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ABSTRACT

Quantum systems exhibit non-classical correlations that go beyond the capabilities of classi-
cal physics, making these correlations a central focus of research in quantum information
science. This thesis addresses a seemingly simple yet profound question: what can we infer

about the underlying physics when we observe non-classical correlations? Specifically, how can we
characterize non-classical correlations and certify the underlying quantum systems? Accurate
characterization and certification of quantum systems are of fundamental and practical signif-
icance for advancing quantum information theory. In this thesis, we develop novel theoretical
models for the characterization of non-classical correlations and the certification of underlying
quantum systems. Despite the precision of the theoretical models, their implementation in exper-
imental setups often requires consideration of additional factors. Experimentalists must contend
with noise and imperfect devices, which can obscure the certification of the underlying quantum
systems. Consequently, this thesis also addresses an experimentally significant question: how
can we effectively certify underlying quantum systems in experimental settings despite the presence
of imperfections and noise?

The first two articles derive novel robust analytical self-testing statements, which form
the most accurate certification of quantum systems underlying the maximum violation of Bell
inequalities. The first article deals with the self-testing of Bell inequalities in the sparsely
explored multipartite Bell scenarios. We present a novel self-testing technique, which is very
simple yet effective in that it can be applied to a substantially large class of multipartite Bell
inequalities. The second article addresses the practical challenge of finding the optimal strategies
that yield the maximum violation of Bell inequalities in the presence of imperfect devices.
We show that the optimal strategies maximally violate a tilted version of the Bell inequality.
We derive self-testing statements for the titled versions of the Clauser-Horne-Shimony-Holt
(CHSH) inequality, demonstrating that the optimal strategies are unique. Beyond providing
analytical and robust self-testing statements, the articles uncover several pivotal features of
quantum correlations in Bell scenarios. In particular, the results in both articles highlight the
impracticality of the traditional methods, such as the sum-of-squares (SOS) decomposition method
and the Navascués–Pironio–Acín (NPA) hierarchy of semi-definite programming relaxations,
for obtaining the self-testing statements. Both articles leverage Jordan’s lemma as a crucial
component of the self-testing technique.

The third article investigates the relationship between non-classical correlations and medi-
ated dynamics (dynamics generated by a mediator that couples non-interacting systems). We
concentrate on the non-classical characteristics of the interactions involved. We derive conditions
that solely use correlations between the coupled systems, excluding the need to measure the
mediator, to certify the non-commutativity and non-decomposability of mediated interactions.
We also discuss the implications of this formalism, including constraints on possible theories of
gravity within a Hilbert space framework and within the theory of quantum simulators.
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ABSTRAKT

Ukady kwantowe wykazuj nieklasyczne korelacje wykraczajce poza moliwoci fizyki klasy-
cznej, co czyni te korelacje przedmiotem intensywnych bada w teorii informacji kwantowej.
Niniejsza praca dotyczy pozornie prostego, ale gbokiego pytania: co moemy wywnioskowa

na temat podstawowej fizyki, obserwujc nieklasyczne korelacje? a w szczególnoci w jaki sposób
moemy scharakteryzowa korelacje nieklasyczne i powiadczy nieklasyczno danego urzdzenia?
Dokadna charakterystyka i certyfikacja systemów kwantowych jest koniecza do fundamental-
nego i praktycznego rozwoju kwantowej teorii informacji. W niniejszej pracy opracowujemy
nowatorskie modele teoretyczne do charakteryzacji korelacji nieklasycznych oraz certyfikacji
wybranych ukadów kwantowych. Pomimo ich precyzyjnego opisu teoretycznego, ich implemen-
tacja w ukadach eksperymentalnych czsto wymaga rozwaenia dodatkowych czynnikiów. W dowiad-
czeniach muszimy zmaga si z szumem i innymi niedoskonaymi urzdzeniami, które mog utrudnia
lub uniemoliwia certyfikacj kwantowoci scenariuszy. W zwizku z tym niniejsza rozprawa dotyczy
take m.in pytania istotnego dla eksperymentu: w jaki sposób moemy skutecznie certyfikowa
scenariusze kwantowe pomimo obecnoci niedoskonaoci i szumów?

Pierwsze dwa artykuy wywodz si z nowatorskich analitycznych stwierdze samotestujcych,
które stanowi najdokadniejsz certyfikacj systemów kwantowych lec u podstaw maksymalnego
amania nierównoci Bella. Pierwszy artyku dotyczy samotestowania wieloczstkowych scenariuszy
Bellowskich, dotychczas mao zbadaych. Przedstawiamy nowatorsk technik samotestowania, która
jest bardzo prosta, a jednoczenie ogólna, poniewa mona j zastosowa do zasadniczo duej klasy
rodzin nierównoci wieloczstkowych. Drugi artyku dotyczy praktycznego wyzwania, jakim jest
znalezienie optymalnej strategii, która prowadzi do maksymalnego amania pewnej nierównoci
Bella w obecnoci niedoskonaoci pomiarowych. Pokazujemy, e optymalne strategie prowadz do
maksymalnego amania przechylonej nierównoci Bella (tilted, z czonem prawdopodobiestw brze-
gowych) . Wyprowadzamy dowód samotestowania dla pochylonej nierównoci Clausera-Horne’a-
Shimony’ego-Holta (CHSH), pokazujc, e optymalne strategie s unikalne. Poza tymi dowodami,
artykuy pokazuj kilka kluczowych cech korelacji kwantowych w rozwaanym scenariuszu Bella.
W szczególnoci wyniki w obu artykuach podkreli niepraktyczno tradycyjnych metod dowodzenia
samotestowania, takich jak rozkad operotora Bella na sum kwadratów (SOS), czy hierarchia
Navascuésa Pironio Acína (NPA). Obydwa artykuy odwouj si do lematu Jordana jako kluczowego
elementu dowodu. W trzecim artykule zbadano zwizek pomidzy korelacjami nieklasycznymi i
oddziaywaniem przez porednika.

Wyprowadzamy warunki wykorzystujce wycznie korelacje pomidzy posprzonymi systemami, z
wyczeniem koniecznoci pomiaru ukadu mediatora, na nieprzemienno i nierozkadalno oddziaywa
z porednikieem. Omawiamy take implikacje tego formalizmu, w tym ograniczenia dotyczce
moliwych teorii grawitacji kwantowych oraz symulatorów kwantowych.
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1
INTRODUCTION

“Everything we call real is made of things that cannot be regarded as real. ”

—Niels Bohr

In 1927, when the field of quantum theory was still at a pivotal moment, a historical 5th

Solvay Conference in Brussels highlighted the conflict between Einstein’s realism, which

sought a deterministic underpinning of quantum phenomena through hidden variables,

and Bohr’s instrumentalist perspective, which embraced the quantum theory’s probabilistic

nature. The debate between Einstein and Bohr set the stage for decades of philosophical and

experimental explorations into the nature of reality. Later, Expanding on his concerns, Einstein,

alongside collaborators Boris Podolsky and Nathan Rosen, further articulated his critique in the

1935 Einstein-Podolsky-Rosen (EPR) paper [1]. The article unveiled the EPR paradox (a thought

experiment showing that measuring one particle in an entangled quantum system can instanta-

neously influence another particle, no matter how far apart they are) and reflected Einstein’s

discomfort with the probabilistic nature of quantum theory and challenged its completeness.

Einstein described the phenomenon of quantum entanglement (when two or more particles share

a strong correlation, and any measurement made on one particle instantaneously influences the

state of its entangled counterpart, regardless of the distance separating them) as something that

defies the conventional understanding of spatial separation and violates the principle of causality

and locality, cornerstones of classical physics. Einstein famously criticized it as "spooky action at

a distance" [1, 2] .

Quantum theory distinguishes itself from theories based on local causality through its inher-

ent Bell non-local characteristics. Unlike classical theories, quantum theory features entangled
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CHAPTER 1. INTRODUCTION

states and fundamentally incompatible measurements. When performed on the local subsystems

of an entangled quantum state, these incompatible measurements unearth correlations stronger

than what is possible under local causal theories. This is recognized as Bell nonlocality and

underscores the profound difference between quantum and theories based on local causality.

Moreover, Bell’s pivotal work in 1964 [3] also introduced inequalities, a set of criteria that serve

as benchmarks that any theory based on local causality must satisfy. Quantum theory, however,

violates these inequalities, marking a significant departure from classical physical theories.

From an experimental perspective, suppose a Bell experiment (a foundational experimental

setup intended to demonstrate quantum non-locality by violating Bell inequalities, which are

expressions of observed probabilities) does not result in any violations of the Bell inequalities. In

that case, the observed statistics can be interpreted through a deterministic framework as long

as no extra assumptions about the underlying system are introduced.

Despite many challenges, quantum theory has triumphed over numerous obstacles. It has

stood the test of time, consistently proving its validation through numerous experimental tests

that underscore its probabilistic nature, compelling us to reject the concept of local hidden

variable theories. However, it was not until 2015 that a significant milestone was achieved

in this direction. Several research groups across the globe successfully executed Bell tests

that were "loophole-free" [4–6]. These loophole-free experiments have not only reinforced the

quantum mechanical view of the world by discarding local hidden variable models but also

implied profound implications for developing quantum technologies, such as quantum computing

and secure quantum communication. By landing a robust experimental foundation, they affirmed

the strange, counterintuitive, yet powerful phenomena of quantum entanglement and nonlocality.

In the past thirty years, the field of quantum information science has significantly heightened

interest in the concept of Bell Nonlocality. This surge in interest has spurred the development of

a broad spectrum of concepts and technical tools aimed at probing and understanding quantum

theory’s nonlocal characteristics. The thorough investigation into this area is well written in

several publications listed in the review article [7]. The more we delve into the nonlocal features of

quantum theory, the more captivating the journey becomes. The existence of nonlocal correlations,

which are more potent than classical correlations, stands at the heart of this excitement. The

extremes of such nonlocal correlations empower us to deduce microscopic behaviors solely from

the observed statistical data. This aspect of quantum mechanics is inconceivable in local-causal

theories and is called self-testing of quantum systems, where the properties of the microscopic

world are entanglement and measurement incompatibility.

The term self-testing was officially introduced to the academic world in 2004 by Mayers

and Yao [8]; they showcased its utility in bipartite Bell scenarios, focusing on the self-testing of

maximally entangled qubits. While Mayers and Yao are credited for coining the word self-testing,

the seeds of this idea can be traced back to 1992 [9]. Since its formal introduction, self-testing has

emerged as a vibrant area of research within quantum information science. The research in self-
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testing has just not been confined to bipartite systems. It has extended to various scenarios, such

as those involving multipartite systems, prepare and measure scenarios and steering scenarios,

and many others [10]. This prompts the question: why self-testing has become the preferred

method for certifying quantum systems, as opposed to other available techniques?

In this era, there is convincing evidence that suggests quantum devices have performed

better than classical devices in various aspects. However, as the complexity of quantum devices

is growing, verifying that they are behaving as expected has also become increasingly difficult.

To tackle this issue, one can use a conventional approach such as quanutm tomography. However,

this technique faces significant challenges as the complexity of quantum systems grows [11, 12].

More specifically, quantum tomography requires an exponential increase in resources as the

system size grows. Consequently, this situation highlights the quest for feasible certification

methods for quantum devices, which is essential in order to advance the construction of large-

scale, practical quantum technologies. Self-testing stands out as a promising alternative that can

effectively overcome the challenges faced by traditional methods [8, 13].

Self-testing allows a classical user to deduce the microscopic behavior of a quantum sys-

tem based solely on the observed macroscopic experimental statistics. This technique is an

approach aimed at unraveling the intricate structure of the quantum correlation set. Moreover,

the implications of self-testing extend beyond the theoretical aspect; it offers a cornerstone for

device-independent quantum information processing [14, 15]. Specifically, self-testing empowers

any classical user to understand quantum systems without a comprehensive understanding of

the internal mechanisms of quantum devices; it treats the quantum devices as a "black box"

( precisely, the user does not need to know the internal workings of the device to verify its

quantum properties). It is the power of this method that it maintains its integrity even under

the assumption that some adversaries might try to cheat by constructing quantum devices.

Moreover, self-testing has proven useful in numerous areas of quantum information science, such

as quantum key distribution [16, 17], quantum channels [18], randomness expansion [19], and

the coarse-graining of many-body singlet states [20].

Indeed, a significant amount of work in self-testing has been concentrated only on bipar-

tite quantum scenarios, indicating that the realm of “multipartite scenarios” (those involving

more than two parties) remains relatively underexplored [10]. The complexity and diversity

of multipartite scenarios offer unique challenges and prospects for a self-testing framework,

suggesting that existing methodologies either fail to apply or need significant adaptation [10, 21].

The need to explore self-testing in multipartite scenarios is not merely a theoretical exercise but

a necessity for advancing quantum computing and communication technologies, which require

bigger quantum systems than bipartite scenarios for practical functionality [22, 23].

The First article attempts to progress in this direction by introducing a straightforward yet

broadly applicable method for self-testing in the context of multipartite Bell inequalities. This

method’s beauty lies in its simplicity and broad applicability to self-test within multipartite
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CHAPTER 1. INTRODUCTION

Bell scenarios, distinctively not relying on the traditional sum-of-square decomposition method

[24]. More specifically, the sum-of-squares method is intricately tied to the specific structure

of the Bell inequalities and the hermiticity of the associated Bell operators. However, with the

scaling complexity of multipartite scenarios, identifying a sum-of-square decomposition for the

corresponding Bell operators became more mathematically demanding and computationally

intensive. This complexity barrier presents a significant hurdle in applying traditional proof

techniques. Therefore, there is a pressing need to find a novel self-testing approach in multipartite

Bell scenarios that can sidestep these complexities [25].

The first article introduces a new methodology in this direction. In the article, we showcase

the practicality and effectiveness of our proof technique by retrieving self-testing statements

for N-party Mermin-Ardehali-Belinskii-Klyshko (MABK) [26, 27] and Werner-Wolf-Weinfurter-

Żukowski-Brukner (WWWŻB) [28–30] families of linear Bell inequalities. Additionally, the

article expands on this by providing the self-testing proofs of N-party Uffink’s quadratic Bell

inequalities [31] and complex-valued Bell expression. Notably, these inequalities retain the crucial

permutational symmetry (the property of a system or equation remaining unchanged when its

components are rearranged or permuted), which makes them stringent indicators of genuine

multipartite non-locality. The genuine N-partite non-locality is crucial for quantum information

processing tasks that require all participating parties’ involvement, specifically in scenarios

where all parties are required and no subset of parties can achieve success independently such

as quantum secret sharing (enables the secure division of a secret among multiple parties),

social welfare games (which explore the allocation of resources among the parties securely),

device-independent randomness generation (DIRG) (secure random numbers without relying

on the trustworthiness of the devices used) and conference key distribution schemes (enable

secure communication among the parties) [32–35]. However, when translating these theoretical

protocols into practical applications, a degree of caution is necessary. In the real world, there is

the possibility of deviation from the idealized conditions assumed by theoretical formulations,

which can introduce avenues for "loopholes" [21].

These loopholes can allow measurement statistics to be interpreted in a way that supports

local realism, thereby undermining the integrity of the protocols. Addressing and closing these

loopholes is crucial to prove the non-local nature of quantum correlations and to improve the

security and effectiveness of quantum information processing tasks. Among the various oper-

ational loopholes, the detection loophole is particularly significant. Detection loophole arises

primarily due to imperfect detectors used in the experiment. The inadequacy of these inefficient

detectors in experiments can introduce loopholes that a local classical model could leverage to

mimic the experimental statistics that one would expect from a quantum system. Moreover, the

detection loophole is the main obstacle to achieving practical, long-distance device-independent

(DI) cryptography [36–40].

The most prevailing strategy to overcome the detection loophole involves determining the
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critical detection efficiency, denoted as η, for the detectors used in a Bell test. Here, the word

critical detection efficiency denotes the minimum required performance of a detector to ensure

the observed violation of a Bell inequality and reflects the presence of quantum nonlocality

in the experiment. In the context of bipartite Bell scenarios, where each of the two parties

has two dichotomic (binary outcome) measurements, for the maximal violation of the Clauser-

Horne-Shimony-Holt (CHSH) inequality that could confidently indicate Bell nonlocality in the

experiment, the critical detection efficiency must be η= 2(
p

2 −1)≈ 0.8284, when using maximally

entangled state [41, 42].

Interestingly, for quantum states that are partially entangled, the required threshold effi-

ciency for detecting nonlocality can drop to as low as 2
3 [43]. Moreover, significant advancements

in the field have indicated the potential to reduce further the critical detection efficiency thresh-

old in more complex Bell scenarios. Specifically, the work from Massar and collaborators has

demonstrated that within larger Bell setups, the required efficiency threshold for closing the

detection loophole can decrease exponentially [44]. Subsequently, several studies have focused on

reducing critical detection efficiency, highlighting the importance of lower detection efficiency for

loophole-free certification of nonlocality [45–47]. However, real-world implementation of quantum

technologies demands not just evidence of nonlocality but a high degree of nonlocality [48]. This

requirement stems from the fact that many quantum information processing tasks, such as secure

communication, rely on the strength of nonlocality to ensure their effectiveness and security. This

motivates an important question: which quantum strategies yield the maximum loophole-free

nonlocality in the presence of inefficient detectors?

The second article attempts to answer this question using self-testing as the key method.

Violation of Bell inequality indicates the presence of nonlocality; the more violations there are,

the further these correlations are from the local polytope. This measure of nonlocality narrows our

question to identifying the quantum strategies that achieve the maximal loophole-free violation

of a given Bell inequality for specific detection efficiencies. In experiments when detectors fail

to click, resulting in a "no-click" event, to address this challenge and achieve a loophole-free

violation of Bell inequalities, it is crucial to incorporate these "no-click" the most general way is to

treat them as an additional outcome of the measurement [49]. However, the additional outcome

enlarges the Bell scenario. One can avoid this problem and the fair-sampling assumption by

employing a more convenient post-processing method that assigns a pre-existing outcome to each

no-click event while staying within the same scenario [50]. In the second article, we demonstrate

that for any Bell inequality and any given detection efficiencies, the optimal strategies are

those that achieve the maximum violation of a tilted version of the Bell inequality under ideal

conditions. Considering the simplest Bell scenario, the quantum strategies that achieve the

maximum loophole-free violation are unique (up to local isometries), which means the maximal

violation of the tilted inequality self-tests the optimal strategy for any given detection efficiencies

[51].
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However, in the scenario where only one detector is imperfect, the set of tilted CHSH in-

equalities, as studied in reference [24], reveals that the maximum violation of these inequalities

self-tests a partially entangled two-qubit state alongside a distinctive pairing of measurements:

one party employs maximally incompatible local observables, while the other uses non-maximally

incompatible observables. In particular, they used the sum-of-squares decomposition method, with

polynomials of measurements operators of degree (1+AB) corresponding the level of Navascués–

Pironio–Acín (NPA) hierarchy enough to saturate the maximum quantum value of these in-

equalities. Our article, however, demonstrates that when we consider the scenario where both

detectors are imperfect, retrieving the maximum violation of tilted CHSH inequalities becomes

significantly more challenging; even higher levels of NPA are not enough. As a result, self-testing

using the conventional sum-of-squares decomposition approach becomes exceedingly complex.

The article underscores the intricate difficulty characterizing the set of quantum correlations,

even within the simplest Bell scenario. As the main result, we derive analytical self-testing

statements for the family of double-tilted Bell inequalities (inequalities as the result of imperfect

detectors of both parties). Furthermore, In second article, we also show the robustness of our

self-testing results via numerical. This work not only delves into the significance of our results

but also opens up new pathways for further investigations in this direction [51].

The phenomenon of nonlocality in quantum mechanics, indicated by the violation of some

Bell inequalities, presents an exhilarating aspect of quantum theory. One can also ask what

additional insight can be gleaned from the non-local correlations in quantum theory ? The third

article ventures in this direction, offering some intriguing answers. In the microscopic realm,

quantum objects exhibit behaviors that defy classical intuitions. For example, particles can exist

in multiple states simultaneously (superposition) and can be instantly correlated with each other

regardless of the distance separating them (entanglement). However, in the framework of classical

physics, the interaction between distant systems can be explained through the concept of a field,

which permeates space and acts as an mediator (a system that couples others, non-interacting,

systems) for these systems. This concept adheres to the principles of locality, which says that a

system can only be influenced by its immediate environment [52]. These mediator interactions

are common and often, cannot be directly accessed or observed through experiments. However,

exploring whether such fields possess nonclassical properties can be fascinating and vital.

In quantum theory, the approach to mediated interactions mirrors that of classical physics,

with the vital distinction being that instead of the field, we use operators. A notable example

that is gathering significant interest involves two quantum masses that interact through a

gravitational field [53, 54]. It has been posited that the entanglement gain between these masses

exhibits the nonclassical characteristic of the states of the entire tripartite system and also what

we can say about the mediator. The third article delves into quantifying the nonclassicality

of such mediated interactions, focusing on the nonclassical characteristics at play rather than

the state themselves. We introduced inequalities whose violation signifies noncommutativity
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and nondecomposibility (open system generalization of noncommuting unitaries) in mediator-

based interactions, offering a new avenue to explore the quantum characteristics of mediator

interactions. The derivation we employ hinges on the principles of quantum mechanics and

is grounded in minimal assumptions about the systems under investigation. This minimal-

assumption framework provides the advantage of applicability across various scenarios, making

our method quantitative and experiment-ready. It is independent of the initial state and the

systems’ dimensions or the interactions’ specific nature. In the article we also demonstrate that

amount of violations places a lower bound on a suitably defined degree of nondecomposability[55].

In our article, we illustrate our theoretical findings with two examples. The first example

delves into the field of quantum simulations, specifically, the use of the Suzuki-Trotter expansion

for simulating arbitrary sums of local Hamiltonians, a technique referenced in several studies

[56, 57]. Recent advancements have revealed that the number of Trotter steps required to obtain

the required simulation error is proportional to the spectral norm of the commutator. We draw

a connection between this norm and the system’s correlations, illustrating a quantitative link

between simulation complexity and the amount of correlations. In the second instance, our

method can detect and measure the noncommutativity in the gravitational interaction between

two quantum masses. Our approach reveals that the correlations observed among these masses

indicate that gravity cannot be modeled as a commutative interaction between particle and

field. Furthermore, from Reference [58], any system interacting with a quantum system must

also be quantized. Thus, our framework offers a novel way to identify gravitational interaction’s

nonclassical nature.

Finally, all the above articles collectively address a fascinating question how can we certify

the underlying quantum systems based on non-classical correlations? in quantum theory, with

each offering unique insights and advancements. The third article explores nonlocal correlations

in quantum theory even beyond the violation of Bell inequalities, mainly focusing on mediated

interactions. The first and second article centers around the concept of Bell Nonlocality and its

significant influence on the evolution of quantum information science by the advent of self-testing.

Specifically, the first article ventures into the realm of multipartite scenarios, underscoring

the complexity and potential to extend self-testing beyond bipartite scenarios. It highlights

the necessity of such advancements for the practical realization of quanutm communication

technologies, which depend on larger quantum systems. The article presents a new methodology

for self-testing for multipartite Bell scenarios, which steps away from the traditional sum-of-

squares method [25]. The second article delves into the question of which quantum strategies

yield the maximum loophole-free nonlocality in the presence of imperfect detectors. Moreover,

second article systematically addresses the challenge of certifying quantum systems under

practical conditions, specifically when detectors are imperfect [51]. Both First and second article

employs Jordan’s lemma to characterize the measurements, highlighting the methodological

consistency. Finally, third article offers a different perspective on understanding and exploiting
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the quantum characteristics of mediator-based interactions. Specifically, this article sheds light

on the noncommutativity in the gravitation interactions [55]. Together, these articles stitch a

comprehensive narrative on theoretical progress and practical inquiries into nonlocal correlations

in quantum mechanics, showcasing the depth and breadth of current research in this area.
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“I state my case, even though I know it is only part of the truth, and I would state it

just the same if I knew it was false because certain errors are stations on the road of

the truth. I am doing all that is possible on the definite job at hand”

— Robert Musil

In chapter 2, we provide a brief introduction to the theoretical and mathematical framework

necessary for understanding non-classical correlations in quantum theory, setting the stage for

more detailed discussions in the subsequent chapters. The chapter is divided into the following

sections: We begin with an introduction to quantum formalism, entanglement, mediated dynamics

and the mathematical foundations of Bell nonlocal correlations. Next, we explore Bell scenarios,

followed by a discussion of the challenges posed by inefficient detectors in Bell experiments. The

final section focuses on device-independent certification or self-testing method.

This section introduces the fundamental postulates of quantum mechanics. The postulates

of quantum mechanics provide the bridge between the physical phenomena we observe and the

framework of quantum mechanics.

2.1 The postulates of quantum mechanics

The first postulate of quantum mechanics introduces the concept of Hilbert space, a complex

vector space with an inner product. This space, denoted as H, functions as the state space for the

quantum systems,
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Postulate 1- Wave Function : A quantum system’s state is fully described by a state vector |ψ〉
situated in a complex vector space equipped with an inner product, known as Hilbert Space H.

This state vector encapsulates all necessary information to fully describe the system’s physical

properties [22].

While Postulate 1 deals with the single systems, let us consider a scenario involving a

composite system comprising two or more distinct physical systems. We need to understand how

the states of these individual systems merge to represent the state of the entire composite system.

The subsequent postulate clarifies this by describing how the state space of a composite system is

constructed from the state spaces of its constituent systems.

Postulate 1.1-Composite systems: The state space of a composite physical system is formed

by the tensor product of the state spaces of its individual components. Additionally, if we have

several systems numbered from 1 to n, with each system i prepared in the state |ψi〉, then the

state of the entire composite system is expressed as:

(2.1) |ψ1〉⊗ |ψ2〉⊗ . . .⊗|ψn〉.

Postulate 1 and 1.1 describes quantum mechanics using state vectors. However, a more general

approach employs the concept of density operator, which is especially useful for dealing with

systems characterized by mixed states or those that are components of larger systems. The

density operator approach is invaluable when the exact state of a quantum system is unknown.

For instance, imagine a quantum system that might be in any of several potential states |ψi〉,
each indexed by i, and occurring with a certain probability pi. This collection of states and their

probabilities forms what is known as an ensemble of pure states. The density operator, or density

matrix, for such a system is defined by the equation:

(2.2) ρ ≡∑
i

pi|ψi〉〈ψi|.

While Postulate 1 describes the system’s state at any given initial time, the following postulate

describes how it evolves with time [22, 59].

Postulate 2-Time Evolution : The evolution of a closed quantum system is governed by

a unitary transformation. Specifically, the state |ψ1〉 of the system at a certain time, t1, is

transformed into the state |ψ2〉 at another time, t2, by using the unitary operator U . This unitary

operator U depends solely on the times t1 and t2, such that:

(2.3) |ψ2〉 =U |ψ1〉.

The above postulate established the fact that closed quantum systems evolve according to unitary

evolution. Postulate 2 describes the relationship between the quantum states of a closed quantum

system at two distinct points in time. However, a more refined iteration of this postulate can be

the evolution of quantum systems continuously over time [60, 61].
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Postulate 2.1- : The time evolution of the state of a closed quantum system follows the

Schrödinger equation, i.e., i~ d|ψ〉
dt =H|ψ〉.

It is very natural to ask how the dynamics described by the Hamiltonian in Postulate 2.1

relate to the unitary operator outlined in Postulate 2; this relationship is clearly illustrated in

the following equation:

(2.4) |ψ(t2)〉 = exp
[−iH(t2− t1)

~

]
|ψ(t1)〉 =U(t1, t2)|ψ(t1)〉.

Postulates 2 and 2.1 provide insights into the dynamics of quantum mechanics. Up till now we

were considering evolution of closed quantum systems lets now consider the system interacting

with a local environment. In this scenario, the system’s evolutions cannot be solely governed

by unitary evolution; instead, its evolution is described by a dynamical map denoted as {Λt}t≥0.

When the initial state of the system is ρ0, the state of the system at time t is given by ρt =Λt(ρ0).

However, dynamics exist where systems do not interact directly but instead through a mediator

[cite]. We will explore this topic further in the section on mediated dynamics.

Next, we introduce Postulate 3, which describes how measuring affect quantum systems.

Postulate 3- Measurement: Quantum measurements are described using a set of measurement

operators, denoted as {Mm}. These operators act on the state space of the system being measured

with the subscript m indicating the possible outcomes. If the state of the quantum system is |ψ〉
prior to measurement, then the probability of obtaining the outcome is given by:

(2.5) p(m)= 〈ψ|M†
mMm|ψ〉

〈ψ||ψ〉 ,

where M†
m represents the adjoint (or Hermitian conjugate) of Mm. After the measurement, the

state of the system collapses to a new state given by:

(2.6) |ψ〉 = Mm|ψ〉
〈ψ|M†

mMm|ψ〉
.

Moreover, the measurement operators must fulfill the completeness relation
∑

mM†
mMm = I,

ensuring that the sum of the probabilities of all possible outcomes is equal to one. The set of

necessarily positive semi-definite operators {Em =M†
mMm ≥ 0} are POVMs and suffice to describe

measurements when we are not interested in the post-measurement state. If the POVM elements

satisfy the orthogonality condition EmEm′ = δmm′E then the measurement is projective [22].

It is interesting to observe that these local measurements when performed on an entangled

state, generate correlations among outcomes that cannot be accounted for by any local causal

theory. We will further explore this in the upcoming section on mathematical foundations for

nonlocal correlations.

Having familiarized ourselves with the postulates of quantum mechanics, we are now pre-

pared to explore the fascinating phenomenon of entanglement.
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2.2 Entanglement as a quantum property of composite systems

Replacing the classical concept of phase space with the more abstract Hilbert space introduces

a notable shift in how composite systems are described. To grasp this, consider a multipartite

system made up of n subsystems. In classical mechanics, the total state space of the system

is defined as the Cartesian product of the state spaces of the n subsystems, implying that the

overall state is simply a product state of the individual subsystems [62, 63].

In contrast, quantum mechanics prescribes that the total Hilbert space, H, is the tensor

product of the individual subsystem spaces, represented as H=⊗n
k=1Hk. Utilizing the density

matrix formalism, the complete state of the system can be expressed as:

(2.7) ρ = ∑
In,Jn

CIn,Jn |In〉〈Jn|,

where In = i1, i2, . . . , in and Jn = j1, j2, . . . , jn form multi-indices, and |In〉 = |i1〉⊗ |i2〉⊗ . . .⊗|in〉
and |Jn〉 = | j1〉⊗ | j2〉⊗ . . .⊗| jn〉 . Generally, this density matrix ρ could be entangled, i.e., cannot

be decomposed into a product of density matrices from the individual subsystems [64] illustrating

that it is not generally feasible to assign a single-density matrix to any of the n subsystems. This

framework underscores the concept of entanglement, a fundamental aspect of quantum mechanics.

Furthermore, states that do not exhibit entanglement, such that ρ = ∑
i piρ

i
1 ⊗ρ i

2 ⊗ . . .ρ i
n are

referred to as separable [22, 62, 63].

Entanglement is a crucial component for the progression of quantum technologies based

on quantum information science. The exploration of entanglement can be framed around three

primary questions: First is its characterization, which involves determining whether a quantum

state is entangled or separable. Second is the manipulation of entanglement, exploring how it

can be altered or utilized. Lastly, the quantification of entanglement aims to measure the degree

of entanglement which is essentially the theory of entanglement measures. In the next section,

we revisit a few significant entanglement measures.

2.2.1 Entanglement measures

Over the years, a wide variety of entanglement measures have been introduced, each providing

substantial mathematical and conceptual contributions. These measures are deeply connected

to different aspects of quantum information processing. While theoretically, the number of such

measures could be infinite, some are particularly significant for specific applications [65–67].

For instance, in the context of bipartite systems, two notable entanglement measures are the

entanglement cost Ec and the distillable entanglement ED . The entanglement cost EC measures

the rate at which entanglement can be created using other resources, whereas the distillable

entanglement ED quantifies the maximum amount of pure entanglement that can be extracted

from a state through local operations and classical communication (LOCC) [68]. Initially, it was

unclear whether these measures were equivalent or if there were other measures that could
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fill the gaps between them. The relative entropy of entanglement is one such measure that fits

this intermediate space [69]. The relative entropy of entanglement is an elegant and powerful

instrument within entanglement theory, grounded in the concept of relative entropy, which is a

fundamental quantity in quantum information theory.

Relative entropy of entanglement: Let us first consider the concept of total correlations,

quantified by the quantum mutual information, given by:

(2.8) I(ρAB)= S(ρA)+S(ρB)−S(ρAB).

Where S(ρ) =−Tr
{
ρ lnρ

}
is von Neumann entropy using the quantum relative entropy, which

measures the distinguishability between two quantum states (ρ,σ), defined as:

(2.9) S(ρ||σ) :=Tr
{
ρ logρ−ρ logσ

}
,

This allows us to express the quantum mutual information (2.9) as:

(2.10) I(ρAB)= S(ρAB||ρA ⊗ρB).

Given that total correlations are quantified by comparing the state ρAB with the uncorrelated

state ρA ⊗ρB, it is logical to measure the specifically quantum part of these correlations by

comparing ρAB with the closet separable state. This perspective leads to the general definition of

the relative entropy of entanglement with respect to a set X as:

(2.11) EX
R (ρ) := infσ∈X S(ρ||σ).

In the bipartite scenario, this infimum is taken over all separable states or those with positive

partial transpose, serving as an effective indicator of entanglement in the sense that relative

entropy of entanglement is always positive if and only if ρAB is entangled [70, 71].

Furthermore, the condition of a positive partial transpose is necessary for separability. This

leads to another significant entanglement measure.

Negativity: Negativity is a convex entanglement monotone that aims to quantify the negativity

in the spectrum of the partial transpose. It is defined as:

(2.12) N(ρ)≡ ||ρTB ||−1
2

,

where ||X || = Tr
p

X †X is the trace norm. From here, we transition from examining the non-

classicality of states to developing tools for quantifying the amount of non-classicality in mediated

interactions [70, 72].

2.3 Mediated dynamics

Let us consider the simplest and most straightforward scenario in mediator dynamics involving

two objects, A,B interacting through a mediator M (see Fig. 2.1). Notably, systems A and B do
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Figure 2.1: Mediated interactions:– Systems A and B interact indirectly through a mediator M
i.e. the underlying Hamiltonian is HAM +HBM , explicitly excluding any direct interaction HAB
between the systems A and B.

not interact directly; rather, their interactions are mediated solely through the mediator M. It is

assumed that all three systems are fully described by quantum theory, implying each has its own

associated Hilbert space. This setup raises several compelling questions, particularly concerning

the mediator. The first question to consider is: what characteristics must the mediator possess

for us to categorize the interaction as quantum? Additionally, is it possible to identify certain

quantum properties of the mediator without directly measuring it? These inquiries prompt

a deeper exploration into the quantum dynamics of mediated interactions. Furthermore, our

primary interest in exploring these questions stems from the desire to impose constraints on

potential theories of quantum gravity. However, beyond theoretical considerations, this framework

also bears practical significance, particularly in the realm of quantum simulators [20, 56].

One approach to addressing the previously mentioned question about the quantum na-

ture of interactions is by examining the non-commutativity of the interaction Hamiltonians.

This is a viable method to assess the quantumness of interactions because any interaction

characterized by non-commuting terms cannot be emulated using a classical mediator. A in-

teraction is considered classical if the commutator of the Hamiltonians HAB and HBM equals

zero i.e., [HAM ,HBM]= 0. This indicates that the unitary operator e−ιtHABM can be decomposed

as e−ιtHABM = e−ιtHAM e−ιtHBM = e−ιtHBM e−ιtHAM [73]. This decomposability characteristic proves

to be crucial in identifying nonclassical interactions. In the context of mediated dynamics an

interaction is considered classical if it is decomposable, defined as,

Decomposable evaluation: Consider U as a unitary operator acting on a tripartite system

HA ⊗HB ⊗HM . We classify U = e−itHABM as decomposable if there exist unitary operators UAM =
e−itHAM and UBM = e−itHBM such that U(ρABM) = UBMUAM(ρABM). In essence, decomposable

unitaries are those that can be simulated by initially coupling system A to the mediator M,

followed by coupling system B to the mediator. Now suppose your system is not closed anymore,

to articulate decomposability in the context of open systems, we define the decomposability of the
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quantum map as,

Decomposability of the quantum map: Let Λ be a map acting on a tripartite system HA ⊗
HB ⊗HM . We say Λ is decomposable if there exits maps φAM and φBM such that Λ(ρABM) =
φBMφAM(ρABM). We denote the set of all decomposable maps as DEC [74].

Up till now we have described non-classicality based on quantum formalism now we well

define non-classicality based on the observed experimental statistics between distant observers.

2.4 Mathematical foundations for nonlocal correlations

In statistics, correlations indicate the strength of the interdependence between two variables

or systems, measuring the extent to which changes in one are associated with changes in the

other. In quantum theory, correlations typically refer to the distant connections between two or

more local subsystems. When these subsystems are subjected to appropriate measurements, they

exhibit behaviors that defy classical physics. Unlike classical correlations, which can be entirely

explained through classical probability distributions, quantum correlations exhibit phenomena

such as entanglement and nonlocality that challenge classical explanations. In the next part of

the chapter, we will provide a brief overview of the key concepts and tools used to characterize

nonlocal correlations in Bell experiments. This discussion will set the stage for introducing

certification schemes (self-testing) later in the chapter.

2.4.1 Bell nonlocality

In this section of the chapter, we will provide a brief introduction to the mathematical definition

of Bell nonlocality within the context of a typical Bell experiment [75, 76]. Consider a scenario

where two devices are controlled by two parties, known as Alice and Bob, who are situated at

distant locations. These devices might have possibly interacted in the past; for example, they may

share quantum systems emitted from the same source and can exhibit correlations. However,

during the Bell experiment, they are not allowed to communicate in any way, typically referred to

as the no-signaling. Each device has several buttons, each linked to a distinct measurement [7].

