divide). Despite this intuition, they find that a wiring
between the Alices in a tripartite free assemblage may give rise to a new bipartite assemblage
that is nonfree.

This then raises important conceptual questions, since a well-defined compositional resource
theory should not allow one to create nonfree resources by using free operations on free resources,
even if the free transformation is type-changing. The set of free resources in any resource theory
must be closed under free operations [30]. The spectre of ‘steering’ exposure emphasizes the
importance of choosing one’s set of free resources and free operations wisely and consistently.

As Taddei et al. observe, then, ‘steering’ exposure implies an inconsistency taking Eq. (32)
to define the set of free resources (together with taking wirings-and-S-1W-LOCC as free opera-
tions). They then derive the largest set of assemblages that do not allow for ‘steering’ exposure
under these free operations, and show this set to be those assemblages that admit a TO-LHS
model. Hence, they argue that the set of free assemblages should be taken to be defined by
Eq. (33).

One awkwardness of this proposal is that the set of TO-LHS assemblages includes assem-
blages that are not quantumly-realizable; i.e., that cannot be produced by Bob and the Alices
sharing a multipartite quantum system and performing local measurements on it. An example

13In the case of our LOSR resource theory of nonclassical assemblages the situation is straightforward: all the
parties share a classical common cause, and each Bob locally prepares a quantum system on a state that depends
on the value of such shared classical randomness.
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of this arises when pA1→A2(a1, a2|x1, x2, λ) = pA2→A1(a1, a2|x1, x2, λ) is equal to ‘a Popescu-
Rohrlich box’ [73] for all λ. This sort of definition, then, is clearly not suitable for studying
generic nonclassicality in multipartite EPR scenarios, but rather could only be suitable as a
way of studying nonclassicality across the Alices-vs-Bob partition.

Another problem with Taddei et al.’s approach is that it comes at the expense of introducing
an arbitrary divide between free resources and free processes. That is, as argued in the previous
section, the set of free resources defined by Eq. (33) does not constitute all and only those that
can be constructively built out of S-1W-LOCC operations, as the standard approach to resource
theories requires. Indeed, any TO-LHS assemblage for which the marginal correlations shared
between the Alices is post-quantum will be a counterexample, since the classical communication
from Bob to the Alices is not sufficient to set up such correlations.

Note that Taddei et al.’s approach is only one way to avoid exposure phenomena. A second
way to avoid it is to consider a different set of free operations. Indeed, in our approach, neither
the free operations nor the free resources are taken to be the sets that Taddei et al. considered.
Furthermore, our approach does not allow for any exposure phenomena, nor does it face the
issues we just outlined which arise in Taddei et al.’s TO-LHS approach. Note first that in
our approach, wirings are not free LOSR operations, since our approach does not only aim to
characterize nonclassicality between the Alices-vs-Bob partition, but rather any nonclassicality
of common cause, shared between any of the parties. As such, wirings among black-box parties
can of course increase the nonclassicality of a given common-cause process. In our approach,
then, the question of exposure is whether nonfree transformations that act globally on the
Alices—but do not act on Bob—are capable of transforming free resources to resources which
require nonclassical common causes shared across the Alices-vs-Bob divide. But such exposure
phenomena are not possible in our approach. Indeed, the set of LOSR-free assemblages is
strictly contained within the set of TO-LHS assemblages, and hence (by Taddei et al.’s result)
they cannot yield exposure.

For completeness, we further note that in our resource theory, it is indeed the case that the
free resources are all and only those that can be constructed out of free (i.e., LOSR) operations,
so that the consistency condition mentioned above is satisfied.

5 Conclusions and outlook
In this paper, we developed a resource theory of nonclassicality for assemblages in EPR scenarios,
with its free operations defined as local operations and shared randomness. This choice of free
processes is motivated by the causal structure of the EPR scenario, together with a viewpoint
on EPR scenarios wherein Alice’s actions allow her to make inferences about the physical state
of Bob’s system rather than to remotely steer (i.e., influence) it. This is the first resource theory
for assemblages in multipartite EPR scenarios.

We proved that resource conversions in our resource theory can be tested using a single
instance of a semidefinite program, in both bipartite and multipartite EPR scenarios. These
semidefinite programs – which we give – are the first tools that allow one to explore systemati-
cally free conversions of assemblages. We also proved that the pre-order of (both bipartite and
multipartite) assemblages contain an infinite number of incomparable assemblages. To prove
this, we constructed new EPR monotones, which may be useful in their own right for other
tasks.

The causal approach that we have endorsed here brings a new perspective to fundamental
questions regarding EPR scenarios. Firstly, we have motivated a principled approach to defining
the set of classically-explainable assemblages in multipartite EPR scenarios from a resource-
theoretic perspective. In addition, our approach (in contrast to the approach of Ref. [71]) ensures
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that the free set of resources and the free set of operations are consistent, in the sense that the
free resources are all and only those that can be constructed out of free operations. Finally,
our approach ensures that there are no free type-changing operations that do not preserve the
free set (i.e., that there is no ‘steering exposure’), and sheds light on previous approaches to
ensuring this property. As far as we know, this is the first resource theory defined for EPR
assemblages that satisfies these (in our opinion) important properties, highlighting the value of
taking our principled LOSR approach.

The resource theory of nonclassicality of assemblages is an instance of a general construc-
tion for studying the nonclassicality of common-cause processes. This principled approach was
previously used to study LOSR-entanglement [21], nonclassical correlations in Bell scenarios
[20], and indeed arbitrary types of common-cause processes [22, 23]. Our work continues the
development of this program in the specific context of EPR scenarios, and in doing so provides
a perspective on EPR ‘steering’ which unifies it with other pertinent notions of nonclassical-
ity. A natural continuation of this work would be to study other EPR-like scenarios, wherein
the process of Bob about which Alice is learning is not merely a quantum output system, but
rather a dynamical process. Indeed, in our forthcoming paper we develop a resource theory for
Bob-with-input scenarios and channel EPR scenarios.

Another relevant research avenue would be to extend the enveloping theory to include post-
quantum common-cause processes [36, 49, 50] (e.g., described by processes in arbitrary gener-
alized probabilistic theories [55, 74, 75]). Scenarios such as the multipartite EPR scenario and
the Bob-with-Input scenario are of particular importance for these questions because – unlike
the bipartite EPR scenario – they allow for post-quantum assemblages. In order to quantify the
nonclassicality of such assemblages, one would again take the free set to be defined by LOSR
operations, and apply all the tools and monotones developed herein. Alternatively, one could
study not the nonclassicality, but rather the post-quantumness of these resources, by taking
the free set to be defined by local operations and shared entanglement (LOSE operations), as
argued in Ref. [36, 76]. In this latter resource theory, one would be studying not the possibilities
allowed by quantum theory, but rather the limitations imposed by quantum theory.

Given that both entanglement and incompatibility are necessary resources for generating
nonclassical assemblages, another interesting line of work would be to explore how our resource
theory of EPR assemblages emerges from the resource theories of incompatibility [48] and en-
tanglement [21].

Finally, an interesting question pertains to the notion of self-testing of quantum states, which
is relevant for the certification of quantum devices in communication and information processing
protocols. Ref. [21] shows that self-testing of states can indeed be defined in a resource-theoretic
framework. It would be interesting to see how self-testing of quantum assemblages (cf. Refs. [77–
79]) may be understood from the tools we developed in our work, such as the resource-conversion
SDP tests.
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[7] Alejandro Máttar, Paul Skrzypczyk, Gabriel Aguilar, Ranieri V Nery, PH Souto Ribeiro,
Stephen Walborn, and Daniel Cavalcanti. “Experimental multipartite entanglement and
randomness certification of the w state in the quantum steering scenario”. Quantum Science
and Technology 2, 015011 (2017).

[8] Cyril Branciard, Eric G Cavalcanti, Stephen P Walborn, Valerio Scarani, and Howard M
Wiseman. “One-sided device-independent quantum key distribution: Security, feasibility,
and the connection with steering”. Physical Review A 85, 010301 (2012).

[9] Yu Xiang, Ioannis Kogias, Gerardo Adesso, and Qiongyi He. “Multipartite gaussian steer-
ing: Monogamy constraints and quantum cryptography applications”. Phys. Rev. A 95,
010101 (2017).

[10] Matthew F Pusey. “Negativity and steering: A stronger Peres conjecture”. Physical Review
A 88, 032313 (2013).

[11] Paul Skrzypczyk, Miguel Navascués, and Daniel Cavalcanti. “Quantifying Einstein-
Podolsky-Rosen steering”. Physical review letters 112, 180404 (2014).

[12] Marco Piani and John Watrous. “Necessary and sufficient quantum information character-
ization of Einstein-Podolsky-Rosen steering”. Physical review letters 114, 060404 (2015).

[13] Rodrigo Gallego and Leandro Aolita. “Resource theory of steering”. Physical Review X 5,
041008 (2015).

[14] Judea Pearl. “Causality”. Cambridge University Press. (2009).
[15] Christopher J Wood and Robert W Spekkens. “The lesson of causal discovery algorithms for

quantum correlations: causal explanations of bell-inequality violations require fine-tuning”.
New Journal of Physics 17, 033002 (2015).

[16] Julio I De Vicente. “On nonlocality as a resource theory and nonlocality measures”. Journal
of Physics A: Mathematical and Theoretical 47, 424017 (2014).

[17] Joshua Geller and Marco Piani. “Quantifying non-classical and beyond-quantum correla-
tions in the unified operator formalism”. Journal of Physics A: Mathematical and Theo-
retical 47, 424030 (2014).

[18] Rodrigo Gallego and Leandro Aolita. “Nonlocality free wirings and the distinguishability
between bell boxes”. Physical Review A 95, 032118 (2017).

26

https://dx.doi.org/https://doi.org/10.1103/PhysRev.47.777
https://dx.doi.org/https://doi.org/10.1017/S0305004100013554
https://dx.doi.org/https://doi.org/10.1017/S0305004100013554
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.80.032112
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.80.032112
https://dx.doi.org/https://doi.org/10.1103/PhysRevLett.98.140402
https://dx.doi.org/https://doi.org/10.1103/PhysRevLett.98.140402
https://dx.doi.org/https://doi.org/10.1103/RevModPhys.92.015001
https://dx.doi.org/https://doi.org/10.1038/ncomms8941
https://dx.doi.org/https://doi.org/10.1088/2058-9565/aa629b
https://dx.doi.org/https://doi.org/10.1088/2058-9565/aa629b
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.85.010301
https://dx.doi.org/https://link.aps.org/doi/10.1103/PhysRevA.95.010101
https://dx.doi.org/https://link.aps.org/doi/10.1103/PhysRevA.95.010101
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.88.032313
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.88.032313
https://dx.doi.org/https://doi.org/10.1103/PhysRevLett.112.180404
https://dx.doi.org/https://doi.org/10.1103/PhysRevLett.114.060404
https://dx.doi.org/https://doi.org/10.1103/PhysRevX.5.041008
https://dx.doi.org/https://doi.org/10.1103/PhysRevX.5.041008
https://dx.doi.org/https://doi.org/10.1017/CBO9780511803161
https://dx.doi.org/https://doi.org/10.1088/1367-2630/17/3/033002
https://dx.doi.org/https://doi.org/10.1088/1751-8113/47/42/424017
https://dx.doi.org/https://doi.org/10.1088/1751-8113/47/42/424017
https://dx.doi.org/https://doi.org/10.1088/1751-8113/47/42/424030
https://dx.doi.org/https://doi.org/10.1088/1751-8113/47/42/424030
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.95.032118
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semidefinite programming, version 1.3”. Optimization Methods and Software 11, 545–
581 (1999).

[64] Nathaniel Johnston. “QETLAB: a MATLAB toolbox for quantum entanglement”.
url: http://qetlab.com.

[65] Beata Zjawin, David Schmid, Matty J. Hoban, and Ana Belén Sainz.
code: beatazjawin/Quantifying-EPR.

[66] Ryszard Horodecki, Pawe l Horodecki, Micha l Horodecki, and Karol Horodecki. “Quantum
entanglement”. Rev. Mod. Phys. 81, 865–942 (2009).

[67] Cédric Bamps and Stefano Pironio. “Sum-of-squares decompositions for a family of Clauser-
Horne-Shimony-Holt-like inequalities and their application to self-testing”. Physical Review
A 91, 052111 (2015).

[68] Eric G Cavalcanti, Qiongyi Y He, Margaret D Reid, and Howard M Wiseman. “Unified
criteria for multipartite quantum nonlocality”. Physical Review A 84, 032115 (2011).

[69] Alexander A Klyachko. “Quantum marginal problem and n-representability”. Journal of
Physics: Conference Series 36, 014 (2006).

[70] Daniel Cavalcanti and Paul Skrzypczyk. “Quantum steering: A review with focus on
semidefinite programming”. Reports on Progress in Physics 80, 024001 (2016).

[71] Márcio M Taddei, Thais de Lima Silva, Ranieri V. Nery, Gabriel Aguilar, Stephen P
Walborn, and Leandro Aolita. “Exposure of subtle multipartite quantum nonlocality”.
npj Quantum Information 7, 1–8 (2021).

[72] Flavio Baccari, Remigiusz Augusiak, Ivan Šupić, Jordi Tura, and Antonio Aćın. “Scalable
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A The bipartite tilted Bell inequalities
Consider a bipartite Bell scenario with two dichotomic measurements per party. The Bell
inequality studied in Refs. [19, 67] for this scenario, defined in [67, Eq. (1)], reads:

Iα = α〈A0〉+ 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 , (35)

where α ∈ [0, 2] is a real parameter. For α = 0, I0 correspond to the CHSH inequality.
The set I = {Iα |α ∈ [0, 2]} defines a family of Bell inequalities for the bipartite Bell scenario,

indexed by the parameter α. It was proved in Ref. [19] that the maximum quantum violation
of Iα is given by Imax

α =
√

8 + 2α2, and the classical bound of Iα is given by IC
α = 2 + α. The

value Imax
α is achieved by measuring the observables

A0 = σz , B0 = cos(µ)σz + sin(µ)σx , (36)
A1 = σx , B1 = cos(µ)σz − sin(µ)σx ,

on the quantum state

|θ〉 = cos θ |00〉+ sin θ |11〉 , (37)

with the relation between the parameters α, θ, and µ being the following:

α = 2√
1 + 2 tan2(2θ)

, tan(µ) = sin(2θ) . (38)

In Ref. [67, Section III and Appendix A], it was proved that the Bell inequalities specified by
Eq. (35) provide a robust self-test for the reference states given in Eq. (37).

Remark 14. Let Ãx, B̃y, and |ψ̃〉 be physical observables and a physical quantum state that
achieve the value Imax

α for the Bell inequality Iα. Then, these are equal to (up to local isometries)
the state and observables given in Eqs. (37) and (36).

B Constructing bipartite EPR inequalities from Bell inequalities
We now show how to use the tilted Bell inequalities from the set I, defined in Appendix A, to
construct a family of EPR inequalities [3]. Let us begin by transforming a Bell functional Iα ∈ I
into an EPR functional S. A generic EPR functional is defined as:

S[Σ] = tr

 ∑
a∈A, x∈X

Fa,x σa|x

 . (39)

The Bell expression Iα can be expressed in terms of the elements of Σ as follows:

Iα = α〈A0〉+ 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉

= αtr
{

(M0|0 −M1|0)⊗ IB ρ
}

+ tr
{

(M0|0 −M1|0)⊗B0 ρ
}

+ tr
{

(M0|0 −M1|0)⊗B1 ρ
}

+ tr
{

(M0|1 −M1|1)⊗B0 ρ
}
− tr

{
(M0|1 −M1|1)⊗B1 ρ

}
= tr

{
ασ0|0 − ασ1|0 +B0 σ0|0 −B0 σ1|0 +B1 σ0|0 −B1 σ1|0 +B0 σ0|1 −B0 σ1|1

}
+ tr

{
−B1 σ0|1 +B1 σ1|1

}
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From the above expansion of Iα, we then define an EPR functional S[Σ] by setting:

F0,0 = αI +B0 +B1 = −F1,0 = , F0,1 = B0 −B1 = −F1,1 . (40)

In the expression for S[Σ] given by the operators of Eq. (40) there are plenty of things that still
need to be specified: the value of the parameter α, as well as the operators B0 and B1. This is
the freedom we will leverage to construct a family of EPR inequalities.

Definition 15. EPR functional Sη[Σ]
We define the EPR functional Sη[Σ] via the operators of Eq. (40) by taking:

α = 2√
1 + 2 tan2(2η)

, (41)

B0 = cos(µ)σz + sin(µ)σx ,
B1 = cos(µ)σz − sin(µ)σx ,

tan(µ) = sin(2η) .

A few remarks regarding the properties of Sη[Σ] are in order.

Remark 16. The maximum quantum value Smax
η of Sη[Σ] is given by

Smax
η = 2

√
2
√

1 + 1
1 + 2 tan2(2η)

. (42)

Proof. First notice that ‘optimising Sη[Σ] over quantum assemblages’ is equivalent to ‘optimis-
ing Iα over quantum correlations constrained on Bob’s observables being those from Eq. (41),
and on α and η being related as in Eq. (41)’.

Since the maximum quantum violation Imax
α can indeed be achieved by the operators for Bob

from Eq. (41), then Smax
η = Imax

α . Using the relation between α and η we obtain Eq. (42).

Remark 17. The quantum assemblage Σθ
A|X, defined in Eq. (11), satisfies Sη[Σθ

A|X] = Smax
η if

and only if η = θ.

Proof. The ‘if’ direction is straightforward to prove, by noticing that the state and measurements
used to prepare Σθ

A|X, together with Bob’s observables from Eq. (41), produce correlations that
achieve Imax

α in the corresponding Bell experiment, where α and η are related as in Eq. (41).
The ‘only if’ direction follows from a proof by contradiction. Assume that there exists Σθ

A|X
with θ 6= η, with Sη[Σθ

A|X] = Smax
η . Then, the state and measurements used to prepare Σθ

A|X,
together with Bob’s observables from Eq. (41), become a quantum realisation of correlations
that achieve Imax

α for the Bell functional Iα, where α = 2√
1+2 tan2(2η)

.
By Remark 14 then one concludes that there exists a local isometry in Alice’s lab that takes

|θ〉 to |η〉. This local isometry, however, can never exist, since |θ〉 cannot be transformed into
|η〉 by such local operations [21]. Hence, it must be the case that θ = η.

Remark 18. Let ΣA|X be a quantum assemblage, and let ρ and {{Ma|x}a∈A}x∈X be a quantum
state and measurements that realise it. Then, Sη[ΣA|X] = Smax

η if and only if:
- The observables A′0 = M0|0−M1|0 and A′1 = M0|1−M1|1 are equivalent (up to local isometries)
to A0 and A1, respectively, from Eq. (36),
- The quantum state ρ is equivalent, up to local isometries, to |η〉.
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Proof. The ‘if’ direction follows trivially from Remark 17.
To prove the ‘only if’ direction, notice that ρ, {A′j}j=0,1, and Bob’s observables {Bj}j=0,1 from
Eq. (41), provide a quantum realisation of correlations that achieve the maximum value of the
Bell functional Iα, with α and η related as in Eq. (41). From Remark 14 it follows that ρ and
{A′j}j=0,1 must be equal to (up to local isometries) the state and observables of Eqs. (37) and
(36), which proves our claim.

C The multipartite Bell inequalities
Consider N -partite Bell scenario with two dichotomic measurements per party. The Bell in-
equality studied in Ref. [72] for this scenario, defined in Ref. [72, Eq. (13)], reads:

I(N)
α = (N − 1)〈(B0 +B1)A(1)

0 ...A
(N−1)
0 〉+ (N − 1) cos 2α√

1− cos2 2α
(〈B0〉 − 〈B1〉)

+ 1√
1− cos2 2α

N−1∑
i=1
〈(B0 −B1)A(i)

1 〉 ,
(43)

where α ∈ (0, π/4].
The set I(N) = {I(N)

α |α ∈ (0, π/4]} defines, for fixed N , a family of Bell inequalities for the
multipartite scenario, indexed by the parameter α. It was shown in Ref. [72] that the maximum

quantum violation of I
(N)
α is given by I

(N) max
α = 2

√
2(N − 1), and the classical bound of I

(N)
α is

given by I
(N) C
α = (N−1) 1−cos 2α√

1−cos 2α . The value I
(N) max
α is achieved by measuring the observables

A
(i)
0 = σx , B0 = cos(µ)σz + sin(µ)σx , (44)

A
(i)
1 = σz , B1 = − cos(µ)σz + sin(µ)σx , (45)

for i ∈ {1...N-1}, on the quantum state

|GHZθN 〉 = cos θ |0〉⊗N + sin θ |1〉⊗N , (46)

with the relation between the parameters α, θ, and µ being the following:

α = θ , 2 sin2(µ) = sin2(2θ) . (47)

It was also proved in Ref. [72] that the inequality (43) can be used to self-test the the state in
Eq. (46) for any θ ∈ (0, π/4].

Remark 19. Let Ã(i)
x , B̃y, and |ψ̃〉 be physical observables and a physical quantum state that

achieve the value I
(N) max
α for the Bell inequality I

(N)
α . Then, these are equal to (up to local

isometries) the state and observables of Eqs. (46), (44), and (45).

D Constructing multipartite EPR inequalities from Bell inequalities

We now define a family of multipartite EPR functionals S
(N)
α from the multipartite Bell in-

equalities I
(N)
α ∈ I(N). A generic N -partite EPR functional is defined as:

S(N)[ΣN ] = tr


∑
ai∈A,
xi∈X

Fa1...aN−1,x1...xN−1 σa1...aN−1|x1...xN−1

 . (48)
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To transform the Bell functional to the EPR functional, notice the following relations. First,
for any choice of x1 . . . xN−1, we can write:

〈B〉 = tr {B ρB} =
∑

a1...aN−1

tr
{
B σa1...aN−1|x1...xN−1

}
. (49)

Moreover,

〈(B0 −B1)A(i)
1 〉 = tr

{
I(1) ⊗ . . .⊗ (M̃0|1 − M̃1|1)(i) ⊗ . . .⊗ I(N−1) ⊗ (B0 −B1) ρ

}
= tr

{
(B0 −B1) (σ(i)

0|1 − σ
(i)
1|1)
}
,

(50)

where σ
(i)
a|x =

∑
aj ,j 6=i σa1...(ai=a)...aN−1|x1...(xi=x)...xN−1 .

Lastly,

〈(B0 +B1)A(1)
0 . . . A

(N−1)
0 〉 = tr

{
(M̃0|0 − M̃1|0)(1) ⊗ . . .⊗ (M̃0|0 − M̃1|0)(N−1) ⊗ (B0 +B1) ρ

}
=

∑
a1,...,aN−1

(−1)a1+...+aN−1tr
{
M̃

(1)
a1|0 ⊗ . . .⊗ M̃

(N−1)
aN−1|0 ⊗ (B0 +B1) ρ

}
=

∑
a,...,aN−1

(−1)a1+...+aN−1tr
{

(B0 +B1)σa1...aN−1|0...0
}
.

(51)

Using the above relations, we define an EPR functional S
(N)
α [ΣN ] by setting:

Fa1...aN−1,0...0 = (N − 1)(−1)a1+...+aN−1(B0 +B1)+(N − 1) cos 2α√
1− cos2 2α

(B0 −B1), (52)

Fa1...(ai=a)...xN−1,x1...(xi=1)...xN−1 = (−1)a 1√
1− cos2 2α

(B0 −B1).

From the operators of Eq. (52), we construct a family of EPR functionals as follows.

Definition 20. EPR functional S(N)
η [ΣN ].

We define the EPR functional S(N)
η [ΣN ] via the operators of Eq. (52) by taking:

α = η , (53)
B0 = cos(µ)σz + sin(µ)σx ,
B1 = − cos(µ)σz + sin(µ)σx ,

2 sin2(µ) = sin2(2η) .

The properties of the multipartite EPR functional from Definition 20 can be studied in a
similar manner to the properties of the bipartite EPR functional from Definition 15. We now
make a few remarks about these properties.

