
Convex optimization methods for
multipartite quantum experiments

By

Giuseppe Viola

Supervisor: dr hab. inż. Marcin Pawłowski

International Centre for Theory of Quantum Technologies (ICTQT),
University of Gdańsk





Acknowledgement

This work would not have been possible without the personal and financial
support of my supervisor, Marcin Pawłowski. In particular, I acknowledge
and am grateful for support from CHIST-ERA Call 2022 no. 2023/05/Y/

ST2/00005, under the title Modern Device Independent Cryptography (MoDIC) is
funded by the National Science Center, Poland.
I would also like to thank Anubhav Chaturvedi and, Piotr Mironowicz for insightful
discussions.

i





Dedication

To my loving parents,

Anna Papaccino & Giovanni Viola





Abstract

Non-locality is one of the properties most exploited by quantum communication protocols
to achieve a variety of purposes, such as key generation (QKD) for spatially separated
agents or the generation of true random numbers that cannot be predicted by anyone

in the universe and which can be exploited for cryptographic purposes.
Since Bell’s seminal work, many studies have demonstrated the possibility of using quantum

correlation to achieve better performance in the field of communication tasks than can be
achieved with classical strategies.

Often the investigation of quantum strategies that offer the highest chance of success in a
given task is very arduous and complex, sometimes even impossible with today’s knowledge,
making numerical approaches useful, and sometimes necessary.

In this thesis I show new contributions in the fields of entanglement witnessing, random
number generation and tasks involving multiple agents acting on graphs, achieved with the aid
of convex optimisation techniques. This study is carried out through the presentation of three
of my articles.

In the first article, the quantum experiment proposed involves two trusted agents and
an eavesdropping agent. This experiment addresses the problem of distinguishing entangled
quantum states from separable quantum states through the use of the entanglement witnessing
technique in the presence of imperfect communication and in a context in which the devices used
are not fully trusted. In this work convex optimization techniques have been used to establish
to what extent an eavesdropping agent can simulate the behavior of entangled quantum states
through the use of separable quantum states. To deal with non-detection events, we applied
techniques already known and studied in the context of Bell scenarios to the entanglement
witnessing technique, and compared the results obtained with different approaches.

In the second article, the quantum experiment proposed involves two trusted agents and
an eavesdropping agent. In this work we introduced a new algorithm and experimental setup
that can be exploited to demonstrate non-local phenomena at very large and, under certain
assumptions, arbitrarily large distances, in the presence of imperfect communication. This
proposal involves the introduction and implementation of the so-called routed Bell experiment,
in which, in one of its formulations, a source sends quantum states to an agent located near the
source and to a switch which randomly sends its subsystem to another agent near the source or
to one far from the source. The agents placed close to the source perform measurements on the
received quantum state trying to obtain correlations that maximally violate the CHSH inequality,
while the agent placed further away performs measurements aiming to obtain outcomes which
we have demonstrated to be random and non-reproducible through the use of local description in
a non-conspiratorial context. In this project we used numerical convex optimization techniques
to quantify the maximum predictive power of an adversary who has access to the source of the
transmitted quantum states, thus quantifying the randomness obtainable as a function of the
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inefficiency of the devices used by the agent placed at large distance from the source.
In the task proposed in the third article, we show how sharing quantum states can increase

the success probabilities of multiple agents performing communication task. In particular
we studied some tasks implemented by mobile agents positioned on the vertices of a graph,
focusing on different variants of the graph rendezvous problem and on different variants of a
communication task we introduced, taking the graph domination problem as an example. We
investigated a possible quantum advantage, i.e. an increase in the probability of victory, or
more generally, in the score that agents can obtain when they share quantum states. In this
study, convex optimisation methods were used to investigate the optimal quantum strategies
that the agents can employ comparing them with what they can do adopting only classical
strategies. We considered only tasks for which the success probability or the score is described
by a linear function with respect to the distribution of the outputs obtained by the various
agents.
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Abstrakt

Nielokalność jest jedną z najczęściej wykorzystywanych przez kwantowe protokoły ko-
munikacyjne właściwości, służącą do osiągania różnych celów, takich jak kwantowe
generowanie kluczy (Quantum Key Distribution, QKD) dla przestrzennie oddzielonych

agentów lub generowanie prawdziwie losowych liczb, których nikt we wszechświecie nie może
przewidzieć i które można wykorzystać do celów kryptograficznych.

Od czasu przełomowej pracy Bella, wiele badań wykazało możliwość wykorzystania korelacji
kwantowych do osiągnięcia lepszej wydajności w dziedzinie zadań komunikacyjnych niż można
byłoby osiągnąć za pomocą klasycznych strategii.

Często badanie strategii kwantowych, które oferują największą szansę na sukces w danym
zadaniu, jest bardzo żmudne i złożone, a czasem nawet niemożliwe przy dzisiejszej wiedzy, co
sprawia, że podejścia numeryczne są przydatne, a czasem konieczne.

W niniejszej rozprawie pokazuję nowe osiągnięcia w dziedzinie certyfikacji splątania, gen-
erowania liczb losowych i zadań z udziałem wielu agentów działających na grafach, uzyskane
za pomocą technik optymalizacji wypukłej. Badanie to zostało przeprowadzone w trzech
zaprezentowanych artykułach mojego autorstwa.

Zaproponowany w pierwszym artykule eksperyment kwantowy obejmuje dwóch zaufanych
agentów i agenta podsłuchującego. Eksperyment ten dotyczy problemu rozróżnienia splątanych
stanów kwantowych od separowalnych stanów kwantowych poprzez zastosowanie techniki ob-
serwowania splątania w obecności niedoskonałej komunikacji i w kontekście, w którym używane
urządzenia nie są w pełni zaufane. W niniejszej pracy zastosowano techniki optymalizacji
wypukłej w celu ustalenia, w jakim stopniu agent podsłuchujący może symulować zachowanie
splątanych stanów kwantowych za pomocą separowalnych stanów kwantowych. Aby poradzić
sobie ze zdarzeniami niewykrycia przez detektor, zastosowaliśmy techniki już znane i badane
w kontekście scenariuszy Bella do techniki obserwowania splątania i porównaliśmy wyniki
uzyskane przy użyciu różnych podejść.

W artykule drugim zaproponowany eksperyment kwantowy obejmuje dwóch zaufanych
agentów i agenta podsłuchującego. W tej pracy wprowadziliśmy nowy algorytm i konfigurację
eksperymentalną, które można wykorzystać do zademonstrowania zjawisk nielokalnych na bardzo
dużych i, przy pewnych założeniach, dowolnie dużych odległościach, w obecności niedoskonałej
komunikacji. Propozycja ta obejmuje wprowadzenie i implementację tak zwanego routowanego
eksperymentu Bella, w którym, w jednej z jego formuł, źródło wysyła stany kwantowe do agenta
znajdującego się w pobliżu źródła i do przełącznika, który losowo wysyła swój podsystem do
innego agenta w pobliżu źródła lub do jednego z dala od źródła. Agenci umieszczeni blisko
źródła wykonują pomiary na otrzymanym stanie kwantowym, próbując uzyskać korelacje, które
maksymalnie łamią nierówność CHSH, podczas gdy agent umieszczony dalej wykonuje pomiary
mające na celu uzyskanie wyników, które, jak wykazaliśmy, są losowe i niereprodukowalne przy
zastosowaniu lokalnego opisu w kontekście niekonspiracyjnym. W tym projekcie wykorzystaliśmy
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techniki numerycznej optymalizacji wypukłej do ilościowego określenia maksymalnej mocy
predykcyjnej przeciwnika, który ma dostęp do źródła transmitowanych stanów kwantowych,
określając w ten sposób losowość możliwą do uzyskania jako funkcję nieefektywności urządzeń
używanych przez agenta umieszczonego w dużej odległości od źródła.

W zadaniu zaproponowanym w artykule trzecim pokazujemy, w jaki sposób współdzielenie
stanów kwantowych może zwiększyć prawdopodobieństwo sukcesu wielu agentów wykonujących
zadanie komunikacyjne. W szczególności zbadaliśmy niektóre zadania realizowane przez mobil-
nych agentów umieszczonych na wierzchołkach grafu, koncentrując się na różnych wariantach
problemu rendezvous na grafie i różnych wariantach wprowadzonego przez nas zadania komunika-
cyjnego opartego na problemie dominowania w grafie. Zbadaliśmy możliwą przewagę kwantową,
tj. wzrost prawdopodobieństwa sukcesu lub, bardziej ogólnie, wyniku, jaki agenci mogą uzyskać,
gdy współdzielą splątane stany kwantowe. W tym badaniu wykorzystano metody optymaliza-
cji wypukłej do zbadania optymalnych strategii kwantowych, które agenci mogą zastosować,
porównując je z tym, co mogą zrobić, przyjmując tylko strategie klasyczne. Rozważaliśmy tylko
zadania, dla których prawdopodobieństwo sukcesu lub wynik jest opisany funkcją liniową w
odniesieniu do rozkładu wyników uzyskanych przez różnych agentów.
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Introduction

Since the 20th century, quantum mechanics has caused great progress in terms of tech-
nology, enabling the realization and conception of new protocols like device independent
(DI) quantum key distribution [1–6] and randomness expansion [7–10].

In particular, one of the most used features for these purposes is the possibility of generating
states from which non-classical correlations can emerge, allowing the generation of keys between
agents spatially separated, keys which can be exploited to implement various cryptographic
protocols in a secure manner, i.e. in such a way that no one can predict the elements that
compose them.

Bell’s seminal study [11] also began the study of inequalities that allow us to identify
quantum correlations that cannot be reproduced by classical systems, from which several
studies followed showing examples of communication tasks for which quantum correlations give
to the agents involved greater success probability, with respect to the use of strategies for which
a classical description is possible. Among these, one of the most studied examples is the the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [12].

At the same time, thanks to the technological development of recent years and the consequent
increase in computing power, the use of computers allows the study and resolution of problems
that would require too much time to be solved analytically or, more generally, too many
resources, making numerical techniques necessary.

In particular, with the aim of addressing problems related to the investigation of quantum
strategies in fields such as entanglement detection and communication tasks, an area of numerical
mathematics that proves to be particularly useful is semidefinite programming (SDP) [13–15],
exploited in particular in its two applications, the NPA hierarchies [16, 17] and the see-saw
method [18].

It is possible to apply these numerical techniques because, as will be explained in more
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CHAPTER 1. INTRODUCTION

detail in later sections, in many cases it is possible to formulate problems concerning the
investigation of quantum strategies as problems of minimization of linear functions subject to
linear constraints, in addition to the requirement that certain operators are positive semidefinite.
This last type of constraint is also what distinguishes problems concerning linear programming
from problems connected with semidefinite programming. In particular, the reason which makes
the use of these techniques feasible, when exploiting a computer, lies in the fact that there are
algorithms through which it is possible to solve problems formulated according to semidefinite
programming in an efficient manner, and, if used appropriately, can provide precise numerical
results up to machine precision.

In the first article, taking example from the Bell inequalities approach, when dealing with non-
detection events [19], we studied an alternative method to tackle the problem of entanglement
detection in a context in which the detectors used can be potentially malicious, when the agents
want to perform an entanglement witnessing experiment. In particular, managing no-click
events by adopting strategies already studied in the context of Bell experiments, and adapting
them to the entanglement witnessing method, with a focus on the discard strategy and the
assignment strategy, as will be explained in more detail in later sections.

In this study, in addition to an analytical investigation performed in simpler cases, the use
and the adaptation of numerical techniques has proven to be necessary to investigate more
complex cases. In particular to study the correlations that untrusted devices can generate when
separable quantum states are adopted, trying to reproduce correlations that, in a context of
reliable detectors, only non-separable quantum states could achieve.

In the second article we introduced and studied the so-called routed Bell experiment, in
which a source sends quantum states to an agent located near the source, and to a switch
which randomly sends its subsystem to another agent located near the source or to an agent
located far from the source, and we looked for the optimal set up for the agents to certify that
the outcome of the measurements performed by the agent placed far from the source can’t be
predicted by a classical model and that they are indeed random.

In this study, numerical techniques have been introduced to study the loophole free violation
trade-off in cases where the devices are positioned close to the source and the threshold
requirements on the correlations generated by the devices positioned far from the source.

In the third article we have exploited convex optimisation techniques to show that it is
possible to obtain an advantage in terms of probability of success, or equivalently in terms of
a score, when the agents involved in a communication task are distributed over a graph. In
particular we studied the following two tasks: the graph rendezvous [20] task and the graph
domination task.

In graph rendezvous, as described in more detail in Sec. 2.5, n agents are distributed over a
graph and aim to meet at the same node after travelling h edges, in particular they are aware
of the structure of the graph in which they will be distributed, they cannot communicate with
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other participants once their initial position has been fixed and they can agree on a strategy
before being distributed over the graph.

The graph domination task is a task that we introduced by taking example from the
domination problem, a problem already studied in the literature [21, 22] in which, in one of
its formulations, the objective is to maximize the number of dominated vertices of a graph by
deciding where to place a fixed number of dominating vertices. A point in a graph is said to be
dominated if it is a dominating vertex or if it is separated by a single edge from a dominating
vertex.

In the graph domination task n agents are randomly distributed on the vertices of a graph
and these have the objective of maximizing the number of dominated vertices after having
traversed each h edges and denoting the final vertices reached as dominating vertices. Also in
this case the agents, once positioned on the graph, cannot communicate with each other and
can agree on a strategy before being positioned on the graph.
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Summary of dissertation

2.1 Preliminaries

This section presents introductory elements and intermediate results that we derived and that
are useful to understand the final results that we obtained.

2.1.1 Notation and definitions

Let us consider, for simplicity, two agents Alice and Bob, spatially separated, who receive
uniformly distributed inputs, x and y respectively, and each of which generates an output a
and b respectively [23]. The set

(2.1) P(A,B|X,Y )={p(a,b|x,y)}a∈A,b∈B,x∈X,y∈Y

is called joint probability distribution function, where X, Y , A and B are finite non empty
sets. While the set

(2.2) P(A|X,Y )={p(a|x,y)}a∈A,b∈B,x∈X,y∈Y

is called marginal probability distribution of Alice, where

(2.3) p(a|x,y)=
∑

b

p(a,b|x,y)

and similarly for Bob.
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CHAPTER 2. SUMMARY OF DISSERTATION

A joint probability distribution P(A,B |X,Y ) for which there exist conditional probability
distributions

(2.4) P(Λ),PA(A |X,Λ),PB(B | Y,Λ),

where P(Λ) is a probability distribution associated to the possible states of the measured
system labeled with λ, satisfying

(2.5) p(a,b | x,y)=
∑
λ

p(λ) ·p(a | x,λ) ·p(b | y,λ)

is called a local or classical probability distribution.
A joint probability distribution P(A,B|X,Y ) is called no signalling if, ∀a∈A,x∈X,y,y′ ∈

Y ,

(2.6) p(a|x,y)=p(a|x,y′)

A joint probability distribution P(A,B |X,Y ) is said to be quantum if and only if there
exists a Hilbert space H, on which it is possible to define a state |ψ〉, and a set of projective
measurement operators

(2.7) {Ea
x,F

b
y }

a∈A,b∈B,x∈X,y∈Y
,

for which the following conditions are fulfilled:

1. Ea
x=Ea†

x and F b
y =F b†

y (operators are Hermitian),

2. Ea
xE

a′
x =0 and F b

yF
b′
y =0 for a6=a′ and b6=b′ (orthogonality of different results associated

with the same setting),

3.
∑

a∈AE
a
x=I and

∑
b∈B F

b
y =I (sum of probabilities of all outcomes for each setting is equal

to 1),

4. [Ea
x,F

b
y ]=0 (measurements of Alice and Bob commute, i.e. their results do not depend

on the time order in which they were performed, which is justified by the no-signaling
principle),

5.

(2.8) p(a,b | x,y)=〈ψ |Ea
xF

b
y |ψ〉=Tr(|ψ〉〈ψ|Ea

xF
b
y )

(the probability distribution is given by measurements on the quantum state).
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2.1. PRELIMINARIES

2.1.2 Bell inequalities

One of the most interesting features of quantum mechanics is the prediction of correlation
functions which can not be explained and predicted by any classical theory based on an hidden
variable model. This disagreement between the predictions of the quantum theory and classical
theory was first studied through the so-called Einstein-Podolsky-Rosen paradox, which was
formulated in terms of measurable quantities by Bell [11] and by Clauser, Horne, Shimony,
and Holt [12], through the so-called CHSH inequality. Many other Bell inequalities have been
introduced and studied to date, because of their importance not only in quantum foundations,
but also in distinguishing correlations that can be predicted by classical descriptions from
correlations that cannot be predicted by classical models in a manner independent of the specific
device used, i.e. in the so-called device independent way.