Let us assume that Alice and Bob can each select one of k possible measurements, with Alice’s

measurement setting denoted by x ∈ [nX ]({1,2...nX }) and Bob’s by y ∈ [nY ]. More specifically, x

could represent a setting on a dial of her measurement device. Similarly, y denotes Bob’s choice of

measurement on his device. When Alice and Bob perform these measurements on their respective

systems, they each produce outcomes a ∈ [nA] and b ∈ [nB].

Note that Alice and Bob’s interaction with these devices is purely classical. However, the

underlying processes within the devices may extend beyond classical physics. Their only means of

investigation are the classical actions of pressing buttons and observing the resulting outcomes.

Additionally, it is assumed that they can repeat the experiment multiple times, with each iteration

of the devices operating consistently under the same conditions. This ensures that for each pair of
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Figure 2.2: Schematic of bipartite Bell experiment:– A source sends two physical systems to
distant observers, Alice and Bob. Alice performs measurement x ∈ nX and gets outcome a ∈ nA,
and Bob performs measurement y ∈ nY and gets outcome b ∈ nB. The experimental observations
are specified by the joint probability distribution P= {P(a,b|x, y) ∈ RnX nY nA nB , which represents
the probability of outcomes a and b given measurements x and y chosen by Alice and Bob,
respectively.

measurement settings (x, y), there is a well-defined probability distribution over the outcome pairs

(a,b). This probability distribution will be presented as P(a,b|x, y) for a given pair of settings

(x, y) and a probability point is represented by P= {P(a,b|x, y) ∈ RnX nY nA nB (see Fig. 2.2). Where

RnX nY nA nB can be visualized as a real vector space, this space arises from the fact that there

are nX nY distinct pairs of settings, and nAnB possible outcomes. The probability distribution

P corresponds to a valid probability distribution, if : (a) P(a,b|x, y) ≥ 0 for all possible values

of a,b, x, y, and (b) the sum of all probabilities over all outcomes a and b for any measurement

settings x and y equals 1, i.e.
∑

a,b P(a,b|x, y)= 1

Observe that P(a,b|x, y) 6= P(a|x)P(b|y), where P(a|x) = ∑
b P(ab|xy),P(b|y) = ∑

a P(ab|xy)

implies that the outcomes from both sides are not statistically independent. Despite the fact

that both systems are significantly distanced apart, the presence of such correlations is quite

intriguing. They may suggest a dependency between the two systems stemming from their past

interactions, an idea that is consistent with the expectations of a classical (local causal) theory

[77]. The assumption of locality entails two key points:

• A prior to the Bell experiment, systems have been selected from the probability distribution

q(λ), having a joint causal effect on both outcomes

• During the experiment the outcomes are determined locally through response schemes

P(a|x,λ) and P(b|y,λ), based on the hidden variables λ and the specific measurement

settings chosen independently by each observer.
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with these factors, the statistical outcomes can be expressed as:

(2.13) P(a,b|x, y,λ)= P(a|x,λ)P(b|y,λ).

To consider all the possible values of variable λ encountered during each experimental run, it

should be represented by a probability distribution q(λ). The statistics can then be modeled as

given below:

P(a,b|x, y)=
∫
λ

dλq(λ)P(a|x,λ)P(b|y,λ),(2.14)

when a probability point P can be described using (2.14), it belongs to the set of local realistic

correlations, mostly referred to as the local set generally denoted by L and, λ is often called a

local hidden variable (LHV), and this factorability condition is known as a LHV model [2, 78–80].

This fundamental mathematical equation, (2.14), was formulated by John Bell in 1964 and

established a verifiable criterion, widely recognized as Bell’s theorem [3]. The theorem proves

that experiments involving entangled quantum particles cannot be explained by the local hidden

variable model, highlighting that quantum theory is incompatible with the local hidden variable

(LHV) model.

Now that we’ve covered the local hidden variable (LHV) model, we can transition our dis-

cussion from classical to quantum devices. In the most general cases, quantum devices share a

quantum state, represented as ρAB. On Alice’s side, her choice of measurement x corresponds to a

set of measurement operators {M̂x
a}x,a such that M̂x

a ≤ 0,
∑

a M̂x
a = I. Similarly, Bob’s measurement

choice y corresponds to a set of measurement operators {N̂ y
b }y,b such that N̂ y

b ≤ 0,
∑

a N̂ y
b = I.

According to the Born rule [22, 81, 82], the probability of obtaining outcomes a and b for their

respective measurement settings x and y is given by P(a,b|x, y)= Tr(M̂x
a
⊗

N̂ y
bρAB). The triple

consisting of ρAB, {M̂x
a}x,a, and {N̂ y

b }y,b is commonly referred as the quantum realization or strat-

egy. The set of probability distribution which admit a quantum realization is denoted by Q. It is

important to note here that the quantum set Q is determined based on a specific Bell scenario,

which is characterized by the number of settings and outcomes of each party. However, this set is

completely independent of the dimensionality of the quantum realization. One can easily verify

that quantum realization can accurately replicate the statistics of the LHV models. Therefore, it

directly implies that L⊆Q. However, there exists a nonlocal probability distribution P ∈Q\L
which possesses quantum realizations but is not explainable by LHV models (2.14).

As mentioned earlier in the section on Bell nonlocality, 2.4.1 both parties, Alice and Bob,

are restricted by a rule prohibiting communication between them. This introduces a crucial

constraint known as no-signaling, a key characteristic shared by both local and quantum sets. In

the upcoming part of the chapter, we will delve deeper into this concept.

2.4.2 No-signalling correlations

A key feature that both local L set and quantum set Q shared is that they both obey the no-

signaling conditions. The concept of no-signaling says that neither Alice nor Bob can determine
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the measurement choices of the other based on their own inputs and outcomes. Mathematically,

this principle is expressed as follows:

(2.15)
∑
b

P(a,b|x, y)=∑
b

P(a,b|x, y′) for any a, x, y, and y′,

(2.16)
∑
a

P(a,b|x, y)=∑
a

P(a,b|x′, y) for any b, y, x, and x′.

(2.15), (2.16) implies that Alice’s marginal probabilities P(a|x)=∑nB
b=1 P(ab|xy) are independent

of Bob’s choice of measurement setting y, and similarly, Bob’s marginal probabilities P(b|y) =∑nA
a=1 P(ab|xy) do not depend on Alice’s settings. This prevents any possibility of communication

between Alice and Bob via their choice of inputs. Moving forward, We represent the no-signaling

set of correlations as NS . A probability point belongs to the no-signaling set if it adheres to

the valid probability distribution rules outlined earlier in the section on Bell nonlocality 2.4.1

paragraph 2 and the no-signaling conditions [7, 83].

So far, we have discussed three sets of correlations: the local set L, the quantum set Q, and

the no-signalling set NS . These sets are related as follows: L⊆Q⊆NS , and each inclusion is

strict. Moving forward, we will review the fundamental properties of these correlation sets.

2.4.3 Properties of the three correlation sets L, Q and NS

The sets L, Q and NS are characterized as closed, bounded, and convex [84, 85]. In order to

discuss these correlation sets further, we must first understand these properties, starting with

convexity. The set S is a subset of Rn and is defined as convex if, for any points p1 and p2 within

this subset, then the linear combination µp1 + (1−µ)p2, with µ ranging from 0 to 1, also falls

within S . This means that the set must include all the convex combinations of its points. Notably,

if we have a non-convex set S , it can be transformed into a convex set by incorporating all possible

convex combinations of points within S . This process is termed as taking the convex hull (or

convex envelope) of S [86–88].

Remember, a subset of Rn is compact if it satisfies two criteria: it must be both closed and

bounded. Demonstrating compactness involves showing that the set fits within a unit ball

according to the vector ∞ norm, which implies that the absolute value |P(a,b|x, y)| must not

exceed 1 for any possible value of a, b, x and y [89–91].

2.4.4 Polytopes and facet inequalities

A notable category of compact convex sets are those with only a finite number of extremal points,

known as polytopes. These extremal points are often referred to as vertices [88]. Interestingly,

among the three correlation sets discussed earlier, two classify as polytopes. The local set L
and the no-signaling set NS are structured as polytopes, which implies that their geometry is

relatively straightforward. On the other hand, the quantum set Q does not conform to a polytope
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structure as it may have continuously infinite extremal points. We now discuss a useful result

concerning the membership of convex sets.

Theorem 1. Hyperplane separation theorem:- if S is close convex set within Rn and x is point

in Rn that does not lie within S , then there exists a linear functional that separates x from S .

Specifically, there exists f ∈Rn and c ∈R such that 〈 f , y〉 ≤ c for all y ∈S , but 〈 f , x〉 > c.

According to this theorem, if a probability point P ∈Rn is not part of the closed convex sets

L,Q or NS , one can find a linear function of the form given below that separate this point:

(2.17) β(P)= ∑
a,b,x,y

cabxyP(ab|xy),

where cabxy are real coefficient and (2.17) satisfied by all the points belong to set S [92, 93]. It

is interesting to note that every polytope can be depicted in two equivalent yet complementary

ways: (a) either by defining its vertices or (b) by specifying half-spaces. The local set’s half-space

description has two classes of conditions. It mandates that all probabilities must be non-negative

i.e., P(a,b|x, y)≥ 0. These conditions are termed as positivity facets, which are somewhat not that

interesting because all-natural and reasonable theories satisfy them. The other set of conditions

is referred to as facet Bell inequalities [84, 88].

In the next part of the chapter, we will delve deeper into the Bell functionals and Bell

inequalities in more detail as they play a crucial role in differentiating between quantum and

classical correlations.

2.4.5 Bell functionals and Bell inequalities

A Bell functional β(P) is a real linear functional defined over the space of probability points. The

action of this functional on probability point is described as in (2.17). A Bell inequality has the

following generic form:

(2.18) β(P)= ∑
a,b,x,y

cabxyP(ab|xy)≤βL,

where βL represents the maximum upper bound of the local Polytope L. However, it is crucial

to understand that there may be Bell inequalities other than the facet Bell inequalities, which

emerge from the half-space description of the local polytope. Nonetheless, computing the value

of maximum upper bound of the local Polytope βL is easy as it can be cast as a linear program.

However, computing quantum values, which involve a quantum state ρA,B and the measurement

sets {M̂x
a}x,a for Alice and {N̂ y

b }y,b for Bob is more complex. for instance, to find the optimal state

given fixed measurements, we first need to formulate Bell operator as follows [7]:

(2.19) β̂= ∑
abxy

SabxyM̂x
a
⊗

N̂ y
b
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It is evident that determining the optimal state requires calculating the maximum eigenvalue of

the Bell operator and identifying its corresponding eigenspace. Optimizing measurements for one

party, although more challenging, essentially constitutes a semidefinite program (SDP), which is

an extension of linear programming that can be solved with some efficiency [86, 94, 95].

While it’s possible to optimize each of the three components (the state and both parties’

measurements), achieving the global maximum is not guaranteed. Therefore, to enhance the

reliability of the results, the process should be repeated multiple times, each starting from

different initial configurations. This exhaustive search, however, becomes impractical even in

smaller scenarios. As such, algorithms like the see-saw are primarily useful for establishing lower

bounds on quantum values or identifying optimal realizations. For upper bounds, alternative

strategies must be employed [96, 97].

Next, we will explore the semidefinite relaxations of the quantum set, focusing primarily on

Navascués-Pironio-Acín (NPA) relaxations [98–100].

2.4.6 The quantum set and semidefinite relaxations (NPA) hierarchy

The Navascués-Pironio-Acín (NPA) criterion, was initially proposed by Navascués et al. in 2008

[100]. By 2012, its application had been extended to self-testing, which we will discuss in detail

in the later part of the thesis. Given the complexity of precisely defining the quantum set,

employing approximations becomes a practical approach. One straightforward approximation

involves limiting the Hilbert space dimensions of the possible states or measurements. However,

the resulting set of behaviors then becomes a subset of Q. In the context of device-independent

certification, it’s preferable to consider supersets (or relaxations) of Q. This approach ensures

that if a property is demonstrated for one of these supersets, it is automatically valid for the

entire quantum set. This section introduces such supersets using NPA hierarchy.

Suppose the probability distribution P is underpinned by quantum theory, and given set of

operators O= {Oi}n
i=1 and |ψ〉 is the state of the system that satisfies

∑
i, j ak

i, j〈ψ|O∗
i O j|ψ〉 = fk(P),

k = 1, ...,m with ak
i j are real coefficient and fk being linear functions of the moments, then there

should be an n×n positive semi-definite matrix Γ such that Γ≥ 0, where Γ is the moment matrices

with entries (Γ)i, j = 〈ψ|O∗
i O j|ψ〉. Now let’s define {Mk} be basis of monomials for set P2n of class

representatives and define Fk
βα

as a tensor with elements specified by:

(2.20) Fk
βα =

1 if Mk = R
†
αRβ

0 otherwise

. We can write O∗
i O j = Fk

βα
Mk. This enables a decomposition of the moment matrix Γ as:

(2.21) Γ= F0
βα+Fk

βαmk,

where mk = Tr
{
MkρAB

}
. We can set M0 = I which makes m0 = 1. We take the other basis

elements {Mk} to be the measurement operators {{Mx
a}, {N y

b }}, with this we can represent the
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Bell functional β in terms of moments, such as β= c0 + ckmk, where ck = CβαFk
βα

. This approach

results in an n-level NPA relaxation for the bell functional as follows:

max c0 + ckmk(2.22)

s.t. F0 +
∑
k

Fkmk ≥ 0.

From this discussion, it’s apparent that if the state and measurement settings were known,

calculating all elements of Γ would be straightforward. However, in a device-independent scenario,

we do not have prior knowledge of the state and measurements; we merely assume their existence.

Nevertheless, we can determine some of the matrix entries of Γ, specifically those representing

P(a,b|x, y), P(a|x) and P(b|y). Entries that involve pairs of operators from either Alice or Bob,

which are not directly observable in the Bell test, can be assumed to be such that Γ≥ 0. If, after

populating the matrix Γ with the observed behavior, it turns out impossible to complete the

remaining entries in such a way that Γ≥ 0, it is evident that P ∉Q. Essentially, the NPA criteria

outline the necessary conditions for a behavior P to be included in the quantum set Q.

The set of behaviors that fulfill the condition Γ≥ 0 for O ≡ {Mk} is labeled as Q1. The set

of behaviors meeting the condition Γ ≥ 0 for O containing strings of monomials from {Mk} of

at most length n is denoted it as Qn. It naturally follows that Q1 ⊇ Q2 ⊇ Q3 ⊇ . . . ⊇ Qn ⊇ Q
for all n. The NPA criterion also demonstrates that this hierarchy converges, implying that

limn→∞Qn =Q. Additionally, in several instances, the quantum result is achieved at a finite n.

The characteristic of the NPA conditions as semidefinite constraints Γ≥ 0 is specifically important,

as it indicates the potential for their application within semidefinite programming (SDPs) [101].

In the upcoming thesis section, we will briefly now outline one of the straightforward approach

known as sum-of-squares (SOS) decomposition used to drive an upper bound on the quantum

value of a Bell functional [10, 102]. Although finding SOS in more complex scenarios is not

straightforward; this we will discuss in greater detail in later sections of the thesis.

2.4.7 Upper bound on the quantum value of Bell operator W

Now, let’s discuss a basic technique for establishing an upper bound on the quantum value of

Bell functional. Consider a Bell inequality represented as β(P) = ∑
abxy cabxyP(a,b|x, y) ≤ βL.

The maximum violation achievable with quantum resources can be calculated as βQ = tr[β̂ρ].

We can then define a shifted Bell operator. By construction, every shifted operator βQ I− β̂ is

positive semidefinite i.e., 〈ψ|β̂|ψ〉 ≤ βQ for any state |ψ〉. If the shifted, Bell operator permits a

breakdown, of the form βQ I− β̂=∑
λP†

λ
Pλ ≥ 0, with Pλ being a polynomial of the operators M̂x

a

and N̂ y
b , This form of decomposition, called the sum-of-squares (SOS) decomposition. The SOS

technique establishes an upper bound on the maximum quantum value achievable. Then, we

can identify quantum realization that reaches this upper bound. This decomposition provides

valuable insights into the state |ψ〉 and the measurements employed to achieve the maximum

violation of specific Bell inequalities.
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So far, we have focused on introducing some basic tools that will be helpful in the upcoming

sections for defining both bipartite and multipartite Bell scenarios. In the next section, let us

start with the smallest scenario, known as the Clauser-Horne-Shimony-Holt (CHSH) scenario,

and then proceed to the multipartite scenario.

2.5 Bell scenarios

Bell scenarios are characterized based on the number of parties, the range of inputs available

to each participant, and the set of possible outcomes. For now, our focus is on bipartite sce-

narios, involving just two parties. We represent a bipartite Bell scenario specified by the tuple

(nX ,nA;nY ,nB).

2.5.1 The CHSH Scenario

The most basic Bell scenario where the three correlation sets L, Q and NS diverge involves a

bipartite system, two measurement settings, and two outcomes for each party (2,2;2,2), known as

the CHSH scenario.

In the CHSH scenario, the parties are typically referred to as Alice and Bob. Notably, for

practicality and to better align with experimental setups in Bell tests, we adopt the convention

x, y ∈ {0,1} for inputs and a,b ∈ {+1,−1} for outputs. In this scenario, Alice can perform one of two

measurements (x = 0 or 1) with outcomes a =+1 or −1. Similarly, Bob has two measurements

(y= 0 or 1) with outcomes b =+1 or −1. The probability of Alice and Bob obtaining outcomes a

and b given measurements x and y is denoted by P(ab|xy) [7, 103].

The expectation value of outcomes a and b for specific measurement settings x, y is denoted

as 〈AxBy〉 and is defined by the equation below,

(2.23) 〈AxBy〉 =
∑
a,b

abP(a,b|x, y).

〈AxBy〉 are known as correlators. The marginal correlators of Alice 〈Ax〉 and Bob 〈By〉 are defined

as,

(2.24) 〈Ax〉 =
∑
a

aP(a|x), 〈By〉 =
∑
b

bP(b|y).

The joint probabilities P(ab|xy) in terms of the marginals and correlators can be expressed as:

(2.25) P(ab|xy)= 1
4

(1+a〈Ax〉+b〈By〉+ab〈AxBy〉).

Note, here, that the observed statistics can be completely described by the set P= {P(a,b|x, y)} ∈
R16. However, utilizing the no signaling conditions (as given in (2.15) and (2.16)) along with

normalization condition, i.e.,
∑

a,b P(ab|xy)= 1, we find that only 8 real parameters are sufficient
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to reconstruct the entire distribution. Consequently, a probability distribution P ∈ R8 can be

completely specified in the following way,

(2.26) P= (〈A0〉,〈A1〉,〈B0〉,〈B1〉,〈A0B0〉,〈A0B1〉,〈A1B0〉,〈A1B1〉).

In the (2,2;2,2) scenario, the local polytope L is characterized by 16 deterministic vertices

and 24 facets. The 16 facets among these are positive constraints i.e., P(ab|xy) ≤ 0 [84]. The

remaining 8 facets correspond to the Clauser-Horne-Shimony-Holt (CHSH) inequality (up to local

relabelling of inputs and outputs) [104],

(2.27) C(P)= 〈A0B0〉+〈A0B1〉+〈A1B0〉−〈A1B1〉 ≤ 2.

The CHSH inequality is a linear inequality that must be satisfied by all local theories. However,

It can be violated by quantum theory through specific measurements performed on an entangled

pair of states.

2.5.1.1 Local bound of CHSH inequality

We can express the CHSH functional (2.27) as given below:

(2.28) C(P)= c00〈A0B0〉+ c01〈A0B1〉+ c10〈A1B0〉+ c11〈A1B1〉,

where cxy = (−1)x·y. Recall that the local set L forms a polytope, and extremal points of this poly-

tope are local deterministic points, taking values in {+1,1}. In more detail, a deterministic point

can be completely determined by specifying the outcomes for Alice and Bob in each measurement

setting, with settings (x, y) ∈ {0,1} and outcomes (a,b) ∈ {+1,−1}. Such that 〈AxBy〉 = |1|, and

(2.29) C(P)= (−1)0·0 + (−1)0·1 + (−1)1·0 + (−1)1·1,

which gives us the the local value of the CHSH functional equals 2 [7, 104]. Given that the

expectation value of 〈AxBy〉 within {−1,+1}, the local bound of C(P) is constrained to ≤ 2. The

subsequent section of this thesis will explore how quantum theory surpasses this bound.

2.5.1.2 The Tsirelson’s bound

Several methods can be employed to derive the maximum quantum violation of the CHSH

inequality, commonly referred to as Tsirelson’s bound [105]. However, this section will focus

solely on the approach using the Khalfin-Tsirelson-Landau identity [106, 107]. The Tsirelson

bound represents the maximum eigenvalue of CHSH Bell operator Ĉ, expressed as ||Ĉ||∞ =
maxψ |〈ψ|Ĉ|ψ〉|, where ||Ĉ|| is the spectral norm (largest eigenvalue) of Ĉ. Optimization is done

over all possible observables Ax = Mx
1 − Mx

−1 and By = N y
1 − N y

−1. For the CHSH scenario, the

Bell operator is defined as Ĉ = A0 ⊗B0 + A0 ⊗B1 + A1 ⊗B0 − A1 ⊗B1, the observables can always

be taken to be projective measurements, hence A2
x = B2

y = I. Utilizing the Khalfin-Tsirelson-

Landau identity [106, 107], the Bell operator can be reformulated as Ĉ2 = 4I− [A0, A1][B0,B1].
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This formulation leads to the observation that ||Ĉ2||∞ ≤ 8, which implies ||Ĉ||∞ ≤ 2
p

2 . The

qautnum strategy |ψ〉 = |00〉+|11〉p
2

, A0 =σx,B0 = σx+σzp
2

, A1 =σz,= B1 = σx−σzp
2

saturates this bound

[75]. Notably, if [A0, A1]= 0 or [B0,B1]= 0, then Ĉ ≤ 2, illustrating how joint measurability results

in local behavior. This insight also provides a foundational basis for self-testing, as the maximum

bound of a Bell operator can only be achieved with specific states and measurements, which

will be explored more thoroughly in the upcoming sections of the thesis. Next, we will examine

correlations that more powerful quantum theory, potentially violating the CHSH inequality up to

a value of 4.

2.5.1.3 Popescu Rohrlich (PR) boxes

In the CHSH scenario (2,2;2,2) for Bell tests, the structure of the no-signaling polytope NS
consists of 16 facets, all of which are positivity constraints, and it includes 24 vertices. Among

these vertices, 16 are deterministic local points, while 8 represent non-local vertices generally

known as s Popescu Rohrlich (PR) boxes [108]. These non-local vertices are equivalent under the

relabeling of inputs and outputs, defined by the behavior,

(2.30) P(ab|xy)=


1
2 if a⊕b = xy,

0 otherwise.

PR-boxes notably violate the CHSH inequality to its maximum algebraic value of 4 [7, 21].

In the CHSH setup, there is an interesting duality: each facet of Bell inequality is uniquely

maximally violated by a specific PR box. However, this clear correspondence between facet Bell

inequalities and extremal no-signaling boxes is not generally observed in more complex multi-

party scenarios. Up to this point, our discussion has focused on the simplest setups involving only

two parties; we will now expand our discussion to include scenarios with more than two parties.

2.5.2 Multipartite Scenarios

While earlier sections focused on Bell scenarios with N = 2 systems for simplicity, it’s crucial to

recognize that the fundamental concepts, such as the no-signaling conditions, are applicable to

any number of parties, N > 2. In this section, we will discuss some significant Bell inequalities

in the context of multipartite scenarios. In particular, we consider tripartite Bell scenarios,

specifically the Bell scenarios with the tuple (nX ,nA;nY ,nB;nZ ,nC)

The most basic example of a multipartite Bell scenario is the (2,2;2,2;2,2) configuration, which

involves three parties, each having two possible inputs and outputs. Unlike the simpler bipartite

case, the local polytope in this scenario is considerably more complex. Research has shown that

the local polytope contains 53,856 extremal points, substantially increasing from the 16 extremal

points observed in the bipartite CHSH scenarios [109, 110].

Mulitparite Bell scenarios diverge significantly in complexity from the simpler bipartite

case. While the principle of locality can be extended from bipartite to multipartite scenarios, the
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Figure 2.3: Schematic of multipartite Bell scenarios:– A source sends physical systems to distant
observers Ai, with i ranging from 1 to N. Each party can perform measurement x ∈ {0,1} and
gets outcome a ∈ {±1}.

manifestation of non-locality in multipartite systems is distinctively varied. One major challenge

is that self-testing criteria for multipartite scenarios are harder to establish due to the lack of

simplifications available in the bipartite context, such as the Schmidt decomposition of the shared

entangled state. In the next part of this section, we will introduce various linear and quadratic

multipartite Bell inequalities [111, 112]. In the next part of this section, we will introduce various

linear and quadratic multipartite Bell inequalities.

2.5.2.1 Linear inequalities

The most commonly used Bell inequalities are those comprised of Bell expressions, which are

linear combinations of observed probabilities. In this discussion, we only consider multipartite

Bell scenarios involving N no-signaling spatially separated parties. We limit our discussion
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only to the scenarios where each party Ai, with i ranging from 1 to N, is equipped with two

observables, A(i)
0 and A(i)

1 , each yielding binary outcomes {+1,−1} (see Fig. 2.3). Among these

linear Bell inequalities, we particularly focus on the Werner-Wolf-Weinfurter-Żukowski-Brukner

(WWWŻB) family of correlation Bell inequalities [14, 28–30]. The Bell operator for WWWŻB

family of Bell inequalities has the following general form:

(2.31) ŴN = 1
2N

∑
s1,...,sN=±1

S(s1, ..., sN )
N⊗

j=1
(A(i)

0 + s j A(i)
1 ),

Where S(s1, ..., sN ) denotes a function determined by the indices s1, ..., sN , which belong to the set

{−1,1} with binary outcomes ±1. Every tight (WWWŻB) inequality is given by 〈ŴN〉 ≤L 1, where

the notation ≤L signifies that the inequality holds for all correlations which admit local hidden

variable explanations (L).

Next, we delve into a specific subset of the Werner-Wolf-Weinfurter-Żukowski-Brukner

(WWWŻB) Bell inequalities, known as the Mermin-Ardehali-Belinskii-Klyshko (MABK) family of

inequalities [21, 26, 27]. The N-party MABK operators can be obtained recursively as,

M̂N = 1
2

(
M̂N−1 ⊗ (A( j)

0 + A( j)
1 )+M̂′N−1 ⊗ (A( j)

0 − A( j)
1 )

)
= 1

2
N+1

2

((
1− ιp

2

)(N−1) mod 2 N⊗
j=1

(A( j)
0 + ιA( j)

1 ) +
(

1+ ιp
2

)(N−1) mod 2 N⊗
j=1

(A( j)
0 − ιA( j)

1 )

)
,

(2.32)

where complementary Bell expression, M̂′
N−1, is equivalent to M̂N−1 but with the observables

A( j)
0 and A( j)

1 interchanged. The associated Bell inequalities are expressed as 〈M̂N〉 ≤L 1. The

maximum achievable values of 〈M̂N〉 for biseparable states QN−1 and general quantum correla-

tions Q are 2
N−2

2 and 2
N−1

2 , respectively [21].

Finally, we present yet another relevant sub-family of the (WWWŻB) inequalities, referred to

as Svetlichny inequalities [113, 114]. The Svetlichny operator can be formed of MABK operators

(2.32) in the following way,

(2.33) Ŝ±
N =

2k−1((−1)
k(k±1)

2 M̂±
N , (for N = 2k);

2k±1((−1)
k(k±1)

2 M̂N ∓ (−1)
k(k∓1)

2 M̂′N )), (for N = 2k+1),

where M̂+
N is equivalent to M̂N (2.32) and M̂−

N is equivalent to M̂′N . The corresponding

Svetlichny inequalities are of the form, 〈Ŝ±
N〉 ≤QN−1 2N−1 ≤Q 2N− 1

2 [21].

2.5.2.2 Uffink’s Quadratic inequalities

In bipartite Bell scenarios, it is typically sufficient to employ linear Bell inequalities to detect

non-locality. This is because the set of behaviors that can be explained by local causal models
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forms a convex polytope L, characterized by linear facet inequalities. However, in multipartite

settings, the landscape changes significantly; here, nonlinear Bell inequalities become essential

for a thorough analysis of genuine multipartite non-locality. This distinction arises because the

bi-separable quantum behaviors in multipartite scenarios do not constitute a polytope, making

Uffink’s quadratic Bell inequalities [31] more effective at witnessing genuine multipartite non-

locality compared to their linear inequalities. There are two distinct families of N party quadratic

Bell inequalities formed of the MABK (2.32) and Svetlichny (2.33), families of linear inequalities,

ÛM
N and ÛS

N , respectively, which have the form

(2.34) ÛM
N = 〈M̂N〉2 +〈M̂′

N〉2 ≤QN−1 2N−2 ≤Q 2N−1,

(2.35) ÛS
N = 〈Ŝ+

N〉2 +〈Ŝ−
N〉2 ≤QN−1 22N−2 ≤Q 22N−1,

Genuine N-partite non-locality is crucial for quantum information processing tasks that require

the active participation of all involved parties [32, 34, 35]. The certification of quantum nonlocality

underpins practical applications such as device-independent quantum cryptography and random

number generation protocols [33]. However, confirming nonlocality in practical scenarios is

challenging due to experimental inaccuracies. In real-world experiments, deviations from the

ideal conditions posited in theoretical models can lead to potential loopholes [14, 21]. In the

following discussion, we will see how loopholes, particularly those caused by inefficient detectors,

can impact the integrity of Bell experiment results.

2.6 Inefficient detectors

Bell inequalities provides a crucial benchmark for assessing the nature of correlations between

measurements on entangled particles, with the foundational assumption that these measure-

ments are unaffected by any distant actions. Over the years, numerous experiments have been

conducted to test these inequalities by measuring correlations between entangled particles,

demonstrating consistent violations of Bell inequality [14, 21]. Some of these experimental re-

sults have not been conclusively definitive, primarily due to the presence of "loopholes" that can

allow local theories to potentially explain the observed statistics.

Several types of loopholes exist within Bell experiments [14, 21, 115, 116]. These include the

locality loophole, which arises if the measurement on one particle could influence the measure-

ment on another; the freedom of choice loophole, also known as the "free will" loophole, which

pertains to the randomness in selecting measurement settings for each party; and the detection

loophole, which occurs when not all particles involved in the experiment are detected [117]. Of

these, the detection loophole is particularly significant. We will discuss this loophole in more

detail in this section of the thesis and its impact on Bell inequalities.

The detection loophole arises because the detectors used in the Bell experiments’ have poor

detection efficiency. Detection efficiency, denoted as η, is the ratio of the number of particles
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detected by a measurement device to the total number of particles emitted by the source. It is

influenced by both the sensitivity of the measurement device and the distance of the device from

the source [21].

For instance, in a bipartite Bell experiment testing the CHSH inequality with quantum

strategy, the minimum required detection efficiency is η= 0.828. In photonic Bell experiments,

the effective detection efficiency decreases exponentially with the increase in the length of the

optical fiber l and can be modeled as η= η0 exp{−αl}. Here, η0 represents the intrinsic detection

efficiency of the detectors, and α is the attenuation coefficient, typically around 0.2 dB/km for

light at a wavelength of 1550 nm (used in the third telecom window) [41]. Consequently, the

lower the required critical detection efficiency for observing nonlocal correlations, the greater

the allowable distance between the measurement devices and the source for maintaining valid,

loophole-free nonlocal observations [41–43].

2.6.1 Post-processing strategies

In Bell-type experiments, detector imperfections often lead to scenarios where one or more

detectors fail to produce an outcome, known as a "no-click" event. Addressing how to handle

these rounds is crucial. One common approach is to assign a different classical value, other

than the pre-existing ones, to each no-click event. However, this approach requires developing a

new form of Bell inequality to accommodate the additional outcomes [117]. Alternatively, more

straightforward strategies which preserve the Bell scenario can be employed, such as

• Discard Strategy: In this strategy, any round where a detector fails to register an outcome is

excluded from the statistical analysis. It’s important to note, however, that using a discard

strategy might introduce signaling into the estimated joint probability distribution, which

can complicate the interpretation of the results.

• Assignment Strategy: During an experiment, if a detector fails to click, the corresponding

party assigns a preexisting classical value, for that round.

The assignment strategy offers significant advantages over the discard strategy in managing "no-

click" events within Bell experiments. Unlike the discard strategy, it preserves the no-signaling

constraints and does not alter the local bound of the Bell inequality; instead, it primarily affects

the quantum value, which typically decreases. This strategy is particularly useful for exploring the

effects of imperfect detectors within the framework of established Bell inequalities. It maintains

the dimensional integrity of the Bell scenario, simplifying analysis and interpretation [21, 118].

Next, we will discuss how the assignment strategy in the presence of inefficient detectors

influences the violation of Bell inequality [5, 119, 120], examining its impact on the experimental

results and theoretical interpretations.
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2.6.2 Effect of inefficient detectors with local assignment strategy on Bell
inequalities

Let’s suppose the measurement device used by Alice and Bob has efficiencies denoted by ηA

and ηB such that ηA,ηB < 1, respectively. When Alice’s device fails to register a detection, she

assigns a predefined outcome a with a certain probability Q(a|x), and similarly, Bob assigns

outcome b with probability Q(b|y) when his device fails to click. The product of these probabilities,

Q(ab|xy)=Q(a|x)Q(b|y), defines a local strategy Q.

Let P(ab|xy) represent the ideal joint probability that would be observed with perfect detec-

tion efficiency. The actual measurement statistics, denoted as P̃(ab|xy) are calculated based on

a combination of the real detection outcomes and the probabilities assigned during "no-click"

events as given below,

P̃(ab|xy)=ηAηBP(ab|xy)+ηA(1−ηB)P(a|x)Q(b|y)

+ (1−ηA)ηBQ(a|x)P(b|y)

+ (1−ηA)(1−ηB)Q(a|x)Q(b|y).(2.36)

This relationship describes how inefficient detectors impact the observed statistics through a

linear transformation P̃ =ΩηA ,ηB (P)), mapping the ideal joint probabilities P to the observed

measurement statistics P̃ such that,

P̃=ΩηA ,ηB (P)=ηAηBP+ηA(1−ηB)PA

+ (1−ηA)ηB)PB + (1−ηA)(1−ηB)Q,(2.37)

where P̃ includes the entries entries P̃(ab|xy), and the vectors PA and PB are linear functions of

the ideal marginal probabilities P(a|x) and P(b|y), respectively. Specifically, these vectors contain

entries P(a|x)Q(b|y) and Q(a|x)P(b|y) for any values of ηA ,ηB, and the local strategy Q. Thus, by

linearity, the value of a specific Bell functional β calculated over this effective behavior can be

expressed as,

β(P̃)=ηAηBβ(P)+ηA(1−ηB)β(PA)+ (1−ηA)ηBβ(PB)

+ (1−ηA)(1−ηB)β(Q).(2.38)

As we have already discussed, assigning a pre-existing outcome to a "no-click" event cannot raise

the local bound of Bell inequality. Therefore, using inefficient detectors in a Bell experiment that

violate a given Bell inequality in a loophole-free way if the effective behavior P̃ violates this same

Bell inequality, i.e.,

(2.39) β(P̃ )≤βL.

In the next section, we demonstrate the application of the discussion of this section for the

simplest bipartite Bell scenario, involving two dichotomic measurements per party.
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2.6.3 Effect of inefficient detectors with local assignment strategy on CHSH
inequality

Let us now consider the simplest Bell scenario where Alice and Bob each perform one of two

possible measurements x, y ∈ {0,1} and get binary outcomes, a,b ∈ {−1,+1}. We can express the

behavior in terms of correlators (2.23) and marginals (2.24), such that the nonlocality of a given

behavior can be detected by the violating of the CHSH inequality,

(2.40) C(P)=∑
x,y

(−1)x·y〈AxBy〉 ≤ 2.

This inequality is the only tight and complete Bell inequality for this scenario, subject to the

relabeling of measurements and outcomes [7, 121]. To demonstrate the nonlocality of the effective

behavior in (2.37) the ideal behaviour P violates the following inequality for any local assignment

strategy Q and given detection efficiency ηA and ηB,

C(P̃)=ηAηBC(P)+ (1−ηA)(1−ηB)C(Q)

+ηA(1−ηB)C(PA)+ (1−ηA)ηBC(PB)≤ 2.(2.41)

With these foundational aspects clarified, we will now proceed to discuss one of the most

robust methods of certification, known as self-testing, which was briefly introduced earlier. The

upcoming section will detail this concept further.

2.7 Device-independent certification

For nonlocal correlations, two essential conditions are necessary: a) the quantum state involved

must be entangled, and b) the measurements carried out by the participating parties must be

incompatible. Observing these nonlocal correlations, therefore, serves as proof that the state

is entangled and the measurements are indeed incompatible. This forms the basis for what

is known as self-testing or device-independent certification of quantum devices (see Fig. 2.4).

In the device-independent approach, all quantum devices involved in both the source and the

measurement apparatus are treated as black box, implying that there are no presuppositions

about their internal workings [10, 14, 21]. However, it’s important to note that this form of

certification still depends on certain assumptions regarding the Bell test itself, specifically the

requirement for measurement independence and that the measurements by the parties should

occur with a space-like separation to prevent any causal interaction.