Remark 21. The maximum quantum value S(N) max
η of S(N)

η [ΣN ] is given by

S(N) max
η = 2

√
2 (N − 1) . (54)

Proof. The problem of optimising S
(N)
η [ΣN ] over quantum assemblages is equivalent to the

problem optimising I
(N)
α over quantum correlations constrained on Bob’s observables being

those from Eq. (53) for α = η. Since the maximum quantum violation I
(N) max
α can indeed be

achieved by the operators for Bob from Eq. (53), then S
(N) max
η = I

(N) max
α .
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In order to explore quantum assemblages that achieve this maximum violation, first we need
to prove a claim about the interconvertibility of the quantum states of the form given in Eq. (28)
under LOSR operations. Let us recall Corollary 8 in [21].

Remark 22 ([21, Corollary 8]). An n-partite pure state |ψ〉 can be converted to an n-partite
pure state |φ〉 by LOSR only if

∃ |ζ〉 ,∀β : (λ(β)
ψ )↓ = (λ(β)

φ ⊗ λ
(β)
ζ )↓ (55)

where for a pure state |ω〉, λ(β)
ω denotes the vector of its squared Schmidt coefficients with respect

to bipartition β of the n-partite system.

We are now in position to prove the following Lemma.

Lemma 23. Let ρθN = |GHZθN 〉 〈GHZθN | be defined as per Eq. (28). Then

ρθN
LOSR
6−→ ρφN , (56)

for any θ 6= φ ∈ (0, π/4].

Proof. Let ρθN = |GHZθN 〉 〈GHZθN | and ρφN = |GHZφN 〉 〈GHZ
φ
N | with θ 6= φ ∈ (0, π/4]. All

bipartitions β of ρθN and ρφN have the same Schmidt rank, which is 2 for all β. However, for all
β, the vectors of the squared Schmidt coefficients λ(β)

θ are different than λ
(β)
φ , since

λ
(β)
θ =

[
cos2 θ
sin2 θ

]
and λ

(β)
φ =

[
cos2 φ
sin2 φ

]
.

By applying Corollary 9 of Ref. [21], it follows that there exists no |ζ〉 such that the condition
specified in Eq. (55) is satisfied. From Remark 22 it follows that ρθN and ρφN are such that
neither converts to the other under LOSR operations.

Remark 24. The multipartite quantum assemblage Σθ
N satisfies S(N)

η [Σθ
N ] = S

(N) max
η if and

only if η = θ.

Proof. The ‘if’ direction is straightforward to prove, by noticing that the state and measurements
used to prepare Σθ

N , given by Eqs. (28) and (29), together with Bob’s observables from Eq. (53),
produce correlations that achieve I(N) max

α in the corresponding Bell experiment, where α = η.
The ‘only if’ direction follows from a proof by contradiction. Assume that there exists

Σθ
N with θ 6= η, such that S(N)

η [Σθ
N ] = S

(N) max
η . Then, the state and measurements used to

prepare Σθ
N , together with Bob’s observables from Eq. (53), become a quantum realisation of

correlations that achieve I(N) max
α for the Bell functional I(N)

α , where α = η. Then, it follows from
Remark 19 that there exists a local isometry in Alice’s lab that takes ρθN to ρηN (both defined
in Eq. (28)). However, such local isometry does not exist, as it would contradict Lemma 23.
Hence, it must be the case that θ = η.

Remark 25. Let ΣN be a quantum assemblage, and let ρ and {{Mai|xi}ai∈A}xi∈X , i∈{1,...,N−1}

be a quantum state and measurements that realise it. Then, S(N)
η [ΣN ] = S

(N) max
η if and only

if:
- The observables A

′(i)
0 = M0|0 − M1|0 and A

′(i)
1 = M0|1 − M1|1 are equivalent (up to local

isometries) to A
(i)
0 and A

(i)
1 , respectively, from Eqs. (44) and (45) for each Alice, i.e., i ∈

{1, . . . , N − 1},
- The quantum state ρ is equivalent, up to local isometries, to ρηN .
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Proof. The ‘if’ direction follows trivially from Remark 24.
To prove the ‘only if’ direction, notice that ρ and {A′(i)j }j=0,1 , i∈{1,...,N−1}, together with Bob’s
observables {Bj}j=0,1 from Eq. (53), provide a quantum realisation of correlations that achieve
the maximum value of the Bell functional I(N)

α , with α = η. From Remark 19 it follows that ρ
and {A′(i)j }j=0,1 , i∈{1,...,N−1} must be equal to (up to local isometries) the state and observables
of Eq. (46), (44), and (45), which proves our claim.

E Proof of Corollary 12
In this section, we give a proof of Corollary 12, which pertains to multipartite quantum assem-
blages.

Let us make a few remarks about the properties of the resource monotone M(N)
η given by

Definition 11. First, note that when ΣN is a quantum assemblage, its LOSR processing Σ̃N

is also a quantum assemblage. Hence, S
(N)
η [Σ̃N ] is upperbounded by its maximum quantum

violation, which is given by S
(N)
η [Ση

N ]:

M(N)
η [ΣN ] ≤ S(N)

η [Ση
N ] ∀ η ∈ (0, π/4] . (57)

Second, note that M(N)
η [Ση

N ] = S
(N)
η [Ση

N ]. These two properties set the stage for the following
theorem:

Theorem 26. For a monotone M(N)
η given in definition 11 and an EPR functional S(N)

η specified
in definition 20, if θ 6= η, then M(N)

η [Σθ
N ] < S

(N)
η [Ση

N ].

Proof. Let us prove this by contradiction. Our starting assumption is that there exists a pair
(θ , η) with θ 6= η, such that M(N)

η [Σθ
N ] = S

(N)
η [Ση

N ]. Then, one of the two should happen:

First case: M(N)
η [Σθ

N ] = S
(N)
η [Σθ

N ].
In this case, the solution to the maximisation problem in the computation of M(N)

η is achieved
by Σθ

N itself.
Our starting assumption then tells us that S(N)

η [Σθ
N ] = S

(N)
η [Ση

N ] = S
(N) max
η .

From Remark 24 it follows that necessarily θ = η, which contradicts our initial condition.

Second case: M(N)
η [Σθ

N ] = S
(N)
η [Σ̃N ], with Σθ

N
LOSR−→ Σ̃N .

In this case, the solution to the maximisation problem in the computation of Mη is achieved by
an LOSR processing of Σθ

N . Our starting assumption then tells us that S(N)
η [Σ̃N ] = S

(N)
η [Ση

N ] =
S

(N) max
η . Let ρ and {{Mai|xi}ai∈A}xi∈X , i∈{1,...,N−1} be any quantum state and measurements

that realise the quantum assemblage Σ̃N in N -partite EPR scenario. From Remark 25, we
know that ρ is equivalent to ρηN up to local isometries. But since local isometries are free LOSR
operations, this means that ρθN

LOSR−→ ρηN , which contradicts Lemma 23.

We can now prove that S(N) is composed of pairwise unordered resources. In analogue
to the bipartite case, to prove this claim it suffices to find a set of EPR LOSR monotones
M = {Mj} such that, for every pair (θ1, θ2) there exists a pair (M1,M2) with M1(Σθ1

N ) >

M1(Σθ2
N ) , M2(Σθ1

N ) < M2(Σθ2
N ). As we see next, this is achieved by choosing Mk = M(N)

θk
.

35



Theorem 27. For every pair θ1 6= θ2, the monotones M (N)
θ1

and M
(N)
θ2

given by Definition 11
satisfy

M(N)
θ1

(Σθ1
N ) > M(N)

θ1
(Σθ2

N ) , (58)

M(N)
θ2

(Σθ1
N ) < M(N)

θ2
(Σθ2

N ) . (59)

Proof. Let us first prove Eq. (58). We know that M(N)
θ1

(Σθ1
N ) = S

(N)
θ1

[Σθ1
N ]. However, since

θ1 6= θ2, Theorem 26 implies that M(N)
θ1

(Σθ2
N ) < S

(N)
θ1

[Σθ1
N ]. Therefore, Eq. (58) follows.

The proof of Eq. (59) follows similarly.

Corollary 12 follows directly from Theorem 27.

F Proof of Proposition 13

Let us focus on the family of assemblages Σθ,p
A|X defined by Eq. (10). In Corollary 8 we showed

that under LOSR operations, all assemblages Σθ,1
A|X are incomparable for θ ∈ (0, π/4]. We will

now show that under S-1W-LOCC, the assemblage Σπ/4,1
A|X is above all others in the family;

hence, the pre-orders in the two different resource theories are different.

The S-1W-LOCC map that maps Σπ/4,1
A|X to Σθ,1

A|X is very simple: the instrument has a

single outcome, say 0, and the corresponding map E0(·) on Bob’s system is M0 ·M †0 , where

M0 = cos(θ) |0〉 〈0| + sin(θ) |1〉 〈1| for the value of θ corresponding to the assemblage Σθ,1
A|X. A

straightforward calculation confirms that this map converts from Σπ/4,1
A|X to the target assem-

blage, and that the outcome 0 occurs with probability 1/2. Remarkably, this map does not
even require communication and is actually an example of a stochastic-LOSR operation, i.e.,
an LOSR map without the requirement that the map applied on Bob’s subsystem is trace-
preserving, but occurs with non-zero probability.

One could argue that the reason the pre-orders are different for stochastic-1W-LOCC and
LOSR is because of the stochastic nature of the former. However, the pre-orders for deterministic
1W-LOCC maps and LOSR is again different; as before, there is such a deterministic 1W-LOCC

map that converts Σπ/4,1
A|X to Σθ,1

A|X. It is defined as follows: there are two outcomes ω ∈ {0, 1}
where, for outcome 0, E0(·) = M0 ·M †0 (as before), and for outcome 1, E1 = M1 ·M †1 , where
M1 = sin(θ) |1〉 〈0| + cos(θ) |0〉 〈1|. One can readily confirm that this is trace-preserving, since

M †0M0 + M †1M1 = I. Bob then communicates the outcome ω to Alice, whose input x is equal
to the input x′ to her measurement device. Once she gets the output a′ of the measurement,
the final output becomes a = a′ ⊕ xω ⊕ ω. To summarise, Alice will flip the output of her
measurement if and only if x = 0 and ω = 1.
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1 Introduction
It is a well-established fact that nature exhibits phenomena that are not explainable by clas-
sical laws of physics. Some of these phenomena, such as Bell nonclassicality [1, 2], pertain to
correlational aspects of distant physical systems. For instance, Einstein-Podolsky-Rosen (EPR)
‘steering’ [3–5] refers to a scenario where local measurements on half of a system prepared in
an entangled state can generate nonclassical correlations between two distant parties. This
phenomenon is a crucial resource for various information-theoretic tasks [6, 7], such as quantum
cryptography [8, 9], entanglement certification [10, 11], randomness certification [12, 13], and
self-testing [14–16]. The wide applicability of EPR correlations motivates a program of charac-
terizing their resourcefulness [5, 17–21], both in the standard EPR scenario and in multipartite
generalizations thereof.

1.1 Generalizations of the EPR scenario
The standard EPR scenario consists of two parties, Alice and Bob, that share a bipartite system
prepared in an entangled state. By performing measurements on her share of the system, Alice
updates her knowledge about the state of Bob’s subsystem1. Various generalizations of this
standard scenario have been introduced in recent years, wherein Bob also may probe his system
in various ways. In such cases, Alice’s measurements allow her to make inferences not merely
about the state of Bob’s system, but also about the overall process in Bob’s laboratory. Instances
of such scenarios include the channel EPR scenario [25], Bob-with-input EPR scenario [26],
measurement device-independent EPR scenario [27], and the famous Bell scenario [2, 22]. These
scenarios are all closely related, and a unified framework for understanding them was introduced
in Refs. [24, 28]. One can easily understand the basic relationship between these distinct
scenarios by considering Fig. 1. The standard EPR scenario is shown in Fig. 1(a); here, Alice
and Bob share a quantum system, and Alice performs measurements labeled by classical inputs
to obtain classical outputs. When Bob performs measurements with classical input and output
systems as well, as illustrated in Fig. 1(b), one recovers the Bell scenario [2, 22]. More generally,
when Bob’s input and output systems are quantum, as shown in Fig. 1(c), one obtains the
channel EPR scenario [25]. If Bob’s input is quantum and the output is classical, one recovers the
measurement-device-independent EPR scenario [27], shown in Fig. 1(d), wherein Alice makes
inferences about Bob’s measurement channel. Finally, if the input is classical and the output is
quantum, one recovers the Bob-with-input EPR scenario [26], illustrated in Fig. 1(e), wherein
Alice makes inferences about Bob’s state preparation channel. These scenarios all have a similar
common-cause causal structure; what distinguishes them is the type – classical or quantum – of
Bob’s input and output system.

In every type of EPR scenario, Alice chooses from various incompatible methods of refining
her knowledge about Bob’s process. Her knowledge after performing her local measurements is
represented by an ensemble of Bob’s updated processes together with their associated proba-
bilities of arising. In analogy to the traditional EPR scenario, the collection of these ensembles
(one for each of her possible measurements) is termed an assemblage [17]. In other words, the
standard concept of a collection of ensembles of quantum states in the standard EPR scenario

1The fact that Alice learns about Bob’s distant subsystem is sometimes taken to be evidence for action-at-a-
distance. The very term ‘steering’ suggests that Alice has a causal influence on Bob’s system. In this paper, we
do not endorse this view, as we take the causal structure of the EPR scenario to be a common cause one. For
this reason, we will refer to a ‘steering scenario’ as an EPR scenario and say that Alice updates her knowledge
about the state of Bob’s subsystem, rather than ‘steering’ him. For more discussion of and motivation for this
view, see Refs. [21–24]
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(a) (b) (c) (d) (e)

Figure 1: Generalizations of the traditional EPR scenario: (a) traditional bipartite EPR scenario. (b) Bell
scenario. (c) Channel EPR scenario. (d) Measurement-device-independent EPR scenario. (e) Bob-with-input
EPR scenario. Quantum and classical systems are depicted by double and single lines, respectively. In the
special case when the common cause in each scenario is classical, these are all free resources. Thick black lines
depict the possibility that the shared systems may be classical, quantum, or even post-quantum, as discussed
in Section 1.2.

turns into a collection of ensembles of processes in these generalized EPR scenarios. The as-
semblage associated to a given scenario contains all the relevant information for characterizing
the correlational resources shared between the parties in the scenario.

1.2 The resource theory
In every type of EPR scenario, the most basic problem is identifying which assemblages provide
evidence of nonclassicality – that is, which assemblages can only be generated if Alice and Bob
share a nonclassical common cause [21]. One can then ask about the relative nonclassicality of
assemblages, i.e., whether a given assemblage is more or less nonclassical than another. This line
of reasoning leads to the framework of resource theories, a principled approach to quantifying
the value of a broad range of objects. This approach has proved to be useful in many areas of
physics, including coherence [29–31], athermality [32–37], LOCC-entanglement [38–40], LOSR-
entanglement [23, 41], and other common-cause processes [22, 24, 28], including some beyond
what quantum theory allows (i.e., post-quantum processes) [42–44].

In this work, we develop a resource theory which quantifies the nonclassicality of channel as-
semblages in channel EPR scenarios, subsuming all of the special cases in Fig. 1. This resource
theory is itself a special case (where one focuses on EPR scenarios) of the type-independent
resource theory introduced in Refs. [24, 28], which are motivated by the causal modelling per-
spective on studying nonclassicality [45, 46]. Note that the special case of standard EPR sce-
narios (bipartite and multipartite, with quantum common-cause systems) is analyzed in detail
in Ref. [21]; hence, we will not focus on them here. Similarly, the special case of Bell scenarios
was studied in detail in Ref. [22], and so is not studied in detail here.

In this resource theory of channel assemblages, the free resources – that is, classical assem-
blages – are those that can be generated by local operations and classical common causes. This
approach is motivated by previous works [21–24, 28] which argue that the resourcefulness in
scenarios of this type is best characterized as nonclassicality of the common-cause. It follows
that the operations that can be applied to the resources without increasing their nonclassicality
include local operations and classical common causes. In other words, the free operations in
our resource theory are local operations and shared randomness (LOSR).

Another important ingredient in the definition of a resource theory is its enveloping theory,
which specifies the scope of all possible resources under consideration. Refs. [20, 21] study the
case of bipartite and multipartite EPR scenarios where the enveloping theory is taken to be
that of quantum resources, i.e., assemblages that Alice and Bob can prepare in the laboratory
by performing classically-correlated local actions on a shared quantum system that may be
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prepared on an entangled state. In this work, however, we consider the enveloping theory to
contain all assemblages which can be generated by Alice performing measurements on a bipartite
system whose state may be described by an arbitrary theory (a possibility formalized within the
framework of generalized probabilistic theories and depicted by thick lines in Fig. 1) [47]. As
shown by Ref. [47], this enveloping theory contains all and only the no-signalling assemblages.
Notably, not every assemblage that satisfies the no-signalling principle can be generated by Alice
and Bob sharing quantum resources [26, 48]; this is in analogy to Popescu-Rohrlich boxes [49]
in Bell scenarios. An exception is given by assemblages in traditional bipartite EPR scenarios,
where the renowned theorem by Gisin [50] and Hughston, Josza, and Wootters [51] (GHJW)
proves that the most general assemblages – the non-signalling ones – all admit a quantum
realization. Our broadening of the enveloping theory of resources allows for a perspective from
which to study how quantum resources emerge and how their resourcefulness is bounded relative
to all logically possible resources. This is a main advantage of the resource theory presented in
this work over the resource theory we developed in Ref. [21]. For this reason, we mainly focus
on studying post-quantum resources in this paper.

1.3 Summary of main results
In Section 2, we specify the resource theory of channel EPR scenarios. This section includes the
formal definition of the channel EPR scenario and the most general channel assemblage pro-
cessing under LOSR operations. Moreover, we give a semidefinite program for testing resource
conversion under free operations in the corresponding scenario. We then run this program to
study the pre-order of channel assemblages.

In Sections 3 and 4, we focus on two special cases of channel EPR scenarios: Bob-with-input
EPR scenarios and measurement-device-independent EPR scenarios, respectively. We show how
the particular set of free operations emerges in each of these scenarios from the general case
of Section 2 by specifying the necessary system types. We also present simplified semidefinite
programs for testing resource conversion under free operations, and discuss properties of the
pre-order of resources.

Finally, we discuss related work in Section 5. On the one hand, we note that there are
significant conceptual differences between our work and Ref. [25], which first studied channel
EPR scenarios. In particular, Ref. [25] seems to be interested not in nonclassicality in a common-
cause scenario, but rather in scenarios with communication between Bob and Alice. While this
makes no difference for the set of free resources (when one restricts to no-signaling resources),
it does make a significant difference for the overall resource theory. On the other hand, we
highlight the similarities and differences between our approach and the resource theory under
Local Operations and Shared Entanglement from Ref. [42].

2 The channel EPR scenario
In the channel EPR scenario, two distant parties (Alice and Bob) share a physical system AB.
In addition, Bob has a quantum system defined on HBin which he acts on locally by applying
a quantum channel ΛBin→Bout . As a result, he obtains a quantum system defined on HBout .

It is possible that the channel ΛBin→Bout (or its application to system Bin) is being influenced
by the presence of system B in Bob’s lab. If this were the case, the effective channel ΛBin→Bout

would instead be a larger process ΓBBin→Bout acting on both the quantum system Bin and the
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system B. If B were a quantum system, ΓBBin→Bout would be called the channel extension2

of ΛBin→Bout . The idea of a channel EPR scenario is to assume that indeed ΓBBin→Bout is
the process happening at Bob’s lab, and see what Alice can infer about the quantum channel
ΛBin→Bout from the outcome statistics she locally observes on her system A. The way Alice
probes her system A is by performing measurements on it. Fig. 2(a) illustrates such a channel
EPR scenario, where the classical and quantum systems are depicted with single and double
wires, respectively, and the thick wires depict systems which may be classical, quantum, or even
post-quantum.

Let x ∈ X be the classical variable that denotes Alice’s choice of measurements, and a ∈ A the
classical variable that denotes her observed outcome3. By p(a|x) we denote the probability with
which Alice obtains outcome a having performed measurement x on her system A. In addition,
we denote by Ia|x(·) the instrument that is effectively applied on Bob’s quantum system Bin

to produce a quantum system Bout, given that Alice has performed measurement x on A and
obtained the outcome a. It follows then that the object of study in such a channel EPR scenario

is the channel assemblage of instruments IA|X = {Ia|x(·)}a∈A , x∈X, with trBout

{
Ia|x(ρ)

}
= p(a|x)

for every normalised state ρ of quantum system Bin, and
∑

a∈A Ia|x(·) = ΛBin→Bout for all x ∈ X.
Let us illustrate an example of channel assemblages in the case of Alice and Bob sharing

a bipartite quantum system prepared on a state ρAB – that is, we take the common cause
AB mentioned before to be quantum. In this case, Alice’s most general measurements are the
generalized measurements, i.e., positive operator-valued measures (POVMs), which we denote
by {Ma|x}a∈A,x∈X. The elements of this channel assemblage will then be:

Ia|x(·) = trA

{
(Ma|x ⊗ IBout)(IA ⊗ ΓBBin→Bout)[ρAB ⊗ (·)]

}
, (1)

where (·) denotes the input system Bin. For each x ∈ X, the instruments {Ia|x}a∈A form a
channel which does not depend on x, i.e.,

∑
a∈A Ia|x is a completely positive and trace preserving

(CPTP) map [52, 53] which does not depend on Alice’s measurement choice.
In general, however, we will not take the common cause AB to necessarily be a quantum

system. This common cause may be classical or even post-quantum.

2.1 LOSR-free channel assemblages
The fundamental objects that define the notion of nonclassicality in a resource theory are the
free resources. The free channel assemblages, i.e., assemblages that admit a classical description,
are those that can be generated by classical common-cause processes. Therefore, the free assem-
blages in our framework can be understood as objects that arise when Bob locally applies an
instrument and Alice performs a measurement, where both actions depend on a shared classical
random variable. In this situation, Alice can refine her description of Bob’s process by learning
the classical value of the shared variable. In other words, the classical channel assemblages are
those that can be generated from LOSR operations. Formally, the elements of a free channel

2Ref. [25] motivates the correlation between ΛBin→Bout and system B by arguing that the former may be a
noisy quantum channel that leaks information to the environment, which can then correlate itself with B or even
get all the way to Alice’s lab. From our causal perspective, such environment can be taken to be a common cause
between Alice and Bob, whereas the leakage of information can be interpreted as the correlation mechanism that
arises between Alice’s system and Bob’s quantum channel through this common cause.

3In principle, different measurements can have different number of outcomes. Here, for ease of the presentation,
we focus on the case where all of Alice’s measurements have the same number of outcomes. Our techniques
generalize straightforwardly.
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Figure 2: Depiction of a channel EPR scenario. Arbitrary systems (which may be post-quantum) are repre-
sented by thick lines, quantum systems are represented by double lines and classical systems are depicted as
single lines. (a) Channel assemblage: Alice and Bob share a (possibly) post-quantum common cause; Alice’s
input and output systems are classical while Bob’s input and output systems are quantum. (b) The most
general LOSR operation on an assemblage in a channel EPR scenario.

assemblage can be written as

Ia|x(·) =
∑

λ

p(a|x, λ)p(λ)Iλ(·), (2)

where p(λ) represents the state of the common cause, Iλ is a CPTP map (from system Bin to
Bout) for each λ, and p(a|x, λ) is a valid conditional probability distributions for all values of λ.

A convenient representation of Eq. (2) is given by the Choi-Jamio lkowski isomorphism [54,
55]. Recall that every CPTP map E : HB → HB′ can be associated with an operator W

on HB ⊗ HB′ such that E(ρB) = dB trB

{
W ( IB′ ⊗ ρT

B)
}

, where dB is the dimension of the

system ρB. Conversely, the operator W can be written as W = (E ⊗ IB′) |Ω⟩ ⟨Ω|, with |Ω⟩ =
1√
dB

∑dB
i=1 |ii⟩. We will use this representation throughout the paper. Let Ja|x and J ′

λ represent

the Choi-Jamio lkowski operators that correspond to Ia|x and Iλ, respectively. Moreover, denote
p(λ)J ′

λ as Jλ. If {Ia|x}a,x form an LOSR-free channel assemblage, each Ja|x can be expressed
as

Ja|x =
∑

λ

p(a|x, λ)Jλ. (3)

Therefore, checking whether an assemblage IA|X is free amounts to checking if the operators Ja|x
admit a decomposition of the form given in Eq. (3). Moreover, each probability distribution
p(a|x, λ) can be decomposed as p(a|x, λ) =

∑
λ′ p(λ′|λ)D(a|x, λ′), where D(a|x, λ′) is a deter-

ministic probability distribution. It follows that testing whether a channel assemblage IA|X is
free requires a single instance of a semidefinite program (SDP):
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SDP 1. The channel assemblage IA|X is LOSR-free if and only if the following SDP is feasible:

given {Ja|x}a,x , {D(a|x, λ)}λ,a,x ,

find {(Jλ)BinBout}λ

s.t.