It is possible to write any Bell inequality in terms of a function of the joint probability
distribution associated to the given scenario. Although non-linear Bell inequalities have been
studied in the literature [24], in this work I focused on the investigation of linear Bell inequalities.

In the two agents scenario, in which the first agent, Alice, receives as input x ∈ X and
generates as output a∈A, and the second agent, Bob, receives as input y ∈ Y and generates as
output b∈B, the linear function can be written as

(2.9) I=
∑
a∈A

∑
b∈B

∑
x∈X

∑
y∈Y

αa,b,x,yp(a,b | x,y),

where αa,b,x,y ∈ R [23].
As will be discussed later in this chapter, linearity is a key property which can be exploited,

when studying tasks which involves Bell inequalities, letting us to apply numerical techniques
in an efficient way.

2.1.3 Semidefinite programming

Semidefinite programming (SDP) is a mathematical optimization technique that extends the
concepts of linear programming to handle matrices and, in particular, positive semidefinite
matrices. It addresses problems where the objective is to optimize a linear objective function
subject to linear equality and semidefinite inequality constraints. SDP finds applications in
multiple fields [25], including quantum information [13–15]. Advancements in algorithmic
design and improvements in computational power have significantly enhanced the efficiency of
SDP solvers. Modern interior-point methods [26], in particular, have proven to be effective in
solving large-scale semidefinite programs, making SDP a versatile tool for addressing complex
optimization problems [27]. For m,n∈N the so-called primal optimization task of SDP is [23]:

minimize cT ·x

subject to F (x) � 0,
(2.10)
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CHAPTER 2. SUMMARY OF DISSERTATION

where c∈ Rm, F (x) : =F0+
∑m

i=1xiFi, Fi ∈ Rn×n, and x∈ Rm is the variable. The so-called dual
of this problem with a symmetric matrix variable Z ∈ Rn×n is

maximize − Tr [F0Z]

subject to Tr [FiZ]=ci, for i=1, · · · ,m,

Z � 0.

(2.11)

2.1.4 The Navascués-Pironio-Acín Method

The Navascués-Pironio-Acín (NPA) method [16, 17] is a powerful mathematical framework for
studying quantum correlations and entanglement in quantum information theory. It offers a
systematic method to analyse quantum systems’ behaviour and correlations.

Let us consider the two agents joint probability distribution
P(A,B |X,Y )={p(a,b|x,y)}a∈A,b∈B,x∈X,y∈Y associated to the quantum state ρ and the pro-
jective measurements

(2.12) {Ea
x,F

b
y }

a∈A,b∈B,x∈X,y∈Y
,

with p(a,b | x,y)=Tr(ρEa
xF

b
y ), and the following lemma [28]:

Lemma 1. Let {F1, . . . ,Fn} be a collection of operators. The orthogonal matrix M whose
entries are

(2.13) [M ]i,j=Tr(ρF †
i Fj)

is non-negative.

In the NPA method the matrix M is built by selecting the operators Fi as combinations of
the operators in the following set: S={1} ∪ {Ea

x}a∈A,x∈X ∪ {F b
y }b∈B,y∈Y and are investigated

all the distributions P(A,B |X,Y ) for which the associated matrix M exists and is positive
semidefinite. Level 1 of the NPA method is obtained when the combinations considered are
each composed of a single element of S and the set of all distributions P(A,B |X,Y ) for which
the associated matrix M exists and is positive semidefinite is denoted by Q1. Similarly, the
level n, with n∈N+, of the NPA method is obtained by considering all the combinations which
contain n elements of S and the set of all distributions P(A,B |X,Y ) for which the associated
matrix M exists and is positive semidefinite is denoted by Qn.

Since at each level n>1 are considered additional constraints with respect to the level
n−1, we have that Q1 ⊃ Q2 ⊃ Q3 ⊃ ...Qn and it has been shown that the set of investigated
distributions converges to the quantum set Q, i.e. limn→∞ Qn=Q. Thus, when looking for
the maximum violation of a Bell inequality obtainable by investigating quantum probability
distributions, the NPA method allows to find upper bounds.
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2.2. IMPERFECT COMMUNICATION

2.1.5 The See-Saw Method

The so-called see-saw [18] method is an alternative approach to optimize over quantum dis-
tributions, when we have certain restrictions on the dimensions of operators associated with
the setup. Note that the quantum probabilities are given by expressions of the form (2.8). It
is easy to see that expressions that are linear combinations of probabilities given by formulas
of the form (2.8), such as Bell-type operators, are linear in each term, such as the quantum
state, Alice’s measurement operators, and Bob’s measurement operators. However, since the
optimization must be done over all these groups of variables, the whole expression is non-linear.

The key idea of the see-saw method is the alternating use of a series of optimizations for
which two of the expressions of the form (2.8) are treated as constants, and the third of them is
a variable subjected to optimization by SDP methods with the objective function being the Bell
operator. For this purpose, in the first iteration, two of the terms take fixed, often randomly
chosen, values.

Note that while the NPA method provides an approximation of the quantum set of prob-
abilities from its exterior, meaning that, when maximizing a function of joint probability
distributions, it provides an upper bound, the see-saw method finds direct representations of
the quantum state and measurements implementing the found distribution. Thus, any solu-
tion obtained by the see-saw method is a lower bound for the exact solution of the quantum
optimisation problem.

2.2 Imperfect communication

When applying quantum communication algorithms to real world scenarios, the most commonly
used system for encoding quantum states are photons. When photons are transmitted, absorption
occurs due to the interaction of the signal with the transmission medium, which causes the
so-called no-click event for the detector that should have received the signal. This absorption
increases exponentially with the length of the tract over which the photons must travel [29].

In addition to the absorption of photons in the transmission medium, photons may not be
detected by the receiving detector due to the use of imperfect detectors. For these reasons, when
applying quantum communication algorithms, it is important to adopt strategies to handle
no-click events when the transmission medium or detector used is untrusted, i.e. to prevent
such events from being exploited by an eavesdropper to obtain information from such photon
transmission.

Three strategies have been devised for handling such events in a Bell experiment [19]: the
discard strategy, the assignment strategy and the keep everything strategy.

When the parties involved in the Bell experiment employ the discard strategy, they discard
every round of the experiment for which at least one of the agent detectors does not click.

9



CHAPTER 2. SUMMARY OF DISSERTATION

In this case, the limit reachable by classical strategies increases, while the limit reachable by
purely quantum strategies remains unchanged.

When the agents adopt the assignment strategy, they assign to the no-click event one of the
possible outputs for the scenario being studied, e.g. in the case of studying CHSH inequality,
the agents will associate the no-click event an element taken from the set {0,1} in a random or
predetermined way. In this case, the limit attainable by classical strategies remains unchanged,
while the limit attainable by purely quantum strategies decreases.

Finally, when agents opt for the keep everything strategy, they consider the no-click event
as an additional outcome of the experiment, allowing them to fully exploit the information
gained from the experiment, at the price, however, of having to study a new Bell inequality
involving additional outcomes with respect to the inequality initially studied.

In particular, in the first article, we applied the discard strategy and the assignment
strategy to the studied entanglement witnessing scenario, and compared their performance. In
that scenario, two agents receive a state distributed by a source and then, after performing
measurement in the Pauli basis, they evaluate the average value of a particular entanglement
witness, as described more in detail in section 2.4.

2.3 Routed Bell experiment

In the routed Bell experiment, in each round, a source sends quantum states to an agent B,
located near the source, and based on the value of a random variable i ∈ {0,1}, generated
during each round, to an agent Ai, calling A0 an agent located near the source and A1 an agent
located far from the source.

Practical realization of this experiment can be performed through the use of a switch, which
receives the subsystem from the source and resends it to the agent Ai based on the value of the
variable i. Equivalently the experiment can be realized in a similar way substituting the two
agents A0 and A1 and the switch, with a single agent A which, in each round, can be placed
randomly near the source, calling them in these rounds A0, or far from the source, calling them
A1.

In Fig. 2.1 is depicted a scheme describing the routed Bell experiment as described in the
previous paragraph. While in Fig. 2.2 is depicted a scheme describing a generalization of the
routed Bell experiment in which, in addition to the Alice’s devices, also Bob’s devices, in each
round, can be randomly positioned near or far from the source.

Let us consider the simplest bipartite Bell scenario entailing a source, S, distributing entan-
gled quantum systems, ideally in a two-qubit pure state, |ψ〉 ∈ C2⊗C2, to two spatially separated
parties, Alice and Bob. The parties have measurement devices with binary inputs, x,y ∈ {0,1},
specifying the measurement settings, and produce binary outcomes, a,b∈ {+1,−1}, respectively.
In ideal circumstances, the measurement devices perform measurements corresponding to binary

10



2.3. ROUTED BELL EXPERIMENT

Figure 2.1: The graphic is a schematic depiction of the routed Bell CHSH experiment. In each
round of the experiment, the parties choose their respective measurement settings, x,y ∈ {0,1}
and obtain outcomes, ã, b̃∈ {+1,−1,⊥}, where the outcome, ⊥, signifies the “no-click" event.
While Bob’s measurement device, B, is at a fixed distance from the source throughout the
experiment with an unvarying effective detection efficiency and visibility, (ηB,νB), the location
of Alice’s measurement device, Ai, depends on a randomly chosen input bit, i∈ {0,1}. When
i=0, Alice places her measurement device, A0, close to the source with an effective detection
efficiency and visibility, (ηA0 ,νA0), whereas when i=1, she places her measurement device, A1,
further away from the source, with a lower detection efficiency and visibility, (ηA1 ,νA1), such
that, ηA1<ηA0 , νA1<νA0 .

outcome projective observables, âx ∈B(C2), b̂y ∈B(C2). The three tuple, Q≡ (|ψ〉 ,{âx}x,{b̂y}y),
constitutes a quantum strategy (entailing operational instructions) which ideally results in
the experimental behavior, p ≡ {p(a,b|x,y)=1

4 〈ψ|(I+aâx)⊗ (I+bb̂y)|ψ〉} ∈ R16
+ . In general, up to

local-relabelling, a given behavior, p, is said to be nonlocal if and only if it violates the CHSH
inequality,

C(p) ≡
∑
x,y

(−1)x·y 〈âxb̂y〉6
L

2,(2.14)

where 〈âxb̂y〉=
∑

a,babp(a,b|x,y). The inequality (2.14) holds for all behaviors, p ∈ R16, which
admit local hidden variable explanations (L ), such that, p(a,b|x,y)=

∑
λ∈Λ p(λ)pA

λ (a|x)pB
λ (b|y),

where λ is the local hidden variable, Λ is a measurable hidden variable state space, p(λ) specifies
the probability of the system occupying the state corresponding to λ, and for a specific λ, the
conditional probability distributions, {pA

λ (a|x)} and {pB
λ (b|y)}, represent stochastic response

schemes specifying the outcome probabilities for Alice and Bob, respectively.
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CHAPTER 2. SUMMARY OF DISSERTATION

Figure 2.2: The graphic is a schematic depiction of a generalization of the routed Bell experiment
depicted in Fig. 2.1. Along with Alice, in each round of the experiment, Bob chooses the location
of his measurement device, Bj , based on a randomly chosen input bit, j ∈ {0,1}. When j=0, Bob
places his measurement device, B0, close to the source with an effective detection efficiency and
visibility, (ηB0 ,νB0). When j=1, he places his measurement device, B1, further away from the
source, with a lower detection efficiency and visibility, (ηB1 ,νB1), such that ηB1<ηB0 , νB1<νB0 .
Our results imply that in rounds with i=j=1, loophole-free nonlocal correlations can be certified
between the measurement devices, (A1,B1), placed arbitrarily far away from each other.

12



2.3. ROUTED BELL EXPERIMENT

To account for imperfections in the source and noise added during transmission from the
source, we associated effective visibilities, νB,νAi

∈ [0,1] to each measurement device, such that
the quantum state shared between the measurement devices, (Ai,B), is,

ρ(νi)=νAi
νB |ψ〉〈ψ|+νAi

(1−νB)(ρB ⊗ I

2)(2.15)

+(1−νAi
)νB ( I2 ⊗ρA)+(1−νAi

)(1−νB) I44 ,

where ρA=TrB(|ψ〉〈ψ|), ρB=TrA(|ψ〉〈ψ|), I is the two-dimensional identity operator, and
I4=I⊗ I. Analogously to the detection efficiencies, the effective visibility of Alice’s measurement
device decreases with the distance from the source, such that νA1 ≤ νA0 .

Treating the no-click event as an additional outcome, ⊥, the parties observe the experimental
behavior in the form of conditional probability distributions, p(exp) ≡ {p(ã, b̃|(x,i),y)} ∈ R72,
where ã, b̃ ∈ {1,−1,⊥}. A convenient way to post-process the experimental behavior, p(exp),
which avoids considering additional outcomes and as well as the fair-sampling assumption,
is the use of the assignment strategy, i.e. to assign a valid outcome, say 1, to each no-click
event, such that, the effective distribution reduces to p(⊥7→1)

(exp) ≡ {p(a,b|(x,i),y)} ∈ R32
+ [19, 30].

One of the benefits of such a post-processing is the applicability of well-studied reliable means
of quantifying loophole-free nonlocal correlations such as the observed value of the CHSH
expression,

(2.16) CAi,B(p(⊥7→1)
(exp) ) ≡

∑
x,y

(−1)x·y 〈â(x,i)b̂y〉

where 〈â(x,i)b̂y〉=
∑

a,babp(a,b|(x,i),y).
The measurement devices (Ai,B) are said to share loophole-free nonlocal correlations if the

behaviour p(⊥7→1)
(exp) does not allow for a local hidden variable explanation of the form,

(2.17) p(a,b|(x,i),y) =
L (Ai)

∑
λ∈Λ

p(λ)pA
λ (a|x,i)pB

λ (b|y),

for all a,b ∈ {+1,−1} and x,y ∈ {0,1}, where λ is a local hidden variable, Λ is a measurable
hidden variable state space, p(λ) specifies the probability of the shared system occupying
the state corresponding to λ, and for a specific λ, the conditional probability distributions,
{pA

λ (a|x,i)} and {pB
λ (b|y)}, represent stochastic response schemes specifying the outcome

probabilities for Alice and Bob, respectively.
We showed the following theorem:

Theorem 1 (Nonlocality at arbitrary distance). If the measurement devices close to the source,
(A0,B), are perfect, i.e., ηB=ηA0=νB=νA0=1, and witness maximally nonlocal correlations,
such that, CA0B(p(⊥7→1)

(exp) )=2
√

2 , then such nonlocal correlations may be operationally extended
to Alice’s other measurement device placed arbitrarily far away from the source, i.e., loophole-free

13



CHAPTER 2. SUMMARY OF DISSERTATION

nonlocal correlations between (A1,B) can be operationally certified for any non-zero values of
(ηA1 ,νA1).

Theorem 2 (A specific analytical trade-off). If the measurement devices close to the source,
(A0,B), witness loophole-free nonlocal correlations such that, CA0B(p(⊥7→1)

(exp) )>2, then loophole-
free nonlocal correlations between (A1,B) can be certified whenever the following inequality is
violated,

(2.18) CA1B(p(⊥7→1)
(exp) ) 6

L (A1)

√
8− (CA0B(p(⊥7→1)

(exp) ))
2
.