2.7.1 Self-testing

In previous discussions, we’ve noted that certain statistics from measurement outcomes in

nonlocal scenarios serve as evidence of the fundamentally quantum character of an experiment,

demonstrating that it cannot be accounted for by local realism. Remarkably, these measurement
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Figure 2.4: Self-testing in bipartite systems:– Self-testing schemes enable us to deduce the
underlying physics of a Bell experiment i.e., quantum state ρ and the measurement operators
Mx

a, N y
b involved based solely on the observed statistics P= {P(ab|xy)}.

statistics can sometimes allow us to draw even more conclusive insights. The most conclusive form

of such insights is known as self-testing [10]. This method offers the most robust certification of

the underlying physics i.e., the quantum state and the measurements involved in an experiment.

In a Bell scenario involving N parties, each denoted as {A j}N
j=1, where every party measures

two observables, A( j)
0 , A( j)

1 , and share a state
∣∣ψ̄〉〈

ψ̄
∣∣, self-tests, if we observed the quantum

maximal value βQ of the specific Bell operator β̂, then the state |ψ̄〉 used in the experiment

must be transformable by local unitaries,
⊗

j UA j , to a reference state, |ψ〉, combined with a

separable "junk" part, |Ψ〉, on which the observables act trivially. This transformation can be

mathematically represented as,

(2.42)
⊗

j
UA j |ψ̄〉 = |ψ〉⊗ |Ψ〉 .

Additionally, the local observables {A( j)
0 }N

j=1 and {A( j)
1 }N

j=1, must conform to the following transfor-

mations:

(2.43) UA j Ā
( j)
0 (UA j )

† = A( j)
0 ⊗ I,

(2.44) UA j Ā
( j)
1 (UA j )

† = A( j)
1 ⊗ I,

where the joint observables
⊗

j O( j) where O( j) ∈ {A( j)
0 , A( j)

1 } act on the Hilbert space of |ψ〉, and

the tuple {|ψ〉 , {A( j)
0 , A( j)

1 } j} maximizes the given Bell operator, i.e., 〈ψ| β̂(A( j)
0 , A( j)

1 ) |ψ〉 =βQ .

Such characterization is typically referred to as device-independent certification. It operates

under the assumption that the quantum devices involved do not communicate; no specific

assumptions are made about their internal workings. Essentially, these devices are treated as

black boxes, and their characterization is derived entirely from analyzing the statistics of their

inputs and outputs. Another crucial concept is that of isometries. It is necessary to find the

local isometry mapping that can map the physical realization { ¯|ψ〉, {Ā( j)
0 }, Ā( j)

1 } to the desired one

{|ψ〉 , {A( j)
0 }, A( j)

1 } [25].
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An isometry Φ : H̄→H is a linear map such that Φ†Φ= IH̄, where IH̄ is the identity operator

on H̄. This mapping preserves all inner products. On the other hand, a local isometry refers to an

isometry that can be implemented locally i.e., A local isometry on the Hilbert space HĀ( j)
0
⊗HĀ( j)

1

is a map Φ : H̄Ā( j)
0
⊗ H̄Ā( j)

1
→HA( j)

0
⊗HA( j)

1
, such that

(2.45) V =VĀ( j)
0
⊗VĀ( j)

1
,

where VĀ( j)
0

and VĀ( j)
1

are isometries on H̄Ā( j)
0

and H̄Ā( j)
1

, respectively. For instance
⊗

j UA j consti-

tute such a local isometries.

However, self-testing statements are based on experimental data is significant, their vali-

dation can faces two primary challenges. First, inevitable experimental noise can reduce the

observed correlations. Second, exact statistics are never observed due to the finite number of

experimental trials, resulting only in approximate representations of the true statistical out-

comes. To overcome these challenges, the concept of robust self-testing has been developed, which

focuses on proving self-testing statements in an approximate manner by acknowledging and

accommodating the inherent noise in experimental setups [122–124].

While there are numerous schemes available for the robust self-testing of states and mea-

surements, we can discuss the , the numerical SWAP method is particularly interesting. Detailed

in studies such as [125, 126], this method is a numerical approach, predominantly employed

in self-testing protocols where analytical methods are insufficient. Although its application is

typically confined to simpler protocols due to computational limitations, it plays a crucial role in

establishing the robust self-testing bounds that are essential for practical applications [127]. The

core principle of this technique hinges on the use of local isometries, which transform the actual

physical state |ψ̄〉 into the desired reference self-testing state |ψ〉 and a junk state |Ψ〉 on local

auxiliary systems. In many self-testing applications, these local isometries function similarly to

partial SWAP gates. They effectively swap the actual physical state |ψ̄〉 with the state |0〉⊗N of

the registers, such that the final state of the registers corresponds to the reference self-testing

state |ψ〉. These local isometries can then be implemented through a swap circuit USW AP having

the Ẑ and X̂ operators as gates so that the fidelity, Fn = 〈
ψ

∣∣ρSW AP (Γn)
∣∣ψ〉

, of the final state of

the register ρSW AP (Γn) with the target state |ψ〉, as a function of the entries of the necessarily

positive semi-definite NPA moment matrix Γn of level n ∈N, as well as of the target self-testing

state |ψ〉 [10, 25, 128].

Self-testing is a dynamic field of research with extensive potential applications, though the

current methods also have their limitations. In the following section, we will explore a novel

approach to formulating self-testing statements using Jordan’s lemma.

2.7.2 SOS and maximal violation of the CHSH inequality

Self-testing aims to precisely verify the specific quantum states and measurements without

relying on the internal mechanics of the devices involved, leveraging the maximum violation of a
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Bell inequality. To understand it more clearly, let’s start with an example of CHSH. We revisit

the case of maximal violation of CHSH inequality, which is 2
p

2 , which can only be achieved

by performing projective measurements on a two-qubit maximally entangled state, where the

measurements are conducted in mutually unbiased bases.

Self-testing of CHSH inequality—The maximal violation of the CHSH inequality C(P)= 2
p

2 ,

self-test the state to be maximally entangled i.e.,|ψ〉 = 1p
2

(|0〉⊗|0〉+|1〉⊗|1〉)and the measurements

corresponding to the observables i.e., A(1)
0 = X , A(1)

1 = Z, B(2)
0 = σX+σZp

2
, B(2)

1 = σX−σZp
2

.

To demonstrate this, one effective method is the Sum of Squares (SOS) decomposition. One

can start by having an SOS decomposition of the shifted CHSH operators as,

(2.46) 2
p

2 I− Ĉ =∑
λ

P†
λ
Pλ,

where the polynomial Pλ includes terms form the set {I, Ax,By, Ax⊗By}. The possibility of finding

decomposition like the one in (2.46) for the CHSH operator Ĉ confirms that this upper bound

2
p

2 can be saturated by performing the following measurements i.e., A0 = X , A1 = Z, B0 = X+Zp
2

,

B1 = X−Zp
2

on the maximally entangled state i.e.,|ψ〉 = 1p
2

(|0〉⊗ |0〉+ |1〉⊗ |1〉) [10, 14].

Furthermore, the SOS method is a critical technique for identifying optimal states and

measurements. Moreover, it shares a duality with the NPA relaxations. We will delve deeper

into this relationship to gain a clearer understanding, and later in the thesis, we will see this

connection further inspire us to seek alternative techniques like the one based on Jordan’s lemma

for self-testing.

2.7.3 Duality between SOS and NPA relaxation

Recall from the previous sections that the maximum violation achievable with quantum resources

can be calculated as

(2.47) βQ =Tr
{
β̂ρ

}
,

where the optimization is carried over all possible quantum realizations. To show the duality

between the SOS method and the NPA hierarchy, we can approach it first by setting a maximum

degree n for the involved polynomials, allowing us to formulate:

(2.48) f=βQ I− β̂=∑
λ

P†
λ
Pλ

as a semidefinite program. Let Tn represent the ring of a polynomial of degree at most n involving

the measurement operators. Since these operators characterize quantum measurements, they

must adhere to specific conditions that establish an equivalence relation within Tn. This gives

rise to a set Pn of class representatives ( substituting polynomials with their class represen-

tatives serves as a method to accommodate the constraints placed on quantum measurement

operators when addressing the SDP relaxation of the quantum value problem). Now consider
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R = {Rn
i=1, . . . ,n} set of linearly independent monomials within Pn. Using these basis elements,

we can express (2.48) as follows:

(2.49) f=∑
i

R†
αpα∗i pβi Rβ = MβαR†

αRβ,

where we define Pλ = Rαpαi with pαi ∈ C and summation over repeated indices is implied, and

have defined the n×n complex matrix M as :

(2.50) M =∑
i

p†
i pi

Note that although Ri belong to Pn, it does not guarantee that R†
αRβ belong to P2n. This indicates

that the constraints on the measurement operators are not entirely captured. We can address

this issue by substituting each factor R†
αRβ with its class representative R̄†

αR̄β. To implement

this, let {Mk} be a basis of monomials for P2n, and define Fk
βα

as a tensor with elements specified

by (2.20). Using these newly defined tensors, we can express R†
αRβ as:

(2.51) R†
αRβ = Fk

βαMk

Consequently, the operator f can be expanded as:

(2.52) f= MβαFk
βαMk

Alternatively, we can expand f as V I− β̂= wkMk [cite] and it satisfied the conditions given below,

(2.53) min
V∈R>0

s.t. f=V I− β̂≥ 0,

it subsequently implies that wk = Fk
βα

Mαβ. It is practical to set M0 = I, which simplifies the

expression for w0 to V I−F0
βα

Mαβ. We are now prepared to formulate an n-level relaxation of the

problem stated in (2.53) as a semidefinite program (SDP):

min F0
αβMαβ(2.54)

s.t. wk = Fk
βαMαβ ∀k ≥ 1

M ≥ 0

Duality:- We can write the lagrangian function for the Bell operator as β=Tr
{
β̂ρAB

}
, as:

(2.55) L(mk,M)= c0 + ckmk +Mαβ(F0 +Fkmk)αβ.

From the formulation, it follows that the dual function g(M) = supmk
L(mk,M), and the dual

problem involves minimizing g(M), which is expressed as:

min F0
αβMαβ(2.56)

s.t. ck +Fk
βαMαβ = 0 ∀k ≥ 1

M ≥ 0,
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From our discussion, it’s evident that the level of the NPA hierarchy corresponds to the

minimum degree of the polynomials utilized in a tight SOS method. This relationship suggests

that in situations where the NPA does not converge, or converges at a very high level, the

traditional SOS decomposition method may become impractical for deriving analytical self-

testing statements. This difficulty is highlighted in the article [51] and is also apparent in

multipartite scenarios, where finding an SOS decomposition can be particularly challenging

[25]. In such situations, an alternative approach using Jordan’s lemma is more suitable. We will

discuss this method in more detail in the following section.

2.7.4 Jordan’s lemma

Jordan’s lemma asserts that for any two Hermitian matrices A0, A1 (A0 = A†
0, A1 = A†

0 where

† is complex conjugate) that have finite dimensions and eigenvalues ±1, can be applied to

simultaneously block-diagonalize them into blocks of no more than 2×2 in size. We can further

simplify by assuming that each block is 2×2 in size; as smaller one can be discarded as they

do not contribute to Bell non-locality. Furthermore, additional unitary rotations can be applied

to each block to ensure the observables are represented solely by real values. Based on this

configuration, Alice’s observables can be parameterized as follows,

A0 =
⊕

k
A(k)

0 =⊕
k
σZ(2.57)

A1 =
⊕

k
A(k)

1 =⊕
k

(cosθA
k σZ +sinθA

k σX ),(2.58)

where index k iterates over the Jordan blocks, σ(i)
Z represents the Z-Pauli matrix and σ(i)

X repre-

sents the X-Pauli matrix applied to the k-th block. Similarly, Bob’s observables can be expressed

as

B0 =
⊕
m

B(m)
0 =⊕

k
σZ(2.59)

B1 =
⊕
m

B(m)
1 =⊕

m
(cosθB

mσZ +sinθB
mσX ),(2.60)

with m iterating over the Jordan blocks [129]. Consequently, when represented in the Jordan

bases, the Bell operator associated with Bell functional also adopted a block-diagonal struc-

ture. For instance the CHSH operator Ĉ can be written as Ĉ = ⊕
km Ĉ(θA

k ,θB
m). Based on this

representation, the Bell violation of the operator can be calculated using the following expression,

(2.61) β= ∑
km

Pkmtr[Ĉ(θA
k ,θB

m)ρkm].

Here, Pkmρkm are the projections of the physical state ρ onto the blocks corresponding to Alice’s

and Bob’s observables [10, 21]. Fundamentally, Jordan’s lemma suggests that all the essential

characteristics of the interaction between two projectors can be observed within the qubit scenario,

which can be used for self-testing [25, 51].
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2.7.5 Self-testing based on Jordan’s lemma

Jordan’s lemma offers a key method for characterizing the local observables in scenarios involving

two settings and two outputs per party, such as in the CHSH setup. By using Naimark’s dilation

theorem, we can always consider the observables of Alice (A0, A1) and Bob (B0,B1) to be projective.

Jordan’s lemma implies that local unitary transformations can be found that simultaneously

block-diagonalize these observables into one- and two-dimensional blocks [10, 21, 25, 130, 131].

The maximal value of any Bell functional is achieved when, for every combination of Jordan

Blocks, that is, across all the indices, the maximal value of the Bell functional is equivalent to

the maximum value for a pair of two-dimensional Jordan blocks. Consequently, we can simplify

the observables without any loss of generality as follows,

(2.62) A0 =σZ , A1 = cosθAσZ +sinθAσX ,

(2.63) B0 =σZ , B1 = cosθBσZ +sinθBσX ,

This observation forms the core of our proof technique in the first and second articles [25, 51].

Recall that, the maximum expectation value of an operator corresponds to its highest eigenvalue,

attained when the state corresponds to the largest eigenvector of the Bell operator. Then, taking

the expectation value of the Bell operator with respect to the eigenvector corresponding to the

highest eigenvalue, we are left with a function of the angles θA,θB. The final step involves

optimizing this expectation value to determine the maximum quantum violation by the Bell

inequalities. If the optimizers θ∗A,θ∗B are unique, we say that maximal violation of the Bell

inequality self-tests the optimal measurement angles. Moreover, if the maximum eigenvalue

of the optimal Bell operator is non-degenerate, we say that the maximum violation of the Bell

inequality self-tests the state, which is the corresponding eigenvalues [25, 51].
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3
SUMMARY OF DISSERTATION

“ All outstanding work, in art as well as in science, results from immense zeal applied to a great

idea.”

— Santiago Ramón y Cajal

In this chapter, we present the findings from the articles [25, 51, 55] included in this thesis.

Each section highlights the primary results and observations of these works.

3.1 An elegant scheme of self-testing for multipartite Bell
inequalities

Quantum correlations that violate Bell inequalities can certify the shared entangled state and

local measurements in a completely device-independent manner. This characteristic of quantum

non-local correlations is known as self-testing. While numerous studies have focused on self-

testing within the context of linear Bell inequalities, the exploration of self-testing in relation to

non-linear Bell inequalities, particularly quadratic ones, has been relatively none.

Unlike the relatively straightforward bipartite Bell scenarios, multipartite Bell scenarios

are inherently more complex due to the diverse forms of nonlocality (see Fig. 3.1). To ascertain

whether a given correlation is genuinely multipartite nonlocal, it must be checked against the

biseparable set of quantum correlations. In the biseparable set, any two of the three parties are

allowed to share arbitrary bipartite quantum correlations, which do not form a convex polytope.

Consequently, the convex biseparable set of quantum correlations also does not form a convex

polytope. Therefore, quadratic Bell inequalities, such as those proposed by Uffink, serve as
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Figure 3.1: This graphic is a schematic representation of the correlations in multipartite Bell
scenarios involving an arbitrary number N of spatially separated parties.

tighter witnesses of genuine multipartite nonlocality compared to linear Svetlichny and Mermin-

type inequalities (see Fig 3.1), as they better approximate the boundary of the convex set of

bi-separable quantum correlations.

In the first article, we introduce a straightforward and widely applicable proof technique

that relies on Jordan’s lemma (section 2.7.4) to derive self-testing statements for the maximum

quantum violation of a significant class of multipartite Bell inequalities involving an arbitrary

number N of spatially separated parties. Unlike traditional self-testing methods, such as those

based on the SOS (sum of squares) decomposition of a linear Bell operator, which are designed for

obtaining self-testing statements for linear Bell inequalities, our technique retrieves self-testing

statements for the quadratic Bell inequalities and complex valued Bell functionals. Furthermore,

numerically determining the maximum quantum violation of non-linear Bell inequalities is a

challenging task, as standard semi-definite programming techniques, such as the Navascues-

Pironio-Acin (NPA) hierarchy [98, 100] and the see-saw method, do not accommodate non-linear

objective functions.

Additionally, we aimed to keep the mathematical complexity of our technique as simple

as possible to further distinguish it from conventional techniques, whose complexity increases
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Figure 3.2: This graphic represents the partial SWAP gate isometry used to self-test maximally
entangled N partite GHZ state |GHZN〉 = 1p

2
(|0〉⊗N + eιφ(N) |1〉⊗N ).

rapidly with the number of parties. For example, even for the MABK family of N-party Bell

inequalities, the minimum degree dN
2 e of polynomials in an SOS decomposition increases with

the number of parties.

The essence of the article can be understood through the following steps:

• Characterising the local observables:- We established a new way of proving Jordan’s lemma

by showing that in an N-partite binary input and output Bell scenario, it is sufficient

to consider local observables of each party with a simultaneous anti-diagonal matrix

representation. Specifically, we demonstrate that, without loss of generality, the first

observable of each party can be taken as σx and the second observable can be taken as

cosθ jσx +sinθ jσy.

• Anti-diagonal form of observables and Bell operator:- By virtue of our local observables

being in an anti-diagonal form, any Bell operator linearly composed of tensor products of

these observables will also be in an anti-diagonal form while being a function of {θ j}N
j=1.

This observation forms the core of our proof technique.

• Eigenvector:- Next, we observe that the eigenvectors of any anti-diagonal matrix are always

of the generalized GHZ form, optimize
⊗N

j=1 |i j〉+β⊗N
j=1 | ī j〉 where i j ∈ {0,1}, ī j = i j ⊕1.

• Expectation vlaue:- Now, taking the expectation value of the Bell operator with respect to

any such eigenvector, we retain the weighted sum of two equidistant (from the top and the

bottom) terms from the anti-diagonal Bell operator.

• Optimization:- Finally, all that remains is to optimize this expectation value over the

complex coefficients α,β ∈C and N angles {θ j ∈ [0,π]}N
j=1 to acquire the maximum quantum

value of the Bell inequalities.
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In the last to make the self-testing statements obtained in this work robust, one can use the

numerical SWAP method (see Fig. 3.2). This method employs the Navascues-Pironio-Acin (NPA)

hierarchy to obtain bounds on the closeness (fidelity) of the experimental measurements and the

shared state to the ideal self-testing measurements and state.

To show the versatility of the proof technique we use this technique to obtain self-testing

statements for the N partite family of linear MABK inequalities and quadratic Uffinks inequal-

ities. While the self-testing results for the former exist in the literature, but serve as an easy

benchmark for the verification of the technique, the latter, on the other hand, is a completely

novel contribution. To showcase the various kinds of cases that could arise while using this tech-

nique we discuss key equivalence classes of tripartite WWWŻB Bell inequalities in including one

(unbalanced inequalities) whose maximum violation self-tests non-maximally anti-commuting

observables and one (extended CHSH inequalities) for which strict self- testing statement does

not exist. Apart from the linear inequalities considered here, it is easy to see that our proof

technique, which relies on the anti-diagonal matrix representation of the Bell operator is directly

applicable to all two settings binary outcome linear (on correlators) multipartite Bell inequalities,

either yielding strict Mayers-Yao self-testing statements or pointing out limitations on them.

3.2 Robust self-testing of Bell inequalities tilted for maximal
loophole-free nonlocality

Correlations arising from local measurements performed on entangled photons (quantum sys-

tems) resist classical (locally causal) explanations [3]. Such nonlocal correlations enable distant

users to achieve classically inconceivable feats, the most significant of which is the ability to

share an unconditionally secure secret key [38, 39]. However, the most persistent obstacle to

large-scale adoption of these technologies is photon loss. Specifically, if the effective detection

efficiencies fall below a critical threshold, the quantum systems, which are expected to be nonlocal,

fail to produce effective nonlocal correlations. Consequently, extensive research has focused on

developing quantum strategies with minimal critical efficiencies. Nonetheless, a crucial experi-

mental question remains: what quantum strategies maximize effective nonlocality when detector

efficiencies exceed these critical values? Despite its practical relevance, this question is still

largely unexplored.

In the second article we tackled a specific aspect of this intriguing question: what quantum

strategies maximize the loophole-free violation of a given Bell inequality in the presence of

inefficient detectors?

The essence of the article can be understood through the following steps:

• First, we derive a pivotal result to address the central question: Lemma 1 Consider a Bell

experiment with inefficient detection with efficiencies ηA,ηB. For any given Bell inequality

40



3.2. ROBUST SELF-TESTING OF BELL INEQUALITIES TILTED FOR MAXIMAL
LOOPHOLE-FREE NONLOCALITY

of form,

(3.1) β(p) := ∑
a,b,x,y

cxy
ab p(ab|xy)≤βL,

with cxy
ab,βL ∈R, which is satisfied by all local behaviors. The optimal quantum strategies

which yield the maximum loophole-free violation of the Bell inequality are those that

maximally violate a tilted Bell inequality of the form,

βηAηB (p)=β(p)+ 1−ηB

ηB

∑
a,x

cx
a pA(a|x)

+1−ηA

ηA

∑
b,y

cy
b pB(b|y)

≤ βL
ηAηB

− 1−ηA

ηA

1−ηB

ηB

(∑
x,y

cx,y
axby

)
,(3.2)

where pA(a|x), pB(b|y) are the ideal marginal probabilities of Alice and Bob, respectively,

qA(a|x) = δa,ax , qB(b|y) = δb,by represent deterministic assignment strategies, and cx
a =∑

y cxy
aby

and cy
b =

∑
x cxy

axb. The loophole-free value β(p̃) of the Bell functional (2.38) is related

to value of the Bell functional βηAηB (p) in the following way,

(3.3) β(p̃)= ηAηBβηAηB (p)+ (1−ηA)(1−ηB)

(∑
x,y

cx,y
axby

)
.

• Then using the Lemma we analytically retrieve the optimal quantum strategies for maxi-

mum loophole-free violation of the CHSH inequality in presence of inefficient detectors,

Theorem 1 [Self-testing of symmetrically tilted CHSH inequalities] The maximum quantum

violation cQ(α,α) of the symmetrically (α=β) tilted CHSH inequality,

(3.4) Cα,β(p)=∑
x,y

(−1)x·y〈AxBy〉+α〈A0〉+β〈B0〉 ≤ 2+α+β,

is the largest root of the degree 4 polynomial,

(3.5) f (λ)=λ4 + (4−α2)λ3 +
(

11
4
α4 −12α2 −4

)
λ2

+ (2α6 −α4 −20α2 −32)λ+5α6 −21α4 +16α2 −32.

Cαα(p)= cQ(α,α) self-tests a two-qubit quantum strategy with optimal (∗) local observables

of the form,

Â0 =σZ , Â1 = cAσZ + sAσX(3.6)

B̂0 =σZ , B̂1 = cBσZ + sBσX ,(3.7)

such that the optimal cosines are equal, i.e., c∗(α)= c∗A(α)= c∗B(α) ∈ [0,1], and satisfy the

relation,

(3.8) c∗(α)= 1
8

[
3α2 −4+

√
16+9α4 +8α2(2cQC (α,α)−1)

]
.
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Figure 3.3: Increasing NPA upper bound in the CHSH scenarios. A plot depicting the minimum
level L ∈ {1,1+ AB,2,3,4,5,6,7+} of the NPA hierarchy necessary to achieve saturation with
machine precision.

• Impracticality of the SOS technique and NPA upper-bound convergence:- The problem of

determining the maximum quantum violation of a Bell inequality can be addressed using

the NPA hierarchy of semi-definite programs, as discussed in section 2.7.3. This method

provides a sequence of upper bounds that converge to the maximum quantum violation. In

Fig. 3.3, we plot the minimum level L of the NPA hierarchy against the tilting parameters

α and β, which are required to reach the maximum quantum violation of doubly-tilted

CHSH inequalities (3.4), up to machine precision. Interestingly, as the tilting parameters α

and β approach the critical boundary defined by, α+β= 2, the level L of the NPA hierarchy

increases rapidly. Our observation indicates that, even at level 12 of the NPA hierarchy, it

remains insufficient to achieve the maximum violation for the symmetrically doubly-tilted

CHSH inequality (see Fig. 3.4), this implies that the degree of the SOS polynomial would

be extremely high, rendering the SOS approach impractical for self-testing statements.

Therefore, we utilize Jordan’s lemma as the tool for self-testing.

• We also observed that this unexpected phenomenon is observed at correlation points that

achieve maximal loophole-free nonlocality with detection efficiencies close to the critical

value, as shown in Fig. 3.3. These points are realized with nearly compatible measurements

and almost product states.
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((a))

((b))

Figure 3.4: (a) This plot highlights the limitations of high levels of the NPA hierarchy in producing
the tight bounds in the CHSH scenario. The curve in the plot (b) shows the difference between
the maximum quantum violation and the lower bound from the sub-optimal analytical solutions
presented in [46], against α ∈ [0,1].

3.3 Quantitative non-classicality of mediated interactions

In mediated dynamics, methods have been developed to observe the nonclassicality of a mediator’s

state through the correlation dynamics between coupled probes. These methods are based on

the premise that an increase in quantum entanglement indicates the mediator has transitioned

through nonorthogonal states during the dynamics [132, 133]. One of the key strengths of these

approaches is their minimalistic assumptions regarding the physical systems involved, which

remain independent of the initial states, dimensions of the systems, or specific interactions and

are effective even amidst local environmental influences. This broad applicability enhances their

utility across diverse scientific domains.

In the third article, we used the nonclassicality of states to quantify the amount of nonclassi-
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cality in mediated interactions while maintaining minimalistic assumptions about the physical

systems under consideration. The concept of nonclassicality we use is based on the commutativity

of interaction Hamiltonians in closed dynamics, which extends to the decomposability of dynam-

ical maps, thus encompassing open systems as well. Our main contribution lies in developing

methods to quantify nonclassicality. We derived conditions that provide a lower bound for the

norm of the commutator and defined a specific distance to decomposable maps. The essence of

the paper is divided into two main parts, as outlined below.

• Accessible Mediator:- First, we assume that the mediator is accessible to the experimentalist.

In this scenario, we have provided a witness of decomposability in the form of the equation

given below,

(3.9) QA:MB(λ(ρ0))≤ sup
σAB

QA:M(σAM)+ IAM:B(ρ0),

Here, the bound is derived for any correlation measure Q that is monotonic under local

operations, and σAM ranges over all possible joint states of AM and we assume ρ0 =
ρAM

⊗
ρB. Additionally, a measure of the total correlations in the state ρ =λ(ρ) where λ is

the map that describes the state evolution at time t across the partition AM : B is given by

IAM:B(ρ)= infσAM⊗σB g(d(ρ,σAM ⊗σB)). Furthermore, we demonstrate that the violation of

3.9 provides a lower bound on the degree of nondecomposability as follows,

(3.10) dDEC(Λ)≥ g−1(QA:MB(Λ(ρ0))−B(ρ0)),

where B(ρ0) is the right-hand side of (3.9). Therefore, any violation of the decomposability

criterion in terms of correlations establishes a nontrivial lower bound on the distance

between the dynamical map and the set of decomposable maps.

• Inaccessible Mediator:- In the second part, we show the nonclassicality of evolution through

a mediator without directly measuring the mediator. Here, we demonstrate that this is

indeed possible. We begin by introducing the necessary concepts and related mathematical

tools. Then, we present witnesses of non-decomposable evolution based solely on mea-

surements of AB. Finally, we establish measures of non-decomposability along with their

experimentally friendly lower bounds. Moreover, an interesting condition for witnessing

non-decomposability follows from (3.9). Specifically, under the evolution generated by the

set of all maps with a decomposable m-dilation λ ∈ DEC(m), any gd continuous correlation

measure Q can be upper-bounded in the following way,

(3.11) QA:B(ρt)≤ sup
σX M

QX :M(σ)+ IA:B(ρ0),

Here ρt =λ(ρ) and we highlight that λ ∈ DEC(m) acts only on AB. Moreover, the supremum

runs overall AM or BM states. Similarly, as in (3.10) we demonstrate the violation of (3.11)
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also provides a lower bound on the degree of nondecomposability in case of inaccessible

mediator as follows,

(3.12) DDEC(m)(ΛAB)≥ g−1(QA:B(ρt)−B(ρ0)),

Here, B is the right-hand side of (3.11). It is interesting to note that all these quantities

pertain solely to states and maps on AB, not M, which means even though our mediator is

not accessible to us, we can still deduce information about the system.
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“Theoretical physicists live in a classical world, looking out into a quantum-mechanical world. The

latter we describe only subjectively, in terms of procedures and results in our classical domain. ”

— John Stewart Bell

Although these results enhance our understanding of device-independent certification and

mediator dynamics, there is still much to explore. This chapter will summarize the mos valuable

insights and outline potential research directions that stem from all these works.

An elegant scheme of self-testing for multipartite Bell inequalities:—- The technique presented

in this paper offers a more straightforward approach than traditional methods like SOS decompo-

sition. It can be applied to any binary input and output Bell scenarios with an arbitrary number

N of spatially separated parties. Provided that the associated Bell operator has an anti-diagonal

matrix representation, this technique can derive self-testing statements for any Bell inequality

in such scenarios.

In the “Characterizing Local Observables" section, we demonstrated that in two-setting binary

outcome multipartite Bell scenarios, the observables of each party can be represented as anti-

diagonal matrices. This essentially provides an alternative approach to proving Jordan’s lemma.

Consequently, with observables in anti-diagonal matrix form, the Hermitian Bell operators

corresponding to all Bell inequalities composed of N correlators also possess an anti-diagonal

matrix representation.

One of the most intriguing aspects of this work is the ability to operationally determine the rel-

ative phase φ(N) using Uffink’s complex-valued Bell expression. While the self-testing statements

for the MABK and complementary MABK inequalities uniquely specify φ(N), the statements

for Uffink’s quadratic Bell inequalities do not. Specifically, by fixing the local observables of
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Figure 4.1: A plot of the Schmidt coefficients ξ∗i of the optimal non-maximally entangled quantum
state |ψ〉 = ξ∗0 |00〉+ξ∗1 |11〉 (represented in the Schmidt basis) against α ∈ [0,1].

each party to be σX and σY , Corollary 7.1 establishes a one-to-one correspondence between the

experimentally accessible extremal values of Uffink’s complex-valued Bell expressions and the

relative phase φ(N) of the N-partite GHZ state. This effectively demonstrates the operational

significance of the relative phase φ(N).

As Uffink’s quadratic inequalities and complex-valued Bell expression offer a more precise and

robust certification of quantum devices. Consequently, replacing MABK with these expressions

in device-independent applications can substantially improve performance and reliability.

Robust self-testing of Bell inequalities tilted for maximal loophole-free nonlocality:— This work

provides valuable insights into the impact of decreasing detector efficiency on optimal quantum

strategies. As illustrated in Fig. 4.1, when detectors are inefficient with ηA,ηB < 1 (α,β> 0), the

optimal strategy involves partially entangled states to achieve maximal loophole-free nonlocality.

It has been observed that as the detector’s efficiencies approach near the critical values, the

degree of entanglement decreases, with the state approaching an almost product form.

Additionally, we observe that when both detectors are inefficient, Alice’s measurements are

affected by Bob’s detection efficiency ηB. As shown in Fig. 4.2, Alice’s optimal measurement

trends towards compatible measurements as ηB approaches the critical boundary. Beyond the

insights into achieving maximum effective nonlocality with inefficient detectors, the analytical

results in Theorems 1 and 2 reveal a fascinating complexity in characterizing the set of nonlocal

quantum correlations in the simplest Bell scenario using the NPA hierarchy.

These results raise both foundationally relevant and experimentally significant questions. In

an up comming article, we address the foundationally relevant question: whether the complexity

of characterizing extremal nonlocal quantum correlation measured by the minimum saturating

level of the NPA hierarchy is related to the partial incompatibility of the quantum measurements

that realize them [134]. In another up coming article, we address the experimentally motivated

question: what quantum strategies are the best suited for DIQKD in presence of inefficient
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Figure 4.2: Increasing NPA upper bound in the CHSH scenarios. A plot depicting the minimum
level L ∈ {1,1+ AB,2,3,4,5,6,7+} of the NPA hierarchy necessary to achieve saturation with
machine precision.

detectors [135].

Quantitative non-classicality of mediated interactions:— In this work, we have demonstrated

that accurate simulation of dynamics with high correlations necessitates a large number of

Trotter steps. Additionally, we have shown that gravitational interactions cannot be accurately

modeled using commuting particle-field couplings.

As the first application of our introduced measure, we have established a direct connection

between system correlations and the number of Trotter steps necessary to keep the simulation

error minimal. The degree of violation of (3.10) sets a lower bound on non-decomposability and

the spectral norm of the commutator, thereby determining the required number of Trotter steps.

Our second application lies in foundational studies of gravitational interactions. Our method

enables us to infer properties of the field based on the behavior of objects interacting through it.

This approach is particularly intriguing for gravitational interactions, as there is currently no

direct experimental evidence of their quantum properties. By driving nonclassicality witnesses,

our approach provides a novel way of understanding this fundamental force, potentially leading

to new insights into gravitational interactions inferred from the observation of the significant

gravitational entanglement.
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ARTICLE OPEN

An elegant scheme of self-testing for multipartite Bell
inequalities
Ekta Panwar 1,2✉, Palash Pandya1 and Marcin Wieśniak 1,2

Self-testing is the most accurate form of certification of quantum devices. While self-testing in bipartite Bell scenarios has been
thoroughly studied, self-testing in the more complex multipartite Bell scenarios remains largely unexplored. We present a simple
and broadly applicable self-testing scheme for N-partite correlation Bell inequalities with two binary outcome observables per party.
To showcase the versatility of our proof technique, we obtain self-testing statements for the MABK and WWWŻB family of linear Bell
inequalities and Uffink’s family of quadratic Bell inequalities. In particular, we show that the N-partite MABK and Uffink’s quadratic
Bell inequalities self-test the GHZ state and anti-commuting observables for each party. While the former uniquely specifies the
state, the latter allows for an arbitrary relative phase. To demonstrate the operational relevance of the relative phase, we introduce
Uffink’s complex-valued N partite Bell expression, whose extremal values self-test the GHZ states and uniquely specify the relative
phase.

npj Quantum Information            (2023) 9:71 ; https://doi.org/10.1038/s41534-023-00735-3

INTRODUCTION
One of the most striking features of quantum theory is the
deviation of its predictions for Bell experiments from the
predictions of classical theories with local casual (hidden variable)
explanations1. This phenomenon is captured by quantum viola-
tion of statistical inequalities, which are satisfied by all local
realistic theories, referred to as Bell inequalities2. Experimental
demonstrations of the loophole-free violation of such inequalities
(e.g., refs. 3–5) imply the possibility of sharing intrinsically random
private numbers among an arbitrary number of spatially separated
parties which power unconditionally secure private key distribu-
tion schemes (for more information on Device-independent
quantum cryptography see refs. 6–10). Such applications of Bell
non-locality follow from the fact that the extent of Bell inequality
violation can uniquely identify the specific entangled quantum
states and measurements, a phenomenon referred to as self-
testing (see refs. 11,12 for initial contributions and the recent review
of the progress till now see ref. 13).
Self-testing statements are the most accurate form of certifica-

tions for quantum systems. Self-testing schemes allow us to infer
the underlying physics of a quantum experiment, i.e., the state
and the measurements (up to local isometry), without any
characterization of the internal workings of the measurement
devices, and based only on the observed statistics, i.e., treating the
measurement devices as black boxes with classical inputs and
outputs. Self-testing has found many applications in several areas
like device-independent randomness generation8,14, quantum cryp-
tography9, entanglement detection15, delegated quantum comput-
ing16,17. While self-testing in the bipartite Bell scenarios has been
thoroughly studied, self-testing in more complex multipartite Bell
scenarios (see Fig. 1) remains largely unexplored.
In a multipartite setting, self-testing has been demonstrated for

graph states using stabilizer operators18. Self-testing of multi-
partite graph states and partially entangled Greenberger-Horne-
Zeilinger (GHZ)19 states has been demonstrated using a stabilizer-
based approach, and Bell inequalities explicitly constructed for the

state20. In general, multipartite Bell inequalities explicitly tailored
for self-testing of a multipartite entangled state can be obtained
using convex optimization techniques such as linear programming
and semi-definite programming (SDP)17,21–23. However, the Bell
inequalities obtained in this way are just suitable candidates for
the self-testing of the given multipartite states, and the potential
self-testing statements must be verified using numerical techni-
ques (such as the Swap method), which tend to be computation-
ally expensive for multipartite scenarios with more than four
parties. Completely analytical self-testing statements have also
been obtained for multipartite states such as the W and the Dicke
states by reprocessing self-testing protocols of bipartite
states24–26. Furthermore, parallel self-testing statements for multi-
partite states can be obtained using categorical quantum
mechanics27. Finally, the Mayers-Yao criterion can also be utilized
for self-testing of graph states when the underlying graph is a
triangular lattice28.
In this article, we prove self-testing statements for multipartite

Bell scenarios without relying on the Bell-operator dependent
sum-of-squares decomposition29. Consequently, our methodology
immediately extends to all multipartite Bell scenarios, where each
spatially separated party has two observables with binary
outcomes ±1. To exemplify our proof technique, we obtain self-
testing statements for N party Mermin-Ardehali-Belinskii-Klyshko
(MABK)30,31 and Werner-Wolf-Weinfurter-Żukowski-Brukner
(WWWŻB)32–34 family of linear Bell inequalities. Moreover, our
methodology enables the recovery of self-testing statements for
Bell functions which are not only the mean value of a Hermitian
operator. Specifically, to showcase the versatility of our methodol-
ogy, we obtain self-testing statements for the maximal violation of
N party Uffink’s quadratic Bell inequalities, which form tight
witnesses of genuine multipartite non-locality, and the novel
Uffink’s complex-valued N partite Bell expressions35.
The paper is organized as follows. First, in the Results section we

recall the formal definition of self-testing. Then, we present the
requisite preliminaries and specify the families of multipartite Bell
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inequalities we consider in this article. Next, we develop the
mathematical preliminaries of the self-testing scheme. In parti-
cular, we show that the observables of each party in two-setting
binary outcome multipartite Bell scenarios can always be
simultaneously represented as anti-diagonal matrices. Next, we
utilize this anti-diagonal matrix representation to obtain self-
testing statements for the maximal violations of N party MABK and
tripartite WWWŻB family of linear (on correlators) Bell inequalities.
While the former serves to benchmark our scheme, the latter
demonstrates the spectrum of situations one can encounter.
Finally, we obtain self-testing statements for the maximal violation
of N party Uffinik’s quadratic Bell inequalities and, at the very end
of the Results section, we present the self-testing statements for
the N partite Uffink’s complex-valued Bell expressions. Next, we
provide a brief discussion about the robustness of the self-testing
statements obtained in this work. Finally, we conclude by
providing a brief summary of our work and potential application.