Jλ ≥ 0 ∀λ ,
trBout {Jλ} ∝ IBin ∀λ ,∑

λ trBout {Jλ} = 1
dBin

IBin ,

Ja|x =
∑

λD(a|x, λ)Jλ ∀ a ∈ A , x ∈ X .

(4)

Here dBin is the dimension of the Hilbert space HBin associated with system Bin. From here on,
as above, we will use the notation dX to refer to the dimension of the Hilbert space associated
with system X.

2.2 LOSR transformations between channel assemblages
The most general LOSR transformation of a channel EPR assemblage is presented in Fig. 2(b).
Formally, this LOSR operation transforms elements of a channel assemblage IA|X into new ones
that form I′

A′|X′ as follows:

I ′
a′|x′(·) =

∑
λ

∑
a,x

p(λ) p(a′, x|a, x′, λ) Λ
BoutS→B′

out′
λ (Ia|x ⊗ IS) Λ

B′
in′ →BinS

λ (·) , (5)

where
• p(λ) is the probability distribution over the classical random variable λ which coordinates

all the local transformations.
• p(a′, x|a, x′, λ) encodes the classical pre- and post-processing of Alice’s input x and output
a. The output of this process is Alice’s new outcome a′. The probability distribution
p(a′, x|a, x′, λ) satisfies the no-retrocausation condition (the variable a cannot influence
the value of the variable x, i.e., p(x|a, x′, λ̃) = p(x|x′, λ̃)).

• Λ
B′

in′ →BinS

λ is the map corresponding to Bob’s local pre-processing. It acts on his quantum
input on HB′

in′
and outputs a quantum system on a Hilbert space HBin ⊗ HS (the index

S corresponds to the quantum side channel of the local processing4).

• Λ
BoutS→B′

out′
λ is the map corresponding to Bob’s post-processing stage. The output of this

process is Bob’s new quantum system on a Hilbert space HB′
out′

.

It is convenient to express Bob’s pre- and post-processing as a single completely posi-

tive and trace non-increasing (CPTNI) map, which we denote by ξ
B′

in′ Bout→BinB′
out′

λ , where∑
λ ξ

B′
in′ Bout→BinB′

out′
λ forms a CPTP map. The inputs of this new map are the inputs of Bob’s

pre- and post-processing (defined on HB′
in′

⊗HBout) and the outputs of this new map are the out-

puts of Bob’s pre- and post-processing (defined on HB′
out′

⊗ HBin). The map ξ
B′

in′ Bout→BinB′
out′

λ

must be such that there is no signalling from the system defined on HBout to the system de-
fined on HBin , that is, the input of Bob’s post-processing can not influence the output of his
pre-processing. This condition can be expressed as follows:

∀λ ∃ F
B′

in′ →Bin

λ s.t. trB′
out′

{
ξ

B′
in′ Bout→BinB′

out′
λ

}
= F

B′
in′ →Bin

λ ⊗ IBout , (6)

4It is worth noticing that the quantum system on HS is not of arbitrary dimension. By the results of Ref. [56],
its dimension is restricted by the product of the dimensions of HB′

in′
and I′

a′|x′ (·).
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where
∑

λ F
B′

in′ →Bin

λ is a CPTP map. Moreover, it is convenient to use the Choi-Jamio lkowski
isomorphism to express the maps of interest. Let J ′

a′|x′ , Ja|x and Jξ λ correspond to the Choi

representation of maps I ′
a′|x′ , Ia|x and ξ

B′
in′ Bout→BinB′

out′
λ , respectively. Then, Eq. (5) can be

expressed as

J ′
a′|x′ =

∑
λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ , (7)

where the maps are composed using the link product ∗ described in Ref. [57]:

Ja|x ∗ Jξ λ = dBin dBout trBinBout

{
(IB′

in′ B
′
out′

⊗ J
TBout

a|x ) JTBin
ξ λ

}
. (8)

Notice that Alice’s local processing is expressed in terms of deterministic probability distribu-
tions D(·) – this representation was discussed in detail in previous works [21, 22, 58]; we recall
this discussion in Appendix A. In this scenario, the total number of the deterministic strategies
encoded in λ is equal to |A′||A|×|X′| × |X||X′|.

An assemblage IA|X can be converted therefore into a different assemblage I′
A′|X′ under LOSR

if and only if there exist a collection of Choi states {Jξ λ} and operators {Fλ} such that the
elements of I′

A′|X′ can be decomposed as in Eq. (7) with the conditions of Eq. (6). This corre-
spondence enables us to derive the following SDP that checks whether such a decomposition is
possible.

SDP 2. The channel assemblage IA|X can be converted to the channel assemblage I′
A′|X′ under

LOSR operations, denoted by IA|X
LOSR−→ I′

A′|X′, if and only if the following SDP is feasible:

given {Ja|x}a,x , {J ′
a′|x′}a′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {(Jξ λ)BinB′
in′ BoutB′

out′
}λ , {(JF λ)BinB′

in′
}λ

s.t.



Jξ λ ≥ 0 ∀λ ,
trB′

out′ Bin
{Jξ λ} ∝ IBoutB′

in′
∀λ ,∑

λ trB′
out′ Bin

{Jξ λ} = 1
dBout dB′

in′
IBoutB′

in′
,

JF λ ≥ 0 ∀λ ,
trBin {JF λ} ∝ IB′

in′
∀λ ,∑

λ trBin {JF λ} = 1
dB′

in′
IB′

in′
,

trB′
out′

{Jξ λ} = JF λ ⊗ 1
dBout

IBout ∀λ ,
J ′

a′|x′ =
∑

λ

∑
a,xD(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ .

(9)

When the conversion is not possible, we denote it by IA|X
LOSR
̸−→ I′

A′|X′.

This SDP is a feasibility problem. Let us mention that a feasibility problem can always
be converted into an optimization of some linear objective function. Such formulation of the
program is favourable if one wants to increase the robustness of the results. In Appendix B, we
provide an alternative formulation of SDP 2 in this form.

2.3 Properties of the pre-order
One channel assemblage is claimed to be at least as nonclassical as another if a conversion under
free operations from the former to the latter is possible. Therefore, testing assemblage conversion
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under LOSR operations provides information about relative nonclassicality of assemblages. We
now proceed to study the conversions between quantum-realizable and post-quantum channel
assemblages defined below.

2.3.1 Quantum-realizable channel assemblages

First, we focus on an infinite family of quantum-realizable channel assemblages. Consider a
channel assemblage with A = X = {0, 1}. Assume that Alice and Bob have access to a two

qubit system in a Bell state, denoted by ρAB = |ϕ⟩ ⟨ϕ|, with |ϕ⟩ = |00⟩+|11⟩√
2 . Define a family of

channel assemblages R as follows: for an angle θ ∈ (0, π/2], Bob performs a controlled rotation
around the y axis on systems BBin, where the control qubit is B (it is entangled with Alice’s
qubit A) and θ is the rotation angle. We denote such quantum gate by CRθ

y; it can be written
as:

CRθ
y =


1 0 0 0
0 1 0 0
0 0 cos(θ/2) − sin(θ/2)
0 0 sin(θ/2) cos(θ/2)

 . (10)

The measurements Alice performs on her share of the system are given byMa|0 = 1
2{I+(−1)aσz}

and Ma|1 = 1
2{I + (−1)aσx}, where σz and σx are Pauli matrices. Then, the elements of the

family R are the following:

R =
{
I θ
A|X

∣∣∣ θ ∈ (0, π/2]
}
, (11)

where I θ
A|X =

{
Iθ

a|x(·)
}

a∈A,x∈X
,

with Iθ
a|x(·) = trA

{
(Ma|x ⊗ IBout) trB

{
(IA ⊗ CRθ

y) (ρAB ⊗ (·)Bin)(IA ⊗ CRθ
y)†

}}
,

The family of assemblages R is illustrated in Fig. 3.

x

a

Rθ
y

Bin

Bout

ρAB

Figure 3: Depiction of an assemblage belonging to the family R. Quantum systems are represented by double
lines and classical systems are depicted as single lines. Alice and Bob share an entangled common-cause ρAB .
Depending on the state of the control qubit, Bob either does nothing or implements a rotation by angle θ
around the y axis on his input system.

The family R has an infinite number of elements indexed by the angle {θ}. To study the
pre-order of assemblages in this family, we convert the assemblages into Choi form and run the
SDP 2 (in Matlab [59], using the software CVX [60, 61], the solver SeDuMi [62] and the toolbox
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Figure 4: Possible conversions between elements of R. The black dots represent the assemblages I θ ,i
A|X, where

i ∈ {x, y, z}. The arrows represent possible conversions.

QETLAB [63]; see the code at [64]). By checking what the possible conversions are between

resources characterized by different values of θ, we observe that a conversion I θ1
A|X

LOSR−→ I θ2
A|X is

possible only when θ1 > θ2 for every pair {θ1, θ2} that we checked. Based on this observation,
we formulate the following conjecture:

Conjecture 3. Let the two resources I θ1
A|X and I θ2

A|X belong to the infinite family of assemblages

R. Then, the conversion I θ1
A|X

LOSR−→ I θ2
A|X is possible if and only if θ1 ≥ θ2.

We run SDP 2 to study two more infinite families of assemblages analogous to R with
the exception that rotations around the z-axis (the x-axis for the second family) instead of
around the y-axis are implemented. For both cases, we observe a behaviour analogous to that
stated in Conjecture 3. Finally, by checking the conversions between assemblages belonging to
different families, we find assemblages that are interconvertible (See Fig. 4), which leads us to
the following conjecture:

Conjecture 4. Let I θ ,i
A|X denote an assemblage generated when Bob applies CRθ

i . Then, for a
fixed value of θ, assemblages {I θ ,x

A|X, I
θ ,y
A|X, I

θ ,z
A|X} are in the same LOSR equivalence class.

Our explorations are summarized in Fig. 4.

2.3.2 Post-quantum channel assemblages

Studying possible conversions among channel assemblages may also give us insight into the pre-
order of post-quantum resources. We now focus on a channel EPR scenario where X = {0, 1, 2},
A = {0, 1}, and HBout = HB are qubit Hilbert spaces, and we consider conversions between two
post-quantum channel assemblages defined below5.

5These two post-quantum channel assemblages are generalizations of Bob-with-input assemblages introduced
in Ref. [26]. We elaborate on this point later in the text.
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Our first example of a post-quantum channel assemblage, depicted in Fig. 5(a), can be
conveniently expressed in a mathematical way as:

IP T P
A|X =

{
IP T P

a|x

}
a∈A, x∈X

, (12)

with

IP T P
a|x (·) = trA

{
(Ma|x ⊗ IBout) trB

{
(IA ⊗ CTBBin→Bout) (ρAB ⊗ (·)Bin)

}}
,

Ma|0 = I+(−1)aσx

2 , Ma|1 = I+(−1)aσy

2 , Ma|2 = I+(−1)aσz

2 ,

where ρAB = |ϕ⟩ ⟨ϕ|, with |ϕ⟩ = |00⟩+|11⟩√
2 , and σx, σy, and σz are the Pauli operators. The

operation CTBBin→Bout is a controlled-transpose operation, where the control system is Bin, and
the transpose is applied on the system B. For simplicity, in this section we denote IP T P

A|X = IP T P .
Here, the abbreviation PTP stands for positive trace preserving.

It is important to note that the expression given in Eq. (12) and the assemblage preparation
procedure illustrated in Fig. 5(a) give a convenient representation of IP T P , but is not meant
to be taken as the unique description of this assemblage. The use of the transpose map here,
which is positive but not completely positive, is just one of the possible mathematical ways to
represent this post-quantum assemblage.

One then may argue that the channel assemblage IP T P is a post-quantum assemblage. To
see this, one can simply see that a special case of IP T P – that where Bob’s input states are
classical labels encoded into an orthonormal basis – was shown to be a post-quantum assemblage
[26]. It follows hence that IP T P is post-quantum as well.

x

a

T

Bin

Bout

ρAB

(a)

x

a

X
Bin

Bout

ρAB

(b)

Figure 5: Mathematical depiction of two post-quantum channel assemblages. (a) Channel assemblage IP T P :
Alice and Bob share a Bell state; Alice performs measurements on her system, while Bob performs a controlled-
transpose operation. (b) Channel assemblage IP R: Alice and Bob share a Bell state; Alice performs measure-
ments on her system, while Bob performs a CNOT operation controlled by both Alice’s and Bob’s inputs.

The second example of a post-quantum channel assemblage that we consider may be math-
ematically expressed as:

IP R
A|X =

{
IP R

a|x

}
a∈A, x∈X

, (13)

with IP R
a|x (·) =

trA

{
(Ma ⊗ IBout) trB

{
(IA ⊗ CXBBin→Bout) (ρAB ⊗ (·)Bin)

}}
ifx ∈ {0, 1},

IP R
a|x (·) = I

2a ifx = 2 ,

and M0 = |0⟩ ⟨0| , M1 = |1⟩ ⟨1| ,

where ρAB is the same as in the previous example. This assemblage is illustrated in Fig. 5(b).
If x ∈ {0, 1}, Bob applies a controlled-X operation, where x and Bin are the control systems.
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More precisely, Bob applies a quantum instrument to his input system Bin – he measures Bin

in the computational basis, registers the classical output, which we here denote by y, and a
quantum system containing the post-measurement state. Then, Bob transforms the system B
depending on the values of x and y. If xy = 0, he applies the identity map. If xy = 1, Bob flips
the system B. Finally, if x = 2, Bob prepares the system I

2a. For simplicity, hereon we denote
IP R
A|X = IP R.

Note that Eq. (13) is merely meant as a mathematical description of the channel assemblage
IP R, and is not meant to be taken as its experimental implementation. In particular, notice
that the channel assemblage IP R is no-signalling between Alice and Bob, contrary to what our
chosen mathematical description may suggest.

One may now argue that IP R is a post-quantum assemblage. To to this, imagine that Bin

contains just a set of classical labels {|0⟩ , |1⟩}, and Alice and Bob generate IP R. Then, notice
that for x ∈ {0, 1}, if Bob performs a measurement on his subsystem on the {|0⟩ , |1⟩} basis and
observes a classical outcome b, Alice and Bob obtain correlations p(ab|xy) that correspond to
Popescu-Rohrlich (PR) box correlations [49], which are known to be post-quantum. This shows
that the assemblage IP R is a post-quantum channel assemblage.

To study the relative order of IP T P and IP R, we convert the assemblages into Choi form
and run the SDP 2 (in Matlab [59], using the software CVX [60, 61], the solver SeDuMi [62]
and the toolbox QETLAB [63]; see the code at [64]). We find that the two assemblages are
incomparable, which is summarized by the following observation:

Observation 5. The two post-quantum channel assemblages IP R and IP T P are unordered re-
sources in the LOSR resource theory of common-cause assemblages.

3 The Bob-with-input EPR scenario
The Bob-with-input EPR scenario, first introduced in Ref. [26], is a special case of the channel
EPR scenario. In this setting, Bob can locally influence the state preparation of his system.
This scenario is illustrated in Fig. 6(a). On the one hand, Alice acts on her share of the system
by performing measurements and registering the obtained outcome – this is identical to the
role she plays in the channel EPR scenario. On the other hand, Bob chooses the value of a
classical variable y, referred to as ‘Bob’s input’, which influences the state preparation of a
quantum system in his laboratory. Operationally, one may think of Bob as holding a device
that accepts the classical input y (together with a physical system), and produces a quantum
system prepared on some specified state. Bob’s device’s inner-workings can be thought of as a
transformation of his subsystem (not necessarily a quantum one) into a new quantum system,
where the transformation depends on the value of y. Notice that the system shared by Alice
and Bob is depicted with a thick line in Fig. 6(a) – indeed, as mentioned regarding the channel
EPR scenario, the GHJW theorem does not apply when Bob has an input; hence, one can find
instances of post-quantum Bob-with-input assemblages that do not admit a quantum realization
[48].

The relevant Bob-with-input assemblage is now given by ΣA|XY = {σa|xy}a,x,y, with tr
{
σa|xy

}
=

p(a|x) and tr
{∑

a σa|xy

}
= 1 for all x ∈ X and y ∈ Y. Notice that if y takes only one value, this

scenario coincides with the traditional EPR scenario for which an LOSR-based resource theory
was developed in Ref. [21].

If the common-cause Alice and Bob share is a quantum state, which we denote ρAB, the
most general local operation Bob’s device can implement is a collection of CPTP maps {ξy}y∈Y.
When Alice implements a POVM from the set {Ma|x}a∈A,x∈X, we say that the elements of the
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x y

a ρa|xy

(a)

x y

a ρa|xy

x′ y′

a′ ρ′
a′|x′y′

(b)

Figure 6: Depiction of a Bob-with-input EPR scenario. Systems that may be classical, quantum, or even
post-quantum, are represented by thick lines. Quantum systems are represented by double lines and classical
systems are depicted as single lines. (a) Bob-with-input assemblage: Alice and Bob share a (possibly post-
quantum) common cause; Alice’s input and output systems are classical while Bob’s input is classical and
output is quantum. (b) The most general LOSR operation on an assemblage in a Bob-with-input EPR
scenario.

assemblage admit a quantum realization of the form

σa|xy = ξy[trA{(Ma|x ⊗ IB)ρAB}] (14)

for all a ∈ A, x ∈ X, and y ∈ Y.
Similarly to the channel EPR scenario, nonclassical Bob-with-input assemblages are those

that require a nonclassical common-cause. The classical Bob-with-input assemblages, i.e., the
LOSR-free ones, can always be viewed as generated by local operations applied by each party
that depend on the value of a shared classical random variable. Formally, a free assemblage in
this scenario can be expressed as σa|xy =

∑
λ p(λ)p(a|xλ)ρλy. Here, λ is the shared classical

variable that is sampled according to p(λ), p(a|xλ) is a well-defined conditional probability dis-
tribution for all values of λ, and the quantum states ρλy are locally generated by Bob depending
on the values of the classical variables y and λ. This set of classical assemblages was first defined
in Ref. [26], where it is referred to as the set of ‘unsteerable’ assemblages. Determining whether
a given Bob-with-input assemblage is LOSR-free is possible with a single instance of an SDP,
which is analogous both to SDP 1 and (when |Y| = 1) to the SDP for checking ‘steerability’ of
a standard EPR assemblage given in Ref. [65].

3.1 LOSR transformations between Bob-with-input assemblages
The most general LOSR transformation of a Bob-with-input assemblage is illustrated in Fig. 6(b),
where a local processing known as comb (which locally pre- and post-processes the relevant sys-
tems in each wing) [57] with appropriate input/output system types is applied to each party.
Notice how these are a special case of the processes of Fig. 2(b) for the specific type of Bob’s
input system. This set of operations transforms one assemblage ΣA|XY into a new assemblage
Σ′

A′|X′Y′ as follows:

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

p(a′, x|a, x′, λ)p(y|y′, λ)p(λ)ξλ,y′(σa|xy). (15)

14



Here, p(a′, x|a, x′, λ) encodes Alice’s variables pre- and post-processing (this process is the same
as in the channel EPR scenario), p(y|y′, λ) encodes a classical pre-processing of Bob’s classical
input y as a function of y′ and λ, and ξλ,y′(·) is the map corresponding to Bob’s local post-
processing of his quantum system as a function of λ and y′. Notice that, just like in the case of
channel EPR scenarios, p(a′, x|a, x′, λ) satisfies the no-retrocausation condition.

A simplified characterisation of a generic Bob-with-input LOSR transformation in terms of
deterministic probability distributions D(·) is given by

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ)ξ̃λ,y′(σa|xy) , (16)

where ξ̃λ,y′(·) = p(λ)ξλ,y′(·). We will use this representation throughout this section; its detailed
derivation is given in Appendix A.2. In the Bob-with-Input scenario, the total number of the
deterministic strategies encoded in λ is equal to |A′||A|×|X′| × |X||X′| × |Y||Y′|.

Given two assemblages, ΣA|XY and Σ′
A′|X′Y′ , deciding whether ΣA|XY can be converted into

Σ′
A′|X′Y′ under LOSR operations is equivalent to checking whether the elements of Σ′

A′|X′Y′

admit a decomposition as per Eq. (16). The Bob-with-input EPR scenario is simply a special
case of the channel EPR scenario wherein Bob’s input is a classical system. However, as the
Bob-with-input EPR scenario exhibits a simpler characterization of an LOSR transformation
of an assemblage, the SDP for testing resource conversion in this scenario can be simplified
compared to SDP 2, as we show below.

Notice that the CPTNI map ξ̃λ,y′(σa|xy) can be represented in terms of its (possibly subnor-
malized) Choi state Jξ λ y′ as follows:

ξ̃λ,y′(σa|xy) = dB trB

{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
, (17)

where Bob’s output system is defined on HB′ . Therefore, for Σ′
A′|X′Y′ to admit a decomposition

as per Eq. (16), each σ′
a′|x′y′ must decompose as

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ) dB trB

{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
. (18)

We implement this condition in the following SDP:

SDP 6. ΣA|XY
LOSR−→ Σ′

A′|X′Y′.
The assemblage ΣA|XY can be converted into the assemblage Σ′

A′|X′Y′ under LOSR operations if
and only if the following SDP is feasible:

given {σa|xy}a,x,y , {σ′
a′|x′y′}a′,x′,y′ , {D(x|x′, λ)}λ,x,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(y|y′, λ)}λ,y,y′

find {(Jξ λ y′)BB′}λ,y′

s.t.



Jξ λ y′ ≥ 0 ∀λ, y′ ,

trB′
{
Jξ λ y′

}
∝ IB ∀λ, y′ ,∑

λ trB′
{
Jξ λ y′

}
= 1

d IB ∀ y′ ,

trB′

{
Jξ λ y′

1

}
= trB′

{
Jξ λ y′

2

}
∀λ , y′

1, y
′
2 ,

σ′
a′|x′y′ =

∑
λ

∑
a,x,y D(x|x′, λ)D(a′|a, x′, λ)D(y|y′, λ) dB trB

{
Jξ λ y′ (IB′ ⊗ σT

a|xy)
}
.

(19)

When the conversion is not possible, we denote it by ΣA|XY
LOSR
̸−→ Σ′

A′|X′Y′.

For the robust formulation of this SDP, see Appendix B.
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3.2 Properties of the pre-order
In analogy to the channel EPR scenario, studying post-quantum Bob-with-input assemblages
gives us insight into the pre-order of resources. In this section, we introduce four Bob-with-
input assemblages and study the possible conversions between them, both analytically and using
SDP 6.

In Section 2.3, we focused on accessing the pre-order of channel assemblages using SDP 2.
Due to the simpler nature of the Bob-with-input EPR scenario compared to the channel EPR
scenario, here we first focus on studying the pre-order analytically. We start with a Bob-
with-input EPR scenario where X = {0, 1, 2}, A = {0, 1} and Y = {0, 1}, and we consider
conversions between two post-quantum Bob-with-input assemblages introduced in Ref. [26].
These two assemblages are special cases of channel assemblages IP T P and IP R, where Bob’s
input states are just elements of an orthonormal basis {|0⟩ , |1⟩}.

For our first post-quantum Bob-with-input assemblage, consider the Bob-with-input assem-
blage studied in Ref. [26, Eq. (6)], which is a special case of IP T P . This assemblage can be
mathematically expressed as follows:

ΣP T P
A|XY =

{
σP T P

a|xy

}
a∈A, x∈X, y∈Y

, (20)

with

σP T P
a|xy = ξy {trA

{
(Ma|x ⊗ IB) |ϕ⟩ ⟨ϕ|

}
} ,

Ma|1 = I+(−1)aσx

2 , Ma|2 = I+(−1)aσy

2 , Ma|3 = I+(−1)aσz

2 ,

where |ϕ⟩ = |00⟩+|11⟩√
2 and σx, σy, and σz are the Pauli operators. The map ξy is the following:

the identity quantum channel for y = 0, and the transpose operation for y = 1. For simplicity,
in this section we denote ΣP T P

A|XY = ΣP T P . In Ref. [26, Appendix D], it was shown that ΣP T P

is a post-quantum assemblage. There it was moreover shown that, if Bob decides to measure
his subsystem, the correlations that arise between him and Alice always admit a quantum
explanation. This will prove relevant for the resource-conversion statements in this manuscript.