Given a quantum strategy, Q, and the tuple of experimental parameters, (ηB,ηA0 ,νB,νA0),
we retrieved the experimental behavior, p(⊥7→1)

(exp) , as a function of (ηA1 ,νA1). Now, the critical
parameters, (η∗

A1
,ν∗

1), are simply the ones for which the inequality (2.18) is saturated.
In the second article, we compared the use of the maximally nonlocal isotropic strategy Qiso

with the use of tilted strategies QηA0 ,ηB , where Qiso ≡ (|φ+〉 ,{σz,σx},{ 1√
2 (σz ±σx)}), where

|φ+〉= 1√
2 (|00〉+ |11〉) and QηA0 ,ηB is the strategy which attains maximum quantum violation

of the following tilted CHSH inequality,

C
ηA0 ,ηB

A0B (p) ≡ ηA0ηBCA0B(p)+2(1−ηB)ηA0 〈â(0,0)〉

+2(1−ηA0)ηB 〈b̂0〉+2(1−ηA0)(1−ηB)

6
L

2.(2.19)

To measure the non-local behaviour of the measurement device A1, when we considered the
no-click event as an additional outcome, p(exp), we used the amount of certifiable randomness,
Hmin(Gx(p(exp))), where Hmin(·) is the min-entropy, and Gx(p(exp)) is maximum guessing
probability [31],

Gx(p(exp))= max
p

ã

∑
ã∈{±1,⊥}

pã(ã|x,1)

s.t.
∑

ã∈{±1,⊥}
pã=p(exp)

∀ã∈ {±1,⊥} : pã ∈ Q,

(2.20)

where pã(ã|x,1)=
∑

b̃∈{±1,⊥} pã(ã, b̃|(x,1),y), {pã ∈ R72
+ } are convex decompositions of the raw

experimental behavior p(exp) ∈ R72
+ , wherein we have absorbed the convex coefficients into the

respective decompositions, and Q is the convex set of quantum behaviors, p ≡ {p(ã, b̃|(x,i),y)} ∈
R72

+ .
The optimization problem (2.20) is extremely arduous to solve because of the constraint

pã ∈ Q. Instead, to retrieve progressively tightening upper-bounds on the maximum guessing
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probability, Gx(p(exp)), and the estimation of the critical parameters (η∗
A1
,ν∗

A1
), we employ the

Nieto-Silleras hierarchy of semi-definite programs [31, 32], which relaxes the constraint pã ∈ Q,
to pã ∈ QL, where QL are the convex relaxations of the quantum set, Q, corresponding to NPA
hierarchy, L∈N+ denotes the level of the relaxation, such that, Q ⊂ QL+1 ⊂ QL for all L∈N+,
and limL→∞ QL=Q.

2.4 Entanglement witnesses

An entanglement witness is a linear Hermitian operator W , such that 〈W 〉ρs : =Tr[Wρs] ≥ 0 for
all separable states ρs and 〈W 〉ρ<0 for the entangled state ρ under investigation. In the first
article we studied an experiment in which two spatially separated agents perform measurements
on states distributed by a source, and then, calculating the average value of the Bell witness,
they want to establish if the states distributed by the source are entangled. This is done under
the assumption that the detectors are untrusted i.e. that the detector can click or not click
based on an hidden variable model constructed by the provider of the states, who tries to
reproduce the behaviour of entangled states while distributing only separable states.

In the first article, we focused on two-qubit states for which the typical observables are the
Pauli operators, i.e., we consider witnesses W of the form

(2.21) W=w0,01⊗ 1+
3∑

i=1
wi,0σi ⊗ 1+

3∑
j=1

w0,j1⊗σj+
3∑

i,j=1
wi,jσi ⊗σj ,

with wi,j ∈ R being coefficients of the decomposition, and {σ1,σ2,σ3}={σx,σy,σz} being
the set of Pauli operators.

We demonstrated our findings on the example of pure entangled two-qubit states, for which
we use a notation

(2.22) |Ψθ〉 : =sin(θ)|0,0〉+cos(θ)|1,1〉

with θ ∈ (0, π
4 ]. The corresponding witness for |Ψθ〉 reads

(2.23) Wθ : =cos(θ)2
1⊗ 1−|Ψθ〉〈Ψθ| .

The non-zero coefficients of the decomposition of Wθ into Pauli observables are
w0,0=1

2 cos(2θ)+1
4 ,w0,3=w3,0=1

4 cos(2θ),w1,1=−w2,2=− 1
4 sin(2θ), and w3,3=− 1

4 . We refer to
|Ψπ

4
〉 and Wπ

4
as the Bell state and the Bell witness, respectively.

In Fig. 2.6 there is a schematic representation of the experiment we studied, underlining
the parts of the experimental apparatus which we assumed to be trusted.
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Figure 2.3: Bell test Figure 2.4: Our scenario
Figure 2.5: Entanglement
witnessing

Figure 2.6: A schematic representation of a two-photon experiment with polarization qubits.
Parts of the experimental apparatus covered in grey are assumed to be untrusted. 2.3: the
Bell test. 2.4: scenario considered in this work; the detection part of the measurement devices
and the entanglement source are assumed to be untrusted. 2.5: the entanglement witnessing
scenario.

When the agents use the discard strategy to deal the non detection events we derived that
the SDP problem that must solved to find which values of the average of the Bell witness can
be achieved when separable states are employed is

min
ρλ

w0,0+1
η

3∑
i=1

wi,0
∑

λ∈ΛA
i

〈σi ⊗ 1〉ρλ+1
η

3∑
j=1

w0,j

∑
λ∈ΛB

j

〈1⊗σj〉ρλ

+ 1
η2

3∑
i,j=1

wi,j

∑
λ∈ΛA

i ∩ΛB
j

〈σi ⊗σj〉ρλ ,

s.t.
∑

λ∈ΛA
i

Tr[ρλ]=
∑

λ∈ΛB
j

Tr[ρλ]=η,
∑

λ∈ΛA
i ∩ΛB

j

Tr[ρλ]=η2, ∀i, j ∈ {1,2,3},(2.24a)

ρλ ≥ 0, ρᵀA

λ ≥ 0, ∀λ∈Λ,(2.24b)

ρobserved ≥ 0,
∑
λ∈Λ

Tr[ρλ]=1.(2.24c)

In the above SDP, we have introduced an operator ρobserved, which corresponds to the physically
observed state, and is defined as

ρobserved : =1⊗ 1

4 +1
η

3∑
i=1

(
∑

λ∈ΛA
i

〈σi ⊗ 1〉ρλ) σi ⊗ 1

4 +1
η

3∑
j=1

(
∑

λ∈ΛB
j

〈1⊗σj〉ρλ) 1⊗σj

4

+ 1
η2

3∑
i,j=1

(
∑

λ∈ΛA
i ∩ΛB

j

〈σi ⊗σj〉ρλ) σi ⊗σj

4 ,(2.25)

with
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ΛA
i ={λ∈Λ | p(cA|i,λ)=1} , ΛB

j ={λ∈Λ | p(cB|j,λ)=1} ,(2.26)

where p(cA|i,λ) denotes the probability that Alice’s device performing the measurement
associated with the observable σi clicks when receiving the state, labelled with λ, sent by
the source (similarly for Bob). We investigated, without loss of generality, only deterministic
clicking strategies.

The condition ρobserved ≥ 0 in Eq. (2.24c) requests that the observed statistics corresponds
to some physical state, which otherwise could lead to the parties realizing that the behavior of
their detectors is malicious.

While, when the agents use the assignment strategy to deal with the non detection events,
given assignments (a1,a2,a3) and (b1, b2, b3) and detection efficiency η, we derived that the
SDP problem that must solved is:

min
ρλ

w0,0+
3∑

i=1
wi,0 (

∑
λ∈ΛA

i

〈σi ⊗ 1〉ρλ+
∑

λ∈ΛA
i

Tr[ρλ]ai)

+
3∑

j=1
w0,j (

∑
λ∈ΛB

j

〈1⊗σj〉ρλ+
∑

λ∈ΛB
j

Tr[ρλ]bj)

+
3∑

i,j=1
wi,j (

∑
λ∈ΛA

i ∩ΛB
j

〈σi ⊗σj〉ρλ+
∑

λ∈ΛA
i ∩ΛB

j

〈σi ⊗ 1〉ρλbj

+
∑

λ∈ΛA
i ∩ΛB

j

〈1⊗σj〉ρλai+
∑

λ∈ΛA
i ∩ΛB

j

Tr[ρλ]aibj ,)

s.t.
∑

λ∈ΛA
i

Tr[ρλ]=
∑

λ∈ΛB
j

Tr[ρλ]=η,
∑

λ∈ΛA
i ∩ΛB

j

Tr[ρλ]=η2, ∀i, j ∈ {1,2,3},(2.27a)

ρλ ≥ 0, ρᵀA

λ ≥ 0, ∀λ∈Λ,(2.27b)

ρobserved ≥ 0,
∑
λ∈Λ

Tr[ρλ]=1,(2.27c)

∑
λ∈ΛA

i ∩ΛB
j

〈σi ⊗ 1〉ρλ=(1−η)
∑

λ∈ΛA
i

〈σi ⊗ 1〉ρλ ,

∑
λ∈ΛA

i ∩ΛB
j

〈1⊗σj〉ρλ=(1−η)
∑

λ∈ΛB
j

〈1⊗σj〉ρλ ∀i, j,∈ {1,2,3}.
(2.27d)

where ρobserved is defined in Eq. (2.25),

Λ
A
i ={λ∈Λ | p(cA|i,λ)=0} , Λ

B
j ={λ∈Λ | p(cB|j,λ)=0} .(2.28)

When discussing detection efficiency, one is often focused on the critical values that must
be exceeded in order to observe a violation of a Bell inequality, or in our case an entanglement
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witness. At the same time, these theoretical limits must be adjusted in experiments due to
inevitable noise. The relevant figure of merit in this discussion is the critical visibility, which
we define here for a witness W as follows

(2.29) vρ=min[v |v〈W 〉ρ+(1−v)〈W 〉 1⊗1

4
≤ 〈W 〉λ] ,

with 0 ≤ v ≤ 1, where 〈W 〉 1⊗1

4
is the value of the witness W with respect to the maximally

mixed state 1⊗1
4 , and 〈W 〉λ is the minimal value attainable by malicious strategies, in which the

detectors can be controlled by a hidden variable λ. Critical visibility, as defined by Eq. (2.29),
is directly connected to white noise robustness, but has the opposite interpretation. Namely,
values of visibility close to 1 mean that little amount of noise can be tolerated in the experiment.

The definition in Eq. (2.29) is applicable to both, the discard and the assignment strategy.
For the former, 〈W 〉ρ is independent of η and 〈W 〉λ gets more negative as η decreases, as
shown in Fig. 3.1. For the latter, 〈W 〉ρ increases as η decreases, while 〈W 〉λ remains zero for
η above the critical value, as shown in Fig. 3.2. In both situations, for the critical value of η,
the visibility vρ is equal to 1 for the state ρ giving the minimal value of the witness W . For η
above critical, some amount of white noise can be tolerated, resulting in the required visibility
values going below 1.

2.5 Tasks on graphs

In the third article, we used the following definitions:

Definition 2.1. Given a graph, and a number h≥ 1, the rendezvous task is defined as the
task in which r≥ 2 agents, placed uniformly randomly among the vertexes of the graph, move
along edges of the graph h times. They are successful if, after crossing the edges h times, they
are all positioned in the same vertex. They can establish a strategy before being placed on the
graph, but they are not allowed to communicate before each of the agents has completed their
move.

If h=1 then the rendezvous task is called single-step.

One variant of the rendezvous problem is the symmetric rendezvous where both players
have equal capabilities and constraints or are following the same strategy [33–36].

Definition 2.2. Given a graph, and a number h≥ 1, the domination task is defined as the
task in which r≥ 2 agents, placed uniformly randomly among the vertexes of the graph, move
along edges of the graph h times. They try to dominate as many vertexes as they can, counting
the dominated points only after all the agents completed their moves.

A vertex is said to be dominated when an agent occupies it or it is connected with an edge
to a vertex where there is an agent.
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Figure 2.7: Some of the graphs analysed.

The agents can establish a strategy before being placed on the graph, but they are not
allowed to communicate before each of the agents has completed their move.

If h=1 then the domination task is called single-step.

In Fig. 2.7 we present some of the graph scenarios with which we dealt. With the name
n-gon we refer to the graphs described by a polygon with n vertexes, with the name n-line we
refer to the graphs described by a line connecting n vertexes, while with the name n-line curly
we refer to a n-line graph where the extrema are connected with themselves.
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At exception of the n-line curly graphs, for which we provided a specific definition, for all
the other graphs we included the word "curly" in their name when each of their vertexes is
connected with itself.

In the quantum version of these tasks the agents share a quantum state before being placed
on the graph, and, after performing a measurement on their subsystem, determined by the
starting position, they decide to which accessible node they will move.

In addition to the standard cases, we studied also the symmetric cases in which the agents
are constrained to use the same strategy. In the symmetric quantum case the agents are
constrained to receive subsystems described by the same quantum state and they all decide in
the same way which measurement to perform based on the starting position.

The results were found through the application of see-saw method and NPA hierarchy
method.
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Outlook

The articles in this dissertation aim to bring out the usefulness and versatility of numerical
optimisation approaches applied to problems directly related to quantum experiments and
communication tasks, aiming in particular to show examples of application of already known
and analysed tools and their adaptation and extension to particular problems, to the point of
generating new algorithms with which to approach more complex problems, making it possible
to obtain new results and increase the researcher’s understanding in situations not yet explored,
favouring the emergence of insights that can help in the search for more elegant analytical
solutions.

In the first article we have applied the discard strategy and assignment strategy techniques
to a particular entanglement witness experiment with faulty and potentially malicious detectors,
deriving formulations (2.24) and (2.27) which can be solved through convex optimization.

Through convex optimisation, we then derived the plots in Fig. (3.1) where we show the
solutions of Eq. (2.24) for the witness Wθ for θ ∈ {π

6 ,
π
5 ,

π
4 }. Additionally, we provided an explicit

solution for the Bell witness, and show that in that for the discard strategy the critical detection
efficiency is 1√

3 . This value is significantly smaller than
√

2
3 , which is the critical detection

efficiency of detecting the Bell state device-independently in a Bell experiment [37].
In Fig. 3.2 (left) we demonstrated the solution to the SDP in Eq. (2.27) for the witness Wθ

and the assignment~(0,0,0). This particular assignment preserves the property 〈W 〉ρs ≥ 0 for
all separable states. In Fig. 3.2 (left) by the dashed lines we depicted values of the witness Wθ

with respect to the corresponding state |Ψθ〉. These values increase as η decreases due to the
assignment strategy selected. The points where the dashed lines intersect the solid lines are the
critical detection efficiencies for the chosen assignment.

In Fig. 3.2 (right) we also compared different assignments for the Bell witness. One can
see that the property of 〈W 〉ρs ≥ 0 is not preserved for any of the selected assignments. At
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Figure 3.1: Minimal values that the witness 〈Wθ〉 can take in the discard strategy as a function
of detection efficiency η (solid lines), and the corresponding values of the witness 〈Wθ〉 for the
entangled state |Ψθ〉 (dashed lines).

the same time, one can still detect entanglement if the expectation value with respect to an
entangled state is lower than the calculated bound on 〈Wπ

4
〉ρs due to untrusted detectors, as

we demonstrate in Fig. 3.2. Notably, the minimal expectation values that the witnesses can
take with respect to entangled states (dashed lines) do not correspond to the Bell state.
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Figure 3.2: Left: Minimal values of the witness 〈Wθ〉 in the assignment strategy with ai=0 and
bj=0, ∀i, j,∈ {1,2,3} as a function of detection efficiency η (solid lines) and the corresponding
values of the witness for the entangled state |Ψθ〉 (dashed lines). Right: Minimal values of the
Bell witness for the assignments (a1,a2,a3) ∈ {(1,0,0),(1,1,0),(1,1,1)} and bi=(−1)i+1ai ∀i
(solid lines), and the corresponding minimal values of the witness over entangled states (dashed
lines).

The critical detection efficiency for the Bell witness for the assignment strategy α=β= 1
2

is again η= 1√
3 as for the discard strategy. And, although we have studied different other

assignment strategies, we never found a critical detection efficiency smaller than 1√
3 . So remains
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open the question whether it is possible to further reduce the value of critical detection efficiency
with a more suitable assignment strategy.

Figure 3.3: The critical detection efficiency, η∗
A1

, of Alice’s measurement device placed away
from the source, A1, versus the effective detection efficiency, η, close to the source, obtained
with the analytical trade-off (2.18), when the party’s employ the isotropic strategy, Qiso, for
the symmetric case, ηA0=ηB=1 (top solid blue curve), and for the asymmetric case, ηA0=η,
ηB=1 (dashed orange curve), and when the party’s employ the tilted strategies, QηA0 ,ηB , for
the symmetric case (middle solid yellow curve), and for the asymmetric case (bottom solid
purple curve), with perfect visibilities, νB=νA0=νA1=1. The critical detection efficiency starts
declining after η exceeds the respective threshold values: η= 2

1+
√

2 ≈ 0.828, η= 1√
2 ≈ 0.707, for

the symmetric, and the asymmetric cases, respectively, when the parties employ the isotropic
strategy, Qiso, and η=2

3 ≈ 0.67, η=1
2 , for the symmetric, and the asymmetric cases, when the

parties use the tilted strategies, QηA0 ,ηB , respectively. In both symmetric and asymmetric cases,
the tilted strategies, QηA0 ,ηB , perform better than the isotropic strategy, Qiso, at minimizing
the critical detection efficiency, η∗

A1
.