RESULTS
Before presenting our results, let us first introduce the requisite
preliminaries.

Self-testing in Bell scenarios
A Bell scenario describes the operational setup of a Bell
experiment by specifying the following three components: (1)
the number of spatially separated parties, (2) the number of inputs
of each party specifying their measurement settings, (3) the

number of outcomes corresponding to each input per party
specifying the measurement outcomes for each measurement
setting for each party. Each party performs measurements on a
quantum system they share. As there are no assumptions on the
internal working mechanism of the experimental devices, we may
consider the devices to be mere black boxes, capable of receiving
inputs (measurement settings) and generating outputs (measure-
ment outcomes). The parties perform measurements based on
their inputs and record the corresponding measurement out-
comes, and estimate the conditional joint probability distributions
governing their devices. Now, the question is, what can we can
deduce from these experimental statistics? Specifically, can we
make statements describing the underlying physics, i.e., the
quantum state and measurements? Such statements are broadly
referred to as self-testing statements.
Formally, we say that a given Bell scenario entailing N parties,

fAjgNj¼1, each measuring two observables, A
ðjÞ
, A

0ðjÞ
and sharing a

state ψj i ψh j, self-tests, if the observation of the quantum maximal
value B of a given Bell expression B implies that the state ψj i used
in the experiment can be transformed by local unitaries,

N
j
UAj , to

a reference state, ψj i, and a separable junk part, Ψj i, on which the
observables act trivially, i.e,O

j

UAj ψj i ¼ ψj i � Ψj i:

Likewise, the local observables fAðjÞgNj¼1 and fA0ðjÞgNj¼1, satisfy,

UAj A
ðjÞðUAj Þy ¼ AðjÞ � 1;

UAj A
0ðjÞðUAj Þy ¼ A0ðjÞ � 1;

where the joint observables
N
j
OðjÞ where OðjÞ 2 fAðjÞ;A0ðjÞg act on

the Hilbert space of ψj i, and the tuple f ψj i; fAðjÞ;A0ðjÞgjg
maximizes the given Bell expression, i.e., Bðf ψj i; fAðjÞ;A0ðjÞgjgÞ ¼ B.
The original idea of self-testing was presented in ref. 11 by

Mayers and Yao. Over the last few years, a great deal of work has
been done in this area, primarily focused on bipartite Bell
scenarios. However, self-testing in multipartite Bell scenarios
remains relatively unexplored. In this paper, we obtain self-
testing statements for multipartite Bell inequalities, introduced in
the next section.

Two-setting N-party correlation Bell inequalities
This section presents the requisite preliminaries and specifies the
families of Bell inequalities considered in this article. Specifically,
here we consider multipartite Bell scenarios entailing N spatially
separated (hence non-signaling) parties. We restrict ourselves to
Bell scenarios where each party Aj , where j∈ {1,…, N}, has two
binary outcome observables AðjÞ;A0ðjÞ (Since there is no restriction
on dimension, we can always take the measurements to be
projective, in light of Naimark’s dilation Theorem. The projectivity
of measurements is a distinguishing feature of a broadly
subscribed viewpoint on quantum theory, namely, “The Church
of the larger Hilbert space”). In contrast to the well-studied
bipartite Bell scenarios, multipartite scenarios are substantially
richer in complexity. While the notion of multipartite locality is an
obvious extension of bipartite locality, multipartite behaviors can
be non-local in many distinct ways. Apart from this, the most
significant impediment in obtaining self-testing statements for
multipartite Bell scenarios is that they do not admit simplifying
characterizations such as Schmidt decomposition of the shared
entangled state, unlike the bipartite Bell scenarios.
Typically, Bell inequalities comprise a Bell expression and a

corresponding local causal bound. The violation of Bell inequalities
witnesses the non-locality of the underlying behaviors. In the rest
of this section, we introduce the families of multipartite Bell

Fig. 1 Schematic representation of the correlations in multi-
partite Bell scenarios. This graphic is a schematic representation of
the correlations in multipartite (involving arbitrary number N of
spatially separated parties) Bell scenarios. Just like the bipartite Bell
scenarios, the correlations which admit local hidden variable
explanations form a convex polytope L (shiny blue small horizontal
square), whose facets are the N-party MABK inequalities [Eq. (2)] (red
edges). However, the convex set of biseparable quantum correla-
tions QN�1 (sky blue disk) does not form a polytope. Consequently,
the linear inequalities such as the MABK [Eq. (2)] (pink edges of the
large horizontal square) and Svetlichny inequalities [Eq. (3)] (green
edges of the tilted square) do not form tight witness of genuine
multipartite quantum non-locality. As the boundary of biseparable
quantum correlations (black circle) is non-linear, Uffink’s quadratic
inequalities [Eq. (4)] form tighter witnesses of genuine multipartite
quantum non-locality.
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inequalities, for which we demonstrate self-testing statements
using our proof technique.

Linear inequalities
The most frequently used Bell inequalities comprise Bell expres-
sions which are linear expressions of observed probabilities. Our
self-testing argument is immediately applicable for any Bell
inequality whose Bell expression is the mean of any linear
combination of N party operators of the form

NN
i¼1 O

ðiÞ , where
OðiÞ 2 fAðiÞ;A0ðiÞg. Among such linear Bell inequalities, we consider
the Werner-Wolf-Weinfurter-Żukowski-Brukner(WWWŻB) families
of correlation Bell inequalities for which there exists a well-defined
systematic characterization36. The Bell operator for the WWWŻB
family of Bell inequalities has the following general form,

WN ¼ 1

2N
X

s1;:::;sN¼± 1

Sðs1; :::; sNÞ
ON
j¼1

ðAðjÞ þ sjA
0ðjÞÞ; (1)

where S(s1, . . . , sN) is an arbitrary function of the indices s1, . . . ,
sN ∈ {−1, 1} with binary outcomes ±1. Every tight (WWWŻB)
inequality is given by hWNi�L1, where hOi ¼ TrfρOg is the
expectation value of the linear operator O with respect to the
quantum state ρ, and �L signifies that the inequality holds for all
correlations which admit local hidden variable explanations (L)37.
Next, we introduce a sub-family of (WWWŻB) Bell inequalities,

the Mermin-Ardehali-Belinskii-Klyshko (MABK) family of inequal-
ities, featuring one inequality for any number N of parities30,31,38.
Moreover, in the following subsection, we introduce non-linear
(quadratic) Bell inequalities composed of these MABK inequalities.
The N-party MABK operators can be obtained recursively as,

MN ¼ 1
2 MN�1 � ðAðjÞ þ A0ðjÞÞ�

þM0
N�1 � ðAðjÞ � A0ðjÞÞ�

¼ 1

2
Nþ1
2

1�ιffiffi
2

p
� �ðN�1Þmod2NN

j¼1
ðAðjÞ þ ιA0ðjÞÞ

 

þ 1þιffiffi
2

p
� �ðN�1Þmod2NN

j¼1
ðAðjÞ � ιA0ðjÞÞ

!
;

(2)

where the complimentary MABK Bell expression M0
N�1 has the

same form as MN�1 but with all A(j) and A0ðjÞ interchanged. The
corresponding Bell inequalities are of the form, hMNi�L1.
Whereas the maximum attainable values of hMNi for biseparable
QN�1, and generic quantum correlations Q are 2

N�2
2 , and 2

N�1
2 ,

respectively. The maximal quantum value can be attained with
anti-commuting local observables and the maximally entangled N-
partite GHZ state39–41.
Finally, we present yet another relevant sub-family of the

(WWWŻB) inequalities, referred to as Svetlichny inequalities35,
which were explicitly conceived to witness genuine N-partite non-
locality. Moreover, the quadratic Bell inequalities featured in the
following subsection can also be composed of N-partite
Svetlichny-Bell inequalities. The Svetlichny operator can be
formed of MABK operators [Eq. (2)] in the following way,

S ±
N ¼

2k�1 �1ð Þkðk ± 1Þ
2 M±

N ;
�

ðforN ¼ 2kÞ;
2k ± 1ðð�1Þkðk ± 1Þ

2 MN ∓ ð�1Þkðk ∓ 1Þ
2 M0NÞ

�
;

ðforN ¼ 2k þ 1Þ;

8>>>>><
>>>>>:

(3)

where Mþ
N is equivalent to MN[Eq. (2)] and M�

N is equivalent to
M0N . The corresponding Svetlichny inequalities are of the form,
hS ±

N i�QN�1
2N�1�Q2N�

1
2.

Quadratic inequalities
In bipartite Bell scenarios, without loss of generality, it is enough
to consider linear Bell inequalities to witness non-locality as the
set of behaviors that admit a local casual explanation form a
convex polytope demarcated by linear facet inequalities. In
contrast to the bipartite case, non-linear Bell inequalities form
tighter witnesses of genuine multipartite non-locality. In multi-
partite Bell scenarios, the convex set of biseparable quantum
behaviors does not form a polytope. Consequently, Uffink’s
quadratic Bell inequalities form stronger witnesses of genuine
multipartite non-locality than the linear inequalities. There are two
distinct families of N party quadratic Bell inequalities formed of
the MABK [Eq. (2)] and Svetlichny [Eq. (3)], families of linear
inequalities, UM

N and US
N , respectively, which have the form

UM
N ¼ MNh i2 þ M0

N

� �2�QN�12
N�2�Q2N�1; (4)

US
N ¼ Sþ

N

� �2 þ S�
N

� �2�QN�1
22N�2�Q22N�1; (5)

Characterizing local observables
In this section, we obtain a characterization for the binary
outcome local observables A= A(j) and A0 ¼ A0ðjÞ on an arbitrary
Hilbert space H ¼ HðjÞ for any given party Aj , where j∈ {1,…, N}.
As in Bell scenarios, there is no restriction on the dimension of the
underlying Hilbert space, using Naimark’s dilation Theorem,
without loss of generality, we can take the observables A and A0
to be projective, i.e., A2 ¼ A02 ¼ 1. First, via the following lemma,
we demonstrate that the second observable A0 can be split into
two observables, one which commutes with the first observable A
and one which anti-commutes with A,

Lemma 1. Given any two binary outcome projective observables A
and A0, A0 can be decomposed as the sum of two observables
�1 � A0

� � 1 and �1 � A0
þ � 1, such that ½A; A0

þ� ¼ 0,
fA; A0

�g ¼ 0, fA0
þ;A

0
�g ¼ 0 and ðA0

þÞ2 þ ðA0
�Þ2 ¼ 1.

Proof. Without loss of generality, the binary outcome projective
observable A can be represented as a diagonal matrix with
positive and negative eigenvalues grouped together,

A ¼ 1m 0

0 �1n

	 

; (6)

where 1m is the m ×m identity operator. With respect to A, the
binary outcome projective observable A0 has the following generic
matrix representation,

A0 ¼ D1 D2

Dy
2 D3

	 

: (7)

such that,

A0
� ¼ 0 D2

Dy
2 0

	 

; (8)

A0
þ ¼ D1 0

0 D3

	 

: (9)

Clearly, ½A; A0þ� ¼ 0, and fA; A0
�g ¼ 0. As A0 is projective we have,

ðA0Þ2 ¼ ðA0
þÞ2 þ ðA0

�Þ2 þ fA0þ;A0
�g

¼ D2
1 þ D2D

y
2 D1D2 þ D2D3

Dy
2D1 þ D3D

y
2 Dy

2D2 þ D2
3

 !
(10)

¼ 1 ; (11)
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which requires the off-diagonal blocks to be zero,

fA0
þ; A

0
�g ¼ 0 D1D2 þ D2D3

Dy
2D1 þ D3D

y
2 0

	 

¼ 0;

(12)

and leaves ðA0
þÞ2 þ ðA0

�Þ2 ¼ 1, which completes the proof.

Using the above Lemma, the relation between the eigenvalues
of A0, A0

�, and A0
þ can be ascertained to be

λiA0 ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλiA0� Þ

2 þ ðλiA0þ Þ
2

q
¼ ± 1, where λi� denotes the ith eigen-

value42. So that the eigenvalues can be without loss of generality
taken as ± sin θi and ± cos θi for A0

� and A0
þ respectively.

Next, we show that the spectra of any two anti-commuting
observables must be symmetric, and each observable maps the
positive eigenspaces to the negative eigenspaces of the other.

Lemma 2. Given any two binary outcome anti-commuting
projective observables, A and A0

�, such that A2 ¼ I, their spectra
must be symmetric (i.e., if ψλj i is an eigenvector corresponding to
the eigenvalue λ, then there exists a unique eigenvector ψ�λj i
corresponding to the eigenvalue −λ). Moreover, A0� acts on an
effective even-dimensional Hilbert space

L
iE

A0�
± λi

decomposed
into the direct sum of the even-dimensional eigenspaces
EA

0
�
± λi

¼ EA
0
�

λi
� EA

0
�

�λi
. Where, EA

0
�

λi
and EA

0
�

�λi
are eigenspaces corre-

sponding to the non-zero eigenvalues λA
0
�

i and �λ
A0�
i , respectively.

Proof. From the anti-commutation relation it follows that,
AA0� ¼ �A0

�A. As A is unitary and Hermitian, we can take A to
the other side to sandwich A0

� , which leaves us with,

AA0
�A ¼ �A0�: (13)

Further, taking trace on both sides of Eq. (13) yields,

TrfA0
�g ¼ 0: (14)

This implies that the observable A0
� has a symmetric spectra, i.e.,

for each eigenvector corresponding to a non-zero eigenvalue λi
there exists an eigenvector corresponding to the eigenvalue −λi,
along with the null space or the kernel kerðA0

�Þ. Without loss of
generality, we can ignore the kernel as it does not contribute to
the violation of Bell inequalities. Hence, we are left with the
subspace,

L
iE

A0�
± λi

, where EA
0
�
± λi

¼ EA
0
�

λi
� EA

0
�

�λi
is an even-dimensional

subspace corresponding to the non-zero eigenvalues ± λ
A0�
i . The

diagonalizability of A0
� (Hermitian) implies that we can decompose

this subspace into the direct sum of these eigenspaces (and the
kernel kerðA0

�Þ), which further implies that the effective subspace
of such operators can be truncated to an even-dimensional
subspace. Finally, as on this truncated subspace,
AA0� ψλi

�� � ¼ �λiA0
� ψλi

�� �
, where ψλi

�� �
is an eigenvector of A

corresponding to eigenvalue λi= ±1, we conclude that m= n,
i.e., A is even-dimensional and has a similarly symmetric spectrum.

Now, as A0 ¼ A0
þ þ A0

�, the effective subspaces of A0
þ, A

0, can
also be truncated to the same effective even-dimensional
subspace as A0

�. Also, as on this truncated subspace,
A0
þA

0
� ψλi

�� � ¼ �λiA0
� ψλi

�� �
, where ψλi

�� �
is an eigenvector of A0

þ
corresponding to its eigenvalue λi, i.e., A

0
þ has a similar symmetric

spectrum. Moreover, Lemma 2 yields the following succinct
parameterization of the two mutually anti-commuting compo-
nents of any projective observable,

Corollary 2.1. Given two even-dimensional anti-commuting
operators A+ and A− such that ðA0

þÞ2 þ ðA0
�Þ2 ¼ 1, they can be

written in the form,

A0
þjθi ¼ cos θiBþjθi A0

�jθi ¼ sin θiB�jθi (15)

when restricted to the subspace EA
0
�

þθi
� EA

0
�

�θi
with corresponding

eigenvalues ± cosðθiÞ for A+ and ± sinðθiÞ for A−, such that the
operators B± jθi are traceless and projective.

Proof. We have already shown the dimension of the combined
eigenspaces EA

0
�

λi
� EA

0
�

�λi
is even. Then the two anti-commuting

operators A0
þ and A0

� restricted to this eigenspace, denoted by
A0
þjθi and A0

�jθi , will only have eigenvalues ± cos θi and ± sin θi
respectively, whilst still satisfying ðA0

þjθi Þ
2 þ ðA0

�jθi Þ
2 ¼ 1. It is then

possible to write the same relation in terms of scaled operators, as

cos2θiB
2
þjθi þ sin2θiB

2
�jθi ¼ 1: (16)

As a result, the operators B± jθi have eigenvalues ±1 that occur in
pairs. Therefore, TrðB± jθi Þ ¼ 0 and B2± jθi ¼ 1.

Using the above results, in such an even-dimensional subspace
the following lemma holds.

Lemma 3. Given any two traceless and projective anti-commuting
observables B+ and B−, the observable cos αBþ þ sin αB� is also
traceless and projective.

Proof. Expanding the square,

cos αBþ þ sin αB�ð Þ2
¼ cos2αB2þ þ sin2αB2� þ cos α sin αfBþ; B�g
¼ 1:

(17)

And the trace is simply,

cos αTrðBþÞ þ sin αTrðB�Þ ¼ 0: (18)

The above lemma shows that in the Bell scenarios considered
here, the effective local dimension of any subsystem must be
even-dimensional. Now, we present the main ingredient of our
self-testing proof technique, i.e., the simultaneous anti-diagonal
matrix representation for local observables of each party up to
local isometries.

Theorem 4. Given any three binary outcome traceless and
projective observables A, B+, and B−, such that [A, B+]= 0,
{A, B−}= 0, and {B+, B−}= 0, then these operators have a
simultaneous anti-diagonal matrix representation.

Proof. As [A, B+]= 0, we can take the dimension of the subspace
for which the eigenvalues of A and B+ are equal to be 2d1, and 2d2
for the subspace where the eigenvalues differ. Consequently,
without loss of generality, by Lemma 2 the operators A, B+, and B−
have the following matrix representations,

A ¼

1d1 � � �
� 1d2 � �
� � �1d2 �
� � � �1d1

0
BBB@

1
CCCA;

Bþ ¼

1d1 � � �
� �1d2 � �
� � 1d2 �
� � � �1d1

0
BBB@

1
CCCA;

B� ¼

� � � U1

� � U2 �
� Uy

2 � �
U1y � � �

0
BBB@

1
CCCA:

(19)
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Since B− is projective, U1 and U2 must be unitary. Thus, without
altering A or B+ we can take four unitaries V1, V2, V3, V4, each
acting on a different block, such that V1U1V

y
4 ¼ Jd1 and

V2U2V
y
3 ¼ Jd2 , where Jd is the row-reversed d × d identity matrix.

Consequently, we can now restrict ourselves to considering any
one of the d1+ d2 two-dimensional subspaces, on which A and B+
are represented by ±σz, while B− is projected onto σx. Finally, in
each of these subspaces, we apply the following unitary
transformation,

U ¼ 1
2

�1þ ι 1þ ι

�1þ ι �1� ι

	 

; (20)

which corresponds to a rotation by 2π
3 with respect to axis (1, 1, 1),

and transforms σz→ σx→ σy, and bringing all three operators to
strictly anti-diagonal form.

Summarizing, the Theorem 4, along with Lemmas 2 and 3 allow
us to take the first observable of each party A(j) to be equivalent to
σx on all relevant two-dimensional subspaces, while the second
operator A0ðjÞ can be taken to be A0ðjÞ ¼ cos θjσx þ sin θjσy .
We note here that the above thesis also follows from a well-

known result, commonly referred to as Jordan’s lemma43,44, which
states that any two dichotomic observables squaring to identity
can be simultaneously brought into a block diagonal form with
one and two-dimensional blocks. Discarding the one-dimensional
blocks as they do not contribute to Bell non-locality, each pair of
the remaining two-dimensional blocks, which act as dichotomic
observables on the same Hilbert space can be unitarily rotated to
σx and cos θjσx þ sin θjσy . In fact, Jordan’s lemma has already been
used in this way to obtain self-testing statements41. Therefore, the
contents of this section constitute an alternative proof of Jordan’s
lemma and the subsequent parametrization.
This theorem forms the key ingredient of our proof technique

as it yields the following criterion for self-testing statements
obtained in this work,

Lemma 5. The maximum quantum value B of any two-setting two
outcome N-partite Bell expression B composed of N party
correlators, self-tests a generalized GHZ state,
α
NN

j¼1 ij
�� �þ β

NN
j¼1 ij
�� �, where ij ∈ {0, 1} and ij ¼ 1� ij , if the

corresponding Bell operator has a non-degenerate maximum
eigenvalue λmax= B.

Proof. For two-setting binary outcome N partite Bell scenarios,
Theorem 4 implies that the local observables of each party have
simultaneous anti-diagonal matrix representations. Consequently,
any N partite Bell expression B composed only of N party
correlators corresponds to a Bell operator on ðC2Þ�N

which also
has an anti-diagonal matrix representation. Clearly, the maximum
value of the Bell expression B corresponds to the maximum
eigenvalue λmax of the Bell operator. As the eigenvectors of any
such anti-diagonal matrix are of the form of generalized GHZ
states, α

NN
j¼1 ij
�� �þ β

NN
j¼1 ij
�� �, where ij∈ {0, 1} and ij ¼ 1� ij , the

maximum value B of such a Bell expression self-tests such a state if
the maximum eigenvalue λmax of the Bell operator is non-
degenerate.

In the next section, we demonstrate our proof technique and
obtain self-testing statements for the MABK family of N party
inequalities and tripartite Bell inequalities composed of three-
party correlators.

Self-testing statements for multipartite inequalities
In this section, we use the tools developed in the previous section
to obtain self-testing statements for linear MABK family of N party
inequalities [Eq. (2)], and sketch the proofs for the self-testing
statements for all distinct equivalence classes of tripartite WWWŻB

facet inequalities [Eq. (1)]. Finally, we obtain self-testing state-
ments for Uffink’s family [Eq. (4)] of non-linear N party inequalities.

N party MABK inequalities

Theorem 6. In order to achieve maximal quantum violation of a N-
party MABK inequality, hMNi ¼ 2

N�1
2 , the parties must share a N

qubit GHZ state GHZNj i ¼ 1ffiffi
2

p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, where ϕ(N) is
the relative phase, ϕ(N)= 0 when N is odd, ϕðNÞ ¼ � π

4 when N is
even and perform maximally anti-commuting projective measure-
ments A(j)= σx and A0ðjÞ ¼ σy (up to local isometries).

Proof. From Lemma 2 and Theorem 4, without loss of generality,
the local observables of any party Aj , where j∈ {1,…, N}, can be
taken to be,

AðjÞ ¼ σx ;

A0ðjÞ ¼ cos θjσx þ sin θjσy ;
(21)

acting on the effective two-dimensional subspace. This parame-
trization implies that the MABK operator [Eq. (2)]MN has the
following anti-diagonal matrix representation,

MN ¼ adiag

1

2
Nþ1
2

1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιe�ιθj Þ

	

þ 1þιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1� ιe�ιθj Þ




..

.

1

2
Nþ1
2

1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιeιθj Þ

	

þ 1þιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1� ιeιθj Þ




0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

; (22)

where adiag represents a matrix with non-zero values only on the
anti-diagonal. It is easy to see for any combination,
8j 2 f1; ¼ ;Ng : θj ¼ ± π

2, one of the anti-diagonal elements
attains the maximum absolute value of 2

N�1
2 while the others

vanish.
Recall that the maximum expectation value of an operator

corresponds to its highest eigenvalue, attained when the state
corresponds to the associated eigenvector. Moreover, the
eigenvectors of operators with an anti-diagonal matrix represen-
tation are of the generic form, α

NN
j¼1 ij
�� �þ β

NN
j¼1 ij
�� �, where

ij ∈ {0, 1} and ij ¼ 1� ij . Now, taking the expectation value of MN
with respect to any one of these states selects the sum of a pair of
(equidistant from the top and the bottom) anti-diagonal elements.
As each such pair is equivalent to the rest up-to local rotations, we
can, without loss of any generality, consider the state,
ψNj i ¼ α 0j i�N þ β 1j i�N , which effectively yields a weighted sum
of the top and bottom anti-diagonal elements of the matrix [Eq.
(22)].
Specifically, the expectation value of the Hermitian operator

MN for the state ψNj i has the expression,

ψNh jMN ψNj i ¼ 2Re α 1

2
Nþ1
2

1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιe�ιθj Þ

	�

þ 1þιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1� ιe�ιθj Þ



β



;

(23)

Using the fact that 8α; β 2 C : Re αβ � jαβj ¼ jαjjβj we bound
ψNh jMN ψNj i from above in the following way,

ψNh jMN ψNj i � 2jαjjβjj 1

2
Nþ1
2

1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιe�ιθj Þ

	

þ 1þιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1� ιe�ιθj Þ



j:

(24)
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As ∣α∣2+ ∣β∣2= 1, the maximum value of the above expression can
only be attained for jαj ¼ jβj ¼ 1ffiffi

2
p , which picks out GHZNj i as the

shared state. Consequently, we retrieve the following upper
bound,

ψNh jMN ψNj i � 1

2
Nþ1
2

1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιe�ιθj Þ

	����
þ 1þιffiffi

2
p
� �ðN�1Þmod2

Π
N

j¼1
ð1� ιe�ιθj Þ


����:
(25)

Now, as jð1þιffiffi
2

p ÞðN�1Þmod2j ¼ jð1�ιffiffi
2

p ÞðN�1Þmod2j ¼ 1 and jð1þ ιe�ιθj Þj ¼
j2 sinðπ4 þ θj

2Þj and jð1� ιe�ιθj Þj ¼ j2 cosðπ4 þ θj
2Þj, we can further

upper bound the above expression as,

ψNh jMN ψNj i � 2
N�1
2 Π

N

j¼1
sin π

4 þ θj
2

� ���� ���	

þ Π
N

j¼1
cos π

4 þ θj
2

� ���� ���
:
As, 8j : j sinðπ4 þ θj

2Þj � 1; j cosðπ4 þ θj
2Þj � 1, we can further upper

bound the above expression by discarding all but three terms
corresponding to any i, j, k∈ {1,…, N}, such that,

ψNh jMN ψNj i
� 2

N�1
2 sin 2θiþπ

4

� �
sin 2θjþπ

4

� �
sin 2θkþπ

4

� ���� ����
þ cos 2θiþπ

4

� �
cos 2θjþπ

4

� �
cos 2θkþπ

4

� ���� ����
� 2

N�1
2 ;

(26)

where the proof of the second inequality has been deferred to the
Supplementary Note. In the Supplementary Note, we also show
that this inequality can only be saturated when θi ¼ θj ¼ θk ¼ π

2.
As the choice of i, j, k∈ {1,…, N} is completely arbitrary, the
inequality can only be saturated when 8j 2 f1; ¼ ;Ng : θj ¼ π

2, i.e.,
when for each party the local observables maximally anti-
commute. As these settings maximize the value of MN only for
a unique pair of equidistant anti-diagonal entries, the state must
be GHZNj i � 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, where ϕ(N)= 0 when N is

odd, and ϕðNÞ ¼ � π
4 when N is even, up to auxiliarly degrees of

freedom on which the measurements act trivially, and local basis
transformations. This further implies that the actual shared state
could be of the form GHZNj iN Ψj i up to local unitaries, where the
arbitrary state Ψj i on auxiliary degrees of freedom does not
contribute to the operational Bell violation and thus is referred to
as the junk state.

We note here that the same proof technique extends to the
complimentary MABK inequalities, M0N , defined in “Results: Two-
setting N-party correlation Bell inequalities”, as well, to yield the
corresponding self-testing statements, summarized in the follow-
ing Corollary.

Corollary 6.1. In order to achieve the maximal quantum violation
of a N-party complimentary MABK inequality, hM0Ni ¼ 2

N�1
2 , the

parties must share a N qubit GHZ state
GHZNj i ¼ 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, where ϕðNÞ ¼ π

2 when N is
odd, ϕðNÞ ¼ π

4 when N is even and perform maximally anti-
commuting projective measurements A(j)= σx and A0ðjÞ ¼ σy (up to
local isometries).

The proof follows a relatively straightforward modification of the
proof of Theorem 6. However, these self-testing statements will be
used in the next section for obtaining self-testing of Uffink’s
quadratic inequalities. Moreover, the proof technique readily
applies to the Svetlichny family of N-party inequalities as they
are composed of the N-party MABK inequalities. Furthermore, the
proof technique enables self-testing of a much broader class of N-

party WWWŻB inequalities. To demonstrate this, we sketch the
proofs for self-testing of tripartite WWWŻB inequalities [Eq. (1)].

Tripartite WWWŻB inequalities
In the case of tripartite Bell scenarios where each party has two
input and output respectively, we have a 26-dimensional local
correlation polytope that has 64 vertices and 53,856 faces45. These
faces can be grouped into 46 equivalence classes of Bell
inequalities listed in ref. 46, and out of which, we consider the
non-trivial facet inequalities, which are composed of only three-
party correlators and can be grouped into the following four
equivalence classes.
The first class is composed of correlation inequalities equivalent

(up-to relabeling) to the Mermin’s inequality M3h i � 1,

1
2 Að1ÞAð2ÞA0ð3Þ�� �þ Að1ÞA0ð2ÞAð3Þ� ��
þ A0ð1ÞAð2ÞAð3Þ� �� A0ð1ÞA0ð2ÞA0ð3Þ�� �� � 1:

For these inequalities, the proof of Theorem 6 directly applies37.
As a consequence, we retrieve the tripartite GHZ state GHZ3j i as
well as maximally anti-commuting local observables as necessary
ingredients for the maximal quantum violation 2.
The second equivalence class of tripartite inequalities is that of

unbalanced inequalities, which can be found in the ref. 47 as the
seventh inequality in Table I, and also specified below,

3 Að1ÞAð2ÞAð3Þ
� �þ Að1ÞAð2ÞA0ð3Þ� ��

þ Að1ÞA0ð2ÞAð3Þ� �þ A0ð1ÞAð2ÞAð3Þ� �
� Að1ÞA0ð2ÞA0ð3Þ� �� A0ð1ÞAð2ÞA0ð3Þ� �
� A0ð1ÞA0ð2ÞAð3Þ� �þ A0ð1ÞA0ð2ÞA0ð3Þ� �� � 4:

The corresponding operator has an anti-diagonal matrix repre-
sentation with values of the form,

4þ ð�1þ eιk1θ1Þð�1þ eιk2θ2Þð�1þ eιk3θ3Þ; (27)

where (k1, k2, k3∈ {−1, 1}). Unlike the MABK class of inequalties the
absolute values of these anti-diagonal terms are maximized when
cos θj ¼ � 1

3. Thus, yet again, the tripartite GHZ state GHZ3j i is
distinguished, but non maximally anti-commuting local observa-
bles are required for maximal quantum violation, 20

3 , of these
inequalities.
We will next discuss the equivalence class of the extended CHSH

inequalities of the form given below, which is listed as the third
inequality in Table I of the ref. 46,

1
2 Að1ÞAð2ÞAð3Þ� �þ A0ð1ÞAð2ÞAð3Þ� ��
þ Að1ÞA0ð2ÞA0ð3Þ� �� A0ð1ÞA0ð2ÞA0ð3Þ� �� � 1:

For these inequalities, the operator in the anti-diagonal matrix
representation has elements of the form,

1
2

1þ eιk1θ1 þ eιðk2θ2þk3θ3Þ � eιðk1θ1þk2θ2þk3θ3Þ
� �

: (28)

Consequently, the corresponding absolute values are
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ± sin θ1 sinðk2θ2 ± k3θ3Þ

p
. Clearly, for the maximal quantum

violation, the operators A(1) and A0ð1Þ must maximally anti-
commute, i.e., θ1 ¼ ± π

2. However, the maximal quantum violation
only requires the sum k2θ2 ± k3θ3 ¼ ± π

2, i.e., the optimal A0ð2Þ is
defined only in reference to A0ð3Þ . Clearly, for the maximal
quantum violation 2

ffiffiffi
2

p
the shared state must be equivalent to

the bipartite maximally entangled state GHZ2j i. However, these
inequalities do not satisfy the strict self-testing criterion as defined
in section II, as the optimal local observables are not unique and
specified only up-to a mutual relation.
Lastly, we have the equivalence class of the CHSH-like inequal-

ities of the form given below, which correspond to the second
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inequality listed in Table I of the ref. 47,

1
2 Að1ÞAð2ÞAð3Þ� �þ Að1ÞA0ð2ÞAð3Þ� ��
þ A0ð1ÞAð2ÞAð3Þ� �� A0ð1ÞA0ð2ÞAð3Þ� �� � 1:

These inequalities are equivalent to the CHSH orM2 inequality for
which the proof of Theorem 6 directly applies. The non-zero
elements of the anti-diagonal matrix representation of the
corresponding Bell operator are of the form,

1þ eιk1θ1 þ eιk2θ2 � eιðk1θ1þk2θ2Þ
� �

: (29)

The modulo of these values is 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ± sin θ1 sin θ2

p
, which implies

that for the maximum quantum violation
ffiffiffi
2

p
the observables for

the first pair of parties must maximally anti-commute, i.e., ± θ1 ¼
± θ2 ¼ π

2 and shared state must be equivalent to the bipartite
maximally entangled state GHZ2j i.
Apart from the linear inequalities considered here, our proof

technique, which relies on the anti-diagonal matrix representation
of the Bell operator, is directly applicable to all two settings binary
outcome linear (on correlators) multipartite Bell inequalities, either
yielding perfect self-testing statements as defined in the begin-
ning of the Results section, or pointing out the impossibility of
them, as exemplified above. Next, we obtain self-testing
statements using our proof technique for relevant classes of
non-linear and complex-valued multipartite Bell expressions.

N party Uffink’s quadratic Bell inequalities and complex Bell
expression
As the convex set of biseparable multipartite quantum correla-
tions does not form a polytope, linear inequalities like the
Svetlichny inequalities [Eq. (3)] do not form tight, efficient
witnesses of genuine multipartite non-locality. On the other hand,
the non-linear inequalities such as the Uffink’s family of N ≥ 3 party
quadratic (on correlators) inequalities [Eq. (4)] better capture the
boundary of the quantum set of biseparable correlations and
hence form better witnesses of genuine multipartite quantum
non-locality. Here, we use our methodology to obtain self-testing
statements for the maximum violation of Uffink’s quadratic Bell
inequalities. Specifically, we begin by linearizing Uffink’s N≥3 party
quadratic Bell expressions in the following way,

UM
N

� � ¼ MNh i2 þ M0
N

� �2 ¼ j MNh i± ι M0
N

� �j2: (30)

This follows from the simple observation that for any two real
numbers x1; x2 2 R, x21 þ x22 ¼ jx1 ± ιx2j2, and the fact that the N-
party MABK operator MN and the N-party complimentary MABK
operator M0

N are Hermitian, such that MNh i; M0
N

� � 2 R. This
linearization reduces our problem to considering a linear but non-
Hermition operator, ~UN , of the form,

~UN ¼ ðMN ± ιM0
NÞ

¼ 1

2
N�1
2

1�ιffiffi
2

p
� �ðN�1Þmod2NN

j¼1
ðAðjÞ þ ιA0ðjÞÞ; (31)

where the second equality is either satisfied by ~UN ¼ ðMN þ ιM0
NÞ

or ~UN ¼ ðMN � ιM0
NÞ, depending on N, for instance, for

N∈ {2, 5, 6} we have the former while for N∈ {3, 4, 7} we require
the latter form of ~UN . With the linear operator in hand, we can now
obtain the self-testing statement for UM

N , essentially by maximizing
the modulo of the possibly complex expectation value of ~UN .

Theorem 7. In order to achieve maximal quantum violation of a N
party Uffink’s quadratic inequality, UM

N ¼ 2N�1, the parties must share
a N≥ 3 qubit GHZ state GHZNj i ¼ 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, where

ϕðNÞ 2 ½� π
2 ;

π
2�, and perform maximally anti-commuting projective

measurements A(j)= σx and A0ðjÞ ¼ σy (up to local isometries).

Proof. From Lemma 2 and Theorem 4, without loss of generality,
the local observables of any party Aj , where j∈ {1,…, N}, can be
taken to be,

AðjÞ ¼ σx ;

A0ðjÞ ¼ cos θjσx þ sin θjσy ;
(32)

acting on the effective two-dimensional subspace. This parame-
trization implies that Uffink’s non-Hermition operator [Eq. (31)],
~UN , has the following anti-diagonal matrix representation,

~UN ¼ 1

2
N�1
2

adiag

1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
1þ ιe�ιθj
�

..

.

1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιeιθj Þ

0
BBBBB@

1
CCCCCA; (33)

where adiag represents a matrix with non-zero values only on the
anti-diagonal. It is easy to see for any combination,
8j 2 f1; ¼ ;Ng : θj ¼ ± π

2, one of the anti-diagonal element attains
the maximum absolute value of 2

N�1
2 while the others vanish.