As a second example of a post-quantum Bob-with-input assemblage, we consider a special
case of IP R. We follow the construction introduced in Ref. [26, Eq. (5)], and define:

ΣP R
A|XY =

{
σP R

a|xy

}
a∈A, x∈X, y∈Y

, (21)

with σP R
a|xy =

{
|a⊕ xy⟩ ⟨a⊕ xy| if x ∈ {0, 1}
I
2a if x = 2.

For simplicity, hereon we denote ΣP R
A|XY = ΣP R. As we already pointed out in the channel EPR

scenario, for x ∈ {0, 1}, if Bob decides to measure his subsystem in the computational basis and
registers a classical outcome b, Alice and Bob obtain PR box correlations, what certifies that
the assemblage ΣP R is post-quantum.

We will now show the the two post-quantum assemblages ΣP R and ΣP T P are unordered in
our LOSR resource theory.

Theorem 7. ΣP T P cannot be converted into ΣP R with LOSR operations.

Proof. Let us prove this by contradiction. Assume that an LOSR-processing of ΣP T P yields
ΣP R. Then, since ΣP R can generate post-quantum correlations in a Bell-type experiment, it
follows that an LOSR-processing of ΣP T P can also generate post-quantum correlations. How-
ever, we know that ΣP T P can only generate quantum correlations [26, Appendix D]. As LOSR
operations cannot create post-quantum Bell non-locality, this contradicts the initial assumption
and hence proves the claim.
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Theorem 8. ΣP R cannot be converted into ΣP T P with LOSR operations.

The proof of this theorem is given in Appendix E.1. In the proof we use the ‘steering’
functional constructed in Ref. [26, Eq. (D3)] which achieves its minimum value when evaluated
on ΣP T P . We show that neither ΣP R or any LOSR-processing of ΣP R can achieve the minimum
value of this ‘steering’ functional, which completes the proof.

Corollary 9. The two post-quantum assemblages ΣP R and ΣP T P are unordered resources in
the LOSR resource theory of common-cause assemblages.

This result can be verified with SDP 6 (we verified it in Matlab [59], using the software
CVX [60, 61], the solver SeDuMi [62] and the toolbox QETLAB [63]; see the code at [64]).

It is usually the case that the pre-order in a given resource theory is studied using resource
monotones. Interestingly, Corollary 9 does not rely on a construction of resource monotones,
but it arises from specific considerations of LOSR transformations.

We now move on to introducing two more examples of Bob-with-input assemblages. We start
by introducing an assemblage that, as far as we are aware, has not been studied in the literature
before. For this purpose, let us briefly recall the meaning of almost-quantum correlations.

The set of almost-quantum correlations Q̃ [66] was originally proposed as a set of correla-
tions that satisfies numerous principles of a reasonable physical theory, including information
causality [67], macroscopic locality [68] and local orthogonality [69]. It was first defined for
Bell-type scenarios and it was showed to be larger than the set of quantum correlations and
to strictly contain them. The concept of almost-quantum correlations was later generalized
to other physical set-ups [70, 71], including EPR scenarios [26, 48]. Within this generaliza-
tion, a particular relaxation of the definition of quantum assemblages allows one to construct
almost-quantum assemblages.

From now on let us focus on a Bob-with-input scenario where X = {0, 1}, A = {0, 1} and
Y = {0, 1}. To construct an example of a post-quantum assemblage, consider the probability
distribution generated in a bipartite Bell scenario introduced in Ref. [66], which we denote p⃗AQ.
We recall the exact form of p⃗AQ in Appendix C; for now, the important property of p⃗AQ to note

is that it is post-quantum and it lives in Q̃. Consider the following Bob-with-input assemblage:

ΣAQ
A|XY =

{
σAQ

a|xy

}
a∈A, x∈X, y∈Y

, (22)

with σAQ
a|xy =

∑
b

pAQ(ab|xy) |b⟩ ⟨b| ,

where the elements pAQ(ab|xy) can be read from the vector p⃗AQ. For simplicity, we denote

ΣAQ
A|XY = ΣAQ. This assemblage is clearly not quantum-realizable. Indeed, if Bob chooses to

measure his system in the computational basis, i.e., Nb = |b⟩ ⟨b|, the correlations that Alice and

Bob obtain are given by p(ab|xy) = tr
{
Nbσa|xy

}
, which gives exactly pAQ(ab|xy). This shows

that ΣAQ is post-quantum6, since for any quantum-realizable assemblage, Alice and Bob can
only generate quantum correlations if Bob decides to measure his system.

As the next example, consider the assemblage Σ′ P R built from ΣP R by considering the
assemblage elements of the latter that correspond to x = 0, 1. To study the relative order of
ΣAQ and Σ′ P R, we run the SDP 6 (see the code at [64]). We find that the two assemblages are
strictly ordered, which is summarized by the following observation:

6It is important to note that the assemblage ΣAQ is not necessarily an almost-quantum assemblage. The
set of almost-quantum assemblages is a strict subset of the set of post-quantum assemblages. If Bob decides to
measure his subsystem with a measurement different than Nb = |b⟩ ⟨b|, it might be possible that post-quantum
correlations that are not almost-quantum are generated.
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Observation 10. The post-quantum Bob-with-input assemblage Σ′ P R is strictly above ΣAQ in
the pre-order of resources in the LOSR resource theory of common-cause assemblages.

In Appendix E.2, we analytically show that Σ′ P R LOSR−→ ΣAQ.
For our final example in a Bob-with-input scenario, we consider the following quantum-

realizable assemblage:

ΣCHSH
A|XY =

{
σCHSH

a|xy

}
a∈A, x∈X, y∈Y

, (23)

with


σCHSH

a|xy = trA
{

(Ma|x ⊗ IB) |ϕ⟩ ⟨ϕ|
}
,

|ϕ⟩ = |00⟩+|11⟩√
2 ,

Ma|0 = I+(−1)aσz

2 , Ma|1 = I+(−1)aσx

2 ,

where σx, σy, and σz are the Pauli operators. For simplicity, we denote ΣCHSH
A|XY = ΣCHSH .

Notice that if Alice and Bob generate ΣCHSH , and then Bob decides to measure his system
with suitable measurements, they will obtain correlations that violate the CHSH Bell inequality
maximally [72].

The relation between ΣCHSH and ΣAQ, obtained using SDP 6, is the following:

Observation 11. The two Bob-with-input assemblages ΣCHSH and ΣAQ are unordered re-
sources in the LOSR resource theory of common-cause assemblages.

Notice that the direction ΣCHSH
LOSR
̸−→ ΣAQ is straight-forward to prove by noting that

LOSR operations cannot create post-quantumness.

4 The measurement-device-independent EPR scenario
We will now consider a special case of a channel EPR scenario in which Bob has a measurement
channel rather than a general quantum channel. This measurement-device-independent (MDI)
EPR scenario is illustrated in Fig. 7(a). Alice and Bob share a system AB. Alice’s role is
still the same as in the channel and Bob-with-input scenarios: she performs measurements
{Ma|x}a∈A,x∈X to obtain a classical output a. Now, Bob holds a collection of measurement

channels7, which we denote by {ΩBin→Bout
b }b∈B, where the output system Bout is just a classical

variable that may take values within B. In a way one can think of these measurement channels
as a measuring device that implements a single generalised measurement (as given by a POVM)
and keeps a record of the obtained outcome.

Similarly to the channel EPR scenario, we are here interested in the case where the measure-
ment channels that Bob has access to may in addition be correlated with some physical system
in Alice’s lab. This situation is formalised by the premise that Bob has instead access to a pro-
cessing ΘBBin→Bout

b that takes as input system his own Bin together with the half of the system

AB he shares with Alice (denoted by B). The marginal measurement channel {ΩBin→Bout
b }b∈B

that was introduced at the beginning is therefore a function of these superseding measurement
apparatus ΘBBin→Bout

b and the state of the system AB shared by Alice and Bob (the specific
dependence is specified further below). The idea is then to see what Alice can infer about the
measurement channel ΘBBin→Bout

b from the local measurements she is performing on her share
of AB.

7Here, by measurement channel is meant a quantum instrument with a trivial output Hilbert space.
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Figure 7: Depiction of a measurement-device-independent EPR scenario. Systems that may be classical,
quantum, or even post-quantum, are represented by thick lines. Quantum systems are represented by double
lines and classical systems are depicted as single lines. (a) MDI assemblage: Alice and Bob share a (pos-
sibly post-quantum) common cause; Alice’s input and output systems are both classical, while Bob’s input
and output systems are quantum and classical, respectively. (b) The most general LOSR operation on an
assemblage in a MDI EPR scenario.

Formally, the relevant MDI assemblages in this scenario are given by NAB|X = {Nab|x(·)}
with a ∈ A , b ∈ B and x ∈ X, where Nab|x(·) is a channel – with trivial output space –
associated to the POVM element corresponding to outcome b of Bob’s measurement device
(when Alice’s measurement event is a|x). The elements of a valid MDI assemblage satisfy the
conditions

∑
b Nab|x(·) = p(a|x) and

∑
a Nab|x(·) = ΩBin→Bout

b . These conditions, equivalent
to no-signalling requirements between Alice and Bob, define hence the enveloping theory of
resources. A natural question then is when a given MDI assemblage has a classical, quantum,
or post-quantum realisation, as we briefly recall next.

Let us begin with quantumly-realisable MDI assemblages, that is, those compatible with
Alice and Bob sharing a quantum common cause. When Alice and Bob share a bipartite
quantum system prepared on state ρAB, the elements of the MDI assemblage are given by

Nab|x(·) = tr
{

(Ma|x ⊗ IBout)(IA ⊗ ΘBBin→Bout
b )[ρAB ⊗ (·)]

}
. (24)

Notably, MDI assemblages are not always compatible with a quantum common cause, i.e., there
exist post-quantum MDI assemblages8 [73].

Now, let us specify the free sub-theory of resources: those that may arise by the parties
implementing local operations and shared randomness. Free MDI assemblages in our resource
theory are those that can be generated with a classical common cause. They can be thought
of as objects generated by Alice’s local measurements and Bob’s local measurement channel,
where both parties are correlated by a classical variable. Formally, the elements of an LOSR-free
MDI assemblage can be written as Nab|x(·) =

∑
λ p(λ)p(a|xλ)Nb,λ(·), where the measurement

channels Nb,λ depend on the value of the classical common cause λ.

8Although Ref. [73] does not discuss measurement-device-independent assemblages directly, this scenario nat-
urally appears if one wants to compare Buscemi non-locality and EPR scenarios.
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4.1 LOSR transformations between measurement-device-independent assemblages
The most general LOSR transformation of an MDI assemblage is presented in Fig. 7(b). On
Alice’s side, the LOSR map is exactly the same as in the channel and Bob-with-input scenarios.
On Bob’s side, however, the processing has appropriate input and output system types adjusted

to the MDI scenario. Let us express Bob’s processing as a single CPTNI map ζ
B′

in′ →Bin

b b′ λ . This
map has two inputs (one classical, b, and one quantum, B′

in′) and two outputs (again, one

is classical, b′, and one is quantum, Bin). Additionally, the map ζ
B′

in′ →Bin

b b′ λ must satisfy the
no-retrocausation condition, i.e., it must be such that b does not influence Bin. This condition

means that
∑

λ,b′ ζ
B′

in′ →Bin

b b′ λ must be a CPTP map.
Similarly to the channel and Bob-with-input scenarios, it is convenient to use the Choi-

Jamio lkowski isomorphism here. Let Ja′b′|x′ , Jab|x and Jζ b b′ λ correspond to the Choi represen-
tation of maps N ′

a′b′|x′ , Nab|x and ζb b′ λ, respectively. Then, the most general LOSR processing
of a MDI assemblage can be written as

Ja′b′|x′ =
∑

λ

∑
a,x

D(a′|a, x′, λ)D(x|x′, λ) Jab|x ∗ Jζ b b′ λ . (25)

Here, D(·) are deterministic probability distributions (see previous sections and Appendix A.1
for details) and the total number of the deterministic strategies encoded in λ is equal to
|A′||A|×|X′| × |X||X′|. As mentioned before, the link product is given by

Jab|x ∗ Jζ b b′ λ = dBin trBin

{
(IB′

in′
⊗ Jab|x) JTBin

ζ b b′ λ

}
. (26)

Deciding if an assemblage NAB|X can be converted into a different assemblage N′
A′B′|X′ with

LOSR operations comes down to checking whether there exist a collection of Choi states
{Jζ b b′ λ}b,b′,λ such that the Choi form of N′

A′B′|X′ can be decomposed as in Eq. (25). This
can be decided with a single instance of the following semidefinite program:

SDP 12. The MDI assemblage NAB|X can be converted to the MDI assemblage N′
A′B′|X′ under

LOSR operations, denoted by NAB|X
LOSR−→ N′

A′B′|X′, if and only if the following SDP is feasible:

given {Jab|x}a,b,x , {J ′
a′b′|x′}a′,b′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

find {Jζ b b′ λ}b ,b′ ,λ

s.t.



Jζ b b′ λ ≥ 0 ∀ b, b′, λ ,∑
b′ trBin

{
Jζ b b′ λ

}
∝ IB′

in′
∀ b, λ ,∑

λ,b′ trBin

{
Jζ b b′ λ

}
= 1

dB′
in′

IB′
in′

∀ b ,∑
b′ Jζ b b′ λ ≥ 0 ∀ b, λ ,

Ja′b′|x′ =
∑

λ

∑
a,b,xD(a′|a, x′, λ)D(x|x′, λ) Jab|x ∗ Jζ b b′ λ .

(27)

When the conversion is not possible, we denote it by NAB|X
LOSR
̸−→ N′

A′B′|X′.

For the discussion of the robustness of this SDP, see Appendix B.

4.2 Properties of the pre-order
Similarly to the scenarios studied in the previous sections, we can use semidefinite program-
ming to study possible conversions among post-quantum measurement-device-independent as-
semblages. In this section, we focus on an MDI scenario where X = {0, 1, 2}, A = {0, 1} and
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B = {0, 1}. We consider conversions between two post-quantum MDI assemblages that are
special cases of channel assemblages IP T P and IP R.

Let us start with a post-quantum MDI assemblage that can be mathematically expressed
as if arising from a controlled-transpose operation. Such assemblage can be expressed as:

NP T P
AB|X =

{
N P T P

ab|x

}
a∈A, b∈B, x∈X

, (28)

with

N P T P
ab|x = tr

{
(Ma|x ⊗ IBout)(IA ⊗ CTBBin→Bout

b )[ρAB ⊗ (·)]
}
,

Ma|1 = I+(−1)aσx

2 , Ma|2 = I+(−1)aσy

2 , Ma|3 = I+(−1)aσz

2 ,

where ρAB = |ϕ⟩ ⟨ϕ| with |ϕ⟩ = |00⟩+|11⟩√
2 and σx, σy, and σz are the Pauli operators. Here, the

processing CTBBin→Bout
b is the following. First, a controlled transpose operation is applied on

BBin, where Bin is the control qubit and B is the system that is being transposed. Second, the
system Bin is traced-out and the system B is measured by Bob. The measurement elements
are N0 = 1

3I + 1
3σy and N1 = 2

3I − 1
3σy. The outcome of Bob’s measurement is defined on Bout.

This process is illustrated in Fig. 8(a). For simplicity, we hereon denote NP T P
AB|X as NP T P . In

Appendix D, we prove that NP T P is postquantum: we construct an SDP that tests a membership
of a measurement-device-independent assemblage to the relaxation of a quantum set.

x

a

Bout

Bin

Nb

T

ρAB

(a)

x

a Bout

Bin

Nb

X

ρAB

(b)

Figure 8: Mathematical depiction of two post-quantum MDI assemblages. (a) MDI assemblage NP T P : Alice
and Bob share a Bell state; Alice performs measurements on her system, while Bob performs a controlled-
transpose operation. (b) MDI assemblage NP R: Alice and Bob share a Bell state; Alice performs measure-
ments on her system, while Bob performs a CNOT operation controlled by both Alice’s and Bob’s inputs.

For our second example we define a post-quantum assemblage that generates PR box cor-
relations between Alice and Bob. Mathematically it can be expressed as follows:

NP R
AB|X =

{
N P R

ab|x

}
a∈A, x∈X, b∈B

, (29)

with


N P R

ab|x(·) = tr
{

(Ma ⊗ IBout) (IA ⊗ CXBBin→Bout
b ) (ρAB ⊗ (·)Bin)

}
ifx ∈ {0, 1},

N P R
ab|x(·) = 1

4 ifx = 2 ,
M0 = |0⟩ ⟨0| , M1 = |1⟩ ⟨1| .

Here, the mapping CXBBin→Bout
b is the same as in the channel EPR scenario, followed by a

measurement in a computational basis. It is illustrated in Fig. 8(b). Notice that for x ∈ {0, 1},
if Bob’s input states are classical labels {|y⟩}y∈{0,1}, Alice and Bob obtain correlations p(ab|xy)
that correspond to the PR box. For simplicity, hereon we denote NP R

A|XY = NP R.
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To study the pre-order of NP R and NP T P , we convert the assemblages into Choi form and
run the SDP 12 (in Matlab [59], using the software CVX [60, 61], the solver SeDuMi [62] and
the toolbox QETLAB [63]; see the code at [64]). We observe the following:

Observation 13. The post-quantum measurement-device-independent assemblages NP R and
NP T P are incomparable in the LOSR resource theory of common-cause assemblages.

5 Related prior work
5.1 Channel EPR scenarios
Ref. [25], which first introduced channel EPR scenarios, takes ‘channel steering’ to be an instance
of the resource theory of local operations and classical communication (LOCC), rather than the
LOSR resource theory we have developed here. Both of these approaches lead to a meaningful
resource theory: the LOSR approach is suited to the study of nonclassicality in scenarios where
there are no cause-effect influences between parties, whereas the LOCC approach is suited to
the study of scenarios in which there are cause-effect influences between parties. In our view,
EPR scenarios do not involve causal influences from one party to the other, as argued in detail
in Ref. [21]; hence, we consider the LOSR approach to be better suited to it.

The biggest distinction between the LOSR and LOCC approaches is that all resources in
the LOSR approach are no-signalling by construction, while in the LOCC approach even free
resources might be signalling from Bob to Alice. In Ref. [25], the classical channel assemblages
are defined as the ones that admit a decomposition Ĩa|x(·) =

∑
λ p(a|x, λ)Ĩλ(·), where Ĩλ(·) is

a CP map that does not need to be trace preserving. In general, this definition of a free set of
channel assemblages does not coincide with our definition specified in Eq. (2). However, when
one restricts the scenario to non-signalling channel assemblages, these two approaches coincide,
as we show in Appendix F.

When restricting the study of channel assemblages to that of no-signalling channel assem-
blages, the relationship between the LOSR and LOCC resource-theoretic approaches is anal-
ogous to the relationship between the traditional notion of LOCC-entanglement and the no-
tion of LOSR-entanglement introduced in Refs. [23, 41]. Indeed, just as for the LOCC and
LOSR resource theories of entanglement (where the definitions of free resources—i.e., separa-
ble states—coincide), the sets of free assemblages for the LOCC and LOSR approaches also
coincide. However, the different choice of free operations—LOCC or LOSR—does impact the
relative ordering of assemblages.

This leads to significant differences between the LOCC and LOSR approaches. For example,
Ref. [74] shows that when one allows signalling from Bob to Alice, then all bipartite channel
assemblages admit a quantum realization. In the LOSR approach this is not true - throughout
the paper we studied many examples of bipartite post-quantum assemblages in channel, Bob-
with-input and measurement-device-independent scenarios.

Ref. [25] attempts to give a few arguments in favor of the LOCC approach over the LOSR
approach to channel EPR scenarios; e.g., by noting that the LOCC set of free channel assem-
blages is elegantly characterized by properties of their Choi-Jamio lkowski representation, and
by noting that it recovers the separable states in the appropriate special case. However, all of
the arguments given are equally true in the LOSR approach, and so do not discriminate between
the two approaches.

Lastly, let us comment that neither LOCC or LOSR is the largest set of transformations
leaving the free objects invariant in the resource theory of channel assemblages. We leave the
question of what this set is for future work, focusing only on physically motivated free operations

22



in this paper 9.

5.2 The resource theory of Local Operations and Shared Entanglement
Another relevant resource theory with which we can compare our approach to is that of Local
Operations and Shared Entanglement (LOSE) [42]. Ref. [42] considers various common-cause
non-signalling resources, including assemblages. The free operations of this resource theory
differ from LOSR only in that the arbitrary shared randomness (classical common cause) is
replaced with arbitrary shared entanglement (quantum common cause). Just as the set of
LOSR operations is a subset of LOCC operations, LOSR is also clearly a subset of LOSE.

Rather than nonclassicality of common causes, the LOSE resource theory studies postquan-
tumness of a common cause as a resource, and it allows some nonclassical common causes (the
quantum ones) for free. Unsurprisingly, this implies that the pre-orders under LOSR and LOSE
operations are different; e.g., in the latter, all quantum-realisable assemblages are freely inter-
convertible. The interesting differences between the pre-orders, then, will arise for post-quantum
channel assemblages. Although we are far from a complete understanding of these differences,
we can here already comment on one. Recall that here we showed that under LOSR operations
the post-quantum assemblages ΣP T P and ΣP R are incomparable resources in a Bob-with-input
EPR scenario. From the viewpoint of LOSE, the situation however changes. In Ref. [42] it
was shown that the Bob-with-input assemblage ΣP T P can be generated from the PR box re-
source using LOSE operations. This highlights the power of quantum entanglement even when
considering resources that are post-quantum.

Outlook
In this work we have fleshed out the details of a resource theory of channel assemblages in
channel EPR scenarios under local operations and shared randomness as free operations. We
have explored the general case of channel EPR scenarios, and also the particular ones that come
from changing the system type of Bob’s input and output systems, denoted by Bob-with-input
EPR scenarios and measurement-device-independent EPR scenarios. In all cases we specified a
semidefinite program that tests resource conversion under LOSR operations, and found curious
properties of the resource pre-order.

Looking forward, there are plenty of questions one may tackle. In this paper, we approached
the problem of characterizing the preorder of assemblages using SDPs. Indeed, the SDPs we
derive can in principle give complete information about the preorder of resources. One relevant
question from a quantum information perspective is how to leverage this framework to define
resource monotones that can quantify how useful an assemblage is as a resource for specific
quantum information processing and communication tasks. From a foundational perspective,
there are also various curiosities one may pursue. One pertains to how the pre-order of post-
quantum resources changes from one scenario to another. For example, one can map a Bob-
with-input assemblage to a correlation in a Bell scenario by performing a measurement on Bob’s
system: could there exist a map (given by a fixed measurement) that takes two incomparable
assemblages into the same post-quantum correlation? How can we phrase and pursue the

9One example of an operation outside the LOSR set that leaves the free resources free is the following.
Consider a Bob-with-input assemblage. First, swap Alice and Bob’s subsystems. Next, take what is now Alice’s
quantum system and convert it to a classical output (by measuring in a preferred basis). On Bob’s side, convert
his classical system to a quantum one by conditioning a quantum state preparation on the value of the classical
variable. This operation will not create nonclassicality, hence it could be considered a free operation. However,
it does not seem to have any meaningful physical motivation.
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question for the cases of channel EPR scenarios and MDI EPR scenarios? What valuable
insights about nature can such EPR scenarios give us?
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[37] Zoë Holmes, Erick Hinds Mingo, Calvin Y-R Chen, and Florian Mintert. “Quantifying
athermality and quantum induced deviations from classical fluctuation relations”. Entropy
22, 111 (2020).

[38] Michael A Nielsen. “Conditions for a class of entanglement transformations”. Physical
Review Letters 83, 436 (1999).

[39] Charles H Bennett, Herbert J Bernstein, Sandu Popescu, and Benjamin Schumacher. “Con-
centrating partial entanglement by local operations”. Physical Review A 53, 2046 (1996).

[40] Yuval Rishu Sanders and Gilad Gour. “Necessary conditions for entanglement catalysts”.
Physical Review A 79, 054302 (2009).

[41] Francesco Buscemi. “All entangled quantum states are nonlocal”. Physical review letters
108, 200401 (2012).