In the second article, through the introduction of the routed Bell experiment, we showed
that when agents positioned close to the source of quantum states exhibit correlations that
maximise the violation of the CHSH inequality, then it is possible to measure non-local behaviour
even for agents positioned arbitrarily far from the source (1). Considering instead the case
in which agents positioned close to the source have imperfect devices at their disposal, we
have demonstrated a trade-off between violation of the CHSH inequality exhibited by agents
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CHAPTER 3. OUTLOOK

Figure 3.4: Upper bounds on the critical detection efficiency, η∗
A1

, of Alice’s measurement device
placed away from the source, versus the effective visibility between (A1,B), νA1 , calculated
analytically using (2.18), when the parties use the tilted strategy, QηA0 ,ηB , where ηB=νB=0.993,
ηA0=0.966,νA0=0.993, and the assignment strategy, ⊥ 7→ +1 (solid blue curve), and numerically
using certifiable randomness as a measure for the nonlocal behavior of A1, and the second level
(Q2) of Nieto-Silleras hierarchy of semi-definite programs, while keeping the “no-click" event as
an additional outcome, ã, b̃∈ {±1,⊥} (orange circles). The curves demonstrate the advantage of
keeping the “no-click" as an additional outcome, ã, b̃∈ {±1,⊥} over the post-processing strategy
of assigning a valid outcome to the “no-click" event, ⊥ 7→ +1. .

positioned close to the source and thresholds on detector efficiency and visibility that the
detectors of agents positioned far from the source must respect in order to exhibit nonlocal
behaviour (2).

In Fig. (3.3) we have shown the advantage of using tilted strategies QηA0 ,ηB , i.e. the strategies
which attain maximum quantum violation of the tilted CHSH (2.19), over the isotropic strategy
when the detection efficiency of devices positioned close to the source are not perfect.

Additionally, through Fig. (3.4) we demonstrated the advantage of using the numerical
technique, which allowed us to consider the entire outcome statistics, thus considering the
no-click event as an additional outcome, compared to the exclusive use of the theoretical results
obtained through the application of Eq. (2.18) for which only two outcomes are considered.
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Table 3.1: Results associated with the single-step rendezvous task, two agents case, when the
agents can start from any position.

Name Random Classical NPA Adv. [%]
tetrahedron
Fig. 2.7(b)

1
4

5
8 0.64506∗ 5

square
curly, Fig. 2.7(c)

1
4

5
8 0.64506∗ 5

pentagon
curly, Fig. 2.7(d)

1
5

13
25 0.53009∗ 3

arrow
Fig. 2.7(g) 0.20667 13

25 0.52051∗ 0.1

clamp
Fig. 2.7(i) 0.18827 7

18 0.40063∗ 6

hat
Fig. 2.7(j) 0.17207 5

9 0.58333 ≈ 7
12 7

house
Fig. 2.7(k) 0.18210 5

9 0.58333 ≈ 7
12 7

caltrop
Fig. 2.7(m) 0.20833 5

9 0.58333 ≈ 7
12 8

cube
Fig. 2.7(n)

1
8

5
16 0.32253∗ 5

triangle
3-gon

1
3

5
9 0.58333 ≈ 7

12 13

pentagon
5-gon

1
5

9
25 0.38090 13

hexagon
6-gon

1
6

5
18 0.29167 13

heptagon
7-gon

1
7

13
49 0.27864 11

ennagon
9-gon

1
9

17
81 0.21887 9

decagon
10-gon

1
10

9
50 0.19045 13

11-gon 1
11

21
121 0.17998 8

13-gon 1
13

25
169 0.15273 7

3-line curly 1
3

5
9 0.58333 ≈ 7

12 13
5-line curly 1

5
9
25 0.38090 13

7-line curly 1
7

13
49 0.27864 11

In the third article by means of convex optimisation, it emerged that a quantum advantage
can be obtained for many scenarios connected with communications tasks involving agents
distributed on a graph. In particularly we studied the rendezvous and graph domination tasks.

In the following tables the column "Random" contains the values of the score that the agents
obtain when they select the destination node in a random uniform way, the column "Classical"
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(C) contains the value which the agents can achieve using classical strategies and the column
"NPA" (Q) contains the values which can be achieved when the agents share a quantum state.
The values which appear without "∗" are calculated with NPA level 1+ab, an intermediate level
between NPA level 1 and 2, otherwise they are calculated with NPA level 2. The column "Adv."
contains the quantum advantages expressed in percents, calculated according to the following
expression:

(3.1) Q−R

C−R
−1.

In Tab. 3.1 we listed the cases for which we found an advantage when the two agents,
performing the single-step rendezvous task, share a quantum state, while in Tab. 3.2 is considered
the further constraint that the agents can’t start from the same positions, and in Tab. 3.3 the
agents are also constrained to adopt only symmetric strategies.

In Tab. 3.4 we listed the cases for which we found an advantage when the two agents,
performing the single-step domination task, share a quantum state, while in Tab. 3.5 is considered
the further constraint that the agents can’t start from the same positions.

Table 3.2: Results associated with the single-step rendezvous task, two agents case, when the
agents can’t start in the same positions.

Name Random Classical NPA Adv. [%]
tetrahedron
Fig. 2.7(b)

2
9

1
2 0.53333∗ ≈ 8

15 12

square
curly, Fig. 2.7(c)

2
9

1
2 0.53333∗ ≈ 8

15 12

pentagon
curly, Fig. 2.7(d)

1
6

2
5 0.41316∗ 6

arrow
Fig. 2.7(g) 0.16667 2

5 0.40490∗ 2

clamp
Fig. 2.7(i) 0.13704 4

15 0.28229∗ 12

hat
Fig. 2.7(j) 0.15093 7

15 0.50000 ≈ 1
2 11

house
Fig. 2.7(k) 0.15463 7

15 0.50000 ≈ 1
2 11

caltrop
Fig. 2.7(m)

7
40

7
15 0.50000 ≈ 1

2 11

cube
Fig. 2.7(n)

2
21

3
14 0.22857∗ 12

In other cases we proved that quantum resources do not bring any advantage, while in the
remaining cases treated, the computing resources we exploited were not sufficient to conclude
whether quantum resources can bring any advantage. In particular, no case was found for which
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Table 3.3: Results associated with the single-step rendezvous task, two agents case, when the
agents can’t start in the same positions and they are constrained to adopt only symmetric
strategies. Note that the first nine cases has identical values as those in Tab. 3.2.

Name Random Classical NPA Adv. [%]
tetrahedron
Fig. 2.7(b)

2
9

1
2 0.53333∗ ≈ 8

15 12

square
curly, Fig. 2.7(c)

2
9

1
2 0.53333∗ ≈ 8

15 12

pentagon
curly, Fig. 2.7(d)

1
6

2
5 0.41316∗ 6

arrow
Fig. 2.7(g)

1
6

2
5 0.40490∗ 2

clamp
Fig. 2.7(i) 0.13704 4

15 0.28229∗ 12

hat
Fig. 2.7(j) 0.15093 7

15 0.50000 ≈ 1
2 11

house
Fig. 2.7(k) 0.15463 7

15 0.50000 ≈ 1
2 11

caltrop
Fig. 2.7(m)

7
40

7
15 0.50000 ≈ 1

2 11

cube
Fig. 2.7(n)

2
21

3
14 0.22857∗ 12

triangle
3-gon

1
4

1
3 0.50000 ≈ 1

2 200

pentagon
5-gon

1
8

1
5 0.25000 ≈ 1

4 67

hexagon
6-gon

1
10

2
15 0.20000 ≈ 1

5 200

heptagon
7-gon

1
12

1
7 0.16667 ≈ 1

6 40

ennagon
9-gon

1
16

1
9 0.12500 ≈ 1

8 29

decagon
10-gon

1
18

4
45 0.11111 ≈ 1

9 67

11-gon 1
20

1
11 0.10000 ≈ 1

10 22
13-gon 1

24
1
13 0.08333 ≈ 1

12 18
3-line curly 1

4
1
3 0.50000 ≈ 1

2 200
5-line curly 1

8
1
5 0.25000 ≈ 1

4 67
7-line curly 1

12
1
7 0.16667 ≈ 1

6 40

quantum resources bring an advantage in cases where the number of agents involved in the
studied tasks is three.
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Table 3.4: Results associated with the single-step domination task, two agents case, when the
agents can start from any position.

Name Random Classical NPA Adv. [%]
pentagon

curly, Fig. 2.7(d) 4.2 4.64 4.67361∗ 8

caltrop
Fig. 2.7(m) 5.458333 5.88889 5.916667 6

spike
Fig. 2.7(e) 4.51333 4.92 4.93 2

clamp
Fig. 2.7(i) 4.94907 5.44444 5.45453 2

pentagon 4.2 4.6 4.67361 18
hexagon 4.50000 4.95000 5.0000 13
heptagon 4.71428 5.08163 5.15517 20
octagon 4.875 5.1875 5.23928 17
9-gon 5 5.24691 5.29434 19
10-gon 5.1 5.3 5.33680 18
11-gon 5.18182 5.39669 5.43395 17
12-gon 5.25 5.47222 5.5 13
13-gon 5.30769 5.50888 5.54543 18

6-line curly 4.11111 4.44445 4.44895 1

Table 3.5: Results associated with the single-step domination task, two agents case, when the
agents cant start in the same positions.

Name Random Classical NPA Adv. [%]
pentagon

curly, Fig. 2.7(d) 4,27778 4.7 4.73987 9

clamp
Fig. 2.7(i) 5.01482 5.4 5.41210∗ 3

caltrop
Fig. 2.7(m) 5.48750 5.86667 5.9 9

spike
Fig. 2.7(e) 4.56944 4.9 4.9125 4

pentagon 4.25 4.5 4.59201 37
hexagon 4.60000 4.93333 5.00000 20
heptagon 4.83333 5.09524 5.18103 33
octagon 5 5.21429 5.27346 28
9-gon 5.125 5.27778 5.33113 35
10-gon 5.22222 5.34444 5.37423 24
11-gon 5.3 5.43636 5.47735 30
12-gon 5.36364 5.51515 5.54545 20
13-gon 5.41667 5.51515 5.59088 29
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Abstract
We consider the problem of entanglement detection in the presence of faulty,
potentially malicious detectors. A common—and, as of yet, the only—
approach to this problem is to perform a Bell test in order to identify non-
locality of the measured entangled state. However, there are two significant
drawbacks in this approach: the requirement to exceed a critical, and often
high, detection efficiency, and much lower noise tolerance. In this paper, we
propose an alternative approach to this problem, which is resilient to the detec-
tion loophole and is based on the standard tool of entanglement witness. We
discuss how the two main techniques to detection losses, namely the discard
and assignment strategies, apply to entanglement witnessing. We demonstrate
using the example of a two-qubit Bell state that the critical detection efficiency
can be significantly reduced compared to the Bell test approach.
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1. Introduction

Entanglement of quantum states is one of the most cited and studied quantum phenomena [1].
This fact is largely explained by the simplicity of its formulation and a promising technolo-
gical advancement that it offers, primary to the field of quantum cryptography [2, 3]. At the
same time, a variety of theoretical, experimental, and technological challenges are yet to be
overcome before entanglement can find its real-world applications [4].

Among these challenges, perhaps the most crucial one is distribution of entangled particles
among two or more laboratories that are far away from each other. It is rather clear that photons
are the most natural, and essentially the only, candidates for such tasks. Entangled states of
photons are easy to prepare (the first experiments date back to 1960s [5, 6]), and, moreover,
photons can be sent easily through optical fibers or simply the atmosphere [7]. However, there
are major downsides in using photons as carriers of entanglement, namely high losses during
transmission in channels and a low efficiency of single-photon detectors [8].

The detection efficiency problem is most often discussed in the context of quantum crypto-
graphy or Bell experiments [2, 9], where making the fair sampling assumption can be unjusti-
fied. There, either an eavesdropper or a local hidden variable can gain control over the meas-
urement devices, leading to insecure communication protocol or false nonlocality claims.
However, it is often unjustified to assume the independence of detector’s efficiency on the
choice of measurement setting, which also affects simpler experiments such as entanglement
detection.

If the fair sampling is not assumed, non-detection events must be accounted for.
Surprisingly, it is still possible to achieve unconditionally secure cryptography or a loophole-
free Bell test demonstration for non-perfect detectors [10, 11]. However, such demonstrations
are only possible for detection efficiencies above certain threshold values, which are often
higher than the typical values of photodetectors used in today’s experiments.

Studying and lowering critical detection efficiency for quantum key distribution (QKD) and
Bell tests has been the subject of extensive research [12–16]. At the same time, the problem of
untrusted detectors in entanglement detection remains mostly unexplored [17]. As of yet the
only approach to this problem is to perform aBell test, in which the detection loophole is closed
[18, 19]. Apart from requiring high threshold detection efficiency, this approach can also be
inapplicable to noisy entangled states that do not violate any of the known Bell inequalities.
Note, that if one can trust the detector of one of the two parties, then the steering framework
is appropriate [20].

In this work, we take a different approach to the problem of entanglement detection with
untrusted detectors. Instead of uplifting to a fully device-independent framework, we consider
a scenario in which only the detection part of the measurement process, i.e. photon counting,
is untrusted. More precisely, we assume that the measuring device can be divided physically
or hypothetically into two parts, the part responsible for setting the measurement basis and the
part responsible for particle counting. This is especially well-motivated for photonic exper-
iments, where photon counting is performed by a separate device, the photodetector, which
cannot be easily analyzed or monitored, whereas the measurement basis can be easily adjus-
ted by a waveplate for which an adversary has relatively limited attack vectors.

Skwara et al [17] was the first to point out the importance of studying the detection loophole
in entanglement witnessing experiments. It also suggested removing trust from the detectors
while maintaining some trust in the parts of the measurement devices that tune the measure-
ment basis. However, the authors of [17] follow a more cross-grain approach, in which the
no-click events can contribute arbitrarily to the value of the witness. In the current paper, we

2



J. Phys. A: Math. Theor. 56 (2023) 425301 G Viola et al

Figure 1. A schematic representation of a two-photon experiment with polarization
qubits. Parts of the experimental apparatus covered in grey are assumed to be untrus-
ted. (a) The Bell test. (b) Scenario considered in this work; the detection part of the
measurement devices and the entanglement source are assumed to be untrusted. (c) The
entanglement witnessing scenario.

make a more nuanced analysis and use the structure of entanglement witnesses while account-
ing for both, the click and no-click events, which leads to better estimates of required detection
efficiencies, compared to [17].

It is important to point out that the source of entanglement and transmission channels do
not need to be trusted, just in case of the standard entanglement witnessing scenario. At the
same time, we need to assume the independence of distributed states across different runs of
the experiment. Figure 1 further clarifies the set of assumptions that we make in this work, and
compares it to the set of assumptions in the Bell test and the standard entanglement witnessing
experiment. Such scenarios in which only a part of the experimental apparatus is assumed to
be characterized and trusted are often called semi-device-independent [21].

For entanglement detection, we consider the common tool of entanglement witnessing [22].
This method is universal, because for every entangled state, including mixed states, one can
find an entanglement witness that detects it, and efficient, because it does not require per-
forming the state tomography [1]. As the main technical contribution of this work, we discuss
and analyze the discard and assignment strategies in entanglement witnessing with untrus-
ted detectors. We show that both of these approaches to dealing with imperfect detectors can
be analyzed using semi-definite programming [23]. As an example, we apply our methods
to two-qubit entanglement witnesses. Our results suggest that the critical detection efficiency
of entanglement detection with untrusted detectors in the proposed semi-device-independent
paradigm is significantly lower than that for Bell test experiments.