Since, ~UN has an anti-diagonal matrix representation, we know
that the eigenvectors of such anti-diagonal matrices are of the
generic form, α

NN
j¼1 ij
�� �þ β

NN
j¼1 ij
�� �, where ij∈ {0, 1} and

ij ¼ 1� ij . Now, taking the expectation value of MN with respect
to any one of these states selects the sum of a pair of (equidistant
from the top and the bottom) anti-diagonal elements. As each such
pair is equivalent to the rest up-to local rotations, we can, without
loss of any generality, consider the state, ψNj i ¼ α 0j i�N þ β 1j i�N ,
which effectively yields a weighted sum of the top and bottom anti-
diagonal elements of the matrix [Eq. (33)],

UM
N ¼ j ψNh j~UN ψNj ij

¼ 1

2
N�1
2
j α 1�ιffiffi

2
p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιe�ιθj Þβ

	

þ β 1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιeιθj Þα



j

� 1

2
N�1
2
jαjjβj j 1�ιffiffi

2
p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιe�ιθj Þj

	

þ j 1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιeιθj Þj



;

(34)

where for the inequality we employed the fact that
8α; β 2 C : jαþ βj � jαj þ jβj. Observe that, as ∣α∣2+ ∣β∣2= 1,
the maximum value of the above expression can only be attained
for jαj ¼ jβj ¼ 1ffiffi

2
p , which picks out GHZNj i as the shared state,

GHZNj i ¼ 1ffiffi
2

p ð 0j i�N þ eιϕðNÞ 1j i�NÞ. We note here that the relative
phase ϕðNÞ 2 ½� π

2 ;
π
2� is left completely unspecified, a fact that we

explore thoroughly at the end of the proof in the following
Corollary 7.1. Consequently, we retrieve the following upper
bound,

j ψNh j~UN ψNj ij � 1

2
Nþ1
2
j 1�ιffiffi

2
p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιe�ιθj Þj

	

þ j 1�ιffiffi
2

p
� �ðN�1Þmod2

Π
N

j¼1
ð1þ ιeιθj Þ



j:

(35)

Now, as jð1�ιffiffi
2

p ÞðN�1Þmod2j ¼ 1 and jð1þ ιe�ιθj Þj ¼ j2 sinðπ4 þ θj
2Þj andjð1þ ιeιθj Þj ¼ j2 cosðπ4 þ θj

2Þj, we can further upper bound the
above expression as,

j ψNh j~UN ψNj ij � 2
N�1
2 ΠN

j¼1j sin π
4 þ θj

2

� �
j

�
þΠN

j¼1j cos π
4 þ θj

2

� �
j
�
:

As, 8j : j sinðπ4 þ θj
2Þj � 1; j cosðπ4 þ θj

2Þj � 1, we can further upper
bound the above expression by discarding all but three terms
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corresponding to ∀ i, j, k∈ {1,…, N}, such that,

j ψNh j~UN ψNj ij
� 2

N�1
2 sin 2θiþπ

4

� �
sin 2θjþπ

4

� �
sin 2θkþπ

4

� ���� ����
þ cos 2θiþπ

4

� �
cos 2θjþπ

4

� �
cos 2θkþπ

4

� ���� ����
� 2

N�1
2 ;

(36)

where the proof of the second inequality has been deferred to the
Supplementary information. In the Supplementary information,
we also show that this inequality can only be saturated when
θi ¼ θj ¼ θk ¼ π

2, i.e., when for each party the local observables
maximally anti-commute. Moreover, as these settings maximize a
unique pair of equidistant anti-diagonal entries, while the others
vanish, the state must be of the form,
GHZNj i � 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, specified only up to the relative

phase ϕ(N), up to auxiliarly degrees of freedom on which the
measurements act trivially, and local basis transformations. This
further implies that the actual shared state could be of the form
GHZNj iN Ψj i with the arbitrary relative phase ϕ(N) of the GHZ
state and the arbitrary state Ψj i on auxiliary degrees of freedom
which does not contribute to the operational Bell violation and
thus is referred to as the junk state.

We would now like to highlight the difference between the self-
testing statements for N partite linear MABK inequalities (Theorem
6 and Corollary 6.1) and Uffink’s quadratic Bell inequalities
(Theorem 7). Like the linear Bell inequalities, maximal violation
of quadratic Bell inequalities fixes the local observables of each
party to be maximally anti-commuting, such that without loss of
generality they can be taken to be A(j)= σx and A0ðjÞ ¼ σy .
However, while in the case of N partite linear MABK inequalities
fixing the measurements exhausts all freedom up to local
isometries and completely specifies the optimal state, on the
other hand, the maximal violation of Uffink’s quadratic inequalities
does not uniquely specifies the optimal state. Specifically, the
maximal violation of Uffink’s quadratic inequalities can be attained
with GHZðϕðNÞÞj i where the relative phase ϕ(N) could take any
value in ½� π

2 ;
π
2�. Hence, Uffink’s quadratic inequalities do not

strictly self-test. Below we show that strict self-testing statements
can nevertheless be obtained for the complex-valued N partite
Bell expression corresponding to the expectation value of Uffink’s
non-Hermitian operator ~UN

� �
[Eq. (31)] whenever the correspond-

ing Uffink’s quadratic Bell inequalities is maximally violated.
Until now, we have used our methodology to obtain self-testing

statements for real valued linear and qaudratic (on correlators) Bell
expressions. We now discuss the case when our Bell expression takes
complex values. Specifically, in the following Corollary, we obtain
self-testing statements for the complex-valued Bell expression
corresponding to the complex expectation value of ~UN

� �
, where

the operator ~UN is defined in Eq. (31), using our methodology.

Corollary 7.1. In order to achieve extremal quantum value of the
complex-valued Bell expression, ~UN

� � ¼ ðMN ± ιM0
NÞ, such that

j ~UN
� �j ¼ 2

N�1
2 , the parties must share a N ≥ 3 qubit GHZ state

GHZNj i ¼ 1ffiffi
2

p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, where ϕðNÞ ¼ arccot MNh i
M0

Nh i
	 


when N is odd, ϕðNÞ ¼ arccot MNh i
M0

Nh i
	 


� π
4 when N is even and

perform maximally anti-commuting projective measurements
A(j)= σx and A0ðjÞ ¼ σy (up to local isometries).

Proof. From Theorem 7, we know that the maximal quantum value
of UM

N ¼ j ~UN
� �j2 ¼ 2N�1, self-tests the state to be maximally

entangled N partite GHZ state, GHZNj i ¼ 1ffiffi
2

p ð 0j i�N þ eιϕðNÞ 1j i�NÞ,

where the relative phase ϕ(N) can be chosen arbitrarily. However,
here we show that this relative phase ϕ(N) can still be operationally
determined from the complex-valued Bell expression,

~UN
� � ¼ MNh i± ι M0

N

� �
; (37)

where MNh i and M0
N

� �
are real valued complementary MABK Bell

expressions for N parties, such that j ~UN
� �j is 2

N�1
2 . We know that

j ~UN
� �j ¼ 2

N�1
2 implies that the local observables of each party can

always be taken to be A(j)= σx, A
0ðjÞ ¼ σy , such that the operator

~UN has the matrix representation [Eq. (33)]. Consequently,

~UN
� � ¼ GHZNh j~UN GHZNj i

¼ 2
Nþ1
2 αð1�ιffiffi

2
p ÞðN�1Þmod2

β
� � (38)

Up to experimentally indeterminable global phase, we can always
take α ¼ 1ffiffi

2
p and β ¼ eιϕffiffi

2
p , such that Eq. (38) is simplified to,

~UN
� � ¼ 2

N�1
2 1�ιffiffi

2
p
� �ðN�1Þmod2

eιϕ
	 


¼ 2
N�1
2 eιϕ; iff N is odd;

2
N�1
2 eιðϕ�

π
4Þ; else:

( (39)

Next, with the aid of Eqs. (37) and (39), we can finally uniquely
specify the relative phase ϕ(N) operationally. When j ~UN

� �j ¼ 2
N�1
2

and the number of parties, N, is odd, the relative phase ϕ(N), must

be precisely arccot MNh i
M0

Nh i
	 


, else ϕðNÞ ¼ arccot MNh i
M0

Nh i
	 


� π
4 up to

local isometries.

We note here that ~UN
� �

, although complex, is an operational
quantity, i.e., just like the value of linear Bell expressions, it can be
directly estimated from the experimental statistics. Corollary 7.1
allows us to infer the relative phase ϕ(N) of the N ≥ 3 qubit GHZ
state from ~UN

� �
. This fact is illustrated in Fig. 2.

Robust self-testing
The criterion for self-testing of a Bell inequality used in this work
relies strongly on the assumption that the considered Bell
expression attains its maximal value. However, in real experiments,
this assumption cannot be fulfilled due to various experimental
imperfections. Therefore, the self-testing statements must be
made robust.
To make the self-testing statements obtained in this work

robust, one can use the numerical SWAP method, which utilizes
the Navascues-Pironio-Acin hierarchy to obtain bounds on the
closeness (fidelity) of the experimental measurements and the
shared state to the ideal self-testing measurements and state.
Here we detail the technique for bounding the fidelity between
the actual state and the reference self-testing state; the same can
be applied to retrieve corresponding bounds for the measure-
ments. The main idea of this technique relies on the notion of
local isometries, which map the actual physical state ψj i to our
reference self-testing state ψj i and a junk state Ψj i on local
auxiliary systems. In most of the self-testing cases, these local
isometries act as partial SWAP gates, essentially swapping the
actual physical state ψj i with the state 0j i�N of the registers, such
that the final state of the registers corresponds to the reference
self-testing state ψj i. It is often instructive to visualize the action of
these local isometries as a SWAP circuit, which only depends on
the self-testing measurements. The particulars of such a SWAP
circuit, specifically those of the local isometries, enable us to
express the fidelity, F n ¼ ψh jρSWAPðΓnÞ ψj i, of the final state of the
register ρSWAP (Γn) with the target state ψj i, as a function of the
entries of the necessarily positive semi-definite NPA moment
matrix Γn of level n 2 N, as well as of the target self-testing state
ψj i. As some of the entries of the moment matrix Γn correspond to
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experimental statistics, such as ½Γn�Að1Þ;Að2Þ ¼ ψh jAð1Þ
A
ð2Þ

ψj i, the
behavioral preconditions of a self-testing statement translate to
linear constraints on the entries of the moment matrix Γn. Given a
target self-testing state ψj i and solving the consequent semi-
definite minimization program with the fidelity, F n ¼
ψh jρSWAPðΓnÞ ψj i as the linear objective function, retrieves a
converging sequence of lower bounds, F 1 � F 2 ¼F n such that
F n!1 ¼ F , where F is the quantum fidelity.
In Fig. 3, we depict the SWAP circuit corresponding to the N

party self-testing statements obtained in this work for MABK
inequalities (Theorem 6), complimentary MABK inequalities
(Corollary 6.1), Uffink’s quadratic inequalities (Theorem 7) and
Uffink’s complex-valued Bell expressions (Corollary 7.1). As the
self-testing measurements for all of these cases are the same, i.e.,
A(j)= σx and A0ðjÞ ¼ σy , the circuit in Fig. 3 effectively swaps the
actual state ψNj i (which attains the respective preconditions of
these self-testing statements) with the state 0j i�N of the registers,
such that the final state of the registers corresponds to their
respective self-testing maximally entangled N partite GHZ state,
GHZNj i ¼ 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ. This, in turn, allows us to

retrieve a converging sequence of lower bounds on the fidelity,
F n ¼ GHZNh jρSWAPðΓnÞ GHZNj i, in the aforementioned fashion.

As the resultant semi-definite programs, although straightfor-
ward to implement22,23, are too computationally hard to solve
efficiently without additional symmetry-based simplifications, we
leave this as a future direction.
We now highlight the advantage of Uffink’s quadratic Bell

inequalities and Uffink’s complex-valued Bell expressions over the
linear MABK inequalities for robust self-testing in noisy experi-
mental scenarios. Heuristically, as Uffink’s quadratic Bell inequal-
ities and Uffink’s complex Bell expressions take two
experimentally observable quantities into account, namely, the
value of linear MABK inequality, MNh i, as well as the value of
linear complementary MABK inequality M0

N

� �
, they provide more

accurate robust self-testing than when the latter are considered
on their own.
Specifically, consider an experiment E aimed at robust self-

testing of the N qubit GHZ state using N party MABK Bell
expression, MNh i. Suppose that the experiment yields the value
MNh iE ¼ 2

N�1
2 � ϵ, the fidelity F 1 of the experimental state with

the N qubit GHZ state optimal for MNh i (Theorem 6) is
proportional to 2

N�1
2 � ϵ. However, the experimental imperfections

will inevitably yield experimental behavior for which M0
N

� �
E≠0.

Consequently, the experimental behavior will always be closer to

the extremal point which attains ~UN
� � ¼

2
N�1
2ffiffiffiffiffiffiffiffiffiffi

ðUM
N ÞE

p ð MNh iE ± ι M0
N

� �
EÞ as compared to the extremal point

which attains MNh i ¼ 2
N�1
2 and M0

N

� � ¼ 0. Hence, the fidelity of
the experimental state with the target GHZ state GHZNj i which
realizes this extremal point (from Corollary 7.1) will yield a fidelity

F 2 proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUM

N ÞE
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N�1

2 � ϵÞ2 þ ð M0
N

� �
EÞ

2
q

, such

that, F 2>F 1. Hence, in general taking into account, Uffink’s
quadratic and complex-valued Bell expressions provide for a more
accurate and robust DI self-testing of the N qubit GHZ state as
compared to the MABK inequalities, especially in cases when the
relative phase is irrelevant to the application and could be
arbitrary.
Consequently, Uffink’s quadratic and complex-valued Bell

expressions provide for a more accurate and robust DI character-
ization of quantum systems in multipartite Bell scenarios as
compared to the MABK inequalities.

DISCUSSIONS
Quantum correlations that violate Bell inequalities can certify the
shared entangled state and local measurements in an entirely
device-independent manner. This feature of quantum non-local
correlations is referred to as self-testing. In this work, we
presented a simple and broadly applicable proof technique to
obtain self-testing statements for the maximum quantum viola-
tion of a large relevant class of multipartite (involving an arbitrary
number N of spatially separated parties) Bell inequalities. Unlike
the relatively straightforward bipartite Bell scenarios, the multi-
partite scenarios are substantially richer in complexity owing to
the various types of multipartite non-locality.
The traditionally employed sum-of-squares-like proof techni-

ques rely on the Bell inequality’s specific structure and the
hermiticity of the corresponding Bell operator. Moreover, we recall
here that finding the sum-of-squares decomposition for a linear
Bell expression is the semi-definite programming dual of finding
the maximum quantum value of the Bell expression, which in turn
can be cast as an instance of the moment-based formulation
Navascues-Pironio-Acin hierarchy of semi-definite programming
relaxations48,49. It follows from this semi-definite programming
duality that the level of the moment-based Navascues-Pironio-
Acin hierarchy required for saturation of the maximal quantum
value of a Bell expression corresponds to the degree of the

Fig. 2 Self-testing of the relative phase ϕ(N). This graphic
schematically captures the self-testing statements for N partite
Uffink’s quadratic Bell inequalities (Theorem 7), as well as the self-
testing statements for the complex-valued Bell expressions corre-
sponding to the mean value of Uffink’s non-Hermitian operator
~UN
� �

(Corollary 7.1). The figure depicts the complex plane on which
the complex number ~UN

� � ¼ MNh i± ι M0
N

� �
lies, where MNh i is

plotted on the real axis while M0
N

� �
is plotted on the imaginary axis.

The dark blue arc represents the boundary of the quantum set of
correlations Q characterized by the maximum violation of N partite
Uffink’s quadratic Bell inequalities, UM

N ¼ j ~UN
� �j2 ¼ 2N�1. Crucially,

for all points on the dark blue arc, Theorem 7 implies that the local
observables of each party can be taken to be A(j)= σx and A0ðjÞ ¼ σy ,
and the state to be maximally entangled N partite GHZ state,
GHZNj i ¼ 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, where the relative phase ϕ(N) can

be chosen arbitrarily (up to local isometries). However, using
Corollary 7.1, even the relative phase can be uniquely identified
by the observed value of ~UN

� �
if it lies on this arc. To exemplify this,

we plot the specific case of ~UN
� � ¼ MNh i± ι M0

N

� � ¼ 2
N�2
2 eι

π
3 (light

blue arrow), which uniquely specifies the relative phase to be

ϕðNÞ ¼ arccot MNh i
M0

Nh i
	 


¼ π
3 when N is odd, and ϕðNÞ ¼

arccot MNh i
M0

Nh i
	 


� π
4 ¼ π

12 when N is even.
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polynomials in the sufficient sum-of-squares decomposition of the
corresponding Bell operator. It is also easy to see that the
minimum level dN2e of the moment-based Navascues-Pironio-Acin
hierarchy degree required for the saturation of N party Bell
inequalities, such as the MABK and the complimentary MABK
family of Bell inequalities, increases with N, and so does the
maximum degree of the polynomials in the corresponding sum-
of-squares decomposition. Consequently, finding sum-of-squares
decomposition becomes increasingly arduous for a large number
N of spatially separated parties.
Although the Sum-of-Squares decomposition is applicable to

any Bell scenario, more often than not, finding it can be
challenging. In contrast, the technique presented in this paper
offers a more state-forward approach. It is applicable to binary
input and output Bell scenarios with an arbitrary number of
spatially separated parties (N). It can derive self-testing statements
for any Bell inequality in such Bell scenarios, as long as the
associated Bell operator has an anti-diagonal matrix representa-
tion. In “Results: Characterizing local observables”, we show that
the observables of each party in two-setting binary outcome
multipartite Bell scenarios can always be simultaneously repre-
sented as anti-diagonal matrices (Theorem 4). Consequently, in
such scenarios, the Hermitian Bell operators corresponding to all
Bell inequalities composed exclusively of N party correlators also
have an anti-diagonal matrix representation. In “Results: Self-
testing statements for multipartite inequalities”, to demonstrate
our proof technique, we obtain proofs of self-testing statements
for the MABK family of N party inequalities (Theorem 6) (This
constitutes a reproduction of the self-testing statements for MABK
inequalities from ref. 39, and hence serves as a preliminary
certification of our proof technique.), followed by self-testing
statements for the complimentary N party MABK inequalities
(Corollary 6.1) and tripartite WWWŻB inequalities (“Results:
Tripartite WWWŻB inequalities”). While the former self-testing
statements demonstrate the relative simplicity and scalability (in
the number of parties N) of our proof technique and serve as
reliable benchmarks, the latter self-testing statements serve to
exemplify all possible exceptions to perfect self-testing statements
such as non-unique optimal states or observables, and non-
anticommuting pairs of optimal measurements.
To further demonstrate the versatility of our proof technique

which relies only on the anti-diagonal matrix representation of the

Bell operator and not even on its hermiticity, we obtain self-testing
statements for Uffink’s family of quadratic Bell inequalities
(Theorem 7), as well as for the novel complex-valued Uffink’s Bell
expressions with corresponding non-Hermitian Bell operators
(Corollary 7.1). As these quadratic and complex Bell expressions
do not allow for sum-of-squares-like self-testing techniques, which
rely on the linearity of the Bell expressions and on the hermiticity of
the associated Bell operators, the self-testing statements obtained
here form distinguishing applications of our proof technique.
One of the salient features of the multipartite self-testing

statements obtained in this work, namely, for maximum quantum
violation of MABK inequalities (Theorem 6), complimentary MABK
inequalities (Corollary 6.1), Uffink’s quadratic inequalities (Theorem
7) and extremal quantum values of Uffink’s complex-valued Bell
expressions (Corollary 7.1), is that they all uniquely single-out anti-
commuting binary outcome observables for each party, which,
without loss of generality, can be taken to be σx and σy, up to local
isometries. On the other hand, these self-testing statements also
pick out the maximally entangled N partite GHZ state
GHZNj i ¼ 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ, where ϕðNÞ 2 ½� π

2 ;
π
2� is the

relative phase. However, while the self-testing statements for
the MABK and the complementary MABK inequalities uniquely
specify ϕ(N), the self-testing statements for Uffink’s quadratic Bell
inequalities do not uniquely specify the phase ϕ(N). These
observations lead to the self-testing statements (Corollary 7.1)
for the extremal values of the novel Uffink’s complex-valued Bell
expressions, which effectively summarize the former statements.
Specifically, fixing the local observables of each party to be σx and
σy, Corollary 7.1 brings forth the one-to-one correspondence
between the experimentally accessible extremal values of Uffink’s
complex-valued Bell expressions and the relative phase ϕ(N) of the
N partite GHZ state, essentially demonstrating the operational
relevance of the latter.
The N-party MABK inequalities [Eq. (2)] form efficient witnesses

of genuine N-partite non-locality and entanglement and hence
find applications in tasks that require the participation of all
parties, i.e., the tasks in which no subset of the parties can succeed
without the others47, for example, quantum secret sharing50,
social welfare games51, DI randomness generation and expan-
sion52, and conference key distribution schemes53,54. The advan-
tage of the MABK inequalities over the other inequalities in N-
partite DI information processing and cryptography task springs

Fig. 3 Swap circuit. This graphic represents the partial SWAP gate isometry used to self-test maximally entangled N partite GHZ state
GHZNj i ¼ 1ffiffi

2
p ð 0j i�N þ eιϕðNÞ 1j i�NÞ. After the application of the circuit, the GHZNj i state is extracted from the actual experimental state ~ψN

�� �
to

the ancillary qubits. Here, H denotes a Hadamard gate, and X1, Y1, X2, Y2,…XN, YN are the operators which act analogously to σx, σy on the actual
state ~ψN

�� �
. As the circuit only depends on the self-testing measurements, this circuit works for the N partite self-testing statements obtained in

this work, namely, the self-testing statements for MABK inequalities (Theorem 6), complimentary MABK inequalities (Corollary 6.1), Uffink’s
quadratic inequalities (Theorem 7) and Uffink’s complex-valued Bell expressions (Corollary 7.1). As the self-testing measurements for all of
these cases are the same, i.e., A(j)= σx and A0ðjÞ ¼ σy , the circuit SWAPs the actual state ψNj i (which attains the respective preconditions of these
self-testing statements) with the state 0j i�N of the registers, such that the final state of the registers corresponds to their respective self-
testing maximally entangled N partite GHZ state.
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from its permutational symmetry, which does not privilege one
party at the expense of the other parties. Uffink’s quadratic
inequalities [Eq. (4)] and complex-valued Bell expression [Eq. (31)]
also retain this permutational symmetry while being strictly better
at witnessing genuine N-partite non-locality and entanglement.
The DI information processing and cryptographic applications are
essentially fueled by the characterization of the quantum devices,
enabled by the values of respective Bell expressions, as
exemplified by the self-testing statements presented in this work.
Consequently, as Uffink’s quadratic inequalities and complex-
valued Bell expression allow for a more accurate and robust
certification of quantum devices, using them instead of MABK in
DI applications can only benefit the respective performance.
Note added: During the preparation of the current work, we

have become aware of ref. 55. While it presents similar results, our
proof technique, which constitutes the main conceptual contribu-
tion of this work, is substantially different from their proof
technique. In particular, the key contrasting feature of our proof
technique is its applicability to non-linear Bell inequalities.
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The degree of experimentally attainable nonlocality, as gauged by the amount of loophole-free vio-
lation of Bell inequalities, remains severely limited due to inefficient detectors. We address an experi-
mentally motivated question: Which quantum strategies attain the maximal loophole-free nonlocality
in the presence of inefficient detectors? For any Bell inequality and any specification of detection effi-
ciencies, the optimal strategies are those that maximally violate a tilted version of the Bell inequality in
ideal conditions. In the simplest scenario, we demonstrate that the quantum strategies that maximally
violate the tilted versions of Clauser-Horne-Shimony-Holt inequality are unique up to local isometries.
However, self-testing via the standard sum of squares decomposition method turns out to be ana-
lytically intractable since even high levels of the Navascués–Pironio–Acı́n hierarchy are insufficient to
saturate the maximum quantum violation of these inequalities. Instead, we utilize a novel Jordan’s
lemma-based proof technique to obtain robust analytical self-testing statements for the entire family of
tilted-Bell inequalities. These results allow us to unveil intriguing aspects of the effect of inefficient
detectors and the complexity of characterizing the set of quantum correlations, in the simplest Bell
scenario.

I. INTRODUCTION

Correlations born of local measurements performed
on entangled quantum systems shared between dis-
tant observers resist local-causal explanations, a phe-
nomenon known as Bell nonlocality [1, 2]. Apart from
their foundational significance, nonlocal correlations en-
able several classically impossible information process-
ing and cryptographic feats such as unconditionally
secure Device-Independent Quantum Key Distribution
(DIQKD) [3–7]. The efficacy of these applications relies
on loophole-free certification of strong nonlocal correla-
tions. In particular the detection loophole, which results
of performing a Bell test with inefficient detectors, is the
most persistent obstacle in the experimental realization
of strong long-range loophole-free nonlocal correlations.

The detection efficiency of a measuring party is the
ratio of particles detected to the total number of parti-
cles emitted by the source. The effective detection effi-
ciency η depends on the detectors and the device’s dis-
tance from the source. For instance, in photonic Bell ex-
periments, the effective detection efficiency decays ex-
ponentially with the length of the optical fiber, l, such
that η = η010−

αl
10 , where η0 is the detection efficiency

of the measuring apparatus due to the use of imperfect
detectors, and α is the attenuation coefficient [8]. Clos-
ing the detection loophole in Bell experiments amounts
to having an effective detection efficiency η higher than

∗ anubhav.chaturvedi@pg.edu.pl

a threshold value η∗, referred to as the critical detection
efficiency. Typically, η∗ is a characteristic of an ideal non-
local correlation, below which it ceases to be nonlocal,
and limits the distance across which nonlocality can be
operationally certified to l < 10

α log
(

η∗

η0

)
.

In the simplest bipartite Bell scenario, the quan-
tum strategy maximally violating the Clauser-Horne-
Shimony-Holt (CHSH) inequality (in ideal conditions)
ceases to yield nonlocal correlations for detector efficien-
cies below η∗ = 2

√
2 − 2 ≃ 0.82 [9]. However, for an

almost product entangled state, this threshold efficiency
can be lowered to 2/3 ≃ 0.66 [10], which comes at the
cost of very low robustness to background noise. Signif-
icant research efforts have been directed towards min-
imizing the critical detection efficiency requirement for
loophole-free certification of nonlocality [11–14]. How-
ever, for real-world applications to be effective, mere vi-
olation of a Bell inequality is insufficient [15]. Instead,
the efficacy of such applications [14] typically requires
high degree of nonlocality and motivates the question:

Which quantum strategies yield the maxi-
mum loophole-free nonlocality in the pres-
ence of inefficient detectors?

As the extent of the violation of a (facet) Bell inequal-
ity corresponds to the distance of a nonlocal correlation
from a facet of the local polytope, it translates to a re-
liable measure of nonlocality. Thus the question above
boils down to finding the quantum strategies that yield
the maximal loophole-free violation of a given Bell in-
equality for specified detection efficiencies. Since the
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use of inefficient detectors results in the occurrence of
”no-click” events, to decide whether a given inequality
is violated these events must be included in the mea-
surement statistics. The most general way to deal with
them is to treat them as an additional outcome, which
comes at the price of enlarging the Bell scenario. How-
ever, to analyse the violation of a given Bell inequality,
we need to consider post-processing strategies which do
not alter the Bell scenario. One such experimentally con-
venient post-processing, which avoids considering ad-
ditional outcomes as well as the fair-sampling assump-
tion, is to assign a valid outcome to the “no-click” event
[16]. Moreover, such local assignment strategies were
proven to be optimal in the CHSH scenario [17].

We use the assignment strategies described above to
show that the quantum state and measurements maxi-
mally violating a given Bell inequality, in the presence
of inefficient detectors, correspond to those maximally
violating, in ideal conditions, a tilted version of the in-
equality. In the simplest Bell scenario, where up to a re-
labeling of measurements and outcomes the only facet
inequality is the CHSH inequality, attaining maximal
loophole-free nonlocality amounts to maximally violat-
ing a doubly-tilted version of CHSH. Such inequalities
can be thought of as a generalization of the ones con-
sidered in Ref. [18, 19], which correspond to the case of
one party having access to ideal detectors, and for which
both the maximal violation and the quantum realization
attaining it are known. In fact, in Ref. [18] it is shown by
means of sum-of-squares (SOS) decompositions that the
optimal state and measurements are unique up to local
unitaries, i.e., the maximal violation self-tests the optimal
quantum strategy.

These self-testing results suggest that analogous re-
sults could be derived for the general doubly-tilted
CHSH inequalities. However, for this general case self-
testing via the standard SOS decomposition methods
used in [18] turns out to be analytically intractable. On
one hand, unlike the case of one imperfect detector, both
the maximal quantum violation and the realization at-
taining it have a more intricate dependence on the detec-
tion efficiencies. This complexity translates to the coeffi-
cients of the polynomials in a tight SOS decomposition.
On the other hand, most strikingly, for the general case,
even higher levels (up to level 10) of the Navascués–
Pironio–Acı́n (NPA) hierarchy are not enough to satu-
rate the maximal violation of the doubly-tilted CHSH in-
equalities. This result highlights the complexity of char-
acterizing the quantum set of correlations even in the
simplest Bell scenario. In particular, as the degree of the
polynomials in a tight SOS decomposition corresponds
to the level of a tight NPA upper bound, finding such
polynomials becomes a hard task.

Instead, we derive analytical self-testing statements
and optimal quantum strategies for the entire family of
doubly-tilted CHSH inequalities as a function of detec-
tion efficiencies, via a novel proof technique based on
Gröbner basis reduction and Jordan’s lemma (Chapter

VII [20]). We find that the optimal quantum strategy
entails a partially entangled two-qubit state and non-
maximally incompatible observables for both parties. In
particular, in contrast to the case of one imperfect detec-
tor, in general, the optimal observables of a party also
depend on the detection efficiency of the other party.
The analytical results allow us to reveal intriguing as-
pects of the set of quantum correlations in the simplest
Bell scenario. Finally, we numerically demonstrate the
robustness of these self-testing statements. We conclude
by enlisting several implications of our findings to de-
vice independent processing with inefficient detectors
and to the complexity of characterization of the set of
quantum correlations.

II. NONLOCALITY WITH IMPERFECT DETECTORS

In this section we discuss how nonlocal correlations
can be detected via violation of a Bell inequality in pres-
ence of non-ideal detectors. Building on these observa-
tions, we show that maximising the effective violation
of a Bell inequality in the presence of imperfect detec-
tors amounts to maximally violating a tilted version of
the inequality in ideal conditions.

Consider a bipartite Bell experiment involving two
parties, Alice and Bob. In each round of such experi-
ment a source distributes a composite physical system
to be shared between Alice and Bob. Alice performs one
out of mA possible measurements that we label with x,
each of which has dA possible outcomes labeled by a.
Bob performs one out of mB possible measurements, la-
beled by y, which results in one out of dB outcomes, la-
beled by b. Together, the tuple (mA, mB, dA, dB) uniquely
specifies a bipartite Bell scenario. In what follows we
will denote by p(ab|xy) the probability of Alice and Bob
obtaining outcomes a and b conditioned on performing
measurements x and y, respectively. We also denote by
p ∈ RmAdAmBdB , the vectors with entries p(ab|xy), com-
monly referred to as a behavior.

Let us now recall that for any Bell scenario, the set L of
behaviors admitting local-causal explanations forms a
convex polytope. The vertices of L are local determinis-
tic behaviors [21], for which p(ab|xy) = pA(a|x)pB(b|y),
with marginals pA(a|x), pB(b|y) ∈ {0, 1}. While any be-
havior p in L admits a quantum realization, i.e., there
exists quantum strategies entailing a bipartite quantum
state ρ̂AB and local quantum measurement operators
{M̂x

a , N̂y
b } such that,

p(ab|xy) = Tr
(

ρ̂AB M̂x
a ⊗ N̂y

b

)
∀ a, b, x, y , (1)

the converse does not hold. Specifically, there are be-
haviors admitting a quantum realization that cannot be
expressed as a convex combination of local determinis-
tic behaviors. Therefore, the set Q of quantum behav-
iors strictly contains the local set, L ⊂ Q. We say that a
quantum behavior p is nonlocal if p ∈ Q \ L.
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Each facet of L is associated with an inequality of the
form

β(p) := ∑
a,b,x,y

cxy
ab p(ab|xy) ≤ βL, (2)

with cxy
ab , βL ∈ R, which is satisfied by all local behav-

iors.
It follows then that a nonlocal behavior p must vi-

olate at least one of these facet Bell inequalities, with
the amount of the violation, β(p) − βL, related to the
distance of p to the corresponding facet, which can be
thought of as a measure on nonlocality [22].

Note that, up to this point, the experimental setups
have been assumed to be ideal. In particular, the detec-
tors are perfect as they always detect an incoming quan-
tum system. In actual experiments, however, detectors
are not perfect and will sometimes fail to click, which
results in the occurrence of ”no-click” events that so far
were not considered in the measurement statistics. We
describe in the following the effect of imperfect detec-
tors on nonlocal quantum behaviors in Bell experiments,
and in particular, on the violation of Bell inequalities.

The most general way of accounting for a “no-click”
event is to consider it an additional outcome, say Φ,
of the measurement, which enlarges the Bell scenario
to (mA, mB, dA + 1, dB + 1), significantly increasing the
complexity of characterizing the sets L,Q. We can avoid
this problem and the fair-sampling assumption, while
remaining in the same scenario, by using a more conve-
nient post-processing which assigns a pre-existing out-
come to each “no-click” event. Besides the experimental
benefits of a smaller Bell scenario, this method is well-
suited for our purposes, since we are interested in gaug-
ing the effect of imperfect detectors on the value of a
given Bell inequality and retrieving the optimal quan-
tum strategies.

Let us suppose that Alice’s and Bob’s measurement
devices click with efficiencies ηA, ηB < 1, respectively.
Whenever Alice’s device fails to click she assigns a pre-
existing outcome a with probability qA(a|x). Similarly,
Bob assigns b with probability qB(b|y) whenever his
device fails to click. Together, the vector of probabili-
ties q(ab|xy) = qA(a|x)qB(b|y) specify a local assignment
strategy q. Let p(ab|xy) be the ideal joint probabilities,
then the effective measurement statistics p̃(ab|xy) are de-
termined by,

p̃(ab|xy) =ηAηB p(ab|xy) + ηA(1 − ηB)pA(a|x)qB(b|y)
+ (1 − ηA)ηBqA(a|x)pB(b|y)
+ (1 − ηA)(1 − ηB)qA(a|x)qB(b|y). (3)

Hence, for any local assignment strategy q, the effect of
inefficient detectors is a linear map p̃ = ΩηAηB(p) such
that,

p̃ = ΩηAηB(p) =ηAηB p + ηA(1 − ηB)pA

+ (1 − ηA)ηB pB + (1 − ηA)(1 − ηB)q,
(4)

where the effective behavior p̃ has entries p̃(ab|xy),
and the vectors pA, pB linearly depend on the ideal
marginal probabilities pA(a|x), pB(b|y), and have en-
tries pA(a|x)qB(b|y), qA(a|x)pB(b|y), respectively, for
any ηA, ηB and q. Consequently, by linearity, the value
of a given Bell functional β over this effective behavior
takes the form,

β(p̃) =ηAηBβ(p) + ηA(1 − ηB)β(pA) + (1 − ηA)ηBβ(pB)

+ (1 − ηA)(1 − ηB)β(q). (5)

Since locally assigning a pre-existing outcome to the
“no-click” is essentially a local post-processing, it cannot
increase the local bound of a Bell inequality β(p) ≤ βL
(2). Hence, a Bell experiment with inefficient detectors is
said to possess loophole-free nonlocality, if the effective
behavior p̃ violates the same Bell inequality, i.e.,

β(p̃) ≤ βL. (6)

Consequently, we naturally arrive at the question of de-
termining the maximum achievable loophole-free viola-
tion, β(p̃)− βL, for a given Bell inequality. Note that the
optimization problem involved in the computation of
this maximal violation is twofold, since we need two op-
timize over both local assignments and quantum strate-
gies. In the next Lemma, we greatly simplify this prob-
lem by showing that the optimal assignment strategy
is necessarily deterministic, which results in a family of
tilted Bell inequalities whose maximal violation in ideal
circumstances corresponds to the maximum loophole-
free violation of the Bell inequality in presence of ineffi-
cient detectors.

Lemma 1. Consider a Bell experiment with inefficient detec-
tion with efficiencies ηA, ηB. For any given Bell inequality
β(p) ≤ βL (2), the optimal quantum strategies which yield
the maximum loophole-free violation of the Bell inequality (6)
are those that maximally violate a tilted Bell inequality of the
form,

βηAηB(p) =β(p) +
1 − ηB

ηB
∑
a,x

cx
a pA(a|x)

+
1 − ηA

ηA
∑
b,y

cy
b pB(b|y)

≤ βL
ηAηB

− 1 − ηA
ηA

1 − ηB
ηB

(
∑
x,y

cx,y
axby

)
, (7)

where pA(a|x), pB(b|y) are the ideal marginal probabilities
of Alice and Bob, respectively, qA(a|x) = δa,ax , qB(b|y) =
δb,by represent deterministic assignment strategies, and cx

a =

∑y cxy
aby

and cy
b = ∑x cxy

axb. The loophole-free value β(p̃) of
the Bell functional (5) is related to value of the Bell functional
βηAηB(p) in the following way,

β(p̃) = ηAηBβηAηB(p) + (1 − ηA)(1 − ηB)

(
∑
x,y

cx,y
axby

)
.