[42] David Schmid, Haoxing Du, Maryam Mudassar, Ghi Coulter-de Wit, Denis Rosset, and
Matty J Hoban. “Postquantum common-cause channels: the resource theory of local op-
erations and shared entanglement”. Quantum 5, 419 (2021).

[43] Jonathan Barrett, Noah Linden, Serge Massar, Stefano Pironio, Sandu Popescu, and David
Roberts. “Nonlocal correlations as an information-theoretic resource”. Physical review A
71, 022101 (2005).

[44] Nicolas Brunner and Paul Skrzypczyk. “Nonlocality distillation and postquantum theories
with trivial communication complexity”. Physical review letters 102, 160403 (2009).

[45] Judea Pearl. “Causality”. Cambridge University Press. (2009).
[46] Christopher J Wood and Robert W Spekkens. “The lesson of causal discovery algorithms for

quantum correlations: causal explanations of bell-inequality violations require fine-tuning”.
New Journal of Physics 17, 033002 (2015).

[47] Paulo J Cavalcanti, John H Selby, Jamie Sikora, Thomas D Galley, and Ana Belén Sainz.
“Post-quantum steering is a stronger-than-quantum resource for information processing”.
npj Quantum Information 8, 1–10 (2022).

[48] Ana Belén Sainz, Nicolas Brunner, Daniel Cavalcanti, Paul Skrzypczyk, and Tamás Vértesi.
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A LOSR transformations in terms of deterministic combs
A.1 The channel EPR scenario
The most general LOSR operation on a channel assemblage transforms IA|X into I′

A′|X′ as spec-
ified in Eq. (5), recalled below:

I ′
a′|x′(·) =

∑
λ

∑
a,x

p(a′, x|a, x′, λ) p(λ) Λ
BoutS→B′

out′
λ (Ia|x ⊗ IS) Λ

B′
in′ →BinS

λ (·) .

It was shown in Refs. [22, 58] that any indeterminism in Alice’s local comb can be absorbed into
the shared common cause λ. That is, the indeterministic probability distribution p(a′, x|a, x′, λ)
is as general as a deterministic one is. In this subsection we recall the proof of this statement.

First, decompose Alice’s local comb as a convex combination of deterministic combs:

p(a′, x|a, x′, λ) =
∑

λ̃

p(λ̃|λ)D(a′, x|a, x′, λ̃), (30)

with D(a′, x|a, x′, λ̃) being a deterministic probability distribution. We can always express
D(a′, x|a, x′, λ̃) = D(a′|a, x′, λ̃)D(x|a, x′, λ̃). Moreover, since D(a′, x|a, x′, λ̃) satisfies the con-
dition of no-retrocausation (the variable a is the causal future of the variable x, therefore a
cannot influence the value of x), without loss of generality D(x|a, x′, λ̃) = D(x|x′, λ̃). Hence

D(a′, x|a, x′, λ̃) = D(a′|a, x′, λ̃)D(x|x′, λ̃). (31)

Here, D(a′|a, x′, λ̃) assigns a fixed outcome a′ for each possible choice of a, x′, and λ̃, and
D(x|x′, λ̃) assigns a fixed outcome x for each measurement x′ and value of λ̃.

Putting this together in the Choi form with the definition of the map J
B′

in′ Bout→BinB′
out′

ξ λ

(after Eq. (5)) one obtains:

J ′
a′|x′(·) =

∑
λ,λ̃

∑
a,x

p(λ̃|λ)D(a′|a, x′, λ̃)D(x|x′, λ̃) Ja|x ∗ Jξ λ.

From here, one can then define

J̃
B′

in′ Bout→BinB′
out′

ξ λ̃
(·) =

∑
λ

p(λ̃|λ) J
B′

in′ Bout→BinB′
out′

ξ λ (·) , (32)

where J̃
B′

in′ Bout→BinB′
out′

ξ λ is by definition a map that is non-signalling from the system defined
on HBout to the system defined on HBin . From here follows that:

J ′
a′|x′(·) =

∑
λ̃

∑
a,x

D(a′|a, x′, λ̃)D(x|x′, λ̃) Ja|x ∗ J̃
ξ λ̃
, (33)

which gives Eq. (7) from the main text.
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A.2 The Bob-with-input EPR scenario
The arguments given above also apply to the Bob-with-input EPR scenario. The most general
LOSR transformation on a Bob-with-input assemblage transforms ΣA|XY into Σ′

A′|X′Y′ as follows:

σ′
a′|x′y′ =

∑
λ

∑
a,x,y

p(a′, x|a, x′, λ)p(y|y′, λ)p(λ)ξλ,y′(σa|xy). (34)

We already discussed that Alice’s local comb can be expressed in terms of deterministic prob-
ability distributions as in Eq.(30). The same technique can be applied to Bob’s pre-processing
to express it as

p(y|y′, λ) =
∑

λ̃

p(λ̃|λ)D(y|y′, λ̃). (35)

Define the following CPTP map:

ξ̃
λ̃,y′(σa|xy) =

∑
λ

p(λ̃|λ)p(λ)ξλ,y′(σa|xy). (36)

We can now rewrite the Bob-with-input LOSR transformation as

σ′
a′|x′y′ =

∑
λ̃

∑
a,x,y

D(x|x′, λ̃)D(a′|a, x′, λ̃)D(y|y′, λ̃)ξ̃
λ̃,y′(σa|xy), (37)

which is exactly Eq. (16) from the main text if one labels λ̃ as λ.

B Robust formulation of the SDPs
All SDPs derived in this paper are feasibility problems, i.e., they are written in a form where
the objective function vanishes. One can relax the constraints on the Choi matricies and instead
of requiring their positive semi-definiteness, require them to be close to a positive semi-definite
matrix. Such reformulation makes the SDPs more robust. In SDP 2, this can be implemented
by relaxing the constraints Jξ λ ≥ 0 and JF λ ≥ 0 to Jξ λ +µI ≥ 0 and JF λ +µI ≥ 0, respectively.
Then, the SDP 2 can be written as a minimization of the new parameter µ:

SDP 14. The channel assemblage IA|X can be converted to the channel assemblage I′
A′|X′ under

LOSR operations, denoted by IA|X
LOSR−→ I′

A′|X′, if and only the solution of the following SDP
satisfies µ < 10−10:

given {Ja|x}a,x , {J ′
a′|x′}a′,x′ , {D(a′|a, x′, λ)}λ,a′,a,x′ , {D(x|x′, λ)}λ,x,x′

min
(Jξ λ)λ , (JF λ)λ

µ

s.t.



µ ≥ 0 ,
Jξ λ + µI ≥ 0 ∀λ ,
trB′

out′ Bin
{Jξ λ} ∝ IBoutB′

in′
∀λ ,∑

λ trB′
out′ Bin

{Jξ λ} = 1
dBout dB′

in′
IBoutB′

in′
,

JF λ + µI ≥ 0 ∀λ ,
trBin {JF λ} ∝ IB′

in′
∀λ ,∑

λ trBin {JF λ} = 1
dB′

in′
IB′

in′
,

trB′
out′

{Jξ λ} = JF λ ⊗ 1
dBout

IBout ∀λ ,
J ′

a′|x′ =
∑

λ

∑
a,xD(a′|a, x′, λ)D(x|x′, λ) Ja|x ∗ Jξ λ .

(38)
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The threshold for the value of µ can be selected depending on the application of the program.
Above, we decide on µ < 10−10 solely for the purpose of the presentation.

This method can be applied to the SDP 6 and SDP 12 in an analogous way, hence we do
not present the modified SDPs here.

We run the SDP 14 (and analogous robust SDPs for the Bob-with-input and measurement-
device-independent scenarios) to confirm results stated in the paper. For conversions which are
possible, the result of the optimization is µ ≈ 10−10. For impossible conversions, it is µ > 10−4.
The code is available at [64].

C Almost quantum correlations
In this Appendix, we recall an example from Ref. [66] of a probability distribution that is
almost-quantum yet not quantum. Consider a bipartite Bell scenario where a, b, x, and y are
binary classical variables. In this scenario, the probability distribution is fully specified by an
8-dimensional vector p⃗ with the following entries:

p⃗ =
{
pA(1|0), pA(1|1), pB(1|0), pB(1|1), p(1, 1|0, 0), p(1, 1|1, 0), p(1, 1|0, 1), p(1, 1|1, 1)

}
. (39)

Here, pA(a|x) and pB(b|y) are the marginal probabilities corresponding to Alice’s and Bob’s
individual measurements, respectively, and p(ab|xy) is the conditional joint probability distri-
bution. To calculate the probabilities that are not explicitly contained in p⃗, one must simply
use the normalization and no-signalling constraints:∑

a∈A,b∈B

p(ab|xy) = 1 ∀x, y, (40)

∑
b∈B

p(ab|xy) = pA(a|x) ∀x, y, a, (41)

∑
a∈A

p(ab|xy) = pB(b|y) ∀x, y, b. (42)

In Ref. [66], it was shown that the following probability vector belongs to the almost quantum
set and it does not admit a quantum realization:

p⃗AQ =
{ 9

20 ,
2
11 ,

2
11 ,

9
20 ,

22
125 ,

√
2

9 ,
37
700 ,

22
125

}
. (43)

In the main text, we use the probability p⃗AQ to construct the elements of the Bob-with-input
assemblage ΣAQ.

D Membership problem for the measurement-device-independent EPR sce-
nario

Deciding whether a measurement-device-independent assemblage has a quantum realization is
a highly non-trivial problem. In this section, we introduce the first level of a hierarchy of
semidefinite programs for MDI EPR scenarios which tests a membership of the set of quantum
assemblages. The hierarchy of programs will be presented in future work; for the purpose of this
paper, we only specify its first level. This hierarchy is analogous to the Navascués-Pironio-Aćın
(NPA) hierarchy for quantum correlations [75, 76].

The elements of a quantum MDI assemblage NAB|X = {Nab|x(·)} can be expressed as

Nab|x(·) = tr
{

(MA
a|x ⊗ ΘBBin→Bout

b )[ρAB ⊗ (·)Bin ]
}
.
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Without loss of generality, we can take the shared state to be pure, which we denote by |ψ⟩ ⟨ψ|AB,

and the measurement Θb to be projective, which we denote by FBBin
b . Thus, each element Nab|x

of the assemblage can be written as Nab|x(·) = tr
(
Ñab|x(·)

)
, with

Ñab|x(·) = trAB

(
MA

a|x ⊗ FBBin
b |ψ⟩⟨ψ|AB ⊗ (·)

)
= ⟨ψ|MA

a|x ⊗ FBBin
b |ψ⟩(·).

Notice that Ñab|x is a matrix and we can write its elements as

⟨i|Ñab|x|j⟩ = ⟨i|⟨ψ|Ma|x ⊗ Fb|ψ⟩|j⟩
= ⟨ψ|Ma|x ⊗ ⟨i|Fb|j⟩|ψ⟩

= ⟨ψ|Ma|x ⊗ F ij
b |ψ⟩.

Here, the operator F ij
b := ⟨i|Fb|j⟩ must satisfy the following properties:∑

b

F ij
b = δi,jIB ,

∑
i

(F ij
b )†F ij′

b′ = δb,b′F jj′

b .

Therefore, all elements of the matrix Ñab|x can be written as linear combinations of inner

products of the form ⟨ψ|O†
kOm|ψ⟩, where Ok ∈ {I, {Ma|x}, {F ij

b }}. We can now write a moment

matrix with columns and rows indexed by the choice of operator Ok. Denote ⟨ψ|O†
kOm|ψ⟩ as

⟨O†
kOm⟩. The moment matrix for a, b ∈ {0, 1}, x ∈ {0, 1, 2} and Bin being two-dimensional is

the following:

⟨ψ|ψ⟩ ⟨M0|0⟩ ⟨M0|1⟩ ⟨M0|2⟩ ⟨F 00
0 ⟩ ⟨F 01

0 ⟩ ⟨F 10
0 ⟩ ⟨F 11

0 ⟩
⟨M0|0⟩ ⟨M0|0M0|0⟩ ⟨M0|0M0|1⟩ ⟨M0|0M0|2⟩ ⟨M0|0F

00
0 ⟩ ⟨M0|0F

01
0 ⟩ ⟨M0|0F

10
0 ⟩ ⟨M0|0F

11
0 ⟩

⟨M0|1⟩ ⟨M0|1M0|0⟩ ⟨M0|1M0|1⟩ ⟨M0|1M0|2⟩ ⟨M0|1F
00
0 ⟩ ⟨M0|1F

01
0 ⟩ ⟨M0|1F

10
0 ⟩ ⟨M0|1F

11
0 ⟩

⟨M0|2⟩ ⟨M0|2M0|0⟩ ⟨M0|2M0|1⟩ ⟨M0|2M0|2⟩ ⟨M0|2F
00
0 ⟩ ⟨M0|2F

01
0 ⟩ ⟨M0|2F

10
0 ⟩ ⟨M0|2F

11
0 ⟩

⟨F 00
0 ⟩ ⟨F 00

0 M0|0⟩ ⟨F 00
0 M0|1⟩ ⟨F 00

0 M0|2⟩ ⟨F 00
0 F 00

0 ⟩ ⟨F 00
0 F 01

0 ⟩ ⟨F 00
0 F 10

0 ⟩ ⟨F 00
0 F 11

0 ⟩
⟨F 10

0 ⟩ ⟨F 10
0 M0|0⟩ ⟨F 10

0 M0|1⟩ ⟨F 10
0 M0|2⟩ ⟨F 10

0 F 00
0 ⟩ ⟨F 10

0 F 01
0 ⟩ ⟨F 10

0 F 10
0 ⟩ ⟨F 10

0 F 11
0 ⟩

⟨F 01
0 ⟩ ⟨F 01

0 M0|0⟩ ⟨F 01
0 M0|1⟩ ⟨F 01

0 M0|2⟩ ⟨F 01
0 F 00

0 ⟩ ⟨F 01
0 F 01

0 ⟩ ⟨F 01
0 F 10

0 ⟩ ⟨F 01
0 F 11

0 ⟩
⟨F 11

0 ⟩ ⟨F 11
0 M0|0⟩ ⟨F 11

0 M0|1⟩ ⟨F 11
0 M0|2⟩ ⟨F 11

0 F 00
0 ⟩ ⟨F 11

0 F 01
0 ⟩ ⟨F 11

0 F 10
0 ⟩ ⟨F 11

0 F 11
0 ⟩


.

This moment matrix can be seen to specify the first level of a hierarchy of semidefinite programs
that test membership of an MDI assemblage in the quantum set. Higher levels of the hierarchy
can be generated by considering various sequences of products of operators Ma|x and F ij

b , as we
will specify in a follow up manuscript.

We used the first level of the hierarchy to check if the MDI assemblage specified in Eq. (28)
is quantum. We run the SDP (in Matlab [59], using the software CVX [60, 61]; see the code
at [64]) to check if any moment matrix of the form above is positive semidefinite, and it is not.
We conclude that the assemblage is postquantum.

E Proofs
E.1 Proof of Theorem 8
In this section, we give a proof of Theorem 8 stated in the main text. To show that ΣP R cannot
be converted into ΣP T P with LOSR operations, we will make use of the ‘steering’ functional
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constructed in Ref. [26, Eq. (D3)], which we denote SP T P . A generic functional in a Bob-with-
input scenario is defined as:

S[ΣA|XY] = tr

 ∑
a∈A, x∈X, y∈Y

Faxy σa|xy

 , (44)

where {Faxy} is a set of Hermitian operators. SP T P is specified by the following operators

FP T P
axy = 1

2(I − (−1)aσx)T y
, (45)

where T y denotes that the transpose operation is applied when y = 1, and the identity operation
is applied when y = 0. Here, however, the operator σx should not be confused with the Pauli-X
operator, since x ∈ X here denotes the choice of Alice’s measurement. Indeed, the operators
σ0, σ1, and σ2 (since x ∈ {0, 1, 2}) should be thought of as the Pauli X, Y, and Z operators
respectively. This alternative way of denoting the Pauli operators will also be used later on in
this section.

It was shown in Ref. [26, Appendix D] that for any non-signalling assemblage ΣA|XY, the

minimum value Smin
P T P of SP T P [ΣA|XY] is given by Smin

P T P = 0. It was also proved that ΣP T P

achieves the minimum value, that is, SP T P [ΣP T P ] = Smin
P T P .

It can be shown by direct calculation that ΣP R does not achieve the value of 0 for SP T P .
In order to show, hence, that ΣP R cannot be converted to ΣP T P , it then suffices to show that
any LOSR-processing of ΣP R will also not give this minimum value of 0 for SP T P . To show
this we will use the following observation.

Remark 15. An assemblage ΣA|XY satisfies SP T P [ΣA|XY] = Smin
P T P = 0 iff each element satisfies

σa|xy = αa,x,y
1
2 (I + (−1)aσx)T y for all a ∈ A, x ∈ X, y ∈ Y, where αa,x,y is a real number such

that 0 ≤ αa,x,y ≤ 1 for all a ∈ A, x ∈ X, y ∈ Y.

Proof. First note that the operators FP T P
axy = 1

2(I − (−1)aσx)T y are rank-1 projectors. Hence,
tr

{
FP T P

axy σa|xy

}
≥ 0 for all a ∈ A, x ∈ X, y ∈ Y. Since by assumption SP T P [ΣA|XY] = 0,

it follows that tr
{
FP T P

axy σa|xy

}
= 0 for all a ∈ A, x ∈ X, y ∈ Y. Since each FP T P

axy is a
projector onto a one-dimensional subspace, this implies that σa|xy cannot have any support on
this one-dimensional subspace, and thus the assemblage element σa|xy only has support on the
one-dimensional subspace orthogonal to FP T P

axy . In other words, if FP T P
axy = 1

2(I − (−1)aσx)T y ,
then the assemblage element has support on the one-dimensional subspace spanned by the
projector 1

2(I + (−1)aσx)T y , which concludes the proof.

Remark 15 is crucial for proving Theorem 8, which we recall here:

Theorem 8. ΣP R cannot be converted into ΣP T P with LOSR operations.

Proof. Let us prove this by contradiction. Assume that ΣP T P is given by an LOSR-processing of
ΣP R, denoted as ΣP R

Λ = {σP R,Λ
a|xy }. Then, it follows that this LOSR-processing of ΣP R saturates

the non-signalling bound of the functional SP T P . From Remark 15, it can only be the case that
each σP R,Λ

a|xy is proportional to a particular Pauli eigenstate, where x denotes its corresponding
Pauli basis. In other words, each element of ΣP R

Λ is diagonal in a particular Pauli basis, and
has one null eigenvalue.

Now note that every element of ΣP R is diagonal in the computational (Pauli Z) basis. There-
fore, the original assemblage ΣP R is invariant under the dephasing map in the computational
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basis, i.e., for all a ∈ A, x ∈ X, y ∈ Y, D[σP R
a|xy] :=

∑
i∈{0,1} |i⟩⟨i|σP R

a|xy |i⟩⟨i| = σP R
a|xy. There-

fore, without loss of generality, any LOSR-processing of ΣP R can be pre-composed with the
dephasing map D[·] without changing the assemblage that results from the processing. More
formally, for any LOSR transformation Λ, Λ[D[ΣP R]] = Λ[ΣP R] = ΣP R

Λ . Equivalently, any
LOSR-processing of ΣP R can be first described as an application of the dephasing map on
Bob’s qubit, following by another LOSR transformation.

Therefore, for the elements of ΣP R
Λ that are diagonal in Pauli bases other than the Pauli Z

basis, the LOSR-processing needs to transform Bob’s qubit so that the assemblage elements are
diagonal in another basis. Furthermore, the elements of ΣP R

Λ only have support in (at most)
one-dimensional subspace. Such a situation for ΣP R

Λ can only happen if, in the LOSR-processing
on ΣP R, after the dephasing map, Bob applies another CPTP map Fy,λ, which can depend on y
and the shared randomness λ. Because of the dephasing map, to produce assemblage elements
with support on a one-dimensional subspace, the map Fy,λ is such that it can be simulated
by a measure-and-prepare channel, where the preparation step in the channel should prepare
the state corresponding to the one-dimensional subspace. However, the Pauli bases for the
assemblage elements are necessarily determined by x, and, since Fy,λ cannot depend on x, it
is impossible for an LOSR-processing to produce the desired assemblage ΣP R

Λ . That is, if the
state preparation step of the channel Fy,λ could prepare states in the correct basis, then the
measurement in the channel would reveal what the input x of Alice is, which is incompatible
with the no-signalling condition.

E.2 Proof of Observation 10
In Section 3.2, we used SDP 6 to certify that Σ′P R can be converted into ΣAQ with LOSR
operations, but not vice versa. We now prove the first part of this observation analytically.

Theorem 15. The post-quantum Bob-with-input assemblage Σ′P R can be converted into ΣAQ

with LOSR operations.

Proof. We prove the theorem by providing an explicit LOSR protocol that preforms the desired
transformation. This protocol is depicted in Fig. 9.

1. Σ′PR LOSR−→ p⃗PR: Bob measures his share of the system in the computational basis. This
local operation maps the assemblage Σ′P R into a conditional probability distribution
p⃗P R = {pP R(ab|xy)} corresponding to PR-box correlations.

2. p⃗PR
LOSR−→ p⃗AQ: In the resource theory of common-cause boxes under LOSR operations,

the equivalence class of PR-boxes is at the top of the pre-order of bipartite correlations
with |A| = |B| = |X| = |Y| = 2 [22]. Hence there exits an LOSR process that maps
p⃗P R into p⃗AQ. Let Alice and Bob apply this LOSR operation to p⃗P R. They are then left
sharing the correlations p⃗AQ = {pAQ(a′b′|x′y′)}.

3. p⃗AQ
LOSR−→ ΣAQ: in this step, Bob implements a measure-and-prepare channel which reads

out the value of the classical output b′ and prepares a qubit on state |b′⟩. This state will
be prepared with probability pAQ(a′b′|x′y′) since Alice and Bob share p⃗AQ. This hence
effectively prepares ΣAQ.
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Figure 9: The LOSR protocol (in purple) that converts Σ′P R into ΣAQ.

F The sets of free non-signalling channel assemblages under LOCC and LOSR
coincide

In our resource theory, we require the elements of a free channel assemblage to decompose as
per Eq. (2), i.e.

Ia|x(·) =
∑

λ

p(a|x, λ)p(λ)Iλ(·),

where Iλ(·) is a CPTP map. It is straightforward to see that for any state ρ, tr
{

Ia|x(ρ)
}

=
p(a|x), i.e., Alice’s probability distribution p(a|x) is independent of Bob’s input state. This is
the no-signalling condition from Bob to Alice, which is therefore satisfied in our LOSR approach.

In Refs. [25, 74], a free assemblage (see Fig. 10(a)) is defined as one that decomposes as

Ĩa|x(·) =
∑

λ

p(a|x, λ)Ĩλ(·),

with Ĩλ being a CPTNI map. One can think about this construction as a channel that is semi-

causal, i.e., non-signalling from Alice to Bob. In general, however, tr
{

Ĩa|x(ρ)
}

can depend on

the particular choice of ρ, and so it may allow signalling from Bob to Alice.
If one wants the free assemblage to be non-signalling (from Alice to Bob and from Bob to

Alice), an additional condition must be imposed on Ĩa|x(·). For this channel to be causal, it

must also be semi-causal from Bob to Alice. Let us denote such assemblage by ĨNS
a|x (·). Then,

from the main result of Ref. [77], if follows that ĨNS
a|x (·) must be semi-localizable from Bob to

Alice. Therefore, ĨNS
a|x (·) can be graphically represented as in Fig. 10(b). Here, Bob’s local

operation is a CPTP map. The state that Alice and Bob now share is a classical-quantum
separable state. For this reason, we can treat Bob’s subsystem of the shared state, ρλ, as a
quantum state that is being prepared conditioned on the value of the classical variable λ. This
means that we can treat this preparation as a local operation on Bob’s side, and the only
system that he shares with Alice is the classical variable λ as illustrated in Fig. 10(c). It is
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clear to see that the assemblage illustrated in Fig. 10(b) is LOSR-free, i.e., it can be expressed
as Ia|x(·) =

∑
λ p(a|x, λ)p(λ)Iλ(·), with Iλ(·) being a CPTP map. Therefore, we showed that

the set of LOSR-free channel assemblages coincides with the set of free channel assemblages
introduced in Refs. [25, 74] if no-signalling from Bob to Alice is imposed.