2. Preliminaries

We start by establishing notation and providing a few definitions required to present the results
in the next sections. In this paper, we consider entanglement in bipartite systems, for which
there is only one notion of separability and entanglement. Additionally, in our analysis, we
consider qubit-qubit systems for the sake of simplicity. However, the results are directly gen-
eralizable to higher-dimensional systems, and we provide comments about this generalization
whenever necessary. Finally, in this paper, we take all the observed efficiencies of all detectors
to be the same and denote it by η.

We take the standard definition of entanglement witness as a linear Hermitian operator
W, such that 〈W〉ρs := Tr[Wρs]⩾ 0 for all separable states ρs and 〈W〉ρ < 0 for the entangled
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state ρ under investigation. In the presence of inefficient detectors, it also becomes important
how the witness W is measured in the experiment, the fact that was also pointed out in [17].
Typically, a witnessW is decomposed as a sum of tensor products of local observables. In this
work, we focus on two-qubit states for which the typical observables are the Pauli operators,
i.e. we consider witnesses W of the form

W= w0,01⊗1+
3∑

i=1

wi,0σi⊗1+
3∑

j=1

w0,j1⊗σj+
3∑

i,j=1

wi,jσi⊗σj, (1)

withwi,j ∈ R being coefficients of the decomposition, and {σ1,σ2,σ3}= {σx,σy,σz} being the
set of Pauli operators. For qudit systems, a possible set of observables are the Heisenberg–Weyl
operators [24].

To evaluate the expectation value 〈W〉ρ in equation (1), we need to estimate each of the
terms 〈σi ⊗σj〉ρ for which wi,j 6= 0 for all i, j ∈ {1,2,3}, as well as the marginal terms 〈σi ⊗
1〉ρ for i ∈ {1,2,3} and 〈1⊗σj〉ρ for j ∈ {1,2,3}. Let us denote the outcomes of the parties’
measurements as ‘+’ and ‘−’, in which case the expectation values are calculated as

〈σi⊗σj〉ρ = p(+,+|i, j)+ p(−,−|i, j)− p(+,−|i, j)− p(−,+|i, j) , (2)

for i, j ∈ {1,2,3}, and

〈1⊗σj〉ρ = pB (+| j)− pB (−| j) ,
〈σi⊗1〉ρ = pA (+|i)− pA (−|i) , (3)

otherwise. In the above, we used the superscript A and B to denote the marginal probabilities.
The expectation values in equations (2), (3) are estimated from the respective frequencies of
detectors’ clicks. The key problem that we investigate in this work is how the no-click events
affect the expectation value of W and, consequently, entanglement detection.

The literature that addresses the detection inefficiency problem, primarily in the context
of the Bell test, describes two primary methods for handling no-click events [25]. In the first
approach, referred to as the discard strategy, one simply ignores all the events where at least
one of the detectors did not click (for estimation of joint probabilities). Mathematically, it
means that the joint probabilities as well as marginal probabilities in equations (2), (3) are
replaced by the probabilities, conditioned on the click events:

p(+,+|i, j) 7→ p
(
+,+|i, j,cA,cB

)
, (4)

for all i, j ∈ {1,2,3} and similarly for other outcomes. In the above, cA and cB denote the events
of Alice’s and Bob’s detectors clicking. The marginal probabilities are mapped as

pA (+|i) 7→ pA
(
+|i,cA

)
,

pB (+| j) 7→ pB
(
+| j,cB

)
, (5)

for all i, j ∈ {1,2,3}. The above marginal probabilities depend only on the clicks events of
single party’s detector, because in this work we consider the situation in which expecta-
tion values in equation (3) are estimated in different runs of the experiment than the joint
expectation values in equation (2). In other words, we treat each marginal term in equation (3)

4



J. Phys. A: Math. Theor. 56 (2023) 425301 G Viola et al

as a separate measurement setting, just like the correlation terms in equation (2) for different
i and j.

The same mapping of probabilities is performed when one assumes the fair sampling.
However, in case of the discard strategy (in Bell tests) one takes into account the effect of
losses by increasing the local bound of a Bell inequality [25, 26]. As we show in the next
section, this also applies to entanglement witnessing: for imperfect detectors, the expectation
value of a witness with respect to separable states can take negative values. However, there is
still a range of values of η for which entanglement detection is possible. A similar observation
has been made in [17], which was the first to consider the problem of detection loophole in
entanglement witnessing.

The second common approach of dealing with detection inefficiencies in Bell tests is the
assignment strategy method, sometimes also called binning. There, for every no-click event,
one assigns one of the outcomes, in our case ‘+’ or ‘−’, either randomly or deterministically.
Mathematically, it means that the evaluated probabilities are mapped as

p(+,+|i, j) 7→ η2p
(
+,+|i, j,cA,cB

)
+ η (1− η)p

(
+,+|i, j,cA,¬cB

)
+(1− η)ηp

(
+,+|i, j,¬cA,cB

)
+(1− η)

2 p
(
+,+|i, j,¬cA,¬cB

)
, (6)

for all i, j ∈ {1,2,3}, and similarly for the other outcomes. In the above, ¬cA, ¬cB denote the
no-click events. The marginal probabilities are mapped as

pA (+|i) 7→ ηpA
(
+|i,cA

)
+(1− η)pA

(
+|i,¬cA

)
,

pB (+| j) 7→ ηpB
(
+| j,cB

)
+(1− η)pB

(
+| j,¬cB

)
, (7)

for all i, j ∈ {1,2,3}.
A particular assignment is determined by the form of the probabilities, conditioned on the

events ¬cA and ¬cB. For instance, if Alice chooses to always output ‘+’ if her detector does
not click, then we have that p(+,+|i, j,¬cA,cB) = pB(+| j,cB) and p(−,+|i, j,¬cA,cB) = 0,
etc. Since for an entanglement witness of the form in equation (1) we need to estimate the
expectation values rather than probabilities, it is more convenient to define an assignment as
follows

ai := pA
(
+|i,¬cA

)
− pA

(
−|i,¬cA

)
,

bj := pB
(
+| j,¬cB

)
− pB

(
−| j,¬cB

)
, (8)

for i, j ∈ {1,2,3}.
In Bell tests, the assignment strategy leads to lowering the maximally achievable quantum

value of the Bell inequality, but does not increase the local bound [25]. As we show in the next
section, this is not true in general for entanglement witnessing, and some local assignments
can lead to negative values.

We demonstrate our findings on the example of pure entangled two-qubit states, for which
we use a notation

|Ψθ〉 := sin(θ) |0,0〉+ cos(θ) |1,1〉, (9)

with θ ∈ (0, π4 ]. The corresponding witness for |Ψθ〉 reads

Wθ := cos(θ)21⊗1− |Ψθ〉〈Ψθ|. (10)
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The non-zero coefficients of the decomposition of Wθ into Pauli observables are w0,0 =
1
2 cos(2θ)+

1
4 , w0,3 = w3,0 =

1
4 cos(2θ), w1,1 =−w2,2 =− 1

4 sin(2θ), and w3,3 =− 1
4 . We refer

to |Ψπ
4
〉 and Wπ

4
as the Bell state and the Bell witness, respectively.

3. Results

We start with a general formulation of the detection efficiency problem in entanglement wit-
nessing. Similarly to the situation in Bell tests, we cannot rule out the possibility that a hidden
variable λ gains control over the detectors and correlates their efficiencies with the source
of quantum states. Mathematically, it means that the observed joint probability distribution,
e.g. for the outcome +,+, decomposes as

p
(
+,+|i, j,cA,cB

)
=

∑
λ∈Λ

p
(
+,+,λ|i, j,cA,cB

)
=

∑
λ∈Λ

p
(
+,+,λ,cA,cB|i, j

)
p(cA|i)p(cB| j)

=
1
η2

∑
λ∈Λ

p
(
+,+,cA,cB|i, j,λ

)
p(λ)

=
1
η2

∑
λ∈Λ

p
(
+,+|i, j,cA,cB,λ

)
p
(
cA|i,λ

)
p
(
cB| j,λ

)
p(λ) , (11)

where we used the fact that the click events can be correlated only due to the hidden variable λ.
The key observation here is that the response functions of click events, p(cA|i,λ) and p(cB| j,λ),
may depend on the measurement settings i and j. At the same time, since the entanglement
source may also be controlled by the hidden variable λ, the states ρλ, with respect to which
the outcome probabilities p(+,+|i, j,cA,cB,λ) are calculated, may also vary with λ. In what
follows, we show how to account for such situations in both, the discard and the assignment
strategies.

In this work, we focus on the situation in which the detection events are uncorrelated and
independent of the measurement choices with respect to the observed probability distribution,
i.e. p(cA,cB|i, j) = p(cA|i)p(cBj) = η2, which can be verified experimentally. We find this case
particularly interesting because one couldmistakenly believe that the click evens of the parties’
detectors are uncorrelated and thus invoke the fair sampling assumption. At the same time, our
approach can be easily modified to accommodate the other case p(cA,cB|i, j) 6= p(cA|i)p(cBj).
In particular, one simply needs to substitute every term η2 in the formulations that follow
with a corresponding joint probability p(cA,cB|i, j). To avoid overly complicated mathematical
statements, we avoid describing this general case in the current paper.

3.1. Discard strategy

In this section, we discuss two main questions regarding the discard strategy: given an entan-
glement witness, what is the minimal value that it can take for separable states for a given
detection efficiency η, and what is the critical detection efficiency ηcrit for which no entangle-
ment detection is possible? We show below how to formulate these questions as optimization
problems, which can be cast as semidefinite programming problems (SDPs) [23].

Looking at the expansion of the observed probabilities in equation (11), we can realize
that the probabilities of click events, p(cA|i,λ) and p(cB| j,λ), without loss of generality can
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be taken to be deterministic, i.e. 0 or 1, by considering a sufficiently large set Λ. This is a
standard technique in the literature on hidden variables [27, 28]. As a next step, we define sets
ΛA
i and ΛB

j as

ΛA
i =

{
λ ∈ Λ

∣∣∣ p(cA|i,λ)= 1
}
, ΛB

j =
{
λ ∈ Λ

∣∣∣ p(cB| j,λ)= 1
}
, (12)

for i, j ∈ {1,2,3}. We also consider unnormalized density operators ρλ, such that Tr[ρλ] =
p(λ), and ρλ

p(λ) is the state in which the particles are prepared for the value λ of the hidden
variable. This allows us to write the mapped expectation values 〈σi⊗σj〉 simply as

〈σi⊗σj〉 7→
1
η2

∑
λ∈ΛA

i ∩ΛB
j

〈σi⊗σj〉ρλ
, (13)

and the marginal expectation values as

〈1⊗σj〉 7→
1
η

∑
λ∈ΛB

j

〈1⊗σj〉ρλ
,

〈σi⊗1〉 7→ 1
η

∑
λ∈ΛA

i

〈σi⊗1〉ρλ
, (14)

for i, j ∈ {1,2,3}. We can now formulate the problem of finding the minimal value ofW as the
following SDP,

min
ρλ

w0,0 +
1
η

3∑
i=1

wi,0
∑
λ∈ΛA

i

〈σi⊗1〉ρλ
+

1
η

3∑
j=1

w0,j

∑
λ∈ΛB

j

〈1⊗σj〉ρλ

+
1
η2

3∑
i,j=1

wi,j
∑

λ∈ΛA
i ∩ΛB

j

〈σi⊗σj〉ρλ
,

s.t.
∑
λ∈ΛA

i

Tr [ρλ] =
∑
λ∈ΛB

j

Tr [ρλ] = η,
∑

λ∈ΛA
i ∩ΛB

j

Tr [ρλ] = η2, ∀i, j ∈ {1,2,3} , (15a)

ρλ ⩾ 0, ρ⊺Aλ ⩾ 0, ∀λ ∈ Λ, (15b)

ρobserved ⩾ 0,
∑
λ∈Λ

Tr [ρλ] = 1. (15c)

In the above SDP, we have introduced an operator ρobserved, which corresponds to the phys-
ically observed state, and is defined as

7
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Figure 2. Minimal values that the witness ⟨Wθ⟩ can take in the discard strategy as a
function of detection efficiency η (solid lines), and the corresponding values of the wit-
ness ⟨Wθ⟩ for the entangled state |Ψθ⟩ (dashed lines).

ρobserved : =
1⊗1

4
+

1
η

3∑
i=1

∑
λ∈ΛA

i

〈σi⊗1〉ρλ

 σi⊗1

4
+

1
η

3∑
j=1

∑
λ∈ΛB

j

〈1⊗σj〉ρλ

 1⊗σj
4

+
1
η2

3∑
i,j=1

 ∑
λ∈ΛA

i ∩ΛB
j

〈σi⊗σj〉ρλ

 σi⊗σj
4

. (16)

The condition ρobserved ⩾ 0 in equation (15c) requests that the observed statistics corresponds
to some physical state, which otherwise could lead to the parties realizing that the behavior of
their detectors ismalicious. Note that the same holds for qudit system if the Pauli observables in
equation (16) are replaced by their higher-dimensional generalizations, e.g. Heisenberg-Weyl
observables [24]. Although the objective function of the SDP in equation (15) could also be
written as 〈W〉ρobserved , we found that it is more instructive to give a full expansion of the witness
in equation (15). Alternatively to defining the state ρobserved in equation (16), one can request an
existence of some density operator, such that the experimentally observed expectation values
can be explained by this state. This can be easier to implement, e.g. in the situation when the
decomposition of the witness in equation (1) features non-orthogonal observables.

The conditions in equation (15a) ensure that the events of photons being detected by Alice’s
and Bob’s devices appear to be uncorrelated and occur with the same probability η for all
the measurement settings. The conditions in equation (15b) ensure that the operators ρλ are
positive semidefinite and separable, due to the positive-partial-transpose (PPT) criterion [1].
For the higher-dimensional case, the separability condition can be enforced by a hierarchy of
SDP relaxations [29].

In figure 2 we demonstrate the solution of the SDP in equation (15) for the witness Wθ in
equation (10) for θ ∈ {π

6 ,
π
5 ,

π
4 }. The values of η for which 〈Wθ〉 reaches its minimal value,

shown by the dashed lines in figure 2, is the critical detection efficiency. In appendix A, we
give an explicit solution for the Bell witness, and show that in this case the critical detection

8
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efficiency is 1√
3
. This value is significantly smaller than

√
2
3 , which is the critical detection

efficiency of detecting the Bell state device-independently in a Bell experiment [30].

3.2. Assignment strategy

In this section, we discuss the assignment strategy to entanglement witnessing with untrusted
detectors. As stated in the introduction, in Bell tests, the assignment strategy reduces the max-
imal possible violation of a Bell inequality while preserving the local hidden variable bound
[26]. Additionally, there is no restriction on the particular choice of the assignment as long as
it is performed locally by the parties. This, however, does not translate to the case of entangle-
ment witnessing, as we show below.

Let (a1,a2,a3) and (b1,b2,b3), as defined by equation (8), be assignments chosen by the
parties. Let us first assume that the behavior of the detectors is honest, i.e. whenever the detect-
ors click, the probabilities of outcomes, e.g. p(+,+|i, j,cA,cB), correspond to a single state ρ
which is not in the control of the hidden variable. In that case, it is easy to observe that the trans-
formation of probabilities due to the assignment strategy in equation (6) can be equivalently
captured by the following transformation of state ρ,

ρ 7→ η2ρ+ η (1− η)ρA⊗β+(1− η)ηα⊗ ρB+(1− η)
2
α⊗β, (17)

where ρA and ρB are the reduced states of Alice’s and Bob’s subsystems, and we have intro-
duced the notation

α :=
1

2
+

1
2

3∑
i=1

aiσi, β :=
1

2
+

1
2

3∑
i=1

biσi. (18)

From the form of the state in equation (17), it is clear that as long as the initial state ρ is
separable and the operators α and β in equation (18) are positive semidefinite, the transformed
state operator is also positive semidefinite and separable. Thus, we obtain a sufficient condition
on the assignments for which no false detection of entanglement occurs:

3∑
i=1

a2i ⩽ 1,
3∑

i=1

b2i ⩽ 1. (19)

Note that, a common deterministic assignment p(+|i,¬cA) = 1 for Bell tests, i.e. ai = 1 ∀i ∈
{1,2,3}, does not satisfy the above constraint and can lead to a false detection of entanglement.
In appendix B, we show that if the detection efficiencies of Alice’s and Bob’s detectors can be
different, then there are values of them for which the above condition is also necessary.