(8)
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Proof. Let us plug in the expression of the effective value
of the Bell inequality (5) into (6) to obtain the Bell in-
equality,

β(p̃) = ηAηBβ(p) + ηA(1 − ηB)β(pA)

+ (1 − ηA)ηBβ(pB) + (1 − ηA)(1 − ηB)β(q)
≤ βL. (9)

Now, for given detection efficiencies, ηA, ηB, to max-
imise the value of the Bell functional in (9), we need to
optimize the ideal quantum behavior p ∈ Q as well as
the optimal local assignment strategy q ∈ L for mit-
igating the “no-click” events. Because the latter is a
local post-processing, the optimal assignment strategy
can always be taken to be a local-deterministic strat-
egy, wherein, qA(a|x) = δa,ax and qB(b|y) = δb,by with
ax ∈ {0, . . . , dA − 1} and by ∈ {0, . . . , dB − 1}. Plug-
ging in the optimal deterministic assignment strategy
(9), and moving the behavior independent terms to the
right side, yields the tilted Bell inequality (7) on the ideal
behavior as well as the relation (8).

Lemma 1 reduces the problem of retrieving the maxi-
mum quantum loophole-free violation for any given Bell
inequality (2) to finding the maximum violation of the
corresponding tilted Bell inequality with ideal detectors
(6) 1. Specifically, for given efficiencies ηA, ηB, and a
given local deterministic assignment strategy ax, by, we
need to optimize over quantum behaviors p ∈ Q to
find the maximum violation of the tilted Bell inequal-
ity (7), which can be tackled with standard numerical
methods (such as the NPA hierarchy and see-saw semi-
definite programming method [23]). Then, we con-
sider all other local assignment deterministic strategies,
qA(a|x) = δa,ax and qB(b|y) = δb,by , to find the maxi-
mum violation of the corresponding tilted Bell inequal-
ities (7), and choose the optimal (∗) local assignment
strategy, say q∗A(a|x) = δa,a∗x and q∗B(b|y) = δb,b∗y . More-
over, as we demonstrate in the next section, the expres-
sion of the tilted Bell inequality (7) also lets us infer the
threshold detection efficiencies below which a loophole-
free violation of the given Bell inequality is not possible.

In the next section, we exemplify the applications of
Lemma 1 for the simplest bipartite Bell scenario, with
two dichotomic measurements per party.

III. MAXIMAL DETECTION LOOPHOLE-FREE
NONLOCALITY IN THE CHSH SCENARIO

We now consider the simplest bipartite Bell scenario,
in which Alice and Bob perform one of the two dis-
tinct measurements, x, y ∈ {0, 1} and obtain binary

1 We note that tilted Bell inequalities have been used to find optimal
quantum strategies for maximum loophole-free violation of Bell in-
equalities in a case-by-case basis.

outcomes, a, b ∈ {−1,+1}, respectively. It is conve-
nient in this scenario to introduce marginals and corre-
lators [2]: marginals are defined by ⟨Ax⟩ := ∑a a pA(a|x)
and ⟨By⟩ := ∑b b pB(b|y), whereas correlators are de-
fined by ⟨AxBy⟩ := ∑ab ab p(ab|xy). We note that in
a quantum realization these correlators are the expec-
tation of binary observables, Âx = M̂x

+1 − M̂x
−1 and

B̂y = N̂y
+1 − N̂y

−1 with respect to a shared quantum state
ρ̂AB .

Writing behaviors in terms of correlators and
marginals, the nonlocality of a given behavior can be
witnessed by a violation of the CHSH inequality,

C(p) = ∑
x,y

(−1)x·y⟨AxBy⟩ ≤ 2, (10)

which up to relabeling of measurements and outcomes
is known to be the only tight and complete Bell inequal-
ity in this scenario [21, 24].

Let us now consider inefficient detectors with efficien-
cies ηA, ηB. Let p be the ideal behavior corresponding
to a quantum strategy. Then for any local assignment
strategy q, the condition for an the effective behavior
p̃ = ΩηAηB(p) in (5) to be nonlocal amounts to the ideal
behavior p violating the following inequality,

C(p̃) =ηAηBC(p) + (1 − ηA)(1 − ηB)C(q)

+ ηA(1 − ηB)C(pA) + (1 − ηA)ηBC(p̃B) ≤ 2.
(11)

We are particularly interested in the maximum possible
loophole-free violation C(p̃)− 2 of the CHSH inequality
for given ηA, ηB. Therefore, we invoke Lemma 1 with an
optimal2 deterministic strategy, wherein q(a|x) = δa,+1,
q(b|y) = δb,+1 for all x, y, to retrieve the following
doubly-tilted CHSH inequality,

CηAηB(p) = C(p̃) +
2

ηB
(1 − ηB)⟨A0⟩+

2
ηA

(1 − ηA)⟨B0⟩

≤ 2
[

1
ηA

+
1

ηB
− 1
]
= cL(ηA, ηB). (12)

Consequently, for any given ηA, ηB, the maximum
loophole-free violation of CHSH inequality corresponds
to the maximum violation of the doubly-tilted CHSH in-
equality in (12). However, not all combinations ηA, ηB
allow for loophole-free violation of the CHSH inequal-
ity. We now demonstrate that the expression of the
doubly-tilted CHSH inequalities (12) allows us to infer
the region of ηA, ηB that permits a loophole-free quan-
tum violation of the CHSH inequality [25],

2 We find that the assignment strategy considered above is one the
family of optimal deterministic assignment strategies which achieve
the maximum loophole-free violation of the CHSH inequality for all
ηA, ηB (see Appendix A).
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Observation 1. A quantum loophole-free violation of the
CHSH inequality (11) is not possible if the detection efficien-
cies ηA, ηB ∈ [0, 1] fail to satisfy,

ηB >
ηA

3ηA − 1
(13)

Proof. First, let us note that while in general it is not
guaranteed that tilted Bell inequalities obtained via
Lemma 1 will be tight. Since local assignment strategy
saturates the local value β(q) = 2 of the CHSH inequal-
ity, the family of doubly-tilted CHSH inequalities (12)
are indeed tight.

Next, we observe that the maximum no-signalling
value cNS of doubly-tilted CHSH functionals CηAηB(p)
(12) is cNS (ηA, ηB) = max{4, cL(ηA, ηB)} for all
ηA, ηB ∈ [0, 1], where the value 4 corresponds to
a nonlocal vertex of the no-signalling polytope (the
PR-Box) [26]. Because of the strict inclusion rela-
tion between the sets of behaviors L ⊂ Q ⊂ NS
(NS denotes the no-signaling polytope), whenever
cNS (ηA, ηB) = cL(ηA, ηB), there is no room for quan-
tum violation. Therefore, the region where a loophole-
free violation of the CHSH inequality is possible is given
by cL(ηA, ηB) < 4. This results in, 1

ηA
+ 1

ηB
< 3.

Therefore, (13) provides lower bounds for Bob’s criti-
cal detection efficiency η∗

B ≥ ηA
3ηA−1 given Alice’s detec-

tion efficiency ηA ∈ ( 1
2 , 1] , which turn out to be tight

[27]. Hence, observation 1 effectively defines the re-
gion (13) of ηA, ηB, wherein we look for the maximum
quantum violation of doubly-tilted CHSH inequalities,
cQ(ηA, ηB) = maxp∈Q(CηA ,ηB) (12) to retrieve maximum
loophole-free violation of CHSH inequality (11).

As discussed in the subsequent sections, retrieving
the exact expression for the maximum violation of the
doubly-tilted CHSH inequalities as a function of ηA, ηB,
with the traditional methods, such as the NPA hierar-
chy and SOS decompositions, turns out to be intractable.
Despite this, in FIG 1, we plot the analytically obtained
value of maximum loophole-free violation of the CHSH
inequality against ηA, ηB ∈ [ 1

2 , 1]. Moreover, in FIG. 2,
we use the optimal strategies to illustrate the effect of
inefficient detectors with efficiency ηA = ηB = 0.85 on
the violation of CHSH inequality as a consequence of
Lemma 1.

In the following sections, we describe the technique
to retrieve the analytical expression and the analytical
form of the optimal quantum strategies, which are self-
tested by the maximal violation.

IV. SELF-TESTING OF CHSH INEQUALITIES TILTED
FOR INEFFICIENT DETECTORS

In this section, we derive robust self-testing statements
for the family of doubly-tilted CHSH inequalities (12),

FIG. 1: Maximum loophole-free viotion of the CHSH
inequality:— A plot of the maximum loophole-free

violation of the CHSH inequality,
C(p̃) = ηAηBcQ(ηA, ηB) + (1 − ηA)(1 − ηB)2, against

detection efficiencies ηA, ηB ∈ [ 1
2 , 1], where we used the

analytical expression for maximum quantum violation
of the doubly-tilted CHSH inequality (12), cQ(ηA, ηB),
derived in Section IV B. The solid red line represents

Bob’s critical detection efficiency η∗
B = ηA

3ηA−1 (13),
below which a loophole-free quantum violation of the

CHSH inequality is not possible.

entailing the analytical expressions for the maximum vi-
olation, and the optimal quantum strategies. We briefly
present the requisite preliminaries for self-testing by
revisiting the already-solved sub-case of our problem,
namely, CHSH inequalities tilted for one inefficient de-
tector.

A. One inefficient detector

Let us consider an ideal scenario wherein Alice has
access to perfect detectors, such that ηA = 1, while
Bob’s detector are imperfect and click with efficiency ηB.
Consequently, we retrieve the following family of com-
pletely asymmetrically tilted CHSH inequalities from
(12),

Cα(p) = ∑
x,y

(−1)x·y⟨AxBy⟩+ α⟨A0⟩ ≤ 2 + α, (14)

where the tilting parameter α = 2
ηB
(1 − ηB) is deter-

mined by the detection efficiency on Bob’s side. First,
from Observation 1 and (13), for quantum violation we
have that ηB ∈ ( 1

2 , 1], which restricts the tilting parame-
ter to α ∈ [0, 2).

The maximum quantum value of the Bell functional
in (14) is cQ(α) =

√
8 + 2α2 [19]. Hence, from (8), the

maximum loophole-free violation of CHSH inequality

when ηA = 1 is 2
√

2
√

η2
B + (1 − ηB)2. Recall that, in

terms of the state and measurements {|ψ′⟩ , Â′
x, B̂′

y} of
an optimal quantum strategy, we can write the maximal
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FIG. 2: Effect of inefficient detectors on nonlocal
correlations:— This graphic illustrates the impact of

detector inefficiencies on nonlocal quantum
correlations within the simplest Bell scenario. The blue
region represents the set of quantum correlations p ∈ Q

in ideal conditions. With the detection efficiencies
ηA = ηB = 0.85, and the local assignement strategy
qA(a|x) = δa,0, qB(b|y) = δb,0, the effective quantum

correlations p̃ = ΩηAηB(p) are constrained to the
smaller orange subset. The blue dot on the blue curve

corresponds to the isotropic behavior piso that
maximally violates the CHSH inequality,

C(piso) = 2
√

2, in ideal conditions, while the
corresponding effective behavior (blue dot on the

orange curve) p̃ = ΩηAηB(piso) no longer attains the
maximum loophole-free violation of the CHSH

inequality, C(p̃tilted) ≈ 2.08854. Instead, the red dot on
the blue curve corresponds to the quantum behavior

ptilted which maximally violates the doubly-tilted
CHSH inequality (dashed black line),

CηAηB(ptilted) = 2.98098, (12), and attains the maximum
loophole-free violation C(p̃tilted) ≈ 2.19876 (red dot on

the orange curve) of the CHSH inequality, thereby,
exemplifying Lemma 1.

functional value as cQ(α) = ⟨ψ′ | Ĉα |ψ⟩, where Ĉα is the
CHSH Bell operator, given by

Ĉα = ∑
x,y

(−1)x·y Âx ⊗ B̂y + αÂ0. (15)

In Ref. [18] it is shown that Ĉα admits an SOS decompo-
sitions of the form

cQ(α)1 − Ĉα = ∑
i

P†
i Pi, (16)

in terms of polynomials Pi in the operators
{1, Â′

x, B̂′
y, Â′

x ⊗ B̂′
y}. These decompositions are then

used to prove that cQ(α) self-tests the optimal strategy

{|ψ⟩ , Âx, B̂y} [18, 28], where

|ψ⟩ = cos θ |00⟩+ sin θ |11⟩ ,

Â0 = σz B̂0 = cos µ σz + sin µ σx

Â1 = σx B̂1 = cos µ σz − sin µ σx,

(17)

with α = 2/
√

1 + 2 tan2 2θ, tan(µ) = sin(2θ) and σx(z)
denotes the x(z) Pauli matrix.

The proof builds upon the observation that for any
quantum strategy {|ψ′⟩ , Â′

x, B̂′
y} attaining the value

cQ(α), the SOS decomposition (16) implies that |ψ′⟩
must belong to the null space of the operators Pi, i.e.,
it must satisfy the conditions, Pi |ψ′⟩ = 0 for all i. From
these conditions it is possible to infer the existence of
operators {ẐA, X̂A, ẐB, X̂B} [18], such that,

ẐA
∣∣ψ′〉 = ẐB

∣∣ψ′〉
sin θX̂A(1 + ẐB)

∣∣ψ′〉 = cos θX̂A(1 − ẐA)
∣∣ψ′〉 .

(18)

The conditions (18) ensure the existence of local isome-
tries, ΦA and ΦB, mapping any optimal strategy
{|ψ′⟩ , Â′

x, B̂′
y} to the reference strategy {|ψ⟩ , Âx, B̂y} in

(17), that is,

ΦA ⊗ ΦB(
∣∣ψ′〉) = |ψ⟩ ⊗ |junk⟩

ΦA ⊗ ΦB(Â′
x ⊗ B̂′

y
∣∣ψ′〉) = Âx ⊗ B̂y |ψ⟩ ⊗ |junk⟩ ,

(19)

where |junk⟩ represents the arbitrary state of additional
degrees of freedom on the which the measurements act
trivially. Thus it is seen that the optimal quantum strat-
egy is unique up to local isometries. We note that, while
the proof of relations in Eq. (18) requires an ideal behav-
ior, [18] demonstrates that the self-testing can be made
robust. Recall, a Bell expression provides a robust self-
test for a given quantum strategy, say R if, in a noise-
tolerant manner, the expected value β in close to the
maximum βQ consistently corresponds to a strategy R̃ in
a close neighbourhood of the reference strategy R, up to
local isometries.

Let us now proceed to the unsolved general case of
inefficient detectors for both parties.

B. Two inefficient detectors

We now consider the most generic experimental set-
ting, wherein the detectors of both parties may be im-
perfect and click with efficiencies ηA, ηB ∈ [0, 1]. We
rewrite for convenience, the doubly-tilted CHSH in-
equalities (12) for the general case as,

Cα,β(p) = ∑
x,y

(−1)x·y⟨AxBy⟩+ α⟨A0⟩+ β⟨B0⟩ ≤ 2+ α+ β,

(20)
where the tilting parameter α = 2

ηB
(1 − ηB) for Al-

ice’s term ⟨A0⟩ depends on the Bob’s detection effi-
ciency ηB, while Bob’s tilting parameter β = 2

ηA
(1 − ηA)
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is determined by Alice’s efficiency ηA. Consequently,
the boundary of the region of interest (13) translates to
0 < α + β < 2, in terms of the tilting parameters. We
are interested in finding the maximal violation of the in-
equality in (20), as well as a quantum state and measure-
ments attaining it, as a function of the tilting parameters
α, β. However, we find the problem to be intractable via
analytical techniques described above. In what follows
we first describe in more detail the difficulties that arise
when trying to obtain a tight SOS decomposition for the
Bell operator on the left of (20), and then we show that
obtaining an analytical solution is nonetheless possible
by a different technique.

1. Impracticality of the SOS technique and NPA upper-bound
convergence

Before we derive the analytical expression for the
maximal quantum violation cQ(α, β) of the doubly-
tilted CHSH inequality (12) with an alternative tech-
nique, here we demonstrate that the standard SOS de-
composition technique, though theoretically applicable,
becomes impractical for these inequalities.

The problem of finding the maximum quantum viola-
tion βQ of a Bell inequality (2) can be relaxed with the
NPA hierarchy [29] of semi-definite programs. Specifi-
cally, the NPA hierarchy returns a converging sequence
of upper-bounds βQL on the maximum quantum vio-
lation βQ. Here, L ∈ {1, 1 + AB, 2, . . .} denotes the
level of the hierarchy, which corresponds to the length of
the monomials of the measurement operators {M̂x

a , N̂y
b }.

We recall that finding a tight upper bound on the maxi-
mum quantum violation of Bell inequalities using NPA
hierarchy, such that βQL = βQ, and retrieving a tight
SOS decomposition ∑i P†

i Pi for the operator βQI − β̂
form a primal-dual pair of SDPs, where Pi are polyno-
mials in the optimal measurement operators {M̂x

a , N̂y
b }.

In particular, the level L of the NPA hierarchy at which
βQ = βQ corresponds to the degree of the polynomials
Pi in a tight SOS decomposition. For instance, the de-
gree polynomials in the tight SOS decompositions (16)
of the completely asymmetrically doubly-tilted CHSH
inequalities reflect the fact that the level 1 + AB of the
NPA hierarchy is sufficient to retrieve the maximum
quantum violation for these inequalities.

In FIG. 3, we chart the minimum level L of the NPA
hierarchy against the tilting parameters α, β required
to saturate the maximum quantum violation cQ(α, β)
(found in the next section) of doubly-tilted CHSH in-
equalities (20), up to machine precision. Remarkably, as
the tilting parameters α, β approach the critical bound-
ary (13), α + β = 2, the level L of NPA hierarchy in-
creases rapidly. In particular, we found that even the
level 12 of the NPA hierarchy is not enough to saturate
the maximum violation of the symmetrically doubly-

FIG. 3: Increasing levels for tight NPA upper bounds in the
CHSH scenario:— A plot of the minimum level

L ∈ {1, 1 + AB, 2, 3, 4, 5, 6, 7+} of the NPA hierarchy
required to saturate (up to machine precision) the

maximum quantum violation cQ(α, β) for α, β ∈ [0, 2].
Notably, the required minimum level of the

NPA-hierarchy rapidly increases as the tilting
parameters the critical boundary α + β = 2.

tilted CHSH inequality when3 α = β = 0.999. This
observation raises a critical question: is any finite level
of the NPA hierarchy enough to saturate the maximum
quantum violation of the doubly-tilted CHSH inequali-
ties for all tilting parameters α, β? The uncertainty sur-
rounding this question implies that the degree of poly-
nomials required for a tight analytical SOS decompo-
sition for these inequalities remains elusive and poten-
tially unbounded.

Nonetheless, for a significantly large range of the pa-
rameters α, β, the NPA level 1 + AB saturates the max-
imum quantum violation cQ(α, β). This observation
makes it tempting to apply the methodology from [18]
to extend the analytical self-testing results by finding a
Sum-of-Squares (SOS) decomposition for the Bell opera-
tor Ĉαβ associated with the general doubly-tilted CHSH
inequalities. Indeed, it is possible to numerically re-
trieve SOS decompositions for fixed values of the tilting
parameters, especially when lower levels of NPA hier-
archy saturate the maximum quantum violation. How-
ever, unlike the simpler completely asymmetric where
the SOS decomposition includes just two polynomials,
even the simplest decompositions for the general case

3 To a 12-digits approximation the analytical answer is
3.9980 0000 1333, whereas the NPA hierarchy gives the upper
bound of 3.9980 0000 2190. The calculation was done using the
toolkit for non-commutative polynomial optimization Moment
[30], the modeller YALMIP [31], and the arbitrary-precision solver
SDPA-GMP [32].
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demand at least five polynomials. The task of deducing
a generically applicable analytical SOS decomposition
from the numerical results is significantly hindered due
to the complex dependence of the maximal quantum vi-
olation and the optimal quantum strategy on the tilting
parameters α, β. This complex interdependence trans-
lates into the SOS polynomials, rendering them overly
convoluted and preventing any definitive statements
about the optimal strategies based on the SOS decom-
positions. Interestingly, nonetheless, for the symmetric
case with α = β = 2/

√
13, it is possible to find the ana-

lytical expression of the polynomials of degree 1+ AB in
the tight SOS decomposition and the optimal quantum
strategy.

The derivation of the self-testing results presented
in the section IV A, relied heavily on the existence of
SOS decompositions from which relations of the form
Pi |ψ⟩ = 0, where {Pi} are polynomial functions on
the measurement operators of an optimal realization
{Âx, B̂y, |ψ⟩}. The increase in the minimum degree as
well as the number of polynomials in tight SOS decom-
position for the general tilted-Bell inequalities, makes
self-testing with the SOS technique for general doubly-
tilted CHSH inequalities too arduous to be practical.
Nevertheless, as we show in the next section, it is still
possible to retrieve the analytical expressions for the
maximum quantum violation and the optimal quan-
tum strategy for general doubly-tilted CHSH inequali-
ties and demonstrate that the maximum violation self-
tests the optimal quantum strategy.

2. Self-testing based on Jordan’s lemma

Lacking tight analytical SOS decompositions for
the general doubly-tilted CHSH inequalities (20), we
present in this section an alternative approach based on
Jordan’s lemma [33–35].

Jordan’s lemma provides a convenient characteriza-
tion for the local observables of a party having two set-
tings with two outputs each. In particular, in CHSH sce-
nario, we can take Alice and Bob’s observables Ax, By
to be projective, à la Naimark’s dilation theorem. Jor-
dan’s lemma then asserts that there exists local unitary
transformations that simultaneously block-diagonalise
the observables Ax, By, with one and two dimensional
blocks. As we are interested in the expectation values
⟨Âx⟩, ⟨B̂y⟩ of the observables with respect to a state |ψ⟩,
we can always add a projector |ϕ⟩⟨ϕ | onto the Ker(ρA)
of the respective reduced state ρA = TrB |ψ⟩⟨ψ | to each
one dimensional block. Hence, we can, without loss of
generality, take all Jordan blocks to be two-dimensional,

(a)

(b)

FIG. 4: Error in estimation of maximum quantum
violation:— The curves in plot (a) correspond to the
difference cQL(α, α)− cQ(α, α) (×10−8) between the
upper-bounds from the levels L ∈ {7, 8, 9, 10} of the

NPA hierarchy and the maximum quantum violation
cQ(α, α) of symmetrically tilted Bell inequalities (12),

against α ∈ [0.99, 1], obtained with an arbitrary
precision solver SDPA-GMP [32] and our analytical

solution (Theorem 1), respectively. This plot
demonstrates the insufficiency of high levels of the

NPA hierarchy for obtaining tight bounds in the CHSH
scenario. The curve in plot (b) corresponds to the

difference cQ(α, α)− cQLB(α, α) (×10−3) between the
maximum quantum violation cQ(α, α) and the
lower-bound cQLB(α, α) corresponding to the

sub-optimal analytical solutions presented in [13],
against α ∈ [0, 1].

such that Alice’s observables can now be expressed as,

Â0 =
⊕

i
Â(i)

0 =
⊕

i
σZ (21)

Â1 =
⊕

i
Â(i)

1 =
⊕

i
(cos θA

i σZ + sin θA
i σX), (22)

where the index i iterates runs over blocks and σ
(i)
Z , σ

(i)
X

denote the Pauli Z, X matrices on the ith two dimen-
sional block. Similarly, Bob’s observables can be ex-



9

pressed as,

B̂0 =
⊕

j
B̂(j)

0 =
⊕

j
σZ (23)

B̂1 =
⊕

j
B̂(j)

1 =
⊕

j
(cos θB

j σZ + sin θB
i σX), (24)

where again j runs over blocks. Consequently, the Bell
operator Ĉαβ associated with the general doubly-tilted
CHSH inequalities (20) also take a block diagonal form,

Ĉαβ = ∑
i,j

Ĉαβ(θ
A
i , θB

j ), (25)

where Ĉαβ(θ
A
i , θB

j ) is an operator with local dimension 2
given by

Ĉαβ(θ
A
i , θB

j ) = ∑
x,y

(−1)x·y Â(i)
x ⊗ B̂(j)

y

+ α(Â(i)
0 ⊗ I2) + β(I2 ⊗ B̂(j)

0 ). (26)

where 12 denotes the two-dimensional identity opera-
tor.

Let Πi, Πj be the projectors onto Alice’s ith and Bob’s
jth blocks respectively, such that, Ĉαβ(θ

A
i , θB

j ) = Πi ⊗
ΠjĈα,βΠi ⊗Πj. Consequently, the value of the Bell func-
tional Cαβ(p) is given by

Cαβ(p) =
〈
Ĉαβ

〉
|ψ⟩ = ∑

i,j
pij tr

{
ρijĈαβ(θ

A
i , θB

j )
}

, (27)

where pij ρij = (Πi ⊗ Πj)|ψ⟩⟨ψ |(Πi ⊗ Πj) are the (un-
normalised) projections of |ψ⟩ onto the ith and jth blocks
of Alice and Bob, respectively. Since Cαβ(p) is a convex

combination of the values tr
{

ρijĈαβ(θ
A
i , θB

j )
}

in Alice’s
ith and Bob’s jth blocks with weights pij, its maximum
value cQ(α, β) is attained when for all i, j, the value of
the Bell functional is the optimal two–qubit value. Con-
sequently, without loss of generality,

Â0 = σZ , Â1 = cA σZ + sA σX (28a)

B̂0 = σZ , B̂1 = cB σZ + sB σX , (28b)

where cA = cos θA, sA = sin θA, cB = cos θB and
sB = sin θB. Consequently, the maximum quantum vi-
olation cQ(α, β) self-tests a quantum strategy if, up to
local two-dimensional unitaries, the optimal two-qubit
strategy is unique. Now we are prepared to present our
main result, namely, the analytical self-testing statements
for the symmetrically (α = β) tilted CHSH inequality.
We have differed the self-testing statements for the gen-
eral case of α ̸= β to the supplementary material (Sec. B)
for brevity.

Theorem 1. [Self-testing of symmetrically tilted CHSH
inequalities] The maximum quantum violation cQ(α, α) of

the symmetrically (α = β) tilted CHSH inequality (12) is
the largest root of the degree 4 polynomial,

f (λ) = λ4 + (4 − α2)λ3 +

(
11
4

α4 − 12α2 − 4
)

λ2

+ (2α6 − α4 − 20α2 − 32)λ + 5α6 − 21α4 + 16α2 − 32.
(29)

Cαα(p) = cQ(α, α) self-tests a two qubit quantum strategy
with optimal (∗) local observables of the form (28), such that
the optimal cosines are equal, i.e., c∗(α) = c∗A(α) = c∗B(α) ∈
[0, 1], and satisfy the relation,

c∗(α) =
1
8

[
3α2 − 4 +

√
16 + 9α4 + 8α2(2cQ(α, α)− 1)

]
.

(30)

Proof. Here, we present a comprehensive overview of
the proof-technique while the complete proof is con-
tained in the accompanying Mathematica notebook. As
discussed above Jordan’s lemma lets us express the Bell
operator Ĉαβ=α associated with the symmetrically (α =
β) tilted CHSH inequality (12) as a two qubit operator,

Ĉαα = ∑
x,y

(−1)x·y Âx ⊗ B̂y + α(Â0 ⊗ I2 + I2 ⊗ B̂0). (31)

With the parametrization (28), the Bell operator Ĉαα,
now a function of just two cosines cA, cB ∈ [0, 1], has
the following four dimensional matrix representation: ω + 2α sB − cAsB sA − cBsA −sAsB

sB − cAsB −ω −sAsB (cB − 1)sA
sA − cBsA −sAsB −ω (cA − 1)sB
−sAsB (cB − 1)sA (cA − 1)sB ω − 2α


(32)

where ω = 1 + cA + cB − cBcA. Now, for fixed cosines
cA, cB, the maximum quantum violation cQ(α, α) of
the symmetrically doubly-tilted CHSH inequality cor-
responds to the largest eigenvalue of the matrix (32),
i.e., the largest root of its characteristic polynomial
q(λ, cA, cB, α), which has the form,

q(λ, cA, cB, α) =λ4 − (4α2 + 8)λ2

+8α2(cAcB − cA − cB − 1)λ

+8[2(c2
B + c2

A(1 − c2
B))− α2(c2

A(1 − cB))

+ cB(1 + cB)− cAsB(1 − c2
B)], (33)

where λ denotes the eigenvalue of the matrix (32). Thus,
finding cQ(α, α) boils down to maximizing the largest
root of q(λ, cA, cB, α) in (33) over the cosines cA and cB.
While for any fixed value of the tilting parameter α, this
optimization problem can be numerically solved, ob-
taining an analytical expression as a function of the α
is a more arduous problem. We now describe how such
expression can be obtained via Gröbner basis elimina-
tion for both the optimal quantum value cQ(α, α) and
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the optimal measurement settings in terms of cosines
c∗A(α), c∗B(α).

Let us consider the Lagrangian for this problem,

L = λ + s · q(λ, cA, cB, α) (34)

where s is a Lagrange multiplier. Consequently, the
stationary points must satisfy the conditions, ∂cA L =
∂cB L = ∂sL = 0, which in-turn imply the following poly-
nomial conditions,

q(λ, cA, cB, α) = 0
qcA(λ, cA, cB, α) = ∂cA q(λ, cA, cB, α) = 0
qcB(λ, cA, cB, α) = ∂cB q(λ, cA, cB, α) = 0.

(35)

The cosines parameterizing the optimal observables
c∗A(α), c∗B(α) and the maximum quantum violation
cQ(α, α) = λ∗(α) are thus common roots of the poly-
nomials q, qcA , qcB in (35). We now use the Gröbner basis
elimination on q, qcA , qcB to eliminate the cosines cA, cB
and retrieve a polynomial f0(λ) of degree 12. We then
take the polynomial quotient of f0(λ) with respect to
eight trivial and sub-optimal roots to retrieve the desired
degree 4 polynomial f (λ) (29). The expression for max-
imum quantum violation cQ(α, α) which corresponds to
the largest real root of the polynomial f (λ) as a func-
tion of α is contained in the accompanying Mathemat-
ica notebook4 (See FIG. 1 in the more general scenario
ηA ̸= ηB).

Similarly, to find the expression for Alice’s optimal co-
sine c∗A(α), we eliminate cB, λ using Gröbner basis elim-
ination on q, qcA , qcB . This results in a degree 11 poly-
nomial g0(c). We then take the polynomial quotient of
g0(c) with respect to seven trivial and sub-optimal roots
to obtain the following degree 4 polynomial,

g(c) = −16c4 +
(

40α2 − 32
)

c3

+
(
−33α4 + 48α2 − 16

)
c2 +

(
8α6 − 10α4 + 8α2

)
c

− 4α6 + 7α4 (36)

Repeating the same procedure for Bob’s optimal cosine
c∗B(α), we end up with a degree 4 polynomial identi-
cal to g(c) in (36). We find the expressions for the op-
timal cosines to be identical c∗A(α) = c∗B(α) = c∗α and
corresponding to the largest root c∗α of g(c) (contained
accompanying Mathematica notebook and see FIG. 5
for the scenario α ̸= β). Furthermore, the simplifica-
tion c∗A(α) = c∗B(α) = c∗α allows us to derive the re-
lation (30) between the maximum quantum violation
cQ(α, α) and the optimal cosine c∗α. Observe that in the
interval [0, π] the angle θ∗A = θ∗B = θ between opti-
mal measurements is uniquely determined by cQ(α, α)

4 An open source version of the Mathematica Notebook can be down-
loaded from the public folder GitHub.

FIG. 5: Self-testing of partially incompatible observables:—
A plot of the optimal cosines of Alice c∗A(α, β) (28) with
β ∈ {α, 0.1, 0.01, 0.001, 0} self-tested by the maximum

quantum violation Cαβ(p) = cQ(α, β) of the
doubly-tilted CHSH inequalities (12) against the tilting

parameter α ∈ [0, 1]. Here, c∗A(α, β) = 0 implies
maximally incompatible whereas c∗A(α, β) = 1 reflects
compatible observables. Notice, that in contrast to the

totally asymmetrically case β = 0 wherein Alice’s
optimal cosine c∗A(α, β = 0) stays constant with respect
to α [18], for the general case, whenever β > 0, Alice’s

optimal measurements change with α = 2
ηB
(1 − ηB) and

in-turn depend on Bob’s detection efficiency ηB, and
tend towards compatible measurements as α → 2 − β.

via the relation (30), and therefore, the measurements in
the optimal two-qubit realization are unique up to lo-
cal unitaries. Thus, the maximum quantum violation
of symmetrically doubly-tilted CHSH inequalities self-
tests the optimal measurements. Since the largest eigen-
value of the Bell operator with the optimal measure-
ments is non-degenerate, the maximum quantum viola-
tion cQ(α, α) also self-tests the state partially entangled
two-qubit state which corresponding to eigenvector as-
sociated with the largest eigenvalue (see FIG. 6).

The presented self-testing results rely on ideal exper-
imental conditions. In the next section, we demonstrate
the robustness of these results, showing that small de-
viations from the maximal violation limit the variation
from the optimal realization. In the last section, we dis-
cuss several key insights based on the self-testing results
derived in this section.

3. Robust self-testing

The self-testing statements derived in this work rely
on the assumption that the violation of the given Bell
inequality is maximal, which is an theoretically ide-
alization due to the inevitability of experimental im-
perfections. Therefore, the self-testing results must be
made robust. The lack an analytical tight SOS decom-
position prevents us from studying the robustness of



11

FIG. 6: Self-testing of non-maximally entangled states:— A
plot of the Schmidt coefficients ξ∗i of the optimal

non-maximally entangled quantum state
|ψ⟩ = ξ∗0 |00⟩+ ξ∗1 |11⟩ (represented in the Schmidt

basis) against α ∈ [0, 1] for attaining maximum
quantum violation of the symmetrically (α = β) tilted
CHSH inequality (12). Notice, as α = β → 1 (η → 2

3 )
the optimal state becomes almost product.

FIG. 7: Robustness of the self-testing statements:— A plot
of lower bounds F ∗

L on the minimum quantum fidelity
F ∗

L ≤ F ∗ from the level L = 3 of NPA hierarchy
between the actual state and the optimal self-testing

state against the violation Cαα(p) of the symmetrically
(α = β) tilted CHSH inequality (12) for tilting

parameters α ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

these self-testing results analytically. Nevertheless, we
can approach this problem by means of the numerical
SWAP technique introduced in [36, 37]. The numer-
ical SWAP method utilizes the NPA hierarchy to ob-
tain lower bounds on the closeness (fidelity) of the ex-
perimental measurements and the shared state to the
ideal self-testing measurements and state. Here we de-
scribe the technique for bounding the fidelity between
any optimal state |ψ′⟩ and the reference self-testing state
|ψ⟩. The main idea of this technique relies on the no-
tion of local isometries, which map the actual physi-
cal state |ψ′⟩ to our reference self-testing state |ψ⟩ and
a junk state |junk⟩ on auxiliary local degrees of free-
dom. In particular, the local isometries act as partial
SWAP gates, essentially swapping the actual physical

state |ψ′⟩ with the state |0⟩⊗N of the registers, such that
the final state of the registers corresponds to the refer-
ence self-testing state |ψ⟩. The local isometries can be
implemented through a SWAP circuit USWAP, such that
the fidelity F = ⟨ψ|USWAP |ψ′⟩ = 1 for any state |ψ′⟩
maximally violating the Bell inequality.

Consequently, we can cast the problem of certifying
whether the behavior p attaining maximum violation of
a Bell inequality self-tests the optimal state |ψ⟩, as that
of minimising the fidelity F , with the behavior subject
to the behavior p admitting a quantum strategy. While
this optimisation problem is in general computationally
hard, we can relax it as a semidefinite program (SDP)
via the NPA hierarchy.

The SWAP circuit USWAP only depends on the self-
testing measurements. The particulars of such USWAP,
specifically those corresponding local isometries, enable
us to express the fidelity, FL = ⟨ψ|ρSWAP(ΓL)|ψ⟩, of the
final state of the register ρSWAP(ΓL) with the reference
state |ψ⟩, as a function of the entries of the necessarily
positive semi-definite NPA moment matrix ΓL of level L,
as well as of the reference self-testing state |ψ⟩. As some
of the entries of the moment matrix ΓL correspond to ex-
perimental behavior, such as [Γn]Â′

x ,B̂′
y
= ⟨ψ′|Â′

x B̂′
y|ψ′⟩,

the behavioral preconditions of a self-testing statement
translate to linear constraints on the entries of the mo-
ment matrix ΓL. Given a target self-testing state |ψ⟩
and solving the consequent semi-definite minimization
program with the fidelity, FL = ⟨ψ|ρSWAP(ΓL)|ψ⟩ as
the linear objective function, retrieves a converging se-
quence of lower bounds, F ∗

1 ≤ F ∗
2 ≤ . . . ≤ F ∗

L such that
F ∗

L→∞ = F ∗, on the minimal quantum fidelity F ∗.
In the figure FIG. 7, we plot a lower bound of

the minimal fidelity F ∗
L against the violation of the

symmetrically tilted Bell inequality Cαα(p), for α ∈
{0.2, 0.4, 0.6, 0.8} obtained with the numerical SWAP
method. For these curves, for each α, we used the maxi-
mal violation of the doubly-tilted CHSH inequality (20),
and the reference optimal state and measurements, de-
rived in the previous section. Since the optimal observ-
ables Â1 and B̂1 are given by some linear combination of
gates Ẑ and X̂ in the SWAP circuit, to find the minimum
fidelity FL, we introduce extra dichotomic operators Â2
and B̂2 to account for the X gate on Alice’s and Bob’s
side and impose the relevant extra constraints by means
of localising matrices [36].

We find that level 3 of the NPA hierarchy is enough
for producing the fidelity curves for α < 0.9, but higher
values of α require increasing levels of the hierarchy. We
tentatively attribute this effect to the exploding levels of
the NPA hierarchy described in the section IV B 1. Ob-
serve that the minimal fidelity becomes FL = F = 1
when the inequality violation is maximal, indicating
that the maximal quantum violation self-tests the op-
timal state, as expected from the discussion above. In
particular, for α > 0.3 a clear change in behavior in the
fidelity curve is observed when the violation reaches the



12

maximal local value Cαα(p) = 2 + 2α, after which the
dependence is almost linear.