(a)

x

a

λ

Ĩa|x(·)

(b)

x

a

λ ρλ

ĨNS
a|x (·)

(c)

x

a

λ

Ia|x(·)

Figure 10: (a) An LOCC-free channel assemblage that allows signalling from Bob to Alice. (b) An LOCC-free
channel assemblage that is moreover non-signalling. (c) An LOSR-free channel assemblage. We prove here
that the class of resources defined by (b) is identical to that defined by (c).
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Correlations generated in generalised Einstein-Podolsky-Rosen (EPR) scenarios are examples of
non-signalling bipartite resources that can exhibit post-quantum behavior. There exist assemblages
that, despite being post-quantum resources, can only generate quantum correlations in bipartite
Bell-type scenarios. Here, we present a protocol for activation of post-quantumness in bipartite Bob-
with-input, measurement-device-independent and channel EPR scenarios. By designing a protocol
that involves distributing the assemblages in a larger network, we derive tailored Bell inequalities
which can be violated beyond their quantum bound in this new set-up.
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I. INTRODUCTION

In the bipartite Einstein-Podolsky-Rosen (EPR) scenario [1–3], nonclassical correlations are generated
between two distant parties, Alice and Bob, upon local measurements on half of a system prepared in
an entangled state. Along with Bell-nonclassicality [4–6] and entanglement [7], it is one of the notable
resources studied in quantum theory. Correlations generated in the EPR scenario are crucial for various
information-theoretic tasks [8, 9], such as quantum cryptography [10, 11], entanglement certification [12, 13]
and randomness certification [14, 15]. From the quantum foundations perspective, the EPR scenario allows
us to study the structure and limitations of quantum theory [16–20].

The standard EPR scenario [1–3] is illustrated in Fig. 1(a), where the classical and quantum systems are
depicted with single and double lines, respectively. Conventionally, Alice and Bob share a quantum system
denoted by a density operator ρAB . Alice performs a local measurement on her subsystem (associated with
a generalised measurement, i.e., a positive operator-valued measure (POVM) {Ma|x}a,x): she chooses a
measurement setting labeled by x ∈ X and registers a classical outcome a ∈ A with probability p(a|x). Upon
this measurement, the subsystem in Bob’s laboratory can be described by a conditional state ρa|x. The
relevant object of study in the EPR scenario is an assemblage [21] defined as ΣA|X = {σa|x}a,x, where each

unnormalised state σa|x = trA
{

(Ma|x ⊗ I)ρAB

}
is given by σa|x := p(a|x)ρa|x. In this paper, we do not limit

Alice and Bob’s shared resources to be quantum systems nor Alice to perform quantum measurements, but
we do limit Bob to having a quantum system. That is, we take the space of all resources to be the non-
signalling ones (meaning that the parties cannot utilise the shared system for instantaneous communication).
Notably, in the standard bipartite EPR scenario, this does not make a difference. Due to the GHJW theorem,
proven by Gisin [22] and Hughston, Jozsa, and Wootters [23], all possible non-signalling assemblages can be
reproduced by Alice making a measurement on a quantum system. However, this is not true for non-bipartite
scenarios, as shown in Ref. [24]; in this work we will not consider such multipartite settings.

Different generalizations of this standard EPR scenario have been introduced in recent years, wherein Bob
may also probe his system in various ways. Then, it is possible to relax the condition of the shared physical
system being quantum, and consider more general theories in the set-up of this experiment (post-quantum
systems). Distinction between these generalizations is made by different processing types on Bob’s side,
which are characterised by different input and output types in Fig. 1. In every type of EPR scenario, the
relevant assemblage is then given by a collection of ensembles of Bob’s conditional processes labeled by
Alice’s measurement input and output variables. EPR scenarios considered in this paper are the following:

(b) Bob-with-input EPR scenario [25]: a bipartite EPR scenario, where Bob has a classical input which
allows him to locally influence the state preparation of his quantum output system.

(c) Measurement-device-independent EPR scenario [26, 27]: a bipartite EPR scenario where Bob has a
measurement channel with a quantum input and a classical output, i.e., a quantum instrument with a
trivial output Hilbert space.

(d) Channel EPR scenario [27, 28]: a bipartite EPR scenario where Bob has quantum input and output
systems.

These scenarios are all closely related, and a unified framework for understanding them was introduced in
Refs. [27, 29, 30]. In particular, all these scenarios have a common-cause structure (Alice and Bob share a
physical system) and Alice is measuring her local subsystem. Therefore, the correlations generated between
Alice and Bob depend on the setting and output of Alice’s measurement.
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FIG. 1. Generalizations of the standard EPR scenario: (a) Standard bipartite EPR scenario. (b) Bob-with-
input EPR scenario. (c) Measurement-device-independent EPR scenario. (d) Channel EPR scenario. Quantum and
classical systems are depicted by double and single lines, respectively. Thick black lines depict the possibility that the
shared systems may be classical, quantum, or even post-quantum. Formal definitions of the assemblage elements for
each EPR scenario (σa|x for the Bob-with-input scenario, Nab|x(·) for the measurement-device-independent scenario
and Ia|x(·) for the channel scenario) are introduced in the following sections.

In contrast to the standard EPR scenario, its generalizations can exhibit post-quantum resources.
Moreover, for each of the generalizations introduced above, there exist assemblages such that their post-
quantumness cannot be tested in a bipartite device-independent set-up1. For such assemblages, testing
their post-quantumness requires either evaluating EPR functionals or using hierarchies of semi-definite
programs [25, 27, 31].

In this paper, we design a protocol for activating post-quantumness of bipartite assemblages in device-
independent multipartite settings. We show how to distribute and process a post-quantum assemblage such
that a device-independent test in this new setting can certify post-quantumness of the assemblage. The
protocol has a similar structure for all types of generalised EPR scenarios. First, an additional quantum
resource (a standard bipartite EPR assemblage) shared between Bob and an additional third party is self-
tested. In this step of the protocol, Bob measures his share of this additional resource to learn about its
structure in a device-independent way. Second, this additional quantum resource is used to promote EPR
functionals to Bell functionals on correlations generated in this new larger network (with Alice, Bob, and
the additional third party). Then, these Bell functionals can be used to certify post-quantumness of the
correlations generated in the protocol set-up.

Given that the protocols slightly differ for various types of generalised EPR scenarios, below we dedicate
a section to each scenario to introduce and analyze its protocol. In the main body of the paper, we restrict
our considerations to qubit assemblages; generalization to higher-dimensional assemblages is discussed in
the Appendix F. The method that we use to show activation of post-quantumness is analogous to the one
introduced in Ref. [32] for multipartite assemblages, which adapts the results of Refs. [33, 34] for the self-
testing stage and the general idea for the protocol. The most significant difference between our set-ups is
that we focus on bipartite scenarios in which now Bob can apply a local processing on the system shared
with Alice.

II. BOB-WITH-INPUT SCENARIO

A. Description of the scenario

In the Bob-with-input (BwI) EPR scenario, Bob can choose the value of a classical input y ∈ Y which
influences the local transformation of his subsystem (not necessarily a quantum one) into a new quantum
system. Alice’s local operations are the same as in the standard EPR scenario. Let p(a|x) denote the

1 Here, the concept of a bipartite device-independent set-up is quite expansive. Essentially, device-independent set-ups are
configurations involving devices with classical inputs and outputs whose characteristics are not specified. Further elaboration
on this will be provided for each EPR scenario later on.
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probability that Alice obtains outcome a when performing measurement x. Then, if in addition Bob chooses
an input y, the normalised state in his laboratory is given by ρa|xy. The relevant object of study in this
scenario is a Bob-with-input assemblage which is given by ΣA|XY = {σa|xy}a,x,y, with σa|xy = p(a|x)ρa|xy.
The most general constraints on the possible unnormalised states σa|xy are the following.

Definition 1 (Non-signalling Bob-with-input assemblages). An assemblage ΣA|XY with elements {σa|xy}a,x,y
is a valid non-signalling assemblage in a Bob-with-input EPR scenario if the following constraints are satisfied

σa|xy ≥ 0 ∀ a, x, y , (1)

tr

{∑
a

σa|xy

}
= 1 ∀x, y , (2)

tr
{
σa|xy

}
= p(a|x) ∀ a, x, y , (3)∑

a

σa|xy =
∑
a

σa|x′y ∀x, y, x′. (4)

Conditions (3) and (4) are imposed by relativistic causality. They simply imply that Alice and Bob cannot
signal to each other.

It was shown in Ref. [25] that there exist non-signalling BwI assemblages that do not admit a quantum
realization of the form σa|xy = trA

{
(Ma|x ⊗ Ey)ρAB

}
, i.e., cannot be generated by Alice and Bob sharing a

quantum state ρAB , Bob applying channels (completely positive and trace preserving (CPTP) maps [35, 36])
{Ey}y on his subsystem and Alice measuring with POVMs {Ma|x}a,x. We will refer to such assemblages as
post-quantum assemblages.

To certify post-quantumness of a BwI assemblage, one can define an EPR inequality and show that its
quantum bound can be violated by this assemblage. Take an arbitrary fixed post-quantum BwI assemblage
Σ∗

A|XY with elements {σ∗
a|xy}a,x,y. There always exist Hermitian operators {Faxy}a,x,y such that the EPR

functional

tr

{∑
a,x,y

Faxyσ
∗
a|xy

}
< 0, (5)

while tr
{∑

a,x,y Faxyσa|xy

}
≥ 0 when evaluated on any quantum assemblage {σa|xy}a,x,y.

One particularly interesting set of assemblages in the BwI scenario considered in Ref. [24] consists of post-
quantum assemblages that can only lead to quantum correlations if Bob decides to measure his quantum
state. Formally, such assemblages with elements {σa|xy}a,x,y are such that when Bob performs a measurement

{Nb}b, the observed correlations p(ab|xy) = tr
{
Nbσa|xy

}
belong to the quantum set, i.e., admit a quantum

realisation of the form p(ab|xy) = tr
{
Na|x ⊗Nb|yρ

}
with {Na|x}a,x and {Nb|y}b,y representing POVMs and

ρ being a valid quantum state. This set of assemblages is interesting, because it shows that post-quantum
assemblages are a fundamentally different resource than post-quantum correlations in Bell-type scenarios.
We denote this set ΣQC .

In this paper, we propose a protocol in which a bipartite Bob-with-input post-quantum assemblage is dis-
tributed in a tripartite network such that post-quantum correlations can be generated in this new network. If
the input assemblage belongs to the set ΣQC , we refer to this phenomenon as activation of post-quantumness,
as it enables one to reveal the post-quantum nature of the BwI assemblage in a tripartite Bell-type setting.
This result shows that all assemblages from the set ΣQC can be utilised to generate post-quantum correla-
tions. As there is no known example of a post-quantum assemblage which does not produce post-quantum
correlations, it raises the question of whether there is a fundamental difference between these two resources.

B. The activation protocol

The activation protocol is illustrated in Fig. 2. The experiment consists of three parties: Alice, Bob and
Charlie. Alice and Bob share a bipartite Bob-with-input assemblage ΣA|XY whose post-quantumness we want
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to certify. Moreover, Bob and Charlie share a standard quantum assemblage ΣC|W, with C := {0, 1} and
W := {1, 2, 3}. Bob’s quantum subsystem arising in this bipartition is defined on HB′ ; here we consider HB′

of dimension 2 – generalization of this case is discussed in the Appendix F. Finally, Bob has a measurement
device {MBB′

b|z }b,z which measures the system defined on HB⊗HB′ . The input and output sets of this device

are the following: b ∈ B := {0, 1} and z ∈ Z := {1, 2, 3, 4, ⋆}. Hereon, we assume that the assemblages ΣA|XY
and ΣC|W are independent. Additionally, Alice, Bob and Charlie must be space-like separated.

x

a

y

HB

b

z

HB′

c

w

FIG. 2. Depiction of the activation protocol for the Bob-with-input scenario. Arbitrary systems (which may be
post-quantum) are represented by thick lines, quantum systems are represented by double lines and classical systems
are depicted as single lines

If the BwI assemblage ΣA|XY belongs to the set ΣQC , this protocol can activate its post-quantumness by
utilizing the additional quantum resource ΣC|W to produce post-quantum correlations in the new tripartite
network. In the set-up described above, the protocol consists of the following two steps.

Step 1: Self-testing of ΣC|W.

The first step of the protocol is to certify that the state of Bob’s quantum system HB′ is prepared in the

assemblage Σ
(r)
C|W with elements σ

(r)
c|w = rσ̃c|w + (1 − r)(σ̃c|w)T . Here, 0 ≤ r ≤ 1 is an unknown parameter,

and σ̃c|1 = (I + (−1)cZ)/4, σ̃c|2 = (I + (−1)cX)/4, σ̃c|3 = (I − (−1)cY )/4, with X,Y, Z being the Pauli

operators. Self-testing2 of this assemblage is possible due to the result proven in Refs. [34, 37]. We recall

the relevant Bell functional and the choice of measurements {MB′

b|z}b,z for z ∈ {1, 2, 3, 4} which maximises it

in Appendix A.

Step 2: Certification of post-quantumness.

The second step of the protocol is to measure the system on HB ⊗ HB′ and evaluate an appropriate Bell
functional to certify post-quantumness of the observed correlations. For now, we only consider the case
when Bob’s measurement setting and outcome is fixed such that MBB′

b=0|z=⋆ = |ϕ+⟩ ⟨ϕ+|, with |ϕ+⟩ = (|00⟩ +

|11⟩)/
√

2. Moreover, for simplicity we assume that the elements of the assemblage ΣC|W are given by {σ̃c|w},

not by the mixture {σ(r)
c|w}. We denote such assemblage by Σ̃C|W. In the Appendix B and C, we show that

these assumptions do not limit our result and the protocol for activation of post-quantumness works when
they are relaxed. Under these assumptions, the observed correlations are given by

p(a, b = 0, c|x, y, z = ⋆, w) = tr
{
MBB′

b=0|z=⋆(σa|xy ⊗ σ̃c|w)
}
. (6)

2 Self-testing is a well-defined concept if the states and possible operations are specified within quantum theory. One may wonder
if self-testing results are still relevant in our set-up, where we consider more general theories (post-quantum resources). In
the specific case of self-testing of a standard bipartite EPR assemblage, post-quantum non-signalling resources are not more
powerful than the quantum ones. Due to GHJW theorem [22, 23], all non-signalling assemblages in this standard bipartite
scenario admit of a quantum realization. Hence, using self-testing in this scenario is justified.
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Using the fact that tr1 {A1 ⊗ I2 |ϕ+⟩ ⟨ϕ+|} = 1
2A

T for any operator A, we can write Eq. (6) as

p(a, b = 0, c|x, y, z = ⋆, w) =
1

2
tr
{

(σ̃c|w)Tσa|xy
}
. (7)

Given observed correlations, one way to certify their post-quantumness is to evaluate a suitable Bell func-
tional, which we will now derive from the EPR functional specified in Eq. (5). For w ∈ {1, 2, 3}, let πc|w
denote the projector onto the eigenspace of the eigenstates of Pauli Z, X and Y operators with eigenvalue
(−1)c. Notice that {πc|w}c,w form a basis of the set of Hermitian matrices in a two-dimensional Hilbert
space. Therefore, the operators {Faxy}a,x,y can be decomposed as Faxy =

∑
c,w ξaxycw πc|w for some numbers

{ξaxycw }a,x,y,c,w. We can use these coefficients to construct the following Bell functional on the correlation
p = {p(a, b, c|x, y, z, w)}:

I∗BwI [p] ≡
∑

a,x,y,c,w

ξaxycw p(a, b = 0, c|x, y, z = ⋆, w). (8)

Here, the coefficients corresponding to (b, z) different than (0, ⋆) are equal to zero. To calculate the value of
this functional, we use the form of correlations given in Eq. (7):

I∗BwI [p] =
∑

a,x,y,c,w

ξaxycw

1

2
tr
{

(σ̃c|w)Tσa|xy
}
, (9)

=
1

4

∑
a,x,y

tr

{(∑
c,w

ξaxycw πc|w

)
σa|xy

}
,

=
1

4
tr

{∑
a,x,y

Faxyσa|xy

}
.

Here, we used the fact that the elements (σ̃c|w)T are proportional to the projectors πc|w. Therefore,

I∗BwI [p] ≥ 0 for any correlation p arising from a quantum assemblage {σa|xy}a,x,y3. For the particu-

lar choice of measurement MBB′

b=0|z=⋆ = |ϕ+⟩ ⟨ϕ+|, the Bell functional evaluated on the fixed assemblage

Σ∗
A|XY = {σ∗

a|xy}a,x,y gives I∗BwI [p*] < 0. In the Appendix C, we give a detailed analysis of the case when

MBB′

b=0|z=⋆ ̸= |ϕ+⟩ ⟨ϕ+| and I∗BwI needs to be optimised over all possible measurements. We show that the

quantum bound is also given by 0 in this case; hence, if one observes I∗BwI [p] < 0, it necessarily means that
the correlations p were generated from a post-quantum BwI assemblage.

If the first step of the protocol is successful, we can use the construction presented above to certify post-
quantumness of the correlations in the tripartite set-up. For each BwI assemblage Σ∗

A|XY, Theorem 2 can be

used to derive a tailored Bell functional to be used in the activation protocol.

Theorem 2. There always exists a Bell functional of the form

I∗BwI [p] =
1

2

∑
a,x,y,c,w

ξaxycw p(a, b = 0, c|x, y, z = ⋆, w), (10)

for which I∗BwI [p] ≥ 0 when evaluated on any correlations p = {p(a, b, c|x, y, z, w)} arising from quantum Bob-

with-input assemblage with elements {σa|xy}a,x,y as p(a, b = 0, c|x, y, z = ⋆, w) = tr
{
MBB′

b=0|z=⋆(σa|xy ⊗ σ̃c|w)
}
.

3 Although in principle it is difficult to find operators {Faxy}a,x,y such that the quantum bound of the EPR functional is exactly
βQ = 0, one can use numerical calculations to find a lower bound on βQ. One possible approximation is an almost-quantum
bound, which we denote βAQ [25]. We show how to use this approximation for the activation protocol in the Appendix D,
where we present how the protocol works for a specific fixed post-quantum assemblage.
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As an explicit example of this method, in the Appendix D, we use the construction from Theorem 2 to derive
a Bell functional that activates post-quantumness of the assemblage ΣPTP

A|XY introduced in Ref. [25, Eq. (6)],

which belongs to the set ΣQC .
The protocol designed in this section enables one to generate post-quantum Bell-type correlations from

bipartite BwI assemblages. In particular, it can be used to activate post-quantumness of assemblages from
the set ΣQC . Therefore, although the assemblages from the set ΣQC do not exhibit bipartite Bell-type
nonclassicality, they can generate post-quantum correlations in a larger network. This result suggests that
the fundamental differences between the post-quantumness embedded in Bob-with-input EPR assemblages
and in correlations generated in Bell scenarios are subtle, as the former can always generate latter.

III. MEASUREMENT-DEVICE-INDEPENDENT SCENARIO

A. Description of the scenario

We will now consider a measurement-device-independent (MDI) EPR scenario in which Bob holds a
collection of measurement channels that may be correlated with the physical system in Alice’s lab [26,

27]. Bob’s processing, which we denote by ΘBBin→Bout

b , takes as inputs a quantum system HBin and the
subsystem B. Bob’s output system Bout is just a classical variable that may take values within B. Formally,
the relevant MDI assemblages in this scenario are given by NAB|X = {Nab|x(·)}a,b,x, where Nab|x(·) is a
measurement channel – a quantum instrument with a trivial output Hilbert space – associated to the POVM
element corresponding to outcome b of Bob’s measurement device (when Alice’s measurement event is a|x).

Definition 3 (Non-signalling measurement-device-independent assemblages). An assemblage NAB|X with
elements {Nab|x(·)}a,b,x is a valid non-signalling assemblage in a measurement-device-independent EPR sce-
nario if the following constraints are satisfied∑

b

Nab|x(ρ) = p(a|x) ∀ a, x, ρ, (11)∑
a

Nab|x(·) = ΩBin→Bout

b (·) ∀ b, x, (12)

where ρ represents any normalised state of the quantum system Bin and {ΩBin→Bout

b (·)}b is a collection of
measurement channels with (·) representing the input space Bin.

The no-signalling conditions (11) and (12) imply that Alice’s output does not depend on Bob’s input state
and Alice’s classical input cannot influence Bob’s output. The elements of a quantumly-realizable MDI
assemblage can be written as

Nab|x(·) = trABout

{
(Ma|x ⊗ IBout

)(IA ⊗ ΘBBin→Bout

b )[ρAB ⊗ (·)]
}
. (13)

Notably, there exist non-signalling MDI assemblages that do not admit of a decomposition of the form (13) [27,
38], which we refer to as post-quantum MDI assemblages.

One method for determining whether a measurement-device-independent EPR assemblage is post-quantum
involves defining an EPR functional that it violates with respect to a quantum bound. Take an arbitrary
fixed post-quantum MDI assemblage N∗

AB|X with elements {N ∗
ab|x(·)}a,b,x. There always exist Hermitian

operators {Fabx}a,b,x such that the EPR functional

tr

∑
a,b,x

Fabx J(N ∗
ab|x)

 < 0, (14)

while tr
{∑

a,b,x Fabx J(Nab|x)
}
≥ 0 when evaluated on any quantum assemblage NAB|X.
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Moreover, there exist MDI assemblages which can only generate quantum correlations p(ab|xy) = Nab|x(ρy)

given a set of fixed input states {ρy}y. We denote the set of such assemblages by NQC . We give an example
of such behaviour in the Appendix E, where we show that a post-quantum assemblage introduced in Ref. [27]
cannot generate post-quantum correlations in a bipartite Bell-type scenario.

We now propose a protocol which certifies post-quantumness of MDI assemblages. Similarly to the previous
section, we show that although existence of the set NQC seems to imply that post-quantum assemblages
are fundamentally different resources than post-quantum Bell nonclassicality, it is not the case. If the MDI
assemblage in the protocol belongs to the set NQC , its post-quantumness can be activated, as it can generate
post-quantum correlations in a tripartite Bell-like network.

B. The activation protocol

The experiment for the activation protocol consists of three parties – Alice, Bob and Charlie, as illus-
trated in Fig. 3. Alice and Bob share a bipartite measurement-device-independent assemblage NAB|X. Bob’s
input state, which is on the Hilbert space HBin

, is prepared by Charlie through a standard quantum as-
semblage ΣC|Z, with C := {0, 1} and W := {1, 2, 3}. That is, Bob and Charlie share a system BinC and

Charlie performs measurements {MC
c|z}c,z, which result in assemblage elements {σc|z}c,z. Finally, Bob has a

measurement device {MBBin

b|y }b,y with input and output sets b ∈ B and y ∈ Y := {1, 2, 3, 4, ⋆}.

x

a b

y

HBin

c

z

FIG. 3. Depiction of the activation protocol for the measurement-device-independent scenario. Quantum systems
are represented by double lines, while classical systems are depicted as single lines. Thick lines depict the possibility
that the shared systems may be classical, quantum, or post-quantum.

In the set-up of Fig. 3, NAB|X and ΣC|Z are two independent assemblages. This can be guaranteed by
preparing the systems AB and BinC separately. Additionally, Alice, Bob and Charlie must be space-like
separated.

The protocol for the MDI scenario has the same structure as the protocol for the BwI scenario introduced
in the previous section. In the set-up described above, the protocol consists of the following two steps.

Step 1: Self-testing of ΣC|Z.

For y ∈ {1, 2, 3, 4}, Bob measures the quantum system HB′ for the self-testing procedure that is equivalent
to Step 1 in the Bob-with-input activation protocol. The goal of this step is to certify that Bob and Charlie

share an assemblage Σ
(r)
C|Z with elements σ

(r)
c|z = rσ̃c|z + (1 − r)(σ̃c|z)T . Details of the self-testing procedure

are specified in the Appendix A.

Step 2: Certification of post-quantumness.

In the second step of the protocol, for y = ⋆, Bob applies the process ΘBBin→Bout

b that defines the assemblage
NAB|X. Then, it is possible to certify the post-quantumness of the correlations p(a, b, c|x, y = ⋆, z) via an
appropriate Bell functional.