As an example of a good assignment, let us consider the Bell witnessWπ
4
and the Bell state

ρπ
4
= |Ψπ

4
〉〈Ψπ

4
|. From the transformation in equation (17), we find that the expectation value

of the witness equals to

〈Wπ
4
〉ρπ

4
=

1
2

(
1− η2 − η− (1− η)

2Tr [α⊺β]
)
. (20)

It is clear, that a good assignment corresponds to taking α and β rank-1 and satisfying α⊺ = β.
This can be achieved, e.g. by (a1,a2,a3) = (b1,b2,b3) = (1,0,0). One can also see from the
above that entanglement of ρ can be detected for η > 1

2 .
Now, we look at the general case of potentially malicious behavior of the detectors. This, in

particular, means that the observed probabilities of outcomes, conditioned on click events, are
given by equation (11). We start with the same argument that by considering a large enough set

9
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Λ, the probabilities of click events can be taken to be either 0 or 1. For the assignment strategy
we would need to introduce an extra notation for subsets of Λ,

Λ
A
i =

{
λ ∈ Λ

∣∣∣ p(cA|i,λ)= 0
}
, Λ

B
j =

{
λ ∈ Λ

∣∣∣ p(cB| j,λ)= 0
}
, (21)

which are just the complements of the sets ΛA
i and ΛB

j . Using this notation, we can write the
observed expectation values as

〈σi⊗σj〉 7→
∑

λ∈ΛA
i ∩ΛB

j

〈σi⊗σj〉ρλ
+

∑
λ∈ΛA

i ∩Λ
B
j

〈σi⊗1〉ρλ
bj

+
∑

λ∈Λ
A
i ∩ΛB

j

〈1⊗σj〉ρλ
ai+

∑
λ∈Λ

A
i ∩Λ

B
j

Tr [ρλ]aibj, (22)

for all pairs of i, j ∈ {1,2,3}. The marginal expectation values are mapped as follows

〈σi⊗1〉 7→
∑
λ∈ΛA

i

〈σi⊗1〉ρλ
+

∑
λ∈Λ

A
i

Tr [ρλ]ai,

〈1⊗σj〉 7→
∑
λ∈ΛB

j

〈1⊗σj〉ρλ
+

∑
λ∈Λ

B
j

Tr [ρλ]bj. (23)

We now formulate an SDP that determines the minimal value of a witness for separable
states given assignments (a1,a2,a3) and (b1,b2,b3) and detection efficiency η.

min
ρλ

w0,0 +
3∑

i=1

wi,0

∑
λ∈ΛA

i

〈σi⊗1〉ρλ
+

∑
λ∈Λ

A
i

Tr [ρλ]ai

+
3∑

j=1

w0,j

∑
λ∈ΛB

j

〈1⊗σj〉ρλ

+
∑
λ∈Λ

B
j

Tr [ρλ]bj

+
3∑

i,j=1

wi,j

 ∑
λ∈ΛA

i ∩ΛB
j

〈σi⊗σj〉ρλ
+

∑
λ∈ΛA

i ∩Λ
B
j

〈σi⊗1〉ρλ
bj

+
∑

λ∈Λ
A
i ∩ΛB

j

〈1⊗σj〉ρλ
ai+

∑
λ∈Λ

A
i ∩Λ

B
j

Tr [ρλ]aibj,


s.t.

∑
λ∈ΛA

i

Tr [ρλ] =
∑
λ∈ΛB

j

Tr [ρλ] = η,
∑

λ∈ΛA
i ∩ΛB

j

Tr [ρλ] = η2, ∀i, j ∈ {1,2,3} , (24a)

ρλ ⩾ 0, ρ⊺Aλ ⩾ 0, ∀λ ∈ Λ, (24b)

ρobserved ⩾ 0,
∑
λ∈Λ

Tr [ρλ] = 1, (24c)∑
λ∈ΛA

i ∩Λ
B
j

〈σi⊗1〉ρλ
= (1− η)

∑
λ∈ΛA

i

〈σi⊗1〉ρλ
,

∑
λ∈Λ

A
i ∩ΛB

j

〈1⊗σj〉ρλ
= (1− η)

∑
λ∈ΛB

j

〈1⊗σj〉ρλ
∀i, j,∈ {1,2,3} . (24d)
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Figure 3. Left: Minimal values of the witness ⟨Wθ⟩ in the assignment strategy with
ai = 0 and bj = 0, ∀i, j,∈ {1,2,3} as a function of detection efficiency η (solid lines)
and the corresponding values of the witness for the entangled state |Ψθ⟩ (dashed
lines). Right: Minimal values of the Bell witness for the assignments (a1,a2,a3) ∈
{(1,0,0),(1,1,0),(1,1,1)} and bi = (−1)i+1ai ∀i (solid lines), and the corresponding
minimal values of the witness over entangled states (dashed lines).

where ρobserved is defined in equation (16). As in the case of the SDP for the discard strategy,
the constraints in equation (24a) guarantee that the observed probabilities of click events are
uncorrelated for Alice and Bob and are independent of their measurement settings. The con-
ditions on ρλ in equation (24b) and on ρobserved in equation (24c) are also motivated analog-
ously to the discard strategy case. Finally, the constraints in equation (24d) guarantee that the
observed marginal state of Alice is independent of whether Bob detectors click or not, and
analogously that Bob’s marginal is independent of the behavior of Alice’s detector.

In figure 3(left) we demonstrate the solution to the SDP in equation (24) for the witnessWθ

and the assignment (a1,a2,a3) = (b1,b2,b3) = (0,0,0). This particular assignment preserves
the property 〈W〉ρs ⩾ 0 for all separable states. In figure 3(left) by the dashed lines we depict
values of the witness Wθ with respect to the corresponding state |Ψθ〉. These values increase
as η decreases due to the assignment strategy. The points where the dashed lines intersect the
solid lines are the critical detection efficiencies for the chosen assignment.

In figure 3(right) we also compare different assignments for the Bell witness. One can see
that the property of 〈W〉ρs ⩾ 0 is not preserved for any of the selected assignments. At the same
time, one can still detect entanglement if the expectation value with respect to an entangled
state is lower than the calculated bound on 〈Wπ

4
〉ρs due to untrusted detectors, as we demon-

strate in figure 3. Notably, the minimal expectation values that the witnesses can take with
respect to entangled states (dashed lines) do not correspond to the Bell state.

The critical detection efficiency for the Bell witness in this calculation is again η = 1√
3
as

for the discard strategy. In appendix C we give an explicit solution to the SDP in equation (24)
for the Bell witness. The value of 〈Wπ

4
〉ρπ

4
with respect to the Bell state can be calculated from

equation (20) by taking α= β = 1
2 , and is equal to 1

4 −
3
4η

2.

3.3. Visibility analysis

When discussing detection efficiency, one is often focused on the critical values that must be
exceeded in order to observe a violation of a Bell inequality, or in our case an entanglement
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witness. At the same time, these theoretical limits must be adjusted in experiments due to
inevitable noise. The relevant figure of merit in this discussion is the visibility, which we define
here for a witness W as follows

vρ =min
[
v
∣∣∣v〈W〉ρ +(1− v)〈W〉 1⊗1

4
⩽ 〈W〉λ

]
, (25)

where 〈W〉 1⊗1
4

is the value of the witness W with respect to the maximally mixed state 1⊗1
4 ,

and 〈W〉λ is the minimal value attainable by malicious strategies, in which the detectors can be
controlled by a hidden variable λ. Visibility, as defined by equation (25), is directly connected
to white noise robustness, but has the opposite interpretation. Namely, values of visibility close
to 1 mean that little amount of noise can be tolerated in the experiment.

The definition in equation (25) is applicable to both, the discard and the assignment strategy.
For the former, 〈W〉ρ is independent of η and 〈W〉λ gets more negative as η decreases, as shown
in figure 2. For the latter, 〈W〉ρ increases as η decreases, while 〈W〉λ remains zero for η above
the critical value, as shown in figure 3. In both situations, for the critical value of η, the visibility
vρ is equal to 1 for the state ρ giving the minimal value of the witnessW. For η above critical,
some amount of white noise can be tolerated, resulting in the required visibility values going
below 1. Equivalently, one can say that for η above critical, one can observe loophole-free
witnessing of some mixed states, e.g. Werner states [31]. Visibility analysis also shows that in
the regime of high detection efficiencies when one is able to perform loophole-free Bell test,
there is still an advantage of using our approach if one is willing to put trust in some parts of
the measurement devices.

4. Conclusions and discussions

In this paper, we discuss the problem of untrusted detectors in photonic experiments of entan-
glement detection. Even though the role of untrusted detectors is much more crucial for cryp-
tographic applications and Bell tests, in this work we argue that malicious, or non-ideal, beha-
vior of photodetectors can lead to false positive claims in simpler experiments of entanglement
witnessing. We then analyze in detail the two main approaches to detection losses, namely the
discard and the assignment strategies, and show that this analysis for a given entanglement
witness can in both cases be cast as a semidefinite programming optimization problem. As an
example, we analyze critical detection efficiencies for entanglement witnesses of pure two-
qubit states. In particular, we show that the critical detection efficiency corresponding to the
Bell state is 1√

3
for the discard strategy. For the assignment strategy we could show that the

same value of 1√
3
can be attained, but the question whether this value can be reduced further

by a suitable choice of an assignment is open.
Throughout the paper, we commented on generalization of our approach to higher-

dimensional systems. The only non-trivial generalization is the replacement of the PPT
criterion by the hierarchy of SDP conditions of [29] in both optimization problems in
equations (15), (24). Of course, in practice, one can impose the conditions only up to a certain
level of the SDP hierarchy. The resulting SDPs in equations (15), (24) in that case produce
lower bounds on the value that a witness can obtain due to malicious behavior of the detectors.
In turn, one obtains upper bounds on the critical detection efficiency, which means that our
approach can still guarantee that the detection loophole is closed if those values are exceeded
in the experiment.
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It is worth to point out a related study on ‘squashing operations’ in QKD and entanglement
detection [32–34]. In our paper, we concentrate on the analysis of measurement data post-
processing and how this post-processing can influence the conclusions drawn about entangle-
ment of the measured state. In this manner, our approach is agnostic to the specific physical
process of registering click and no-click events. On the other hand, when studying ‘squashing
operations,’ one examines how photon counting is translated into a measurement of the desired
degree of freedom, such as polarization.

On a more fundamental level, our work introduces a new type of semi-device-independent
paradigm, the one in which only the detection part of measurement process is untrusted, while
the measurement setting, e.g. the measurement basis, is assumed to be characterized. This is
particularly relevant for the standard entanglement-basedQKD,where the detectors are usually
assumed to be fair. This assumption is difficult to justify because the most widely documented
attacks against practical QKD are the detector blinding attacks, which boil down to gaining
control of the detectors in the parties’ devices [35]. Additionally, dopant-level hardware Trojan
attacks were demonstrated, which allow the manufacturer to place a malware in electronics,
such as detector controllers, in a way that is very difficult to detect by the user [36, 37]. We
therefore believe that it is interesting to analyze security of QKD scheme in the introduced
paradigm of untrusted detectors. As an additional motivation for this further work, one can
notice that requirement on the detection efficiency reported in the current work is significantly
lower than that in Bell test for the case of the Bell state.
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Appendix A. Discard strategy for the Bell witness

Here we provide an explicit solution to the SDP in equation (15) for the Bell witness Wπ
4
.

This solution, more precisely the minimal value that 〈Wπ
4
〉 can take for a given η, is shown in

figure 2.
To describe the solution, i.e. to specify the operators ρλ for each value of η, we need to

introduce a few notations. Let Λ be the set of all binary strings of length 6. Each value of
λ, specified by a string, specifies the probabilities of detectors’ clicks with the first three bits
corresponding to the measurement settings of Alice, and the second three bits correspond-
ing to the measurement settings of Bob. For example, for λ= (1,0,0,0,1,0), we have that
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p(cA|1,λ) = 1 and p(cB|2,λ) = 1, while the other probabilities are zero. Clearly, this choice
of the alphabet of λ is sufficient for the problem in case of three measurement settings per
party.

Let us define the following states

ρx,x :=
1
2
(|+,+〉〈+,+|+ |−,−〉〈−,−|) ,

ρy,y :=
1
2
(|+ i,−i〉〈+i,−i|+ | − i,+i〉〈−i,+i|) ,

ρz,z :=
1
2
(|0,0〉〈0,0|+ |1,1〉〈1,1|) , (A.1)

which are separable states with the property that 〈σ1 ⊗σ1〉ρx,x = 〈σ3 ⊗σ3〉ρz,z = 1, and 〈σ1 ⊗
σ1〉ρy,y =−1. Here, we used the notation |+ i〉 and | − i〉 to denote the +1 and −1 eigenstates
of σ2. In terms of these states, the operators ρλ in our solution are specified to be the following

ρ(0,0,0,0,0,0) = p0
1⊗1

4
, ρ(1,1,1,1,1,1) = p1

1
3
(ρx,x+ ρy,y+ ρz,z) ,

ρ(1,0,0,1,0,0) = ρ(1,0,1,1,1,0) = ρ(1,1,0,1,0,1) = p2ρx,x, ρ(1,0,0,1,1,1) = ρ(1,1,1,1,0,0) = p3ρx,x,

ρ(0,1,0,0,1,0) = ρ(0,1,1,1,1,0) = ρ(1,1,0,0,1,1) = p2ρy,y, ρ(0,1,0,1,1,1) = ρ(1,1,1,0,1,0) = p3ρy,y,

ρ(0,0,1,0,0,1) = ρ(0,1,1,1,0,1) = ρ(1,0,1,0,1,1) = p2ρz,z, ρ(0,0,1,1,1,1) = ρ(1,1,1,0,0,1) = p3ρz,z,

ρ(0,0,0,0,0,1) = ρ(0,0,0,0,1,0) = ρ(0,0,0,1,0,0) = ρ(0,0,1,0,0,0) = ρ(0,1,0,0,0,0) = ρ(1,0,0,0,0,0)

= p4
1⊗1

4
, (A.2)

where the parameters pi ∈ R, i ∈ {0,1,2,3,4} will be specified later. The rest of the operators
ρλ are taken to be zero-trace.

The objective function of the SDP in equation (15) can be calculated to be

1
4
− 1

4η2

 ∑
λ∈ΛA

1∩ΛB
1

〈σ1 ⊗σ1〉ρλ
−

∑
λ∈ΛA

2∩ΛB
2

〈σ2 ⊗σ2〉ρλ
+

∑
λ∈ΛA

3∩ΛB
3

〈σ3 ⊗σ3〉ρλ


=

1
4
− 1

4η2
(p1 + 9p2 + 6p3) , (A.3)

while the constraints in equation (15) correspond to

p1 + 5p2 + 4p3 + p4 = η,

p1 + 3p2 + 2p3 = η2,

p0 + p1 + 9p2 + 6p3 + 6p4 = 1. (A.4)

The observed state in equation (16) can be easily found to be

ρobserved =
1⊗1

4
+

1
4η2

(p1
3
+ 3p2 + 2p3

)
(σ1 ⊗σ1 −σ2 ⊗σ2 +σ3 ⊗σ3)

=
1⊗1

4

(
1−

p1
3 + 3p2 + 2p3

η2

)
+

1
η2

(p1
3
+ 3p2 + 2p3

)
|Ψπ

4
〉〈Ψπ

4
|. (A.5)
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From the above expression, it is clear that as long as 0⩽ p1
3 + 3p2 + 2p3 ⩽ η2, the above dens-

ity operator is positive semidefinite, and since this constraint is implied by equation (A.4),
these are the only constraints associated with the SDP.

Now, we can specify our solution to the original optimization problem in terms of the coef-
ficients {pi}4i=0. For the case of η > 1√

3
, the minimal value which can be attained is 1

4 −
1

4η2 ,
which is also clear from the expression in equation (A.3). This is achieved for the following
values of the parameters,

p0 = p4 = 0, p1 =
3η2 − 1

2
, p2 =

(1− η)
2

2
, p3 =

(1− η)(2η− 1)
2

. (A.6)

For the case of η ⩽ 1√
3
, the minimal value − 1

2 can be reached. The corresponding values of
the parameters are p1 = 0 and

p0 = (1− 3η)2, p2 = 0, p3 =
η2

2
, p4 = η− 2η2, for η ⩽ 1

3
,

p0 = 0, p2 =
(1− 3η)2

6
, p3 =

6η− 1− 7η2

4
, p4 =

1− 3η2

6
, for η ∈

(
1
3
,

1√
3

]
. (A.7)

Appendix B. Necessity of the condition in equation (19) for the assignment
strategy in case of different detectors’ efficiencies

Here, we show that if the detection efficiencies can be different for Alice and Bob, then the
condition in equation (19) is also necessary. More precisely, there are values of the detection
efficiencies ηA and ηB for which this condition is necessary.