V. DISCUSSIONS

The experimental realization of long-range loophole-
free nonlocal correlations is a prerequisite for the large-
scale adoption of device-independent quantum cryp-
tography. However, a significant hurdle stands in our
way: the inevitable loss of photons in optical fibers
and the limited efficiencies of detectors. In particular,
if the detection efficiencies fall below the critical value,
the otherwise nonlocal quantum strategies cease to pro-
duce nonlocal correlations. Consequently, extensive re-
search has thus far been devoted to identifying quan-
tum strategies with minimal threshold detection effi-
ciencies. Nonetheless, there is a distinct but significant
unaddressed question: what quantum strategies max-
imize loophole-free nonlocality when detector efficien-
cies surpass these critical values?

In this work, we addressed the problem of finding the
quantum strategies that maximize the loophole-free vi-
olation of a given Bell inequality in the presence of in-
efficient detectors. In Lemma 1, we demonstrate that
for any Bell inequalities and any specification of detec-
tion efficiencies, the quantum strategies that yield the
maximum loophole-free violation are the ones that max-
imally violate a tilted version of the Bell inequality. We
then focus on the simplest case of the CHSH inequal-
ity (10) to retrieve a family of doubly-tilted CHSH in-
equalities (12). As our main results, we derive analyt-
ical self-testing statements (Theorem 1 ) for this family
of Bell inequalities, entailing the analytical expressions
for the maximum quantum violation and the ensuing
optimal quantum strategy. In particular, we note that
the maximum violation of the tilted CHSH inequality in
Theorem 1 differs from that reported in [13] (see FIG.
4). Additionally, it is worth noting that the nonlocal cor-
relations maximally violating the tilted inequalities in
(7) also maximize the guessing probability ⟨A0⟩+ ⟨B0⟩,
subject to the given CHSH functional value C(p). Con-
sequently, the quantum strategies obtained via Theorem
1 allow us to recover the boundary of the set of quantum
correlations on the slice C(p) vs ⟨A0⟩ + ⟨B0⟩, plotted
in FIG. 2. Furthermore, these quantum strategies have
found application in the recently introduced routed Bell
experiments [14, 38, 39].

Besides providing a convenient way for finding quan-
tum strategies that generate the maximum loophole-free
nonlocality, Lemma 1, and in particular the expression
of the tilted Bell inequalities (7), offers crucial insights
into the how the optimal quantum behaviors move with
the efficiencies of the detectors in the no-signaling poly-
tope. Essentially, with decreasing efficiencies, the hyper-
plane corresponding to the Bell inequality (7) tilts about
a local deterministic point specified by the assignment
strategies, in turn moving the optimal strategies along

towards the local polytope L, and specifically towards
the local deterministic point. We exemplify this obser-
vation in FIG. 2.

The family of self-testing statements in Theorem 1 and
2 provide crucial insights into how decreasing detector
efficiency affects optimal quantum strategies. As illus-
trated in figure 6, for inefficient detectors ηA, ηB < 1
(α, β > 0), the optimal strategy requires partially en-
tangled states for maximal loophole-free nonlocality.
Observe that the degree of entanglement decreases as
the efficiencies approach the critical values (13), as the
state becomes almost product. While this finding is in
line with observations from the known asymmetric case
ηA = 1 (β = 0), the optimal measurements present
an intriguing deviation. Specifically, in the asymmetric
case ηA = 1 (β = 0) (17), Alice’s optimal measurements
remain maximally incompatible irrespective of Bob’s
detection efficiency ηB ∈ (1/2, 1] (α ∈ [0, 2)), while Bob
requires partially incompatible measurements whose in-
compatibility decreases with his decreasing efficiency
ηB (α), approaching almost compatible measurements
as ηB → 1/2 (α → 1). However, the situation changes
significantly when both detectors are inefficient. As we
illustrate in FIG. 5, in contrast to the asymmetric case,
Alice’s measurements depend non-trivially on Bob’s de-
tection efficiency ηB. Specifically, whenever ηA < 1 (β >
0), Alice’s optimal measurement tends towards com-
patible measurements as ηB (α) approaches the critical
boundary (α → 2 − β) (13). This observation highlights
the natural importance of partially incompatible mea-
surements in device independent cryptography [40]. Fi-
nally, as Bell scenarios are linked to prepare and mea-
sure scenarios [41], it would be interesting to investigate
the implications of our results to prepare and measure
experiments with inefficient detectors.

Besides the inferences concerning the maximum effec-
tive nonlocality in the presence of inefficient detectors,
the analytical results in Theorem 1 and 2 allow us to re-
veal a fascinating complexity in the characterization of
the set of nonlocal quantum correlations in the simplest
Bell scenario with the NPA hierarchy. While it is a well-
known fact that the NPA hierarchy converges to the set
of quantum correlations, lower levels 1 + AB, 2, 3 were
widely believed to be sufficient to characterize extremal
quantum correlations in the CHSH scenario. However,
in striking contrast to the widely held belief, we demon-
strate in FIG. 3 and 4, as the tilting parameters α, β > 0
approach critical limit α + β → 2, the level of NPA hi-
erarchy required for a tight upper bound increases dras-
tically. This effect is the most pronounced for the sym-
metric case α = β where we find that even level 12 of
the NPA hierarchy does not yield tight upper bounds on
the maximal violation of the symmetrically tilted CHSH
inequalities as α → 1 (FIG. 4). Crucially, it remains un-
clear if any finite level of NPA will be enough to char-
acterize all extremal quantum correlations in the CHSH
scenario. This effect renders the traditional SOS decom-
position method impractical for deriving analytical self-
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testing statements, and we rely on Jordan’s lemma to
retrieve analytical self-testing statements in Theorem 1
and 2.

Even more strinkingly, this unexpected feature is ob-
served in those correlation points achieving maximal
loophole free nonlocality with detection efficiencies near
the critical value, as depicted in FIG. 3, which are real-
ized with almost compatible measurements and almost
product states. Since the level 1 + AB is enough for the
asymetric case β = 0 wherein Alice’s optimal measure-
ment remains maximally incompatible, irrespective of
the value of α, the effect of exploding NPA levels seems
to be linked to the aforementioned complicated depen-
dency of the optimal partially incompatible measure-
ments on the tilting parameters 0 < α, β < 2, and which
becomes sharper as the optimal measurements for both
parties become almost compatible as α + β → 2. These
results then raise the question of whether the complexity
of the characterization extremal nonlocal quantum cor-
relation, as measured by the minimum saturating level
of the NPA hierarhcy is related to the partial incompati-
bility of the quantum measurements realizing them.

ACKNOWLEDGEMENTS

We would like to thank Tamás Vértesi, Marcin
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T. H. Yang, Physical characterization of quantum devices
from nonlocal correlations, Phys. Rev. A 91, 022115 (2015).
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FIG. 8: Optimal assignment strategy for maximum
loophole-free violation of the CHSH inequality:— A plot
comparing the maximum effective violation of the

CHSH inequality (solid blue line) with the assignment
strategy considered in the main text

Cηη(p̃) = η2cQ(η, η) + (1 − η)22 (12), and the
maximum effective violation of the CHSH inequality

with the other representative assignment strategy
Cηη(p̃) = η2cQ(η, η) + (1 − η)2 (A4) (dashed orange
curve). The plot demonstrates that the assignment

strategy considered in the main text is optimal.

Appendix A: Optimal local assignment strategy for
maximum loophole-free violation of the CHSH inequality

To any given Bell inequality β(p) ≤ βL Lemma 1 as-
sociates a family a tilted Bell inequalities of the form (7),

βηAηB(p) =β(p) +
1 − ηB

ηB
∑
a,x

cx
a pA(a|x)

+
1 − ηA

ηA
∑
b,y

cy
b pB(b|y)

≤βL(ηA, ηB), (A1)

As the coefficients cx
a = ∑y cxy

aby
, cy

b = ∑x cxy
axb depend

on the deterministic assignment strategy qA(a|x) =
δa,ax , qA(b|y) = δb,by , to maximum the effective viola-
tion β(p̃)− βL an optimal assignment strategy must be
chosen, such that for any specification of detection effi-
ciencies ηA, ηB, the maximum effective violation of the
original Bell inequality β(p̃) corresponds to the maxi-
mum violation βQ(ηA, ηB) of the corresponding tilted
Bell inequality.

In the CHSH scenario, there are 16 such strategies,
which can be labeled by four bits sA, sB, rA, rB ∈ {0, 1}
specifying the possible values of the marginals ⟨Ax⟩ =
(−1)rAx+sA and ⟨By⟩ = (−1)rBx+sB . For any such a de-
terministic strategy we obtain the following tilted family

of CHSH functionals,

C(sA ,sB ,rA ,rB)
ηAηB (p) = ∑

x,y
(−1)x·y⟨AxBy⟩+

+
2(1 − ηB)

ηB
∑
x
(1 + (−1)rB+x)(−1)sB⟨Ax⟩

+
2(1 − ηA)

ηA
∑
y
(1 + (−1)rA+y)(−1)sA⟨By⟩

(A2)

Also, any such deterministic strategy the effective viola-
tion of the CHSH inequality for is given by,

C(p̃) =ηAηBC(sA ,sB ,rA ,rB)
ηAηB (p)

+ 2(1 − ηA)(1 − ηB)(−1)sA+sB+rArB . (A3)

Consequently, for any specification of the efficiency,
ηA, ηB , the optimal deterministic assignment strategy
will be the one which yields maximum effective viola-
tion (A3) of the CHSH inequality. The same holds for
the other 8 strategies satisfying sA + sB + rArB = 1 (mod
2). Thus, to find the optimal strategy we need only to
compare representatives of each class, namely, the cases
rA = rB = SA = SB = 0 and rA = rB = SB = 0, sA = 1.
While former strategy yields the doubly-tilted CHSH in-
equality (12) considered in the main text, the later cor-
responds to following distinct doubly-tilted CHSH in-
equality,

C′
ηAηB

(p) = C(p̃) +
2

ηB
(1 − ηB)⟨A0⟩

2
ηA

(1 − ηA)⟨B0⟩

≤ 2
[

1 − 1
ηA

− 1
ηB

]
= c′L(ηA, ηB). (A4)

We use the proof technique described in Section IV B,
to retrieve the analytical expression for the maximum
violation c′Q(ηAηB) of (A4) and compare corresponding
effective violation of the CHSH inequality (A3) to the
one obtained from the maximum violation cQ(ηA, ηB)
doubly-tilted CHSH inequality (12). We find that, for all
ηA, ηB the doubly-tilted CHSH inequality considered in
the main text (12) yields higher effective violation of the
CHSH inequality (see FIG. 8).

Appendix B: Self-testing of doubly-tilted CHSH
inequalities

In this section, we present the analytical self-testing
statements for the entire family of doubly-tilted CHSH
inequalities (12).

Theorem 2. [Self-testing of doubly-tilted CHSH inequal-
ities] The maximum quantum violation cQ(α, β) of the
doubly-tilted CHSH inequality (12) is the largest root of the
degree 6 polynomial,

f (λ) = 4λ6 − 4αβλ5 +
4

∑
k=0

τkλk (B1)
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FIG. 9: Summary of result for not equal efficient detectors (α, β). (a) Optimal quantum value as the largest eigenvalue of
Ĉ. (d) all the non-degenerate eigenvalues of Ĉ (the largest is zoomed in (a)). (b) The Schmidt decomposition of the
optimal quantum state |ψ⟩ = s0 |00⟩+ s1 |11⟩ and a negative measure of entanglement in [42] on |ψ⟩ in (e). In (c)
and (f) respectively the (mirroring in α ↔ β) optimal Alice and Bob’s settings in terms of cA (the mesh lines are

detailed in FIG. 5) and cB.

and Cαβ(p) = cQ(α, β) self-tests a two qubit quantum
strategy with optimal (∗) local observables of the form (28),
such that, Alice’s optimal cosine c∗A(α, β) corresponds to the
largest real root of the following degree 6 polynomial,

gA(c) = 16(α2 − 4)2c6 − 8(α2 − 4)2(5β2 − 8)c5 +
4

∑
k=0

ξkck

(B2)
and Bob’s optimal cosine c∗B(α, β) corresponds to the largest
real root of a degree 6 polynomial gB(c) obtained from gA(c)
by interchanging tilting parameters α, β. The remained coef-
ficients of the polynomials are the following:

τ4 =11α2β2 − 16(α2 + β2)− 64

τ3 =8α3β3 − 24(α3β + αβ3) + 96αβ

τ2 =20(α4 + β4)− 6(α4β2 + α2β4)− 64α2β2

+ 96(α2 + β2) + 320

τ1 =60(α5β + αβ5)− 168α3β3 + 160(α3β + αβ3)− 576αβ

τ0 =27(α6β2 + α2β6)− 54α4β4 + 48(α4β2 + α2β4)

− 8(α6 + β6)− 400α2β2 + 32(α4 + β4)

+ 128(α2 + β2)− 512 (B3)

with

ξ4 =(α2 − 4)[α2(33β4 − 96β2 + 96)

− 4(41β4 − 128β2 + 96)]

ξ3 =− 4(α2 − 4)[2(α2 − 11)β6 − 5(α2 − 20)β4

+ 12(α2 − 12)β2 − 16(α2 − 4)]

ξ2 =2a2[α4(3β6 − 5β4 + 8)− α2(9β8 − 24β6 + 8β4 + 64)

+ 4(β2 − 2)2(13β4 − 24β2 + 8)]
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ξ1 =− 4β2[α4(β4 − 5β2 + 10) + 4(β2 − 2)3(β2 − 1)

+ α2(−5β6 + 34β4 − 88β2 + 80)]

ξ0 =β2[α4(β6 − 10β4 + 33β2 − 32)

− 2α2(β2 − 2)2(β4 − 7β2 + 16) + β2(β2 − 2)4]
(B4)

Proof. Here, we present a comprehensive overview of
the proof-technique while the complete proof is con-
tained in the accompanying Mathematica notebook. As
discussed in above Section IV B, Jordan’s lemma lets us
express the Bell operator Ĉαβ associated with the family
of doubly-tilted CHSH inequalities (12) as a two–qubit
operator,

Ĉαβ = ∑
x,y

(−1)x·y Âx ⊗ B̂y + α(Â0 ⊗ I2) + β(I2 ⊗ B̂0).

(B5)
With the parametrization (28), the Bell operator Ĉαβ,
now a function of just two cosines cA, cB ∈ [0, 1], has
the following four dimensional matrix representation: ω + s+ sB − cAsB sA − cBsA −sAsB

sB − cAsB −ω + s− −sAsB (cB − 1)sA
sA − cBsA −sAsB −ω − s− (cA − 1)sB
−sAsB (cB − 1)sA (cA − 1)sB ω − s+


(B6)

with s± = α ± β and ω = 1 + cA + cB − cBcA. Now,
for fixed cosines cA, cB, the maximum quantum viola-
tion corresponds to the largest eigenvalue of the matrix
(B6), i.e., the largest root of its characteristic polynomial
q(λ, cA, cB, α, β) ≡ ∑4

k=0 γkλk with,

γ0 =(α2 − β2)2 − 8[α2(a2(−b) + a2 + b)

+ β2(−ab2 + a + b2)− 2(b2 + a2)− a2b2)] (B7)
γ1 =8αβ(ab − a − b − 1) (B8)

γ2 =− 2(4 + α2 + β2), γ3 = 0, γ4 = 1. (B9)

where λ denotes the eigenvalue of the matrix (32). Thus,
finding cQ(α, β) boils down to maximizing the largest
root of the characterstic polynomial (33) over the cosines
cA and cB. We now employ the self-testing proof tech-
nique described in Section IV B, which utilizes Gröbner
basis elimination to retrieve the analytical solutions
(B1),(B2) for the maximum violation cQ(α, β) and the
optimal cosines c∗A(α, β), c∗B(α, β), respectively.

Following the proof-technique in Section IV B, we use
the Lagrange multipliers method. The Lagrangian for
this problem reads,

L = λ + s · q(λ, cA, cB, α, β) (B10)

where s is a Lagrange multiplier. Consequently, the
stationary points must satisfy the conditions, ∂cA L =
∂cB L = ∂sL = 0, which in-turn imply the following poly-
nomial conditions,

q(λ, cA, cB, α, β) = 0
qcA(λ, cA, cB, α, β) = ∂cA q(λ, cA, cB, α, β) = 0

qcB(λ, cA, cB, α) = ∂cB q(λ, cA, cB, α, β) = 0.
(B11)

Consequently, the cosines parameterizing the optimal
observables c∗A(α, β), c∗B(α, β) and the maximum quan-
tum violation cQ(α, β) = λ∗(α, β) are common roots
of the polynomials q, qcA , qcB in (B11). We now use the
Gröbner basis elimination on q, qcA , qcB to eliminate the
cosines cA, cB and retrieve a polynomial f0(λ) of degree
12. We then take the polynomial quotient of f0(λ) with
respect to the polynomials corresponding to six trivial
and sub-optimal roots to retrieve the desired degree six
polynomial f (λ) (B1). The maximum quantum viola-
tion cQ(α, β) corresponds to the largest real root of the
polynomial f (λ). Similarly, to find the analytical so-
lution for Alice’s optimal cosine c∗A(α, β), we eliminate
cB, λ using Gröbner basis elimination on q, qcA , qcB . This
results in a degree 13 polynomial g0(c). We then take the
polynomial quotient of g0(c) with respect to the poly-
nomials corresponding to seven trivial and sub-optimal
roots to obtain the degree 6 polynomial gA(c) (B2). Re-
peating the same procedure for Bob, we end up with a
degree 6 polynomial gB(c) which equivalent to gA(c) in
(36) up on interchanging the tilting parameters α, β. We
find that opitmal cosines c∗A(α, β), c∗B(α, β) correspond to
the largest real root of the polynomials gA(c) and gB(c),
respectively.

Observe that in the interval [0, π] the angles θ∗A, θ∗B be-
tween optimal measurements is uniquely determined
by cQ(α, α) via the relation (30), and therefore, the
measurements in the optimal two-qubit realization are
unique up to local unitaries. Thus, the maximum
quantum violation of doubly-tilted CHSH inequalities
Cαβ(p) = cQ(α, β) self-tests the optimal measurements.
Alternatively, once gA and gB are determined the cA and
cB depend only on α and β. Therefore the optimal quan-
tum value can be also obtained as roots of the quartic
characteristic polynomial q of Ĉα,β that reads as

λ = ±t

√
ζ

2
±s

√
κ ∓t

γ1

2
√

ζ
, (B12)

where

ξ =2γ3
2 − 72γ0γ2 + 27γ2

1+√(
2γ3

2 − 72γ0γ2 + 27γ2
1
)

2 − 4
(
γ2

2 + 12γ0
)

3

ζ =
1
3

((
γ2

2 + 12γ0

)
3

√
2
ξ
− 2γ2 +

3

√
ξ

2

)

κ = −
3
√

ξ

12 3
√

2
− γ2

3
−

γ2
2 + 12γ0

3 3
√

32ξ

The two ±t both have the same sign, while the sign of
±s is independent. Given that γ1 < 0, the maximum
quantum violation cQ(α, β) has the expression,

cQ(α, β) =

√
ζ

2
+

√
κ − γ1

2
√

ζ
. (B13)
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Since the largest eigenvalue of the Bell operator with
the optimal measurements is non-degenerate (see FIG.
9), the maximum quantum violation cQ(α, β) also self-
tests the state partially entangled two-qubit state |ψ⟩
(the eigenvector corresponding to the largest eigen-

value). FIG. 9.b shows its Schmidt coefficients.

All the results for the generalized case α ̸= β are sum-
marized in the FIG. 9.
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In a plethora of physical situations, one can distinguish a mediator—a system that couples other, non-
interacting, systems. Often, the mediator itself is not directly accessible to experimentation, yet it is
interesting and sometimes crucial to understand if it admits nonclassical properties. An example of this
sort that has recently been enjoying considerable attention is that of two quantum masses coupled via a
gravitational field. It has been argued that the gain of quantum entanglement between the masses indicates
nonclassicality of the states of the whole tripartite system. Here, we focus on the nonclassical properties
of the involved interactions rather than the states. We derive inequalities the violation of which indicates
noncommutativity and nondecomposability (open-system generalization of noncommuting unitaries) of
interactions through the mediators. The derivations are based on properties of general quantum formalism
and make minimalistic assumptions about the studied systems; in particular, the interactions can remain
uncharacterized throughout the assessment. Furthermore, we also present conditions that solely use corre-
lations between the coupled systems, excluding the need to measure the mediator. Next, we show that the
amount of violation places a lower bound on suitably defined degree of nondecomposability. This makes
the methods quantitative and at the same time experiment ready. We give applications of these techniques
in two different fields: for detecting the nonclassicality of gravitational interaction and in bounding the
Trotter error in quantum simulations.

DOI: 10.1103/PRXQuantum.5.010318

I. INTRODUCTION

Mediated interactions are very common and often the
mediators are practically inaccessible to direct experimen-
tation. For example, consider a system of unpaired spins
interacting via spin chains in solids [1]. The bulk mea-
surements of magnetic properties are argued to be solely
determined by the unpaired spins at the end of the chain,
making the chain experimentally inaccessible. As another
example, consider light modes interacting via mechanical
membranes [2]. In this case, usually it is only the light that

*ray@ganardi.xyz

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

is being monitored. Furthermore, fundamentally electric
charges are coupled via an electromagnetic field, etc. All
these scenarios share a common structure in which systems
A and B do not interact directly but are solely coupled via
a mediator system, M (see Fig. 1). Already at this general
level, one can ask about the properties of the mediator that
can be deduced from the dynamics of the coupled systems.

In this line of study, methods have been proposed to wit-
ness the nonclassicality of the state of the mediator from
the correlation dynamics of the coupled probes. In particu-
lar, conditions have been derived under which the gain of
quantum entanglement implies that the mediator must have
explored nonorthogonal states during the dynamics [3,4].
Similar ideas, applied to more general models than the
canonical quantum formalism, have been used to argue that
the entanglement gain between quantum masses witnesses
nonclassical gravity [5,6] and have motivated a number of
concrete proposals aimed at experimental demonstration of

2691-3399/24/5(1)/010318(15) 010318-1 Published by the American Physical Society
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=
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FIG. 1. Mediated interactions. (a) Systems A and B are cou-
pled via mediator M , i.e., the underlying Hamiltonian is HAM +
HBM and it explicitly excludes direct coupling between the
systems, i.e., HAB. We present methods based on correlations
showing that the interaction Hamiltonians do not commute, i.e.,
the tripartite dynamics cannot be understood as a sequence of
interactions via HAM and then HBM or in reverse order. We also
quantify this noncommutativity by providing a lower bound on
a suitable norm of the commutator [HAM , HBM ]. These notions
are generalized to open systems and we emphasize that the
tools make minimalistic assumptions about the whole setup. (b)
We extend these techniques to cases in which the mediator is
nonaccessible. They are based on correlations in system AB only
and show that the tripartite dynamics cannot be understood as
a sequence of interactions described by dynamical maps �AM
and �BM or in reverse order. We also quantify this form of
nondecomposability.

gravity-induced entanglement (see, e.g., Refs. [7–17]). A
considerable advantage of these methods is due to the min-
imalistic assumptions that they make about the physical
systems involved. They are independent of the initial state,
the dimensions of the involved systems, or the explicit
form of interactions and they also work in the presence
of local environments. Accordingly, they are applicable in
a variety of fields (see, e.g., Refs. [18,19] for examples in
quantum biology and solid-state physics, respectively).

Here, we move on from the nonclassicality of states
and develop tools to quantify the amount of nonclassical-
ity of mediated interactions, while retaining minimalistic
assumptions about the considered physical systems. The
notion of nonclassicality that we employ is given by the
commutativity of interaction Hamiltonians in the case of
closed dynamics, which generalizes to the decomposability
of dynamical maps, which also encompasses open systems.
Arguments supporting this choice are given in Sec. II. A
method to detect the presence of such nonclassicality was
first presented in Ref. [20] but it was only qualitative, i.e.,
it could only witness the presence of noncommutativity.
It is intriguing that the methods mentioned earlier, aimed
at the nonclassicality of states, are also at this qualitative
level at the present moment. Our main contribution here

is the development of methods to quantify the amount of
nonclassicality. We derive conditions that lower bound the
norm of the commutator as well as a suitably defined dis-
tance to decomposable maps. These conditions are of two
types and the structure of the paper reflects this division.
In Sec. III, we assume that the mediator is accessible to
experimentation and in Sec. IV, the derived conditions use
only data measured on the probes. Nontrivial bounds are
derived for any continuous correlation measure. Hence, it
is again expected that the methods presented are applicable
in a variety of fields. We provide two examples.

The first one is in the field of quantum simulations.
Suzuki-Trotter expansion is a common way to sim-
ulate arbitrary sums of local Hamiltonians (see, e.g.,
Refs. [21,22]). It has recently been shown that the number
of Trotter steps needed to obtain the required simulation
error scales with the spectral norm of the commutator [23].
We link this norm to the correlations in the system, show-
ing a quantitative relation between the complexity of the
simulation and the amount of correlations.

As the second example, the methods detect and mea-
sure the noncommutativity of the gravitational interaction
coupling two quantum masses. The idea of detecting the
nonclassicality of gravitational interaction has been dis-
cussed very recently in Ref. [24] but there the notion
of nonclassicality is different, based on the impossibil-
ity of simulating the dynamics via local operations and
classical communication. Within the quantum formalism,
local operations are modeled by arbitrary local channels
and classical communication by sequences of dephasing
channels connecting the communicating parties. In the tri-
partite setting of two masses and gravitational field, this
means the following sequence: λAM , DEPHASING(M), λBM ,
DEPHASING(M), etc. In principle, different dephasing maps
could even be performed in different bases. In contradis-
tinction, the definition that we adopt in the present work
deals with dynamics that are continuous in time and defines
classicality at the level of Hamiltonians, as their commuta-
tivity. This implies an effective picture in which a quantum
mediator is transmitted between “communicating” parties,
but only one way. So, in the tripartite setting, this means
UAM UBM or in reverse order. For other ways of reveal-
ing that the evolution cannot be understood in terms of
classical (gravitational) field, see also Refs. [25,26], and
for general arguments that any system capable of cou-
pling to a quantum system must itself be quantized, see,
e.g., Ref. [27]. Our tools show that correlations between
the masses exclude gravity as a form of interaction with
commuting particle-field couplings.

II. CLASSICALITY AND DECOMPOSABILITY

Let us start with closed systems and explain our choice
of the notion of classicality and its relation to the properties

010318-2
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of dynamical maps. In this work, classical mediated inter-
actions are defined by commuting Hamiltonians HAM and
HBM (see Fig. 1). A high-level motivation for this choice
comes from the fact that in classical mechanics, all observ-
ables commute; hence a classical mediator would have all
its couplings to other systems commuting. The commu-
tativity can also be motivated starting with the notion of
classical states as those admitting vanishing quantum dis-
cord [28], or vanishing coherence in the case of a single
system [29], and asking for the evolution that preserves
this form of classicality. The vanishing discord means that
the whole tripartite state can be measured on the mediator
without disturbing the total state. Mathematically, the state
has a block-diagonal form and we assume that at all times
there exists a single “preferred” basis of the mediator.
We show in Appendix A that such dynamics are gener-
ated if and only if the Hamiltonian has a block-diagonal
form too, with the same basis on the mediator. Since,
here, we consider systems with global Hamiltonian H =
HAM + HBM , the state classicality is preserved when both
HAM and HBM are block diagonal with the same basis on
system M , i.e., both Hamiltonians commute [HAM , HBM ] =
0. Furthermore, for commuting nondegenerate HAM and
HBM , the total Hamiltonian admits only product eigenstates
and out-of-time-ordered correlators vanish at all times, as
shown in Appendix A.

A closely related notion is that of decomposability. A
tripartite unitary U is decomposable if there exist unitaries
UAM and UBM such that

U = UBM UAM . (1)

Intuitively, decomposable unitaries are those that can be
simulated by first coupling one of the systems to the medi-
ator M and then coupling the other. One can picture that
the mediator particle is being transmitted between A and B,
which are in separate laboratories, making this setting sim-
ilar to that in Refs. [30–36]. Although the Suzuki-Trotter
formula shows that any unitary can be approximated by a
sequence of Trotter steps, decomposable unitaries are spe-
cial because we can implement the exact unitary with only
a single Trotter step. For its relation to the notion of locality
in quantum field theory, see Ref. [37].

Clearly, for classical interactions [HAM , HBM ] = 0, the
unitary operator U(t) = e−itH is decomposable for all t. But
there exist unitaries that are decomposable and yet are not
generated by a classical interaction. A concrete example is
given in Appendix A 4 and relies on the fact that the unitary
can be written as U = UBM UAM , but there exist no uni-
taries VAM and VBM such that the sequence VAM VBM would
be equal to U. This example already suggests that decom-
posability has to be augmented with commutativity of
decompositions to be equivalent to the classicality of inter-
actions, a fact that we prove in Appendix A 5. Therefore,

the unitary generated by classical interactions is contin-
uously decomposable, with the added property that the
decomposition must commute, i.e., [UAM (t), UBM (t)] = 0
for all t. Accordingly, it is irrelevant whether we define the
decomposition order as UBM UAM or UAM UBM .

Decomposability naturally extends to open systems. In
this case, the evolution is described by a map λ giving the
state of the system at time t, i.e., ρ = λ(ρ0). We say that
a tripartite map λ is decomposable if there exist maps λAM
and λBM such that

λ(ρ) = λBMλAM (ρ), (2)

for every ρ. In Appendix A 6, we discuss the consistency of
this definition and the one based on unitaries. As expected,
a unitary operator is decomposable if and only if the corre-
sponding unitary map is decomposable (general maps are
not required).

It is this general notion of decomposability that we
will exclude and measure the degree of its exclusion in
the coming sections. A number of similar concepts have
been introduced before and it is instructive to compare
the decomposability with them and note where the novelty
is. So-called divisibility asks whether map � can be writ-
ten as �1�2, where neither �1 nor �2 are unitaries [38].
A stronger notion of completely positive (cp) divisibility,
studied in the context of Markovian dynamics [39,40], asks
whether map �t can be written as the sequence of com-
pletely positive maps �t = Vt,s�s. Interestingly, the set of
cp-divisible maps is not convex [38]. The decomposability
that we study here has a specific multipartite structure that
has been considered only in Refs. [20,41], which is clearly
significant from a physics perspective.

III. ACCESSIBLE MEDIATOR

We first present methods that utilize correlations mea-
sured on all three subsystems and devote Sec. IV to elim-
inating measurements on the mediator. The basic idea is
that correlations between subsystem A and subsystems MB
together should be bounded in the case of decomposable
dynamics because they are effectively established via a
process in which the mediator is being transmitted from
A to B only once. It is therefore expected that the corre-
lations are bounded by the “correlation capacity” of the
mediator, i.e., maximal correlations to the mediator alone.
Such inequalities for distance-based correlation measures
have been derived in Ref. [20] and could also be obtained
by manipulating the results of Refs. [3,41]. Our contribu-
tion in this section is a generalization to any continuous
correlation measure and then quantification of nondecom-
posability based on the amount of violation of the derived
criterion.
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A. Detecting nondecomposability

Let us take a correlation quantifier Q that is monotonic
under local operations. In Appendix B, we show that the
bound in terms of the correlation capacity holds when we
additionally assume that the initial state is of the form
ρ0 = ρAM ⊗ ρB. For such an initial state, the correlations
generated by a decomposable map λ admit

QA:MB(λ(ρ0)) ≤ sup
σAM

QA:M (σAM ), (3)

where the bound is derived for any correlation measure Q
that is monotonic under local processing. Here, σAM ranges
over all possible joint states of AM . Exchanging the roles
of A and B gives rise to another inequality, and the exper-
imenter should choose the one that is violated to detect
nondecomposability. This bound is already nontrivial, as
we now demonstrate by showing that the maximally entan-
gling map cannot be decomposable. Consider the initial
product state |000〉 and assume that systems A and B are
of higher dimension than the mediator, i.e., dA = dB > dM .
As an exemplary entanglement measure, take the relative
entropy of entanglement, E. It is known that its maximum
depends on the dimension of the smaller Hilbert space,
i.e., supσAM

EA:M (σAM ) = log dM . According to Eq. (3), no
decomposable evolution can produce more entanglement
than log dM . This holds for entanglement EA:MB as well
as for EA:B due to the monotonicity of relative entropy
under partial trace. Since the dimensions of A and B are
larger than the dimension of the mediator, a maximally
entangled state between AB cannot be produced by any
decomposable map.

Of course, we are interested in extending Eq. (3) to
an arbitrary initial state, making the method independent
of it. To achieve this aim, we use continuity arguments.
Many correlation measures, including relative-entropy-
based quantifiers [42], all distance-based measures [43], or
convex-roof extensions of asymptotically continuous func-
tions [44], admit a version of continuity in which there
exists an invertible monotonically nondecreasing function,
g, such that |Q(x)− Q(y)| ≤ g(d(x, y)), where d is a con-
tractive distance and lims→0 g(s) = 0. This is a refinement
of the notion of uniform continuity, where we can bound
how much the function varies when we perturb the input.
A notable example is logarithmic negativity [45], which is
not asymptotically continuous and yet fulfills this notion of
continuity. For simplicity, we shall call such functions gd
continuous. We prove in Appendix B that correlation quan-
tifiers that are gd continuous are bounded in decomposable
dynamics as follows:

QA:MB(λ(ρ0)) ≤ sup
σAM

QA:M (σAM )+ IAM :B(ρ0), (4)

where IAM :B(ρ) = infσAM ⊗σB g(d(ρ, σAM ⊗ σB)) is a mea-
sure of the total correlations in the state ρ across the

partition AM : B. Indeed, from the properties of g and d, it
is easy to verify that this quantity is monotonic under local
operations and that it is zero if and only if ρ is a product
state across the AM : B partition. Again, an independent
inequality is obtained by exchanging A and B.

This bound is also nontrivial and its violation has been
demonstrated in Ref. [46], which focused on negativity as
a concrete correlation (entanglement) measure. The system
under consideration involved two cavity modes, A and B,
coupled via two-level atom M . This scenario is particu-
larly well suited to demonstrate the violation, because the
dimension of the mediator is as small as it can be, whereas
the dimensions of the probes are in principle unbounded.

B. Measuring nondecomposability

Having established witnesses of nondecomposability,
we now argue that the amount of violation of Eq. (4)
quantifies the nondecomposability. As a measure of non-
decomposability, we propose a minimal operator distance
from an arbitrary map � to the set of decomposable maps,
which we denote as DEC:

dDEC(�) = inf
λ∈DEC

D(�, λ). (5)

We shall refer to this quantity as the “degree of nondecom-
posability.” The operator distance D in its definition could
be chosen as the one induced by the distance on states

D(�1,�2) = sup
σ

d(�1(σ ),�2(σ )), (6)

where �1 and �2 are arbitrary maps and σ is any state
from the domain of the map. In Appendix B, we demon-
strate that violation of Eq. (4) lower bounds the degree of
nondecomposability as follows:

dDEC(�) ≥ g−1(QA:MB(�(ρ0))− B(ρ0)), (7)

where B(ρ0) is the right-hand side of Eq. (4). Accordingly,
any violation of the decomposability criterion in terms of
correlations sets a nontrivial lower bound on the distance
between the dynamical map and the set of decomposable
maps.

C. Quantum simulations

As the first application of the introduced measure, sup-
pose that we would like to simulate the dynamics generated
by the Hamiltonian H = HAM + HBM . (In fact, this analy-
sis can be generalized to any 2-local Hamiltonian.) Quan-
tum simulators implement a dynamic close to the desired
one by truncating the Suzuki-Trotter formula to r Trotter
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steps

e−itH ≈
(

e−i t
r HAM e−i t

r HBM
)r

. (8)

The error of this approximation can be quantified by the
spectral norm (the largest singular value),

∥∥∥e−itH −
(

e−i t
r HAM e−i t

r HBM
)r∥∥∥

∞
, (9)

and it has been shown in Ref. [23] that in order to make
this error smaller than ε, the number of Trotter steps has to
scale with the norm of the commutator,

r = O
(

t2

ε
|| [HAM , HBM ] ||∞

)
. (10)

Our aim is to provide a lower bound on the commutator
norm in terms of correlations and in this way bound the
number of required Trotter steps. Recall, after Ref. [23],
that for a single Trotter step, we have

||U − UAM UBM ||∞ ≤ t2

2
|| [HAM , HBM ] ||∞,

where U = e−itH and, e.g., UAM = e−itHAM . We need to link
our methods to the spectral norm. For finite-dimensional
systems, all metrics generate the same topology [47], i.e.,
for any two distances d1 and d2, there exists a constant C
such that

1
C

d2(ρ, σ) ≤ d1(ρ, σ) ≤ C d2(ρ, σ). (11)

In particular, there exists a constant that relates any dis-
tance to the trace distance dtr(ρ, σ) = 1

2 ||ρ − σ ||1. There-
fore, if a correlation quantifier on finite-dimensional sys-
tems is gd continuous with respect to the trace distance,
it is also gd continuous with respect to any other dis-
tance d. Furthermore, since the trace distance is contrac-
tive, Eq. (4) holds for any distance on finite-dimensional
systems, at the cost of constants in function g. Accord-
ingly, let us consider the distance induced by the spectral
norm d∞(ρ, σ) = ||ρ − σ ||∞. We call the corresponding
operator distance D∞(�1,�2) and the degree of nonde-
composability dDEC

∞ (�). For the connection to the Trotter
error, we note the following:

dDEC
∞ (U) ≤ D∞(U, UAM UBM ) ≤ 2||U − UAM UBM ||∞,

(12)

where the first inequality follows from the fact that dDEC
∞ (U)

is the shortest distance to the set of decomposable maps
and UAM UBM is a particular decomposable map. The sec-
ond inequality is proven in Appendix B 1. Combining the

two inequalities, we obtain dDEC
∞ (U) ≤ t2 ‖[HAM , HBM ]‖∞.