8



Assume that the first step of the protocol was successful. Here, we again assume that the elements of the

assemblage Bob and Charlie share are {σ̃c|z}c,z, not {σ(r)
c|z}c,z (see the Appendix B for discussion about this

assumption). Then, the observed correlations can be written as

p(a, b, c|x, y = ⋆, z) = Nab|x(σ̃c|z). (15)

Now, let us use Choi-Jamio lkowski isomorphism to transform the channel Nab|x(·) to an operator. Define

J(Nab|x) = (Nab|x ⊗ IC)(|ϕ+⟩ ⟨ϕ+|)BinC . Moreover, notice that the elements σ̃c|z can be written as σ̃c|z =

trC

{
(IBin ⊗ M̃C

c|z) |ϕ+⟩ ⟨ϕ+|BinC

}
, with M̃C

c|1 = (I + (−1)cZ)/2, M̃C
c|2 = (I + (−1)cX)/2 and M̃C

c|3 = (I +

(−1)cY )/2. Then, correlation (15) can be written as

p(a, b, c|x, y = ⋆, z) = tr
{
M̃C

c|z J(Nab|x)
}
. (16)

To derive a suitable Bell functional for the considered set-up, we will use the EPR functional defined in
Eq. (14). Let πc|z denote the projector onto the eigenspace of the eigenstates of Pauli Z,X and Y operators

with eigenvalue (−1)c. Then, the operators {Fabx}a,b,x can be decomposed as Fabx =
∑

c,z ξ
abx
cz πc|z for some

real numbers {ξabxcz }a,b,x,c,z. To certify post-quantum correlations in this protocol, it suffices to consider the
following Bell functional on the correlation p = {p(a, b, c|x, y = ⋆, z)}:

I∗MDI [p] ≡
∑

a,b,x,c,z

ξabxcz p(a, b, c|x, y = ⋆, z). (17)

To calculate the value of this functional, we use the form of correlations given in Eq. (16):

I∗MDI [p] =
∑

a,b,x,c,z

ξabxcz tr
{
M̃C

c|z J(Nab|x)
}
, (18)

=
∑
a,b,x

tr

{(∑
c,z

ξabxcz πc|z

)
J(Nab|x)

}
,

= tr

∑
a,b,x

Fabx J(Nab|x)

 .

Here, we used the fact that the measurement elements M̃C
c|z correspond to the projectors πc|z. If p was

generated from a quantum MDI assemblage, then I∗MDI [p] ≥ 0. For the fixed post-quantum assemblage
{N ∗

ab|x(·)}a,b,x, the functional evaluates to I∗MDI [p*] < 0. This result is summarised in the theorem below.

Theorem 4. There always exists a Bell functional of the form

I∗MDI [p] =
∑

a,b,x,c,z

ξabxcz p(a, b, c|x, y = ⋆, z), (19)

for which I∗MDI [p] ≥ 0 when evaluated on any correlations p = {p(a, b, c|x, y, z)} arising from quan-
tum measurement-device-independent assemblage with elements {Nab|x(·)}a,b,x as p(a, b, c|x, y = ⋆, z) =
Nab|x(σ̃c|z).

To summarise, here we introduced a protocol in which a post-quantum MDI assemblage is processed
to generate post-quantum Bell-type correlations. In analogy to the protocol for the BwI scenario, even
assemblages from the set NQC can be activated to generate post-quantum correlations when distributed in
a larger network. It shows that there exists a relation between post-quantumness in measurement-device-
independent EPR scenarios and device-independent post-quantum correlations.
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IV. CHANNEL EPR SCENARIO

A. Description of the scenario

In the channel EPR scenario [27, 28], Bob has access to a channel with a quantum input defined on HBin

and a quantum output defined on HBout
. Bob’s local process, which we denote by ΓBBin→Bout , might be

correlated with Alice’s system through the system B. Denote by Ia|x(·) the instrument that is effectively
applied on Bob’s quantum system Bin to output a quantum system Bout, given that Alice has performed a
measurement x on A and obtained the outcome a. Then, the object of study in a channel EPR scenario is
the channel assemblage of instruments IA|X = {Ia|x(·)}a,x.

Definition 5 (Non-signalling channel assemblages). An assemblage IA|X with elements {Ia|x(·)}a,x is a valid
non-signalling assemblage in a channel EPR scenario if the following constraints are satisfied

tr
{
Ia|x(ρ)

}
= p(a|x) ∀ a, x, ρ, (20)∑

a

Ia|x(·) = ΛBin→Bout(·) ∀x, (21)

where ρ represents any normalised state of the quantum system Bin and ΛBin→Bout(·) is a quantum channel
with (·) representing an input defined on Bin.

The no-signalling conditions (20) and (21) ensure that Alice’s output does not depend on Bob’s input state
and Alice’s classical input cannot influence Bob’s output state.

When Alice and Bob share a bipartite quantum system prepared on a state ρAB and Alice performs POVM
measurements {Ma|x}a,x, the elements of a channel assemblage admit quantum realization of the form:

Ia|x(·) = trA
{

(Ma|x ⊗ IBout)(IA ⊗ ΓBBin→Bout)[ρAB ⊗ (·)Bin ]
}
. (22)

For each measurement input x, the instruments {Ia|x}a,x form a channel which does not depend on Alice’s
measurement choice, i.e.,

∑
a∈A Ia|x is a CPTP map. In general, however, there exists post-quantum non-

signalling channel assemblages.
To certify post-quantumness of an arbitrary but fixed post-quantum channel assemblage I∗A|X with elements

{I∗
a|x} one can use a channel EPR functional similar to the functional introduced for the BwI and MDI

scenarios. The channel EPR functional is given by

tr

{∑
a,x

FaxJ(I∗
a|x)

}
< 0, (23)

wheretr
{∑

a,x,y FaxJ(Ia|x)
}
≥ 0 when evaluated on any quantum assemblage with elements {Ia|x(·)}a,x.

Moreover, there exist post-quantum assemblages IA|X that only generate quantum correlations {p(ab|xy)}
when the input systems are fixed to be {ρy}y and Bob measures his output with a measurement {Nb}b, i.e.,

p(ab|xy) = tr
{
Nb(Ia|x(ρy))

}
has a quantum realization. We denote this set of assemblages IQC .

Here we show how to embed a bipartite channel assemblage belonging to the set IQC in a larger network
such that post-quantum correlations are generated in this new set-up. The protocol combines the techniques
introduced for the BwI and MDI scenarios in the previous sections. In particular, Bob’s quantum input is
generated in the same way as Bob’s input in the protocol for the MDI scenario and Bob’s quantum output
is measured in the same manner as Bob’s output in the protocol for the BwI scenario.

B. The activation protocol

The experiment consists of four parties: Alice, Bob, Charlie and Dani, as illustrated in Fig 4. Alice and
Bob share a channel assemblage IA|X. Bob’s input to his local channel is defined on the Hilbert space HBin

.
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It is prepared by Charlie through a standard quantum assemblage ΣC|Z, with C := {0, 1} and W := {1, 2, 3}.
Additionally, Bob has a classical input y ∈ Y := {1, 2, 3, 4, ⋆,♢,♦} which controls this stage of the protocol.
Moreover, Bob and Dani share a standard quantum assemblage ΣD|U, with D := {0, 1} and U := {1, 2, 3},

where Bob’s system is defined on HB′ . Finally, Bob has a measurement device {MBoutB
′

b|z }b,z which measures

the system defined on HBout⊗HB′ . The input and output sets of this device are the following: b ∈ B := {0, 1}
and z ∈ Z := {1, 2, 3, 4, ⋆,♢,♦}. Throughout this section, we assume that the assemblages IA|X, ΣC|Z and
ΣD|U are independent, i.e., the systems AB, BinC and B′D are prepared separately and the four parties are
space-like separated. Then, the activation protocol is the following.

x

a

y

HBout

b

z

HBin

HB′

c

w

d

u

FIG. 4. Depiction of the activation protocol for the channel EPR scenario. Systems that may be classical, quantum,
or even post-quantum, are represented by thick lines. Quantum systems are represented by double lines and classical
systems are depicted as single lines.

Step 1: Self-testing of ΣC|W and ΣD|U.

The first step of the protocol is to certify that the state of Bob’s quantum systems HBin and HB′ are

both independently prepared in the assemblages Σ
(r1)
C|W and Σ

(r2)
D|U . Using Bob’s inputs y ∈ {1, 2, 3, 4} and

z ∈ {1, 2, 3, 4}, the elements of the assemblages need to be self-tested to be σ
(r1)
c|w = r1σ̃c|w + (1 − r1)(σ̃c|w)T

and σ
(r2)
d|u = r2σ̃d|u +(1−r2)(σ̃d|u)T . Then, these assemblages must be aligned such that their tensor product

can be written as {r(σ̃c|w ⊗ σ̃d|u) + (1 − r)(σ̃c|w ⊗ σ̃d|u)T }. The alignment procedure, which relies on the
measurement settings y ∈ {♢,♦}, z ∈ {♢,♦}, is discussed in the Appendix A 3.

Step 2: Certification of post-quantumness.

In the second step of the protocol, when y = z = ⋆, Bob applies the process ΓBBin→Bout and measures the
system on HBout

⊗HB′ . Then, the post-quantumness of the correlations p(a, b = 0, c, d|x, y = ⋆, z = ⋆, w, u)
can be tested with a tailored Bell functional. For now, we only consider the case when Bob’s measurement

is given by MBoutB
′

b=0|z=⋆ = |ϕ+⟩ ⟨ϕ+| and the elements of the assemblages ΣC|W and ΣD|U are given by {σ̃c|w}
and {σ̃d|u}, respectively. The activation protocol also works without these assumptions, as we discuss in the
Appendix B and C. Under these assumptions, the observed correlations are given by

p(a, b = 0, c, d|x, y = ⋆, z = ⋆, w, u) = tr
{
MBoutB

′

b=0|z=⋆(Ia|x(σ̃c|w) ⊗ σ̃d|u)
}
. (24)

Due to Choi-Jamio lkowski isomorphism, the instrument Ia|x(·) can be expressed as an operator J(Ia|x) =

(Ia|x ⊗ IC)(|ϕ+⟩ ⟨ϕ+|)BinC . Using the techniques introduced for the BwI and MDI protocols, we can rewrite
Eq. (24) as

p(a, b = 0, c, d|x, y = ⋆, z = ⋆, w, u) =
1

2
tr
{

((σ̃d|u)T ⊗ M̃c|w)J(Ia|x)
}
. (25)
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We will now transform the EPR functional given in Eq. (23) into a Bell functional. For u ∈ {1, 2, 3}, let πd|u
denote the projector onto the eigenspace of the eigenstates of Pauli Z, X and Y operators with eigenvalue
(−1)d. The projectors {πc|w ⊗ πd|u} form a basis of the set of Hermitian matrices in a four-dimensional
Hilbert space. Then, the operators {Fax}a,x can be decomposed as Fax =

∑
c,d,w,u ξ

ax
cdwu(πc|w ⊗ πd|u) for

some real coefficients {ξaxcdwu}a,x,c,d,w,u. Construct the following Bell functional on the correlation p =
{p(a, b, c, d|x, y, z, w, u)}:

I∗[p] ≡
∑

a,x,c,d,w,u

ξaxcdwup(a, b = 0, c, d|x, y = ⋆, z = ⋆, w, u). (26)

To calculate the value of this functional, take the correlations given in Eq. (25):

I∗[p] =
∑

a,x,c,d,w,u

ξaxcdwu

1

2
tr
{

((σ̃d|u)T ⊗ M̃c|w)J(Ia|x)
}
, (27)

=
1

4

∑
a,x

tr


 ∑

c,d,w,u

ξaxcdwu(πc|w ⊗ πd|u)

 J(Ia|x)

 ,

=
1

4
tr

{∑
a,x

FaxJ(Ia|x)

}
.

Similarly to the BwI and MDI scenarios, I∗[p] ≥ 0 for any p arising from a quantum channel assemblage.

For the measurement MBB′

b=0|z=⋆ = |ϕ+⟩ ⟨ϕ+| and the fixed assemblage I∗A|X = {I∗
a|x(·)}, the Bell functional

evaluates to I∗[p*] < 0. The analysis of the case MBB′

b=0|z=⋆ ̸= |ϕ+⟩ ⟨ϕ+| is the same as in the Bob-with-input

scenario. Therefore, if one observes I∗[p] < 0, it certifies that the correlations p were generated from a
post-quantum channel assemblage.

Theorem 6. There always exists a Bell functional of the form

I∗[p] =
∑

a,x,c,d,w,u

ξaxcdwup(a, b = 0, c, d|x, y = ⋆, z = ⋆, w, u) (28)

for which I∗[p] ≥ 0 when evaluated on any correlations p = {p(a, b, c, d|x, y, z, w, u)} arising from quantum

channel assemblage with elements {Ia|x(·)} as p(a, b = 0, c, d|x, y = ⋆, z = ⋆, w, u) = tr
{
MBoutB

′

b=0|z=⋆(Ia|x(σ̃c|w) ⊗ σ̃d|u)
}
.

In summary, based on the protocols introduced for the BwI and MDI scenarios, we showed that all channel
assemblages that belong to the set IQC can generate post-quantum Bell-type correlations when embedded
in a larger network. This result completes our analysis and motivates the following question: is it possible
to construct a generalised post-quantum assemblage that cannot generate post-quantum correlations?

V. DISCUSSION

In this paper we have shown how to embed a bipartite assemblage in a multipartite set-up such that
post-quantum correlations can be generated in this larger network. For post-quantum assemblages that can
only generate quantum correlations in a bipartite device-independent setting, this protocol activates their
post-quantumness, i.e., it allows one to witness the post-quantum nature of the assemblage in a Bell-type
scenario. We introduced and analyzed protocols for the Bob-with-input, measurement-device-independent
and channel EPR scenarios.

The existence of post-quantum bipartite generalized EPR assemblages, which generate only quantum
correlations when Bob’s processing is somehow transformed to be device-independent, may suggest that there
is a fundamental difference between post-quantum assemblages and post-quantum Bell-type correlations.
However, our results show a relation between these two resources. For such sets of bipartite assemblages
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introduced in this work, we showed that they can generate post-quantum correlations when embedded in
a larger network. As of now, there are no examples of post-quantum assemblages in EPR scenarios that
cannot generate post-quantum correlations in a device-independent setting.

The construction of the protocols for all scenarios relies on the same idea. In each protocol, an additional
quantum resource is self-tested and later used to transform EPR functionals to Bell functionals. This idea
was first introduced as a method of device-independent entanglement certification [33, 34]. However, it
appears to have broad and powerful applications beyond this problem. Exploring other research areas where
this concept could be applied seems interesting.

Looking forward, it would be interesting to see how the activation protocol changes for multipartite
generalised EPR scenarios. The activation protocol for assemblages generated in experiments with multiple
Alice’s or Bob’s should be similar to the one we introduced in this paper; however, a detailed study of this
problem could reveal some differences.
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Appendix A: Self-testing stage of the protocol

1. Bob-with-input EPR scenario: self-testing of Σ
(r)

C|W

The first step of the activation protocol for the Bob-with-input EPR scenario relies on the self-testing of the

assemblage Σ
(r)
C|W. The Bell inequality used to self-tests the assemblage Σ

(r)
C|W was analysed in Refs. [34, 37].

In this appendix, we follow the result of Ref. [37].
Let us focus on the assemblage shared between Bob and Charlie in Fig. 2. From the statistics p =

{p(abc|xyzw)} obtained in the activation protocol, compute the marginal pB′C = {p(bc|zw)}. Then, the
following result holds.

Lemma 7. Given a marginal correlation p = {p(bc|zw)} between Bob and Charlie, compute the following
Bell functional

IE = ⟨C1B1⟩ + ⟨C1B2⟩ − ⟨C1B3⟩ − ⟨C1B4⟩ (A1)

+⟨C2B1⟩ − ⟨C2B2⟩ + ⟨C2B3⟩ − ⟨C2B4⟩
+⟨C3B1⟩ − ⟨C3B2⟩ − ⟨C3B3⟩ + ⟨C3B4⟩.

If IE = 4
√

3, then the assemblage shared between Bob and Charlie is given by Σ
(r)
C|W with elements σ

(r)
c|w =

rσ̃c|w + (1 − r)(σ̃c|w)T . Here, σ̃c|1 = (I + (−1)cZ)/4, σ̃c|2 = (I + (−1)cX)/4 and σ̃c|3 = (I− (−1)cY )/4.

Bob’s observables that saturate the functional IE are given by {B̃1, B̃2, B̃3, B̃4} = {(Z+X−Y )/
√

3, (−Z+

X + Y )/
√

3, (−Z − X − Y )/
√

3}. Therefore, in the self-testing stage of the protocol, Bob’s measurement

MBB′

b|z on his two qubits corresponds to the observables IB ⊗ B̃z

B′

for z ∈ {1, 2, 3, 4}.

Like all self-testing statements, the self-tested assemblage has the desired form up to local isometries. For
discussion about this result, including the possible isometries in the EPR scenario, we refer the reader to
Ref. [37].
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2. Measurement-device-independent EPR scenario: self-testing of Σ
(r)

C|Z

The same self-testing result as in the Bob-with-input scenario is used in the formulation of the protocol for
the measurement-device-independent scenario. In the activation of post-quantumness of MDI assemblages,

the assemblage to be self-tested in the first step of the protocol is the standard EPR assemblage Σ
(r)
C|Z shared

between Bob and Charlie in Fig. 3. Then, the self-testing result of Lemma 7 must be used for the marginal
pBinC = {p(bc|yz)} computed from p = {p(abc|xyz)}.

3. Channel EPR scenario: self-testing of Σ
(r1)

C|W and Σ
(r2)

D|U

In the protocol for the channel EPR scenario, two assemblages are self-tested: ΣC|W shared between Bob
and Charlie and ΣD|U shared between Bob and Dani in Fig. 4. The goal of the first step of the protocol
is to show that the elements of the self-tested assemblages correspond to the basis of the operators {Fax}
that define the Bell functional used for post-quantumness certification. In the channel EPR scenario, the
operators {Fax} can be decomposed in the basis {πc|w ⊗ πd|u} as Fax =

∑
c,d,w,u ξ

ax
cdwu(πc|w ⊗ πd|u) for some

real numbers {ξaxcdwu}.

The self-testing stage relies on the marginals pBinC = {p(boutc|yw)} and pB′D = {p(bd|zu)}, both cal-
culated from the overall statistics p = {p(abcd|xyzwu)}. Here, bout represents a classical outcome ob-
tained in the first stage of the protocol, where the Hilbert space HBout

encodes merely a classical out-
come. If one simply uses the result of Lemma 7, the relevant assemblages will be certified to have elements

σ
(r1)
c|w = r1σ̃c|w + (1 − r1)(σ̃c|w)T and σ

(r2)
d|u = r2σ̃d|u + (1 − r2)(σ̃d|u)T , with unknown parameters r1 and r2.

To avoid a false-positive detection in the activation protocol (which we discuss further in the Appendix B 3),
this self-test need to be accompanied by a complementary procedure to certify that the two assemblages are
aligned, as we outline below.

Let Σ
(r)
CD|WU denote the tensor product of the self-tested assemblages. The assemblage Σ

(r)
CD|WU has elements

{σ(r1)
c|w ⊗σ

(r2)
d|u }. The goal of the alignment procedure is to ensure that these elements have the form {r(σ̃c|w⊗

σ̃d|u) + (1 − r)(σ̃c|w ⊗ σ̃d|u)T } for some parameter r. To align the assemblages, we need to introduce new
measurements on the system HBout

⊗HB′ labeled by settings {♢,♦}. The outcome set of the measurement
♢ is denoted by B♢ and has 4 outcomes, while the outcome set of the measurement ♦ is denoted by B♦

and has 2 outcomes. Upon these measurements, the system HBin
is simply passed to the Bob’s measuring

device without going through the channel assemblage and measured with the system HB′ . In short, this
additional alignment procedure self-tests the measurements corresponding to ♢ and ♦ to ensure that the
relevant assemblage has the desired form. This result relies on Ref. [34, Lemma 3] and is also discussed in
detail in Ref. [32, Appendix B].

Appendix B: No false-positives

1. Bob-with-input EPR scenario

Let us start with analyzing the Bob-with-input protocol. In the second step of the protocol, we assumed

that the assemblage shared between Bob and Charlie is given by Σ
(r=1)
C|W = Σ̃C|W. However, the success of first

step of the protocol can only guarantee that that the assemblage Σ
(r)
C|W that they share has elements of the

form σ
(r)
c|w = rσ̃c|w + (1− r)(σ̃c|w)T , with an unknown parameter r. Here we show that if the Bob-with-input

assemblage ΣA|XY belongs to the quantum set, it is impossible to observe a value of I∗BwI [p] which violates

the quantum bound regardless of the parameter r that defines Σ
(r)
C|W. In other words, if the self-testing stage

of the protocol is successful and a violation of the quantum bound is observed in the second step, it must
be the case that the BwI assemblage shared between Alice and Bob is post-quantum.
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Consider the case when r = 0 and Σ
(r=0)
C|W = {(σ̃c|w)T }. Then, the observed correlations are given by

p(a, b = 0, c|x, y, z = ⋆, w)T = trHB ,HB′

{
MBB′

b=0|z=⋆(σa|xy ⊗ (σ̃c|w)T )
}

(B1)

=
1

2
tr
{

((σ̃c|w)T )Tσa|xy
}
,

and the Bell functional can be written as

I∗BwI [pT ] =
∑

a,x,y,c,w

ξaxycw

1

2
tr
{

((σ̃c|w)T )Tσa|xy
}
, (B2)

=
1

2

∑
a,x,y

tr

{(∑
c,w

ξaxycw (σ̃c|w)T

)
(σa|xy)T

}
,

=
1

4
tr

{∑
a,x,y

Faxy(σa|xy)T

}
.

If the assemblage {σa|xy} is quantum, the assemblage {(σa|xy)T } is quantum as well (due to the fact that
the transpose operation on a qubit is a decomposable positive and trace-preserving map) and I∗BwI [pT ] ≥ 0.
It follows that if {σa|xy} has a quantum realization, I∗BwI [pT ] ≥ 0 and I∗BwI [p] ≥ 0. Hence, any correlation

generated by measurements on the convex combination {rσ̃c|w + (1 − r)(σ̃c|w)T } must satisfy the quantum
bound as well.

2. Measurement-device-independent EPR scenario

The same reasoning as in the protocol for the Bob-with-input scenario can be applied to the measurement-

device-independent scenario. If Bob and Charlie share an assemblage defined by r = 0, i.e., Σ
(r=0)
C|Z =

{(σ̃c|z)T }, the observed correlations are given by

p(a, b, c|x, y = ⋆, z)T = Nab|x((σ̃c|z)T ), (B3)

= tr
{

(MC
c|z)T J(Nab|x)

}
,

= tr
{
MC

c|z J(Nab|x)T
}
.

Here, we used the fact that σ̃T
c|z = trC

{
(IBin ⊗ (MC

c|z)T ) |ϕ+⟩ ⟨ϕ+|BinC

}
. Then, the Bell functional reads

I∗MDI [pT ] =
∑

a,b,x,c,z

ξabxcz tr
{
MC

c|z J(Nab|x)T
}
, (B4)

=
∑
a,b,x

tr

{(∑
c,z

ξabxcz πc|z

)
J(Nab|x)T

}
,

= tr

∑
a,b,x

Fabx J(Nab|x)T

 .

Using the same arguments as for the Bob-with-input case, one can see that if J(Nab|x) corresponds to a quan-

tum assemblage, then J(Nab|x)T has a quantum realization and any correlation generated by measurements

on the convex combination {rσ̃c|w + (1 − r)(σ̃c|w)T } must satisfy the quantum bound.

15



3. Channel EPR scenario

In the set-up for the channel EPR scenario, the first step of the protocol certifies that the relevant
assemblages have elements {r(σ̃c|w ⊗ σ̃d|u) + (1 − r)(σ̃c|w ⊗ σ̃d|u)T } for some parameter r. In the main text,
we showed that when we restrict the tensor product of these assemblages to have the form {σ̃c|w ⊗ σ̃d|u},
the quantum bound of the Bell functional given in Eq. (28) is equal to zero. In this appendix, we show
that a false positive detection of post-quantumness is not possible even if their tensor product is instead
{(σ̃c|w⊗ σ̃d|u)T } (the result of no false-positive detection with {r(σ̃c|w⊗ σ̃d|u)+(1− r)(σ̃c|w⊗ σ̃d|u)T } follows
from a convexity argument, similar to the BwI and MDI protocols).