First, consider the case of ηA = 0 and ηB = 1. For any separable state ρs and a witness W,
the following must hold true, Tr(Wα⊗ ρBs )⩾ 0, where ρBs = TrA[ρs]. If we take the Bell state
witnessWπ

4
, the condition further simplifies to Tr[α⊺ρBs ]⩽ 1 for all states ρBs . Inserting in the

latter a particular state of the form,

ρBs =
1

2
+

1
2

3∑
i=1

ai√∑3
j=1 a

2
j

σi, (B.1)

directly results into the condition
∑3

i=1 a
2
i ⩽ 1. The same way, we can prove the necessity of

the constraint on bi’s for the situation when ηA = 1 and ηB = 0.

Appendix C. Assignment strategy for the Bell witness

The solution to the SDP in equation (24) for the assignment strategy can be taken in the same
form as in the case of the discard strategy, as described in appendix A. In particular, one can
take the states ρλ as in equation (A.2), which leads to the constraints of the SDP to take the
form in equation (A.4). The particular solution in terms of the parameters p0,p1,p2,p3 and p4
is also the same as in equation (A.6) for η > 1√

3
and as in equation (A.7) for η ⩽ 1√

3
. The only

difference with the case of the discard strategy is the optimal value of the objective function,
which is equal to 0 for η > 1√

3
and 1

4 −
3
4η

2 for η ⩽ 1√
3
.
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ARTICLE OPEN

Extending loophole-free nonlocal correlations to arbitrarily
large distances
Anubhav Chaturvedi 1,2✉, Giuseppe Viola2 and Marcin Pawłowski 2

Quantum theory allows spatially separated observers to share nonlocal correlations, which enable them to accomplish classically
inconceivable information processing and cryptographic feats. However, the distances over which nonlocal correlations can be
realized remain severely limited due to their high fragility to noise and high threshold detection efficiencies. To enable loophole-
free nonlocality across large distances, we introduce Bell experiments wherein the spatially separated parties randomly choose the
location of their measurement devices. We demonstrate that when devices close to the source are perfect and witness extremal
nonlocal correlations, such correlations can be extended to devices placed arbitrarily far from the source. To accommodate
imperfections close to the source, we demonstrate an analytic trade-off: the higher the loophole-free nonlocality close to the
source, the lower the threshold requirements away from the source. We utilize this trade-off and formulate numerical methods to
estimate the critical requirements of individual measurement devices in such experiments.

npj Quantum Information            (2024) 10:7 ; https://doi.org/10.1038/s41534-023-00799-1

INTRODUCTION
Spatially separated observers cannot communicate faster than the
speed of light, à la relativity. However, they can share quantum
correlations born of local measurements performed on entangled
particles which resist local hidden variable (classical) explanations.
This phenomenon is called Bell nonlocality1,2. The nonlocal
correlations enable the observers to accomplish classically incon-
ceivable information processing and cryptographic feats such as
unconditionally secure device-independent (DI) quantum key
distribution3–8 and randomness expansion9–12. The efficacy of
these applications necessitates loophole-free certification of non-
locality. The most challenging loophole impeding practical long-
distance DI cryptography is the detection loophole13, exploiting
which a malicious adversary can fake nonlocal correlations if a
sufficient fraction of the entangled particles remains undetected.
A measurement device’s detection efficiency, η, is the

probability with which the device detects an incoming system
emitted by the source. In Bell tests, closing the detection loophole
amounts to having a detection efficiency above a characteristic
threshold value, η*, often referred to as the critical detection
efficiency, below which local hidden variable models can simulate
the considered nonlocal correlation. In symmetric Bell tests,
wherein all detectors are equally inefficient, η* is a characteristic
property of the target nonlocal correlation. For instance, in the
simplest bipartite symmetric Bell scenario, quantum correlations
that maximally violate the Clauser-Horne-Shimony-Holt (CHSH)
Bell inequality14 have a critical detection efficiency, η* ≈ 0.82815.
However, the effective detection efficiency, η, depends not only
on the properties of the measurement device but also on the
losses incurred during transmission. In photonic Bell experiments,
the effective detection efficiency decays exponentially with the
length of the optical fiber, l, such that η ¼ η010

�αl
10, where η0 is the

detection efficiency of the measuring apparatus due to the use of
imperfect detectors, and α is the attenuation coefficient typically
≈0.2dB/km at a wavelength of 1550 nm (third telecom window)16.
Therefore, the lower the critical detection efficiency of a nonlocal

correlation, the further away the measurement devices can be
from the source while retaining loophole-free nonlocal behavior.
Consequently, the detection loophole is practically unavoidable in
photonic Bell experiments and DIQKD systems when using optical
fibers of about 5 km17 and 3.5 km18 in length, respectively.
Another crucial quantity for long-distance loophole-free Bell tests
is the visibility, ν, of the entangled quantum systems, which
quantifies the amount of noise added during transmission and
due to imperfections in the source. Analogously to the critical
detection efficiency, each nonlocal quantum strategy has a
characteristic threshold value of visibility, ν*, below which the
consequent correlations cease to be nonlocal.
Over the years, several proposals have identified nonlocal

quantum correlations with lower critical detection efficiencies. For
instance, in the symmetric CHSH scenario, one can reduce it down
to η*= 2/3 by using a pair of almost-product partially entangled
qubits19. However, this lower critical detection efficiency comes at
the cost of very high susceptibility to noise with ν* ≈ 1. The other
proposals fall into one of the two categories, (i.) the ones which
increase the complexity of the quantum set-up by either utilizing
entangled quantum systems of higher local dimension20–23, or by
increasing the number of spatially separated parties24–26, and (ii.)
the ones which invoke theoretical idealizations such as perfect
detectors for a measuring party27–31. While the latter are clearly of
little practical significance, the former necessitates more intricate
state preparation procedures, which invariably lead to a higher
susceptibility to noise and experimental fragility.
Consequently, long-distance loophole-free nonlocal correlations

remain elusive, even in the near-term future. This is reflected in
the current state-of-the-art combinations of (η, ν) reported in
photonic Bell experiments over distances ≤400m, (0.774, 0.99)32,
(0.763, 0.99)12, and (0.8411, 0.9875)11. On the other hand, if DI
cryptography is to become a near-term commonplace technology,
operationally certifiable robust nonlocal correlations must be
sustained over distances orders of magnitude larger (≫100km).
Due to the sheer enormity of this gap, the traditional approach of
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looking for nonlocal quantum correlations with marginally lower
critical detection efficiency seems futile. Instead, in this work, we
exploit the properties of strong nonlocal correlations, which can
be readily attained today, albeit at short distances, to extend them
to arbitrarily large distances.
Specifically, we consider a generalization to the standard Bell

experiments, wherein each round, the measuring parties randomly
choose the location (distance from the source) of their measure-
ment devices in addition to their measurement settings. It then
follows from relativity, and specifically from the so-called non-
signaling condition, that the behavior of any particular measure-
ment device remains unaffected by the changes in the location of
spatially separated measurement devices. Based exclusively on this
relativistic fact and the operational validity of quantum mechanics,
we demonstrate that nonlocal correlations can be operationally
certified arbitrarily far away from the source, which is to say, with
arbitrarily inefficient measurement devices, when devices close to
the source operate flawlessly and witness extremal nonlocal
correlations. We then proceed to derive an analytic trade-off
specific to the CHSH scenario: the higher loophole-free nonlocality
close to the source, as measured by the violation of the CHSH
inequality, the lower the threshold value for local hidden variable
explanations away from the source. We utilize this trade-off to
estimate the critical detection efficiency and visibility of the
measurement device placed away from the source when the
devices close are imperfect, thereby demonstrating the robustness
of the effect. Moreover, utilizing certifiable randomness as a
measure of the nonlocal behavior of a device, we present a
versatile numerical technique based on the Nieto-Silleras hierarchy
of semi-definite programs33,34, to estimate the critical requirements
of individual measurement devices in generic network scenarios
with several spatially separated measurement devices. Finally, we
discuss experimental setups utilizing relay switches to demonstrate
this effect, more complex network scenarios entailing multiple
measurement devices, the possibility of DI cryptography schemes
fueled by this effect, and the key challenges that lay on the way.

RESULTS
Preliminaries
Let us consider the simplest bipartite Bell scenario entailing a
source, S, distributing entangled quantum systems, ideally in a
two-qubit pure state, ψj i 2 C2 �C2, to two spatially separated

parties, Alice and Bob. The parties have measurement devices with
binary inputs, x, y ∈ {0, 1}, specifying the measurement settings,
and produce binary outcomes, a, b ∈ {+1,−1}, respectively. In ideal
circumstances, the measurement devices perform measurements
corresponding to binary outcome projective observables,
âx 2 BðC2Þ; b̂y 2 BðC2Þ. The three tuple, Q � ð ψj i; fâxgx ; fb̂ygyÞ,
constitutes a quantum strategy (entailing operational instructions)
which ideally results in the experimental behavior,
p � fpða; bjx; yÞ ¼ 1

4 ψh jðIþ aâxÞ � ðIþ bb̂yÞ ψj ig 2 R16
þ . In gen-

eral, up to local relabeling, a given behavior, p, is said to be
nonlocal if and only if it violates the CHSH inequality,

CðpÞ �
X
x;y

ð�1Þx�y âxb̂y
D E

⩽
L
2; (1)

where hâxb̂yi ¼
P

a;babpða; bjx; yÞ. The inequality (1) holds for all

behaviors, p 2 R16
þ , which admit local hidden variable explana-

tions (L), such that, pða; bjx; yÞ ¼Pλ2ΛpðλÞpAλ ðajxÞpBλðbjyÞ, where
λ is the local hidden variable, Λ is a measurable hidden variable
state space, p(λ) specifies the probability of the system occupying
the state corresponding to λ, and for a specific λ, the conditional
probability distributions, fpAλ ðajxÞg and fpBλðbjyÞg, represent
stochastic response schemes specifying the outcome probabilities
for Alice and Bob, respectively.
However, the actual measurement devices may be imperfect

and sometimes fail to detect the incoming quantum system, an
event referred to as the “no-click” event, and the effective
probability with which a measurement device, D, “clicks”, is
referred to as its detection efficiency, ηD∈ [0, 1], where,
ηD= 1 signifies perfect detectors. We consider a generalization
of the simplest Bell experiment, depicted in Fig. 1, wherein Bob’s
measurement device, B, is at a fixed distance from the source
throughout the experiment and has an unvarying effective
detection efficiency, ηB. Alice, on the other hand, randomly
chooses the spatial location of her device based on an additional
input bit, i∈ {0, 1}. When i= 0, she places her measurement
device, A0, close to the source achieving an effective detection
efficiency, ηA0 , whereas when i= 1, she places her device, A1,
further away from the source, attaining a lower effective detection
efficiency, ηA1 � ηA0 . Additionally, to account for imperfections in
the source and noise added during transmission from the source,
we associate effective visibilities, νB; νAi 2 ½0; 1� to each measure-
ment device, such that the quantum state shared between the

Fig. 1 Topology. The graphic is a schematic depiction of the generalized or routed Bell CHSH experiment introduced in this work. In each
round of the experiment, just as in the standard case, the parties choose their respective measurement settings, x, y∈ {0, 1} and obtain
outcomes, ~a; ~b 2 fþ1;�1;?g, where the outcome, ⊥, signifies the “no-click” event. While Bob’s measurement device, B, is at a fixed distance
from the source throughout the experiment with an unvarying effective detection efficiency and visibility, (ηB, νB), the location of Alice’s
measurement device, Ai, depends on a randomly chosen input bit, i∈ {0, 1}. When i= 0, Alice places her measurement device, A0, close to the
source with an effective detection efficiency and visibility, ðηA0 ; νA0Þ, whereas when i= 1, she places her measurement device, A1, further away
from the source, with a lower detection efficiency and visibility, ðηA1 ; νA1 Þ, such that, ηA1<ηA0 , νA1<νA0 .
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measurement devices, (Ai, B), is,

ρðνiÞ ¼ νAi νB ψj i ψh j þ νAi ð1� νBÞ ρB � I
2

� �
þð1� νAi ÞνB I

2 � ρA
� �þ ð1� νAi Þð1� νBÞ I44 ;

(2)

where ρA ¼ TrBð ψj i ψh jÞ, ρB ¼ TrAð ψj i ψh jÞ, I is the two-
dimensional identity operator, and I4 ¼ I� I. Analogously to
the detection efficiencies, the effective visibility of Alice’s
measurement device decreases with the distance from the
source, such that νA1 � νA0 .
Treating the no-click event as an additional outcome, ⊥, the

parties observe the experimental behavior in the form of
conditional probability distributions, pðexpÞ � fpð~a; ~bjðx; iÞ; yÞg
2 R72

þ , where ~a; ~b 2 fþ1;�1;?g. A convenient way to post-
process the experimental behavior, p(exp), which avoids consider-
ing additional outcomes and as well as the fair-sampling
assumption, is to assign a valid outcome, say+ 1, to each no-
click event, such that, the effective distribution reduces to
pð?7!1Þ
ðexpÞ � fpða; bjðx; iÞ; yÞg 2 R32

þ
32,35. One of the benefits of such

a post-processing is the applicability of well-studied, reliable
means of quantifying loophole-free nonlocal correlations such as
the observed value of the CHSH expression,

CAi ;B pð?7!1Þ
ðexpÞ

� �
�
X
x;y

ð�1Þx�yhâðx;iÞb̂yi (3)

where hâðx;iÞb̂yi ¼
P

a;babpða; bjðx; iÞ; yÞ.
The measurement devices (Ai, B) are said to share loophole-free

nonlocal correlations if the behavior pð?7!1Þ
ðexpÞ does not allow for a

local hidden variable explanation of the form,

pða; bjðx; iÞ; yÞ¼LðAiÞ
X
λ2Λ

pðλÞpAλ ðajx; iÞpBλðbjyÞ; (4)

for all a, b∈ {+ 1,− 1} and x, y∈ {0, 1}, where λ is a local hidden
variable, Λ is a measurable hidden variable state space, p(λ)
specifies the probability of the shared system occupying the state
corresponding to λ, and for a specific λ, the conditional probability
distributions, fpAλ ðajx; iÞg and fpBλ ðbjyÞg, represent stochastic
response schemes specifying the outcome probabilities for Alice
and Bob, respectively. As assigning a local pre-determined
outcome to the “no-click” event cannot increase the local hidden
variable bound, 2, of the CHSH expression, the experimental

violation of the CHSH inequality (1), CAiBðpð?7!1Þ
ðexpÞ Þ>2, constitutes a

sufficient operational condition for certifying loophole-free non-
local correlations between the spatially separated measurement
devices, (Ai, B). However, as we demonstrate below, this threshold
requirement for the certification of loophole-free nonlocal correla-
tions between (A1, B) reduces drastically when (A0, B) witness
loophole-free violation of the CHSH inequality (1). Specifically, let
us suppose that the measurement devices close to the source (A0,
B) witness a loophole-free violation of the CHSH inequality
CA0Bðpð?7!1Þ

ðexpÞ Þ>2, this implies that their behavior must spring from
an underlying quantum set-up, i.e., from quantum measurements
fMðx;i¼0Þ;λ

a 2 BþðHAÞ;My;λ
b 2 BþðHBÞg on shared entangled states

fρλ 2 BþðHA �HBÞg, where HA;HB are arbitrary underlying
Hilbert spaces, such that, for all a, b∈ {+1,−1} and x, y∈ {0, 1},

pða; bjðx; i ¼ 0Þ; yÞ ¼
X
λ2Λ

pðλÞTr ρλM
ðx;i¼0Þ;λ
a �My;λ

b

� �
: (5)

In particular, this implies that Bob’s outcome must spring from
genuine quantum measurements fMy;λ

b 2 BþðHBÞg on his part of

entangled states fρðBÞλ ¼ TrAðρλÞg shared with A0, such that,

pBλðbjyÞ ¼ TrðρðBÞλ My;λ
b Þ.