A concrete example relating the mutual information in
a state to the number of Trotter steps is provided in
Appendix B 2.

We have therefore shown a direct link between correla-
tions in the system and the number of Trotter steps that one
needs to keep the simulation error small. The amount of
violation of Eq. (4) lower bounds the degree of nondecom-
posability and hence the spectral norm of the commutator
and, accordingly, sets the number of required Trotter steps.
Conversely, if it is possible to simulate U with r Trotter
steps to precision ε, Eq. (10) shows that the commutator
norm is bounded and consequently Eq. (12) implies that
the correlations QA:MB admit an upper bound.

IV. INACCESSIBLE MEDIATOR

An interesting opportunity arises where the nonclassi-
cality of evolution through a mediator could be witnessed
without measuring the mediator. Here, we show that this
is indeed possible. We start by introducing the necessary
concepts and the related mathematical tools and then we
present witnesses of nondecomposable evolution based on
measurements on AB only. Finally, we establish measures
of nondecomposability together with their experimentally
friendly lower bounds.

A. Marginal maps

In order to detect nonclassicality of interactions solely
through the correlations between the coupled objects, we
need the notion of “marginals” of decomposable maps. We
propose to introduce it via a related concept of dilation. A
dilation of a map� : X → X is an ancillary state σR and a
map �̃ : XR → XR acting on the system and ancilla, such
that

�(ρ) = TrR(�̃(ρ ⊗ σR)), (13)

for all ρ. Accordingly, our aim is to exclude the exis-
tence of a decomposable dilation of the dynamics that
are observed on systems AB. In principle, the existence
of dilations may depend on the dimension of the Hilbert
space of the mediator, which motivates us to introduce
decomposable m-dilation as follows. A map� : AB → AB
has a decomposable m-dilation if there exists a dilation
�̃ : ABM → ABM such that �̃ is decomposable and the
dimension of the mediator satisfies dM ≤ m. We denote the
set of all maps with a decomposable m-dilation as DEC(m).

With these definitions, we can state our goal precisely:
we wish to infer whether a map on AB admits any decom-
posable m-dilation and we wish to do this via measure-
ments of correlations only. If no decomposable dilation
exists, we conclude that the interaction generating the map
is nonclassical.
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B. Detecting nondecomposability

It turns out that one can obtain an interesting condition
that witnesses nondecomposability as a simple corollary to
Eq. (4). In Appendix C, we prove that any gd-continuous
correlation measure Q admits the following bound under
the evolution generated by λ ∈ DEC(m):

QA:B(ρt) ≤ sup
σXM

QX :M (σXM )+ IA:B(ρ0), (14)

where ρt = λ(ρ0) and we emphasize that λ ∈ DEC(m) acts
on AB only. The supremum on the right-hand side runs
over all AM or BM states with dM ≤ m and IA:B(ρAB) =
infσA⊗σB g(d(ρAB, σA ⊗ σB)) measures the total correla-
tions across A : B. Note that if the correlation measure that
we use is not gd continuous, we can still obtain a witness of
nondecomposability assuming that we start with a product
state. For example, this could be ensured without having
access to M by preparing the AB systems in a pure product
state.

As an example of using this criterion, note that the max-
imally entangling maps we have discussed before cannot
have any decomposable m-dilation for m < min(dA, dB).
A question emerges as to whether there exist evolutions
that do not admit decomposable m-dilation even when the
dimension of the mediator is unbounded. This is indeed
the case. We show in Appendix C 1 that a SWAP opera-
tion on two objects (even two qubits) has no decomposable
m-dilation for any m. This leads to the conclusion that
classical interactions cannot produce a SWAP. The intuitive
reason behind this statement is that it takes at least two
steps to implement swapping with dA = dB = dM . We first
exchange A and M , then we exchange B and M , and we still
must exchange A and M again to complete the implemen-
tation. In fact, any AB interaction can be implemented in
two steps by first exchanging A and M , applying the inter-
action on BM , and finally swapping A and M back. The
conclusion becomes less unexpected once we realize that
SWAP is a highly entangling operation. For example, Alice
and Bob can entangle their laboratories by starting with
each having local Bell pairs

∣∣ψ−
AA′

〉 ⊗ ∣∣ψ−
BB′

〉
and swapping

the AB subsystems.
We wish to give a little more insight into the structure

of maps with decomposable dilations. Clearly, the sets are
nested: DEC(m) ⊆ DEC(m + 1). In fact, the inclusions are
strict, as we show in Appendix C 2.

C. Measuring nondecomposability

In the spirit of Sec. III B, we would like to extend Eq. (7)
to bound the distance to DEC(m) based solely on correla-
tions measured on systems AB. Of course, the ABM opera-
tor distance to DEC and the AB operator distance to DEC(m)
are closely related. For contractive distances d on states,
we have D(�ABM , λABM ) ≥ D(�AB, λAB), which unfortu-
nately is the opposite of what we need. To overcome this,

we use the so-called completely bounded variant of the
operator distance [48]:

D(�1,�2) = sup
σXY

d((�1 ⊗ 1Y)(σ ), (�2 ⊗ 1Y)(σ )), (15)

where �1,�2 : X → X and Y is a finite-dimensional sys-
tem. The benefit of the completely bounded operator dis-
tance is that it behaves nicely on dilations. This makes it
easier to jump from the distance to DEC to the distance to
DEC(m). Indeed, the completely bounded distance can be
written in terms of the dilations as follows:

D(�1,�2) = inf
�̃i

D(�̃1, �̃2). (16)

On the one hand, for contractive distances on states, the
left-hand side cannot be larger than the right-hand side.
On the other, the bound can be achieved by an exemplary
dilation �̃i = �i ⊗ 1.

As a measure of nondecomposability that we will link
to the violation of Eq. (14), we propose the analogue of
the degree of nondecomposability written in terms of the
completely bounded distance:

DDEC(m)(�AB) = inf
λAB∈DEC(m)

D(�AB, λAB). (17)

With these concepts and tools, it is proven in Appendix C
that the amount of violation of Eq. (14) lower bounds the
quantity just introduced:

DDEC(m)(�AB) ≥ g−1(QA:B(ρt)− B(ρ0)), (18)

where B is the right-hand side of Eq. (14). Note that all
these quantities involve states and maps on AB only.

D. Nonclassical gravity

Our second application of these methods is in foun-
dations. A prime example of an inaccessible mediator is
a mediating field. The methods described above allow
us to make conclusions about the field from the behav-
ior of objects coupled through it. Gravitational interaction
is especially interesting from this perspective, as there is
no direct experimental evidence of its quantum proper-
ties today. As discussed in Sec. I, observation of quantum
entanglement between gravitationally coupled masses is
a plausible near-future experiment closing this gap [49].
In this section, we show that our methods allow a con-
cise derivation of the nonclassicality witnesses presented
in the literature [3,5,6] and lead to new conclusions about
the interactions that can be drawn from the observation of
considerable gravitational entanglement.

Assume first a completely classical situation in which
both states and interactions are classical. Recall that within
our framework, this means a zero-discord state at all times,
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DAB|M = 0 (with one and the same basis on the mediator at
all times), and dynamical maps admitting decomposable
dilations. As the correlation measure, consider quantum
entanglement, measured by the relative entropy of entan-
glement. Then, the amount of entanglement A : B that can
be produced via these classical maps is

EA:B(ρt) ≤ sup
σXM

EX :M (σX :M )+ IA:B(ρ0), (19)

where the supremum is over all the states of AM or BM
allowed in the theory; here, dM ≤ m and DAB|M = 0. It is
reasonable to assume that the initial state in the labora-
tory will be close to a product state and we therefore take
IA:B(ρ0) = 0. Furthermore, all states admitting DAB|M = 0
are disentangled across A : M and B : M and therefore the
supremum is also zero. We therefore arrive at the con-
clusion that entanglement A : B cannot grow and hence
observation of any gain implies nonclassical states or
nonclassical interactions or both.

If we assume that the interactions are classical (decom-
posable) but the state might have nonzero discord, then
entanglement still satisfies the bound in Eq. (19). There-
fore, the observation of a nonzero value of EA:B means that
the supremum on the right-hand side is at least equal to this
observed value, i.e., the mediator must be capable of being
entangled to A or B, and in fact to AB due to monotonic-
ity, to at least the degree that has been measured. Note that
this is stronger than saying that the mediator needs to be
discorded.

Finally, by violating the bound in Eq. (19), it is possible
to demonstrate in the laboratory that unknown interactions
are not decomposable. We stress that it is not sufficient to
demonstrate that entanglement grows: we have to demon-
strate that the entanglement is above a certain threshold.
This threshold depends on the dimension of the media-
tor and we therefore ask how high entanglement can be
generated by gravity. The answer depends on the con-
crete setup via which gravitational interaction is studied. If
we take two nearby harmonically trapped masses initially
prepared in squeezed states with squeezing parameters sA
and sB, it has been shown that the gravitational entangle-
ment in terms of logarithmic negativity can be as large
as Emax

A:B = |sA + sB|/ ln 2, which holds for large squeez-
ing [8]. Since, in principle, si → ∞, this already shows
that gravity cannot be understood as a classical interaction
with any finite-dimensional mediator. More practically, the
highest optical squeezing achieved today is sA,B = 1.73
[50] and assuming that it can be transferred to mechani-
cal systems gives entanglement Emax

A:B ≈ 5 ebits (entangled
bits), which would restrict still possible decomposable
dilations to use mediators with dimension m > 25. It is
rather unlikely that this amount of entanglement will be
observed in the near future, as the time it takes the dis-
cussed system to reach Emax

A:B in the absence of dissipation

is tmax = πωL3/4Gm, independently of high squeezing,
where L is the separation between the masses and ω is the
frequency of the trapping potential [8]. For Laser Inter-
ferometer Gravitational Wave Observatory (LIGO)–like
parameters of masses in the order of m ∼ 1 kg, ω ∼ 0.1
Hz and L ∼ 1 cm, this time is already in the order of
hours and dissipation pushes it further, to tens of hours.
Yet, a violation of the unit bound, and hence disproval of
classical interactions via a two-level system, which would
already be interesting, could be achieved within a second
[5,8,11,50].

Another route would be to use gravity to execute dynam-
ics that by other means are known to be nondecomposable.
For example, we have shown below Eq. (14) that maxi-
mally entangling maps do not admit decomposable dila-
tions for dM ≤ min(dA, dB). The schemes in Refs. [5,6]
indeed use gravity to implement maximal entanglement
but only between two-level quantum systems encoded in
the path degree of freedom. It would therefore be interest-
ing to determine whether gravity could be used to maxi-
mally entangle masses in more paths. Along the same line,
we have shown that SWAP does not admit any decompos-
able dilation, even with an infinite-dimensional mediator.
Interestingly, Ref. [24] argues that gravity could imple-
ment the SWAP gate. In addition, the time it takes to
implement the gate is twice as long as the time it takes
to implement the maximally entangling unitary, showing
that it is not much more demanding than the entanglement-
based method. This provides an alternative witness of
quantum properties of gravitational interaction that does
not rely on the dimension of the mediator.

V. CONCLUSIONS

We have proposed notions of classicality of mediated
interactions (commutativity of Hamiltonians and decom-
posability of dynamical maps) and introduced their math-
ematical measures. Our main results are inequalities in
terms of any continuous correlation quantifiers with the
property that their violations place lower bounds on the
amount of introduced nonclassicality. These quantitative
methods are therefore experiment ready and applicable in
a variety of physical situations due to the minimalistic
assumptions under which they are derived. As examples,
we have shown that accurate simulations of dynamics
with high correlations necessarily require a large number
of Trotter steps and that gravitational interaction cannot
be understood with the help of commuting particle-field
couplings.
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APPENDIX A: CLASSICALITY AND
DECOMPOSABILITY

1. Classical states

For completeness, let us start with elementary rela-
tions. A state is said to be classical (or incoherent) if
it is diagonal in a preferred basis {|m〉}. A multipartite
state is called quantum classical (qc)—or admits vanish-
ing discord, DAB|M = 0—if it can be written as ρqc =∑

m ρAB|m ⊗
m, where 
m = |m〉 〈m| is the projector on
the preferred basis and the systems are enumerated as in
Fig. 1. In words, the whole tripartite state explores only
one basis in the Hilbert space of the mediator. Let us intro-
duce a measurement map along the preferred basis, 
, the
action of which on an arbitrary input state is to produce
an average postmeasurement state: 
(ρ) = ∑

m
mρ
m.
A state ρ is qc if and only if ρ = 
(ρ). Alternatively,
the definition of classicality can be phrased in terms of
commutation with the basis elements.

Proposition 1.—Let 
(X ) = ∑
m
mX
m be a projec-

tion map, where 
m
m′ = δmm′
m. Then,

X = 
(X ) ⇐⇒ ∀m, [X ,
m] = 0. (A1)

Proof.—The “if” direction is trivial. For the “only if”
direction, consider the following argument:

X
m = 
mX , (A2)

X
m = 
mX
m, (A3)

X =
∑

m


mX
m = 
(X ), (A4)

where we have multiplied the first equation by
m from the
right and used 
2

m = 
m, and then we have summed the

second equation over m and used the completeness relation∑
m
m = 1. �

2. Classical interactions

The definition of classicality of interactions in terms of
commutativity is justified by the following proposition.
It shows that the Hamiltonians preserving classicality of
states are invariant under dephasing in the preferred basis.
The commutativity is then a corollary.

Proposition 2.—Let H be a time-independent Hamilto-
nian. Then, H = 
(H), if and only if for any classical
initial state ρ0, ρt = e−itHρ0eitH is also classical.

Proof.—For the “only if” direction, let us write the
assumption explicitly:

e−itHρ0eitH = 

(
e−itHρ0eitH )

, (A5)

e−itH [ρ0, H ]eitH = 

(
e−itH [ρ0, H ]eitH )

, (A6)

where the second line is the time derivative of the first one
and ρ0 denotes the initial (classical) state. By evaluating at
t = 0, we find that the commutator is invariant:

[ρ0, H ] = 
([ρ0, H ]) . (A7)

In particular, taking ρ0 = 
m shows that for all the basis
states:

[
m, H ] = 
([
m, H ]) = 0, (A8)

where the last equation is simple to verify. Applying
Proposition 1 proves the claim.

For the “if” direction, from the assumption, the Hamilto-
nian has the block form H = ∑

m hm ⊗
m, where hm acts
on all the systems other than the mediator. In this case, the
orthonormality of the preferred basis implies

e±itH =
∑

m

e±ithm ⊗
m. (A9)

Accordingly, the initially classical mediator stays classical
at all times and the remaining systems evolve conditionally
depending on the state of the mediator. �

In the case of the tripartite systems that we consider,
where H = HAM + HBM , this shows that classicality is pre-
served when both HAM and HBM are block diagonal with
the same basis on system M , i.e., they commute.

3. Simple eigenstates

As another argument to justify our definition of clas-
sicality, we show that it constrains the eigenstates of the
Hamiltonian to be fully product, at least when the local
terms are nondegenerate.

Proposition 3.—Let HAM , HBM be nondegenerate
Hamiltonians. Then, [HAM , HBM ] = 0 implies that H =
HAM + HBM can be diagonalized with fully product states.
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Proof.—Let us assume that [HAM , HBM ] = 0. Note that
when a Hermitian matrix A has a nondegenerate spec-
trum, then all eigenvectors of A ⊗ 1 must be of the form
|ψA〉 ⊗ |ψB〉, where |ψA〉 is an eigenvector of A and |ψB〉
is an arbitrary vector. Since [HAM , HBM ] = 0 implies that
there is a common eigenbasis between HAM and HBM ,
this means that there exists a common eigenbasis for H =
HAM + HBM that is a product on A : MB and AM : B at the
same time, which proves the claim. �

4. One-way decomposability

The following proposition gives an example of decom-
posable unitary that nevertheless cannot be generated by
classical interactions.

Proposition 4.—There are no two-qubit unitaries
VAM , VBM such that UAM UBM = VBM VAM , where

UAM = 1√
2
(1 + iZAXM ) , (A10)

UBM = 1√
2
(1 + iZBZM ) , (A11)

and Z and X denote Pauli matrices.
Proof.—We prove by contradiction. Suppose that there

exist unitaries VAM , VBM such that UAM UBM = VBM VAM .
Note that we can write UAM , UBM as

UAM = |0〉 〈0|A ⊗ 1√
2
(1M + iXM )

+ |1〉 〈1|A ⊗ 1√
2
(1M − iXM ) , (A12)

UBM = |0〉 〈0|B ⊗ 1√
2
(1M + iZM )

+ |1〉 〈1|B ⊗ 1√
2
(1M − iZM ) . (A13)

Therefore, the product UAM UBM is given by

|00〉 〈00|AB ⊗ 1
2
(1 + iXM + iYM + iZM )

+ |01〉 〈01|AB ⊗ 1
2
(1 + iXM − iYM − iZM )

+ |10〉 〈10|AB ⊗ 1
2
(1 − iXM − iYM + iZM )

+ |11〉 〈11|AB ⊗ 1
2
(1 − iXM + iYM − iZM ) . (A14)

Observe that we can always write VAM = ∑1
i,j =0 |i〉 〈j |A ⊗

VA,ij
M for some matrices VA,ij

M and similarly for VBM . How-
ever, because we have assumed VBM VAM = UAM UBM and

the AB part in Eq. (A14) is expressed solely in terms of
projectors, we can express VBM VAM as

VBM VAM =
∑

i,j

|ij 〉 〈ij |AB ⊗ VB,jj
M VA,ii

M , (A15)

where each product VB,jj
M VA,ii

M is a unitary on M . Comparing
Eqs. (A14) and (A15), we find that

VB,00
M VA,00

M = 1
2
(1 + iXM + iYM + iZM ) , (A16)

VB,11
M VA,00

M = 1
2
(1 + iXM − iYM − iZM ) , (A17)

VB,00
M VA,11

M = 1
2
(1 − iXM − iYM + iZM ) , (A18)

VB,11
M VA,11

M = 1
2
(1 − iXM + iYM − iZM ) . (A19)

However, this leads to the contradiction

(
0 1

−1 0

)
=

(
VB,00

M VA,00
M

) (
VB,11

M VA,00
M

)†

=
(

VB,00
M VA,11

M

) (
VB,11

M VA,11
M

)†
=

(
0 −1
1 0

)
,

(A20)

which completes the proof. �

5. Classicality and commuting decompositions

Here, we show the relation between the classicality of an
interaction and decomposability of the corresponding uni-
tary. In particular, we show the equivalence between the
classicality [HAM , HBM ] = 0 and the existence of a contin-
uous commuting decomposition U(t) = UAM (t)UBM (t) =
UBM (t)UAM (t).

Proposition 5.—A one-parameter continuous group of
unitaries U(t) = e−itH has a commuting decomposition
U(t) = UBM (t)UAM (t) = UAM (t)UBM (t) such that the map
t �→ (UAM (t), UBM (t)) is continuous if and only if there
exist Hamiltonians HAM and HBM such that H = HAM +
HBM and [HAM , HBM ] = 0.

Proof.—Using the Baker-Campbell-Haussdorf (BCH)
formula [52], one easily sees that if such HAM , HBM exists,
then U(t) = e−itHAM e−itHBM = e−itHBM e−itHAM , showing that
the unitary has a continuous commuting decomposition.

To show the other direction, suppose that the
unitary e−itH has a continuous commuting decom-
position. Now, let us take t small enough such
that ‖UAM (t)− 1‖∞ , ‖UBM (t)− 1‖∞ < 1. This ensures
that HAM = i log UAM (t)/t, HBM = i log UBM (t)/t can be
defined through the power series for a matrix log-
arithm. Using the series representation log (1 − X ) =
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−∑∞
n=1(1/n)X

n, we note that these interaction
Hamiltonians must commute:

[HAM , HBM ] = − 1
t2

[log UAM , log UBM ]

= − 1
t2

[ ∞∑
n=1

(1 − UAM )
n

n
,

∞∑
m=1

(1 − UBM )
m

m

]

= 0. (A21)

Using the BCH formula, we obtain

e−itH = e−itHAM e−itHBM = e−it(HAM +HBM ). (A22)

Differentiating the above expression with respect to t and
using the identity (d/dt)e(tA)

∣∣
t=0 = A shows that H =

HAM + HBM , which proves the claim. �

6. Consistency

Let us start by recalling the two definitions of decom-
posability given in the main text.

Definition 1 (unitary).—Let U be a unitary acting on a
tripartite system HA ⊗ HB ⊗ HM . U is decomposable if
there exist unitaries UAM , UBM such that

UABM = UBM UAM . (A23)

Definition 2 (map).—Let λ be a map acting on a tripartite
system HA ⊗ HB ⊗ HM . λ is decomposable if there exist
maps λAM and λBM such that

λ(ρ) = λBMλAM (ρ). (A24)

The following proposition shows that these two defini-
tions are consistent.

Proposition 6.—A unitary U is decomposable if and
only if the map λ(ρ) = UρU† is decomposable.

Proof.—If U is decomposable, choosing λAM (ρ) =
UAMρU†

AM and λBM (ρ) = UBMρU†
BM shows that λ is also

decomposable.
To show the other implication, suppose that there exist

two maps λAM and λBM such that UρU† = λBMλAM (ρ).
It is enough to show that we can choose the maps λAM
and λBM to be unitaries. This is indeed possible by the
following argument. Since UρU† = λBMλAM (ρ), we see
that σ �→ U†λBM (σ )U is a completely positive trace-
preserving (CPTP) inverse of λAM . Since the only CPTP
maps that have a CPTP inverse are unitaries [53], we con-
clude that λAM must be a unitary map. The fact that λBM is
also unitary follows from λBM (ρ) = Uλ†

AM (ρ)U
†. �

Another question regarding the consistency between the
two definitions concerns unitary dilations: is decompos-
ability of a map equivalent to the existence of a decompos-
able unitary dilation? This would be desirable, since this

would imply that any decomposable map is generated by
some “classical” interaction on a larger system. Here, we
show that the implication holds in at least one direction.

Proposition 7.—Let λ be a decomposable map. Then,
there exists a Stinespring dilation of λ,

λ(ρABM ) = TrRUABMR(ρABM ⊗ σR)U
†
ABMR, (A25)

such that UABMR is decomposable.
Proof.—Since λ is decomposable, there exist maps λAM

and λBM such that λ = λBMλAM . Let us denote a Stine-
spring dilation of λAM as

λAM (ρAM ) = TrRAUAMRA(ρAM ⊗ σRA)U
†
AMRA

, (A26)

where RA is the purifying system for λAM . Similarly,
λBM must have a dilation with purifying system RB.
We prove the claim by identifying R = RARB, UABMR =
UBMRBUAMRA , and σR = σRA ⊗ σRB . �

7. Out-of-time-ordered correlator

Finally, we comment on the notion of the out-of-time-
ordered correlator (OTOC) and its relation to the decom-
posability. The OTOC is often used to study the spread
of correlations in a many-body system [54,55]. Given two
observables V and W (usually chosen to be commuting at
time t = 0), the OTOC is defined as

C(t) = −Tr
(
ρβ ([V, W(t)])2

)
, (A27)

where ρβ is the thermal state at inverse temperature β
and W(t) = e−iHtWeiHt. Intuitively, it measures the effect
of time evolution on the commutator between two ini-
tially commuting observables. We show that the OTOC
witnesses the nondecomposability, providing an alterna-
tive to our methods. In particular, let us choose V as an
observable on system A and W on system B. Let us assume
that the dynamics are decomposable, i.e., for any t, there
exist UAM and UBM such that e−iHt = UBM UAM . Noting
that [W, UAM ] = 0, an explicit calculation shows that

[V, W(t)] =
[
V, UBM WU†

BM

]
(A28)

= UBM [V, W] U†
BM , (A29)

which is zero, since V and W act on different subsystems.
Therefore, the measurement of a nonzero OTOC can wit-
ness the nondecomposability of the dynamics. It remains
to be shown whether such an approach can be extended to
quantify the degree of nondecomposability.

APPENDIX B: ACCESSIBLE MEDIATOR

The following proposition proves the “correlation-
capacity” bound when the initial state is product ρ0 =
ρAM ⊗ ρB.
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Proposition 8.—Let λ be a decomposable map. Any
correlation measure satisfies

QA:MB(λ(ρAM ⊗ ρB)) ≤ sup
σAM

QA:M (σAM ). (B1)

Proof.—By assumption, λ = λBMλAM . The bound fol-
lows solely from monotonicity of correlations under local
operations:

QA:MB(λ(ρAM ⊗ ρB)) = QA:MB(λBMλAM (ρAM ⊗ ρB))

≤ QA:MB(λAM (ρAM ⊗ ρB)). (B2)

Since Q is monotonic under local operations, it must
be invariant under invertible local operations. In partic-
ular, adding or discarding an uncorrelated system does
not change the value of Q. In our case, system B is
completely uncorrelated and therefore QA:MB(λAM (ρAM ⊗
ρB)) = QA:M (λAM (ρAM )). Of course, the last quantity is
upper bounded by the supremum over all states. �

For a general initial state, we have the following bound
by continuity.

Proposition 9.—Let λ be a decomposable map and
let ρ be any tripartite quantum state. Any gd-continuous
correlation measure satisfies

QA:MB(λ(ρ)) ≤ sup
σAM

QA:M (σAM )+ IAM :B(ρ), (B3)

where IAM :B(ρ) = infσAM ⊗σB g(d(ρ, σAM ⊗ σB)) is a mea-
sure of total correlations in the state ρ across the partition
AM : B.

Proof.—We bound the difference in correlations
between an arbitrary state and the product state using
gd-continuity:

|QA:MB(λ(ρ))− QA:MB(λ(σAM ⊗ σB))|
≤ g(d(λ(ρ), λ(σAM ⊗ σB)))

≤ g(d(ρ, σAM ⊗ σB)), (B4)

where in the last line we have used the fact that g is mono-
tonic and d contractive. The derived inequality holds for
any σAM ⊗ σB—in particular, for the one achieving the
infimum of IAM :B(ρ)—leading to

QA:MB(λ(ρ)) ≤ QA:MB(λ(σAM ⊗ σB))+ IAM :B(ρ). (B5)

In the last step, we use Proposition 8 to bound the first term
on the right. �

In order to simplify the notation, let us denote the bound
on correlations due to decomposable dynamics as B(ρ) =
supσAM

QA:M (σAM )+ IAM :B(ρ) and the state at time t as
ρt = �(ρ0).

Proposition 10.—The degree of nondecomposability
dDEC(�) is lower bounded as follows:

dDEC(�) ≥ g−1(QA:MB(ρt)− B(ρ0)). (B6)

Proof.—We will prove the theorem by combining the
continuity bounds with the statement of Proposition 9.
Consider a fixed, but arbitrary, decomposable map λ. Due
to gd-continuity, we write

QA:MB(ρt)− QA:MB(λ(ρ0)) ≤ |QA:MB(ρt)− QA:MB(λ(ρ0))|
≤ g(d(ρt, λ(ρ0))). (B7)

We rearrange and use the bound in Proposition 9:

QA:MB(ρt) ≤ QA:MB(λ(ρ0))+ g(d(ρt, λ(ρ0)))

≤ B(ρ0)+ g(d(ρt, λ(ρ0))). (B8)

The amount of violation is now brought to the left-hand
side and below we use the fact that g is invertible and
take the supremum over states ρ0 to identify the degree
of nondecomposability:

QA:MB(ρt)− B(ρ0) ≤ g(d(ρt, λ(ρ0)))

g−1(QA:MB(ρt)− B(ρ0)) ≤ d(ρt, λ(ρ0)),

g−1(QA:MB(ρt)− B(ρ0)) ≤ dDEC(�), (B9)

which proves the claim. �

1. Spectral norm

We link the operator norm of unitary maps with the
spectral distance between them.

Lemma 1.—Let U, V be unitaries. Then D∞(U, V) ≤
2 ‖U − V‖∞.

Proof.—By simple algebra, we verify

UρU†−VρV† = 1
2
(U − V)ρ(U + V)† (B10)

+ 1
2
(U + V)ρ(U − V)†, (B11)

where ρ is a density matrix. Taking the spectral norm on
both sides, we obtain
∥∥UρU†−VρV†

∥∥
∞ (B12)

=
∥∥∥∥

1
2
(U − V)ρ(U + V)†+1

2
(U + V)ρ(U − V)†

∥∥∥∥
∞
(B13)

≤ 1
2

∥∥(U−V)ρ(U+V)†
∥∥

∞ + 1
2

∥∥(U+V)ρ(U−V)†
∥∥

∞
(B14)
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≤ ‖U − V‖∞ ‖ρ‖∞ ‖U + V‖∞ (B15)

≤ 2 ‖U − V‖∞ , (B16)

where we have used the triangle inequality and submul-
tiplicativity of the spectral norm, ‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞.
Using the bounds ‖ρ‖∞ ≤ ‖ρ‖1 = 1 and ‖U + V‖∞ ≤
‖U‖∞ + ‖V‖∞ = 2 on the last inequality finishes the
proof. �

2. Correlations and the number of Trotter steps

As a concrete illustration, let us relate the mutual infor-
mation in a state to number of Trotter steps needed. In
this case, we can use continuity bounds for von Neumann
entropy to conclude that if 1

2 ‖ρ − σ‖1 = ε, then [56,57]

|IA:MB(ρ)− IA:MB(σ )| ≤ 2ε log (dAdM dB − 1)+ 3η(ε),
(B17)

where η(x) = −x log x − (1 − x) log (1 − x) is the binary
entropy. We now bound the first term using ε ≤ √

ε, recall-
ing that ε is small, and the second term using η(ε) ≤ √

ε

to arrive at

|IA:MB(ρ)− IA:MB(σ )| ≤ 5 log (dAdM dB)
√
ε. (B18)

Furthermore, since ‖X ‖1 ≤ rankX · ‖X ‖∞, we have

|IA:MB(ρ)− IA:MB(σ )| ≤ C
√‖ρ − σ‖∞, (B19)

where C = 5
√

2 log (dAdM dB)
√

dAdM dB is a dimension-
dependent constant. This means that we can choose g(s) =
C

√
s to show that mutual information is gd continuous

with respect to the spectral distance and the inverse is
g−1(s) = (s/C)2 when s ≥ 0. Combining this with the
discussion in Sec. III C and Proposition 10, we finally
obtain
(

IA:MB
(
e−itHρ0eitH

) − B (ρ0)

C

)2

≤ t2 ‖[HAM , HBM ]‖∞ ,

(B20)

when IA:MB
(
e−itHρ0eitH

) ≥ B (ρ0). This means that the
number of Trotter steps needed to guarantee an ε error is

r ≥ O

((
IA:MB

(
e−itHρ0eitH

) − B (ρ0)
)2

ε

)
. (B21)

Note that while we have used some relaxations to derive
this bound, we still obtain nontrivial quantitative state-
ments relating the correlations in the system and the com-
mutator norm. In particular, while the quadratic power in
the mutual information is suboptimal, a linear bound can-
not exist due to the tightness of the entropic continuity
bounds.

APPENDIX C: INACCESSIBLE MEDIATOR

First, we derive a necessary condition on maps admitting
a decomposable m-dilation.

Proposition 11.—A gd-continuous correlation measure
Q admits the following bound under the evolution gener-
ated by λ ∈ DEC(m):

QA:B(λ(ρAB)) ≤ sup
σAM

QA:M (σAM )+ IA:B(ρAB), (C1)

where the supremum is over all AM states with the dimen-
sion dM ≤ m and IA:B(ρAB) = infσA⊗σB g(d(ρAB, σA ⊗ σB))

measures the total correlations across A : B.
Proof.—Consider the following argument:

QA:B(λ(ρAB)) ≤ QA:MB(λ̃(ρAB ⊗ σM ))

≤ sup
σAM

QA:M (σAM )+ IAM :B(ρAB ⊗ σM )

= sup
σAM

QA:M (σAM )+ IA:B(ρAB), (C2)

where the first line follows from the monotonicity of Q and
the existence of a decomposable m-dilation, the second line
restates Proposition 9 restricted to an m-dimensional medi-
ator, and the last line follows from the fact that tracing out
an uncorrelated particle is a reversible process and hence
we have equality. �

Note that we have assumed that any map with a decom-
posable dilation starts with the joint ABM state of a product
form ρAB ⊗ σM . Although this is a restrictive condition, it
has been shown that this is essentially the only consistent
choice if we require that the dynamics can start from any
AB state and the assignment is linear [58].

Next, we show that the violation of the inequality
provides a bound on the degree of nondecomposability.

Proposition 12.—The degree of nondecomposability
satisfies the following lower bound:

DDEC(m)(�AB) ≥ g−1(QA:B(�AB(ρAB))− B(ρAB)),

where B is the two-particle version of the bound B,

B(ρAB) = sup
σAM

QA:M (σAM )+ IA:B(ρAB),

and the supremum over σAM assumes that the dimension of
the mediator satisfies dM ≤ m.

Proof.—Consider a fixed but arbitrary dilation �̃ of the
map�AB and a decomposable map λ̃ (acting on all subsys-
tems) that is a dilation of the map λAB ∈ DEC(m). The same
steps as in Proposition 10 and Eqs. (B7) and (B8) lead to

010318-12



QUANTITATIVE NONCLASSICALITY OF MEDIATED INTERACTIONS PRX QUANTUM 5, 010318 (2024)

the following inequality:

g−1(QA:B(�(ρAB))− B(ρAB)))

≤ d(�̃(ρAB ⊗ σM ), λ̃(ρAB ⊗ σM )), (C3)

where we have used monotonicity and the definition
of dilation to write QA:B(�(ρAB)) ≤ QA:MB(�̃(ρAB ⊗ σM ))

and invariance of total correlations under tracing out
an uncorrelated system in the bound B, which there-
fore becomes B. The left-hand side is accordingly fully
expressed in terms of bipartite quantities and we now
similarly bound the right-hand side.

To show the claim, it is enough to show that the dis-
tance on the right-hand side gives a lower bound to the
degree of nondecomposability. By taking the supremum
over ρAB, the right hand side is upper bounded by the
operator distance:

sup
ρAB

d(�̃(ρAB ⊗ σM ), λ̃(ρAB ⊗ σM )) ≤ D(�̃, λ̃), (C4)

where the inequality is due to the optimization over states
of AB only, not over all three systems. Analogous reasons
show that the operator distance is upper bounded by the
completely bounded distance

D(�̃, λ̃) ≤ D(�̃, λ̃). (C5)

This time, because the right-hand side involves addi-
tional optimization over the ancillary states. Finally,
note that this reasoning holds for any dilation and
the best bound is obtained by taking the dilations
producing the infimum: infλAB∈DEC(m) inf�̃,λ̃D(�̃, λ̃) =
infλAB∈DEC(m)D(�AB, λAB). �

With these tools, we now investigate the structure of
maps that admit decomposable m-dilations.

1. Nondecomposability of swapping

Proposition 13.—The map SWAP on two qubits has no
decomposable m-dilation, for any m.

Proof.—We will prove this by contradiction. Suppose
that SWAP has a decomposable m-dilation. Let us compare
the action of SWAP on |00〉AB and on |01〉AB. By definition,
there exist two maps, λAM and λBM , and some initial state
σM such that

|00〉 〈00|AB = SWAP(|00〉 〈00|AB)

= TrMλBMλAM (|00〉 〈00|AB ⊗ σM ) , (C6)

|10〉 〈10|AB = SWAP(|01〉 〈01|AB)

= TrMλBMλAM (|01〉 〈01|AB ⊗ σM ) . (C7)

Let us define σ 0
AM = λAM (|0〉 〈0|A ⊗ σM ). By Eqs. (C6)

and (C7), we have

|0〉 〈0|A = TrBSWAP(|00〉 〈00|AB)

= TrBMλBM
(|0〉 〈0|B ⊗ σ 0

AM

)
, (C8)

|1〉 〈1|A = TrBSWAP(|01〉 〈01|AB)

= TrBMλBM
(|1〉 〈1|B ⊗ σ 0

AM

)
. (C9)

But because λBM is trace preserving and TrB factors out
when applied to product states, we have

TrBMλBM
(|0〉 〈0|B ⊗ σ 0

AM

) = TrBM
(|0〉 〈0|B ⊗ σ 0

AM

)

= TrMσ
0
AM

= TrBMλBM
(|1〉 〈1|B ⊗ σ 0

AM

)
.

(C10)

Combining this with Eqs. (C8) and (C9), we obtain

|0〉 〈0|A = TrBMλBM
(|0〉 〈0|B ⊗ σ 0

AM

)
(C11)

= TrBMλBM
(|1〉 〈1|B ⊗ σ 0

AM

)
(C12)

= |1〉 〈1|A , (C13)

which is clearly a contradiction. �

2. Strict inclusions

Proposition 14.—The inclusion DEC(m) � DEC(m + 1)
is strict for all m.

Proof.—Let us fix m and take dA = dB > dM = m. Let
λm(ρAB) = TrM SWAPBMλAM (ρAB ⊗ |0〉 〈0|M ), where λAM
is a maximally entangling map. By this construction, λm
has a decomposable m-dilation, i.e., λm ∈ DEC(m). Choos-
ing ρAB = |00〉 〈00|AB and Q to be the relative entropy of
entanglement, we obtain EA:B(λm(ρAB)) = log m, whereas
by Proposition 11, for all maps λ ∈ DEC(m − 1) we have
(recall that ρAB is product)

EA:B(λ(ρAB)) ≤ sup
σAM

EA:M (σAM )+ IA:B(ρAB) (C14)

= log (m − 1). (C15)

Therefore, λm �∈ DEC(m − 1), and the claim is shown. �
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