Let r = 0, hence Σ
(r=0)
C|W = {(σ̃c|w)T } and Σ

(r=0)
D|U = {(σ̃d|u)T }. Then, the correlations generated in the

protocol set-up can be written as

p(a, b = 0, c, d|x, y = ⋆, z = ⋆, w, u)T = trHBout ,HB′

{
MBoutB

′

b=0|z=⋆(Ia|x((σ̃c|w)T ) ⊗ (σ̃d|u)T )
}
, (B5)

=
1

2
trHBout ,HB′

{
(((σ̃d|u)T )T ⊗ (M̃c|w)T )J(Ia|x)

}
,

=
1

2
trHBout ,HB′

{
((σ̃d|u)T ⊗ M̃c|w)(J(Ia|x))T

}
,

where we used the same transformations as in the Appendix B 1 for the BwI protocol and in the Appendix B 2
for the MDI protocol. The only thing left to show is that if J(Ia|x) is a quantum assemblage, J(Ia|x)T has a
quantum realization as well. Recall that the Choi matrix of a quantum channel assemblage has the following
form

J(Ia|x) = trA
{

(Ma|x ⊗ ΓBBin→Bout ⊗ IC)[ρAB ⊗ (|ϕ+⟩ ⟨ϕ+|)BinC ]
}
. (B6)

Therefore, we can write its transpose as

J(Ia|x)T = trA
{

(Ma|x ⊗ ΓBBin→Bout ⊗ IC)[ρAB ⊗ (|ϕ+⟩ ⟨ϕ+|)BinC ]
}T

, (B7)

= trA
{

(IA ⊗ TBoutC)(Ma|x ⊗ ΓBBin→Bout ⊗ IC)[ρAB ⊗ (|ϕ+⟩ ⟨ϕ+|)BinC ]
}
.

To show that J(Ia|x)T admits a quantum realization, we will use the following lemma.

Lemma 8. Let Φ(·) and Ψ(·) be CPTP maps and ρ be a quantum state. The application of a CPTP map on

a quantum state followed by a transpose, (Φ(ρ))
T
, is equivalent to first applying the transpose on the state,

and then acting on it with a different CPTP map, Ψ(ρT ).

Proof. Using Kraus decomposition of the map Φ(·), we can write Φ(ρ) =
∑

k AkρA
†
k, where

∑
k A

†
kAk = I.

The transpose of this new state can be written as

(Φ(ρ))
T

=

(∑
k

AkρA
†
k

)T

, (B8)

=
∑
k

(A†
k)T ρT (Ak)T ,

=
∑
k

Bkρ
TB†

k,

where we defined a new operator Bk = (A†
k)T . This new operator defines a CPTP map Ψ(·) =

∑
k Bk(·)B†

k
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as ∑
k

B†
kBk =

∑
k

(Ak)T (A†
k)T , (B9)

=
∑
k

(A†
kAk)T ,

=

(∑
k

A†
kAk

)T

,

= I.

Therefore, we showed that (Φ(ρ))
T

= Ψ(ρT ).

Due to Lemma 8, we can move the transpose from the output system of the CPTP map ΓBBin→Bout to
its input systems. Then, we can write

J(Ia|x)T = trA
{

(Ma|x ⊗ Γ′BBin→Bout ⊗ IC)(IA ⊗ TBBinC)[ρAB ⊗ (|ϕ+⟩ ⟨ϕ+|)BinC ]
}
, (B10)

= trA

{
(Ma|x ⊗ Γ′BBin→Bout ⊗ IC)[ρTB

AB ⊗ (|ϕ+⟩ ⟨ϕ+|)TBinC ]
}
,

= trA
{

(Ma|x ⊗ Γ′BBin→Bout ⊗ IC)TA[ρTAB ⊗ (|ϕ+⟩ ⟨ϕ+|)TBinC ]
}
,

= trA
{

((Ma|x)T ⊗ Γ′BBin→Bout ⊗ IC)[ρTAB ⊗ (|ϕ+⟩ ⟨ϕ+|)TBinC ]
}
.

Therefore, if J(Ia|x) is a valid quantum assemblage, then its transpose J(Ia|x)T admits of a quantum

realization in terms of the measurements {(Ma|x)T }, a CPTP map Γ′BBin→Bout and the states ρTAB and

(|ϕ+⟩ ⟨ϕ+|)TBinC
. This completes our argument.

Finally, we can revisit the additional alignment step of the self-testing stage and discuss why is it necessary.

Imagine the assemblages are only self-tested to have the form σ
(r1)
c|w = r1σ̃c|w + (1 − r1)(σ̃c|w)T and σ

(r2)
d|u =

r2σ̃d|u + (1 − r2)(σ̃d|u)T , with unknown parameters r1 and r2. The case of r1 = r2 = 1 was discussed in the
main text. The contrary situation, i.e., when r1 = r2 = 0, is discussed in this appendix. However, if the
self-tested assemblages would be defined by r1 = 1 and r2 = 0, this could create a false-positive detection in
the activation protocol. Therefore, the alignment stage of the step 1 of the protocol is necessary to eliminate
the possibility of a false-positive detection.

Appendix C: Optimizing the Bell functional over all measurements

In the activation protocols for the Bob-with-input and channel EPR scenarios, we first assumed that
Mb=0|z=⋆ = |ϕ+⟩ ⟨ϕ+|. Then, we have shown that under this assumption the quantum bound of the Bell
functionals constructed for these scenarios is equal to zero. In this appendix, we show that the quantum
bound of these functionals, when optimised over all possible measurements Mb=0|z=⋆, is still equal to zero.
Therefore, observing a negative value of the Bell functional in an activation set-up necessarily means that
the underlying generalised EPR assemblage is post-quantum. Here we focus on the Bob-with-input scenario;
the proof for the channel EPR scenario has the same structure.

In Section II B, we have shown that

I∗BwI [p] =
1

2

∑
a,x,y,c,w

ξaxycw trHB ,HB′

{
M0|⋆(σa|xy ⊗ σ̃c|w)

}
≥ 0, (C1)

for Mb=0|z=⋆ = |ϕ+⟩ ⟨ϕ+|. The proof that this inequality holds for arbitrary Mb=0|z=⋆ relies on the observa-
tions made in Ref. [32, Appendix A]. Here we present it using diagrammatic notation introduced in Ref. [39].
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Let us represent an arbitrary quantum Bob-with-input assemblage on a system HB′ with the diagram

ρ

a|x
HB

εy

for a quantum system HB , an effect
a|x

, a state
ρ

and a channel εy . Now, we can represent

Eq. (C1) as

I∗BwI [p] =
1

4

∑
a,x,y

Faxy

HB′

ρ

a|x
HB

εy ≥ 0 . (C2)

Here, the representation of the operators Faxy as black triangles implies that they are possibly nonphysical
(post-quantum) processes. The statement of Theorem 2 can be expressed in the diagrammatic language as:

I∗BwI [p] =
1

4

∑
a,x,y

Faxy

HB′

ρ

a|x
HB

εy

M0|⋆

≥ 0 , (C3)

where M0|⋆ now represents a general measurement. To prove this statement, first define a new quantum
state ρ′ as

HB′

M0|⋆

HB

ρ′

=

HB

εy

ρ

HB

εy

HA
HA

(C4)

This is a valid quantum state, although it can be unnormalised. Then, we can use this construction to
rewrite the Bell functional as

I∗BwI [p] =
1

4

∑
a,x,y

Faxy

HB′

ρ

a|x
HB

εy

M0|⋆

=
1

4

∑
a,x,y

Faxy

HB′

ρ′

a|x
HB

εy ≥ 0 , (C5)

The inequality follows from Eq (C2), which is valid for all quantum states.
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Appendix D: Activation in the Bob-with-input scenario - example

In this appendix, we use the construction from Theorem 2 to derive a Bell functional that certifies post-
quantumness of the assemblage ΣPTP

A|XY introduced in Ref. [25, Eq. (6)], which belongs to the set ΣQC .

We focus on the assemblage ΣPTP
A|XY in a Bob-with-input EPR scenario where X = {1, 2, 3}, A = {0, 1} and

Y = {0, 1}. The elements of this assemblage, {σPTP
a|xy }, can be mathematically expressed as follows:

σPTP
a|xy =

1

4
(I + (−1)a+δx,2+δy,1σx) , (D1)

where the operators σ1, σ2, and σ3 (since the choice of Alice’s measurement x ∈ {1, 2, 3}) denote Pauli
X, Y, and Z operators respectively. In Ref. [25, Appendix D], it was shown that ΣPTP

A|XY is a post-quantum

assemblage and that if Bob measures his subsystem, the correlations that arise between him and Alice always
admit a quantum realization.

To show that the post-quantumness of ΣPTP
A|XY can be activated, we will use the EPR functional constructed

in Ref. [25, Eq. (D3)]. It is specified by the operators FPTP
axy = 1

2 (I − (−1)aσx)T
y

, where T y denotes that

the transpose operation is applied when y = 1. The classical bound of this functional is βC
PTP = 1.2679

and the no-signalling bound is βNS
PTP = 0. The assemblage ΣPTP

A|XY saturates the minimum bound of this

EPR functional. Although the quantum bound βQ
PTP of this functional is not known exactly, it can be

lower bounded by the almost-quantum bound, i.e., a bound calculated for all assemblages lying in the outer

approximation of the quantum set called the almost-quantum set, which is given by βAQ
PTP = 0.4135. On the

other hand, βQ
PTP is upper bounded by the classical bound. Hence, we know that 1.2679 ≥ βQ

PTP ≥ 0.4135.
In order to use the activation protocol introduced in Section II B, we should normalise the operators {FPTP

axy }
and construct an EPR functional with a quantum bound equal to zero4. However, since the value of βQ

PTP is

unknown, this is impossible. Instead, we normalise the operators {FPTP
axy } using the lower bound on βQ

PTP ,

namely βAQ
PTP . Then, for any quantum or almost-quantum assemblage {σAQ

a|xy}, the following holds

tr

{∑
a,x,y

F̃PTP
axy σAQ

a|xy

}
≥ 0, (D2)

where the operators {F̃PTP } are given by

F̃PTP
axy = FPTP

axy −
βAQ
PTP

|X| |Y|
I . (D3)

To certify post-qauntumness of ΣPTP
A|XY solely from correlations {p(a, b, c|x, y, z, w)}, we need to transform

the EPR functional (D2) to a Bell functional of the form (8). The coefficients (ξPTP )axycw can be read off
Eq. (D3) and are given by

(ξPTP )axycw = δc,a⊕1⊕yδx,2 δw,x⊕31 − δw,1
βAQ
PTP

|X| |Y|
, (D4)

where ⊕ and ⊕3 denote sum modulo 2 and modulo 3, respectively. Using the reasoning of Eq. (7), we
know that the Bell functional specified by coefficients given in Eq. (D4), when evaluated on a post-quantum
assemblage (which is not almost-quantum), must satisfy IPTP

BwI [p] < 0. It is easy to check that if ΣC|W =

Σ̃C|W, MBB′

b=0|z=⋆ = |ϕ+⟩ ⟨ϕ+| and ΣA|XY = ΣPTP
A|XY , the functional IPTP

BwI evaluates to IPTP
BwI [pPTP ] = −βAQ,

which shows the activation of post-quantumness of ΣPTP
A|XY .

4 In Section II B, we assume that the quantum bound of the functional is equal to zero. This assumption is necessary for the

proof that the protocol also works for measurements different than MBB′
b=0|z=⋆

= |ϕ+⟩ ⟨ϕ+|, which is given in Appendix C.
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Appendix E: MDI assemblage from the set NQC

Here we show that the post-quantum measurement-device-independent assemblage NPTP
AB|X introduced in

Ref. [27, Eq. (28)] belongs to the set NQC . NPTP
AB|X is illustrated in Fig. 5 and it can be mathematically

expressed as

NPTP
AB|X =

{
NPTP

ab|x

}
a∈A, b∈B, x∈X

, (E1)

with

{
NPTP

ab|x = tr
{

(Ma|x ⊗ IBout
)(IA ⊗Nb)(IA ⊗ CTBBin→B)[ρAB ⊗ ρy]

}
,

Ma|1 = I+(−1)aσx

2 , Ma|2 =
I+(−1)aσy

2 , Ma|3 = I+(−1)aσz

2 ,

where ρAB = |ϕ+⟩ ⟨ϕ+| and σx, σy, and σz are the Pauli operators. The processing CTBBin→B can be viewed
as a controlled-transpose operation on BBin, where Bin acts as the control qubit and B is the system that
is being transposed. Then, the system Bin is traced-out and the system B is measured by Bob to generate
a classical outcome b. The measurement elements are N0 = 1

3 I + 1
3σy and N1 = 2

3 I −
1
3σy. In Ref. [27], it

was shown that NPTP is a post-quantum assemblage.

x

a
b

Bin

Nb

T

ρAB

FIG. 5. Mathematical depiction of the MDI assemblage NPTP : Alice and Bob share a quantum state ρAB ; Alice
performs measurements on her system, while Bob performs a controlled-transpose operation CTBBin→B followed by
a measurement Nb.

Let us examine a situation when Bob’s input state defined on HBin
is fixed and given by ρy. The

correlations in such set-up are given by p(ab|xy) = NPTP
ab|x (ρy) and can be written as

p(ab|xy) = tr
{

(Ma|x ⊗ IBout
)(IA ⊗Nb)(IA ⊗ CTBBin→B)[ρAB ⊗ ρy]

}
. (E2)

Here, ρy acts only as a control qubit. Hence, we can represent the controlled-transpose operation as labeled

by the classical label y: (IA ⊗ CTBBin→B)[ρAB ⊗ ρy] ≡ (IA ⊗ CTB
y )ρAB . Transpose is a positive and trace-

preserving map, hence it has a dual map which is positive and unital. For the transpose map, its dual is
also a transpose map. Therefore, instead of applying the transpose map on the system B, one can imagine
the controlled transpose is applied on the measurement Nb instead; hence, we can rewrite Eq. (E2) as

p(ab|xy) = tr
{

(Ma|x ⊗Nb|y)ρAB

}
. (E3)

The new general measurement Nb|y depends on the control qubit and can be given by the original measure-
ment Nb, its transpose, or superposition thereof. It follows that the correlations defined as in Eq. (E3) admit
of a quantum realization.

Appendix F: Activation protocol beyond qubit assemblages

In this appendix, we show how to adapt the activation protocols such that post-quantumness of higher-
dimensional assemblages can be certified. First, we use methods introduced in Ref. [32, Appendix B] to
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generalise the self-testing stage of the protocol. Then, we adapt the Bell inequalities used in the protocols
to the higher-dimensional case for each scenario.

In all three scenarios, we consider assemblages with the dimension of Bob’s output system being d > 2.
We embed these systems in a higher-dimensional Hilbert space, where each qudit lives on a Hilbert space
arising from a parallel composition of n qubits. The basis for this space is given by tensor products of Pauli
operators. Following the intuition of the qubit-assemblages protocols, the first step of the protocol need
to self-test the basis elements of the relevant Hilbert space. This step of the protocol is the same for the
Bob-with-input, measurement-device-independent and channel EPR scenarios.

The fact that one can only self-test a mixture of an assemblage and its transpose will again pose a problem
here. This is analogous to the problem that occurs in the protocol for the channel EPR scenario, where if
the self-tested assemblages would form a tensor product of the form σ̃c|w ⊗ (σ̃d|u)T , a false-positive detection
of post-quantumness could be detected (we discuss this problem in the Appendix B 3). Therefore, instead of
just self-testing tensor product of Pauli operators, the self-testing stage of the protocol must guarantee that
the assemblage is of the form

σ
(r)
c|w = r

n⊗
i=1

σ̃ci|wi
+ (1 − r)

n⊗
i=1

(σ̃ci|wi
)T . (F1)

Here, c = (c1, ..., cn) with ci ∈ {0, 1} and w = (w1, ..., wn) with wi ∈ {1, 2, 3}. The technique to self-test

{σ(r)
c|w} of the form (F1) was first introduced in Ref. [34] and later used in the activation protocol introduced

in Ref. [32]. We will not recall the exact self-testing statement here; all the technical details can be found in
Refs. [32, 34].

If the first step of the activation protocol is successful, the probabilities generated in the protocol set-up
can be used for post-quantumness certification using tailored Bell functionals. Below, we adapt the Bell
functional for each scenario to the higher-dimensional case.

1. Bob-with-input EPR scenario

Consider a Bob-with-input assemblage with the dimension of the system HB being greater than 2. Anal-
ogous to the case of a qubit assemblage, define the Bell functional as

I∗BwI [p] ≡
∑

a,x,y,c,w

ξaxycw p(a, b = 0, c|x, y, z = ⋆, w). (F2)

To compute the quantum bound of the functional, recall that

p(a, b = 0, c|x, y, z = ⋆, w) = tr
{
MBB′

b=0|z=⋆(σa|xy ⊗ σ
(r)
c|w)

}
, (F3)

where σ
(r)
c|w is given by Eq. (F1). For now, assume that σ

(r=1)
c|w =

⊗n
i=1 σ̃ci|wi

and MBB′

b=0|z=⋆ = |ϕn⟩ ⟨ϕn|, with

|ϕn⟩ = 1√
2n

∑2n−1
k=0 |kk⟩BB′ . Then, the Bell functional can be written as

I∗BwI [p] =
∑

a,x,y,c,w

ξaxycw

1

2n
tr

{
(

n⊗
i=1

σ̃ci|wi
)Tσa|xy

}
, (F4)

=
1

2n+1

∑
a,x,y

tr
{
Faxyσa|xy

}
.

It follows that I∗BwI [p] ≥ 0 for any p arising from a quantum assemblage ΣA|XY with elements {σa|xy}.
To have a universal protocol for activation of post-quantumness in high-dimensional Bob-with-input as-

semblages, there are two things left to show. Firstly, it is necessary to show that the quantum bound of the
functional I∗BwI does not change when it is optimised over measurements different than MBB′

b=0|z=⋆ = |ϕn⟩ ⟨ϕn|.
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The proof of this claim is analogous to the one presented in Appendix C. Secondly, the protocol cannot show
false-positive detection when the self-tested assemblage is of the form given in Eq. (F1). Let us first focus

on the case when σ
(r=0)
c|w = (

⊗n
i=1 σ̃ci|wi

)T . Then, the Bell functional is given by

I∗BwI [p] =
1

2n+1

∑
a,x,y

tr
{
Faxy(σa|xy)T

}
. (F5)

The transpose map applied on a quantum Bob-with-input assemblage transforms its elements as follows

(σa|xy)T =
(
trA

{
(Ma|x ⊗ Ey)ρAB

})T
, (F6)

= trA
{

(I⊗ T )(Ma|x ⊗ Ey)ρAB

}
.

To show that (σa|xy)T is a quantum assemblage if (σa|xy) has a quantum realization, we will use Lemma 8.
Let E ′

y be a CPTP map that is indexed by y. Due to Lemma 8, we can shift the transpose in Eq. (F6) to
the quantum state as

(σa|xy)T = trA
{

(I⊗ T )(Ma|x ⊗ Ey)ρAB

}
, (F7)

= trA

{
(Ma|x ⊗ E ′

y)ρTB

AB

}
,

= trA
{

(Ma|x ⊗ E ′
y)TAρTAB

}
,

= trA
{

((Ma|x)T ⊗ E ′
y)ρ′AB

}
,

where {(Ma|x)T } are valid POVMs and ρ′ is a valid quantum state. Therefore, we can see that if {σa|xy}
form a valid quantum assemblage, the elements {(σa|xy)T } also have a quantum realization in terms of the

measurements {(Ma|x)T }, CPTP maps {E ′
y} and the state ρ′AB . It follows that I∗BwI [p] ≥ 0 for any p arising

from a quantum assemblage, even when σ
(r=0)
c|w = (

⊗n
i=1 σ̃ci|wi

)T . Hence, by convexity, any correlation

generated when the self-tested assemblage has the form (F1) cannot create a false-positive detection of
post-quantumness.

2. Measurement-device-independent EPR scenario

Recall that the Bell functional for the MDI scenario reads

I∗MDI [p] ≡
∑

a,b,x,c,z

ξabxcz p(a, b, c|x, y = ⋆, z). (F8)

If the first step of the protocol was successful, the relevant probabilities can be written as

p(a, b, c|x, y = ⋆, z) = Nab|x(σ
(r)
c|z), (F9)

where

σ
(r)
c|z = r

n⊗
i=1

σ̃ci|zi + (1 − r)

n⊗
i=1

(σ̃ci|zi)
T . (F10)

For now, assume that σ
(r=1)
c|z =

⊗n
i=1 σ̃ci|zi Then, the Bell functional can be written as

I∗MDI [p] ≡
∑

a,b,x,c,z

ξabxcz Nab|x(

n⊗
i=1

σ̃ci|zi). (F11)
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Notice that a Choi matrix of a d-dimensional qudit assemblage {Nab|x(·)} is expressed in terms of a maximally

entangled state |ϕn⟩ ⟨ϕn|, with |ϕn⟩ = 1√
2n

∑2n−1
k=0 |kk⟩B′C and n = d. In what follows, we encode this state

in a space that arises from a parallel composition of many qubits. Then, similar to the qubit case, we can
express the probabilities p(a, b, c|x, y = ⋆, z) as

p(a, b, c|x, y = ⋆, z) = tr

{
(

n⊗
i=1

M̃Ci

ci|zi) J(Nab|x)

}
, (F12)

and the functional is given by

I∗MDI [p] =
∑

a,b,x,c,z

ξabxcz tr

{
(

n⊗
i=1

M̃Ci

ci|zi) J(Nab|x)

}
, (F13)

= tr

∑
a,b,x

Fabx J(Nab|x)

 .

Therefore, I∗MDI [p] ≥ 0 for any p arising from a quantum assemblage NAB|X with elements {Nab|x}.
Now, we will show that a false-positive detection is not possible even when the self-tested assemblage is

of the form given in Eq. (F10). Let σ
(r=0)
c|z = (

⊗n
i=1 σ̃ci|zi)

T . Then, the Bell functional can be written as

I∗MDI [p] = tr

∑
a,b,x

Fabx

(
J(Nab|x)

)T . (F14)

To show that a transpose operation on the Choi matrix of an MDI assemblage cannot generate post-
quantumness, we will again use Lemma 8. Recall that any quantum MDI assemblage is defined by a set of

measurement channels ΘBB′→Bout

b . For each b ∈ B, we can decompose ΘBBin→Bout

b in terms of its Kraus
operators to see that a transpose on the output space of this measurement channel Bout can be passed onto
the input of the channel defined on BBin. It follows that

(
J(Nab|x)

)T
= trA

{
(Ma|x ⊗ ΘBBin→Bout

b ⊗ IC)[ρAB ⊗ |ϕn⟩ ⟨ϕn|BinC
]
}T

, (F15)

= trA

{
(IA ⊗ TBoutC)(Ma|x ⊗ ΘBBin→Bout

b ⊗ IC)[ρAB ⊗ |ϕn⟩ ⟨ϕn|BinC
]
}
,

= trA

{
(Ma|x ⊗ Θ

′BBin→Bout

b ⊗ IC)[ρTB

AB ⊗ (|ϕn⟩ ⟨ϕn|BinC
)T ]
}
,

= trA

{
(Ma|x ⊗ Θ

′BBin→Bout

b ⊗ IC)TA [ρTAB ⊗ (|ϕn⟩ ⟨ϕn|BinC
)T ]
}
,

= trA

{
((Ma|x)T ⊗ Θ

′BBin→Bout

b ⊗ IC)[ρTAB ⊗ (|ϕn⟩ ⟨ϕn|BinC
)T ]
}
.

Therefore, if J(Nab|x) corresponds to a valid quantum assemblage, its transpose
(
J(Nab|x)

)T
also have a

quantum realization in terms of the measurements {(Ma|x)T }, measurement channels {Θ
′BBin→Bout

b } and

the states ρTAB and (|ϕn⟩ ⟨ϕn|BinC
)T . Since this assemblage has a quantum realization, it cannot create a

false-positive detection in the activation protocol.

3. Channel EPR scenario

In the protocol for the channel EPR scenario, we used the self-test of a tensor product of Pauli operators
(accompanied by an alignment procedure) even when dim(HBout

)= 2. Moreover, the technique to show that
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there are no false-positive detections does not rely on any of the subsystems having a particular dimension.
Therefore, the generalization of this protocol to the qudit case is straight-forward.
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