As the source as well as the the internal workings of Bob’s
measurement device, B, remain unaffected by the changes in the
location of Alice’s measurement device, i.e., by the choice i, if the

behavior Alice’s other device were possess a local hidden variable
explanation of the form (4), i.e., it obtains its measurement outcomes
from the post-processing of a shared local hidden variable λ, then,

pða; bjðx; i ¼ 1Þ; yÞ ¼
LðA1Þ

X
λ2Λ

pðλÞpAλ ðajx; i ¼ 1ÞTr ρ
ðBÞ
λ My;λ

b

� �
: (6)

Notice, in the local hidden variable models invoked here, the local
hidden variable λ is implicitly assumed to be independent of the
location of Alice’s measurement device, i.e., p(λ, i)= p(λ)p(i). As we
treat i∈ {0, 1} as an additional Alice’s input, this assumption
follows from the so-called “measurement independence” or “free-
choice” assumption invoked while describing local hidden variable
models in standard Bell experiments. In particular, this assumption
has interesting cryptographic consequences, which are deferred
to the discussion section, towards the end of the manuscript. Now,
we are prepared to present our central result.

Perfect devices close to the source
Let us first consider the ideal case wherein the measurement
devices located close to the source, (A0, B), are effectively perfect,
i.e., ηB ¼ ηA0 ¼ νB ¼ νA0 ¼ 1. Then, via the following the Theorem,
we demonstrate that extremal loophole-free nonlocal correlations
witnessed close to source can be extended to a measurement
device placed arbitrarily far away from the source,

Theorem 1. (Nonlocality at arbitrary distance). If the measurement
devices close to the source, (A0, B), are perfect, i.e.,
ηB ¼ ηA0 ¼ νB ¼ νA0 ¼ 1, and witness maximally nonlocal correla-

tions, such that, CA0Bðpð?7!1Þ
ðexpÞ Þ ¼ 2

ffiffiffi
2

p
, then such nonlocal correla-

tions may be operationally extended to Alice’s other measurement
device placed arbitrarily far away from the source, i.e., loophole-
free nonlocal correlations between (A1, B) can be operationally
certified for any non-zero values of ðηA1 ; νA1Þ.

Proof. Let the parties employ the maximally nonlocal isotropic

two-qubit strategy, Qiso � ϕþj i; fσz; σxg; f 1ffiffi
2

p ðσz ± σxÞg
� �

, where

ϕþj i ¼ 1ffiffi
2

p ð 00j i þ 11j iÞ. Consequently, the measurement devices
witness the maximum quantum violation of the CHSH inequality

(1), such that CA0Bðpð?7!1Þ
ðexpÞ Þ ¼ 2

ffiffiffi
2

p
.

The loophole-free observation of such extremal nonlocal
quantum correlations not only discards local hidden variable
explanations of the form (4) for the measurement devices (A1, B),
but also uniquely identifies the effective underlying shared
quantum states {ρλ} and the local measurements
fMðx;i¼0Þ;λ

a g; fMy;λ
b g to be equivalent to the ones in Qiso, respec-

tively, up to auxiliary degrees of freedom and local isometries for
all λ, a phenomenon referred to as DI self-testing36. In particular,
this implies that the effective states fρðBÞλ g of Bob’s local subsystem
on which the anticommuting observables act non-trivially are
equivalent to the maximally mixed qubit state, I

2, such that Bob’s

measurement outcomes must be intrinsically random, i.e., hb̂yi ¼ 0
for all y∈ {0, 1}. As the internal workings of Bob’s measurement
device, B, remain unaffected by the changes in the location of
Alice’s measurement device, her effective subsystem and obser-
vables remain unaffected by Alice’s choice of i.
Now, if Alice’s other device, A1, were to be classical, i.e., it

obtains its measurement outcomes from the post-processing of a
shared local hidden variable, λ, such that, the behavior witness by
the measurement devices (A1, B) allows for a local hidden variable
explanation of the form (6), then the outcomes of A1 cannot be
correlated to that of Bob, which results in,

CA1Bðpð?7!1Þ
ðexpÞ Þ ¼

LðA1Þ
P
λ2Λ

pðλÞP
x;y

ð�1Þx�y âðx;1Þ
� �

λ
b̂y
D E

λ
;

¼ 0;
(7)
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where âðx;1Þ
� �

λ
¼Paap

A
λ ðajx; 1Þ, hb̂yiλ ¼

P
bbp

B
λðbjyÞ, and the

second equality follows from the fact that the maximal quantum

violation of the CHSH inequality, CA0Bðpð?7!1Þ
ðexpÞ Þ ¼ 2

ffiffiffi
2

p
, self-tests,

and hence, can only be attained by a unique quantum behavior,
which in-turn implies that, 8λ : hb̂yiλ ¼ hb̂yi ¼ 0.
Now, if A1 were to behave honestly with the strategy, Qiso, but

imperfectly, i.e., with detection efficiency ηA1 , visibility νA1 , they
observe,

CA1Bðpð?7!1ÞÞ ¼ 2
ffiffiffi
2

p
ηA1νA1 ; (8)

which violates (7), and certifies loophole-free nonlocal correlations
between (A1, B), for any non-zero values of ðηA1 ; νA1Þ. □

Theorem 1 brings forth the principal effect we employ to extend
ideal loophole-free nonlocal correlations. However, as perfect
measurement devices close to the source are but a theoretical
idealization, i.e., the pre-requisites of Theorem 1, namely,
ηA0 ¼ ηB ¼ ν0 ¼ 1, cannot be achieved in the actual experiments,
we now consider cases wherein the devices close to source
although better than the one placed further way, are not perfect.

Imperfect devices close to the source
To account for such realistic cases and the estimation of the
critical requirements, ðη�A1 ; ν�A1Þ, of Alice’s other measurement
device, A1, we present a trade-off specific to the CHSH inequality
(1) via the following Theorem, namely, the higher the loophole-
free nonlocality witnessed close to source, the lower the threshold
requirements of the measurement device placed away from the
source.

Theorem 2. (A specific analytical trade-off). If the measurement
devices close to the source, (A0, B), witness loophole-free nonlocal
correlations such that, CA0Bðpð?7!1Þ

ðexpÞ Þ>2, then loophole-free non-
local correlations between (A1, B) can be certified whenever the
following inequality is violated,

CA1Bðpð?7!1Þ
ðexpÞ Þ ⩽

LðA1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� CA0B pð?7!1Þ

ðexpÞ
� �� �2r

: (9)

Proof. Let us assume that the parties share an arbitrary behavior,
p 2 R32

þ . We now recall that if the measurement devices, (A0, B),
witness the violation the CHSH inequality, CA0BðpÞ>2, then the
outcomes of B must be intrinsically random, which is to say, that
they cannot be predicted perfectly37, specifically,

8y 2 f0; 1g : hb̂yi
			 			 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� CA0BðpÞð Þ2

q
: (10)

Now, if Alice’s other device, A1, were to be classical, i.e., it obtains
its measurement outcomes from the post-processing of a shared
local hidden variable, λ, such that, the behavior witnessed by the
measurement devices (A1, B) allows for a local hidden variable
explanation of the form (6), then the value of the CHSH expression
can be bounded from above in the following way,

CA1BðpÞ ¼
LðA1Þ

P
λ2Λ

pðλÞP
x;y

ð�1Þx�y âðx;1Þ
� �

λ
b̂y
D E

λ
;

¼ P
λ2Λ

pðλÞP
x

âðx;1Þ
� �

λ
b̂0
D E

λ
þ ð�1Þx b̂1

D E
λ

� �
;

⩽
P
λ2Λ

pðλÞ b̂0
D E

λ
þ b̂1
D E

λ

			 			þ b̂0
D E

λ
� b̂1
D E

λ

			 			� �
;

¼ 2
P
λ2Λ

pðλÞ max
y2f0;1g

b̂y
D E

λ

			 			
(11)

where the first inequality follows from the observation that
âðx;1Þ
� �

λ

		 		 � 1, for all x and λ∈ Λ.

Let us now split the hidden variable state space, Λ, into the
following four disjoint subspaces,

Λ0 � λ 2 Λ max
y2f0;1g

b̂y
D E

λ

			 							 ¼ b̂0
D E

λ


 �
;

Λ1 � λ 2 Λ max
y2f0;1g

b̂y
D E

λ

			 							 ¼ � b̂0
D E

λ


 �
;

Λ2 � λ 2 Λ max
y2f0;1g

b̂y
D E

λ

			 							 ¼ b̂1
D E

λ


 �
;

Λ3 � λ 2 Λ max
y2f0;1g

b̂y
D E

λ

			 							 ¼ � b̂1
D E

λ


 �
:

(12)

This allows us expand the RHS of (11) such that,

CA1BðpÞ �
LðA1Þ

2
P
λ2Λ0

pðλÞ b̂0
D E

λ
� P

λ2Λ1

pðλÞ b̂0
D E

λ

 

þ P
λ2Λ2

pðλÞ b̂1
D E

λ
� P

λ2Λ3

pðλÞ b̂1
D E

λ

!

¼ 2 pðΛ0Þ b̂0
D E

Λ0

				
				þ pðΛ1Þ b̂0

D E
Λ1

				
				

�

þ pðΛ2Þ b̂1
D E

Λ2

				
				þ pðΛ3Þ b̂1

D E
Λ3

				
				


;

(13)

where pðΛjÞ ¼
P

λ2Λj
pðλÞ, and hb̂kiΛj

¼ 1
pðΛjÞ

P
λ2Λj

pðλÞhb̂kiλ for all

j∈ {0, 1, 2, 3} and k ∈ {0, 1}. Now, we can use (10) to further upper
bound (13), such that,

CA1BðpÞ �
LðA1Þ

P
j2f0;1;2;3g

pðΛjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� ðCA0BðpΛj

ÞÞ2
q

;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� P

j2f0;1;2;3g
pðΛjÞCA0BðpΛj

Þ
 !2

vuut ;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� CA0BðpÞð Þ2

q
:

(14)

where pΛj
¼ 1

pðΛjÞ
P

λ2Λj
pðλÞpλ , and pλ 2 R32

þ is the joint behavior

for a specific λ, the second inequality follows from the fact that the

function,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� ðCA0BðpΛj

ÞÞ2
q

, is concave in its argument, CA0BðpΛj
Þ,

and the final equality follows from the operational requirement
that averaging pΛj

over our ignorance of the hidden variable λ

reproduces the observed behavior, p, i.e., p ¼PjpðΛjÞpΛj
, and

CA0BðpÞ ¼
P

jpðΛjÞCA0BðpΛj
Þ.

Finally, plugging the precondition that the parties observe the
post-processed experimental behavior, p � pð?7!1Þ

ðexpÞ , into (14) yields
(9). □

As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� CA0Bðpð?7!1Þ

ðexpÞ Þ
� �2r

is a monotonically decreasing func-

tion of CA0Bðpð?7!1Þ
ðexpÞ Þ 2 ð2; 2 ffiffiffi

2
p �, the inequality (9) implies that any

amount of loophole-free violation of the CHSH inequality (1)
witnessed by (A0, B), reduces the threshold value of the CHSH
expression for (A1, B). Specifically, when (A0, B) witness maximally

nonlocal correlations, CA0Bðpð?7!1Þ
ðexpÞ Þ ¼ 2

ffiffiffi
2

p
, the threshold value

reduces to zero (7), whereas when (A0, B) fail to violate the CHSH
inequality, (A1, B) must violate the CHSH inequality (1) on their
own, to certify loophole-free nonlocal correlations.
In what follows, we use Theorem 2, as a convenient tool to

estimate the critical parameters, ðη�A1 ; ν�A1Þ, for the loophole-free
certification of nonlocal correlations between (A1, B).

Analytical estimation of critical parameters
Given a quantum strategy, Q, and the tuple of experimental
parameters, ðηB; ηA0 ; νB; νA0Þ, we retrieve the experimental
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behavior, pð?7!1Þ
ðexpÞ , as a function of ðηA1 ; νA1Þ. Now, the critical

parameters, ðη�A1 ; ν�1Þ, are simply the ones for which the inequality
(9) is saturated.
To demonstrate our methodology, we first consider the

asymmetric case wherein, B is placed extremely close to a perfect
source, such that ηB= 1, ηA0 ¼ η, and all devices have perfect
visibility, νB ¼ νA0 ¼ νA1 ¼ 1. The parties employ the maximally

nonlocal isotropic strategy, Qiso, such that, CA0Bðpð?7!1Þ
ðexpÞ Þ ¼ 2

ffiffiffi
2

p
η,

where (A0, B) observe a loophole-hole violation for η 2 ð 1ffiffi
2

p ; 1�, and
CA1Bðpð?7!1Þ

ðexpÞ Þ ¼ 2
ffiffiffi
2

p
ηA1 , which when plugged into (9) yields,

η�A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
. This relation is plotted in Fig. 2, serves to bring

up the central insight that the closer to the source A0 is placed, the
higher will be its effective detection efficiency, ηA0 , and conse-
quently, the lower will be the critical detection efficiency of A1, η�A1 ,
i.e., the further away A1 can be placed from the source, whilst
retaining loophole-free nonlocal correlations with B.
For the symmetric case, wherein (A0, B) are equidistant from the

source, such that, ηB ¼ ηA0 ¼ η, and all devices have perfect
visibility, νB ¼ νA0 ¼ νA1 ¼ 1, if the parties employ the isotropic

strategy, Qiso, then CA0Bðpð?7!1Þ
ðexpÞ Þ ¼ 2

ffiffiffi
2

p
η2 þ 2ð1� ηÞ2, where (A0,

B) observe a loophole-hole violation for η 2 ð 2
1þ ffiffi

2
p ; 1� and

CA1Bðpð?7!1Þ
ðexpÞ Þ ¼ 2

ffiffiffi
2

p
ηA1ηþ 2ð1� ηA1Þð1� ηÞ. We plot the values

of η�A1 , which saturate (9) against the effective detection efficiency
η in Fig. 2.
Up till this point, we have relied exclusively on the isotropic

strategy, Qiso. Next, we address whether we can further lower the
critical requirements of A1 by employing better quantum
strategies.

Optimal quantum strategies
Given the effective detection efficiencies of the measurement
devices close to the source, ðηA0 ; ηBÞ, the parties now use the tilted
strategies, QηA0 ;ηB

, which attain maximum quantum violation of
the following tilted CHSH inequality,

C
ηA0 ;ηB
A0B

ðpÞ � ηA0ηBCA0BðpÞ þ 2ð1� ηBÞηA0 âð0;0Þ
� �

þ 2ð1� ηA0ÞηB b̂0
D E

þ 2ð1� ηA0Þð1� ηBÞ
⩽
L 2:

(15)

Notice that, given the detection efficiencies, ðηA0 ; ηBÞ, the strategy,
QηA0 ;ηB

, attains the maximum loophole-free violation of the CHSH

inequality (1) for (A0, B), as CA0Bðpð?7!1Þ
ðexpÞ Þ ¼ C

ηA0 ;ηB
A0B

ðpηA0 ;ηB
Þ, where

pηA0 ;ηB
2 R32

þ is the ideal experimental behavior corresponding to

the quantum strategy, QηA0 ;ηB
. As the threshold value for loophole-

free certification of the nonlocal behavior of A1,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� CA0Bðpð?7!1Þ

ðexpÞ Þ
� �2r

(9), is a monotonically decreasing function

of CA0Bðpð?7!1Þ
ðexpÞ Þ, the tilted strategies, QηA0 ;ηB

, minimize it, and
hence, are optimal for lowering the critical requirements of A1. In
general, one can use the heuristic see-saw semi-definite
programming method to numerically find these strategies. In an
upcoming work, we describe a much more precise method for
obtaining these strategies based on self-testing of the tilted CHSH
inequalities (15). In Fig. 2 we plot the resultant curves for η�A1
against the effective detection efficiency, η, for the asymmetric
case, (ηA0 ¼ η; ηB ¼ 1, as well as for the symmetric case,
ηA0 ¼ ηB ¼ η, demonstrating the advantage of the tilted strate-
gies, QηA0 ;ηB

, over the isotropic strategy, Qiso.
While Theorem 2 unitizes the value of the CHSH expression as a

measure of nonlocal correlations shared between (A1, B), and
provides a convenient method for the estimation of critical
parameters of A1, its applicability is limited to the simplest Bell
scenario, as well as to the choice of the post-processing strategy,
specifically, assigning a pre-determined valid outcome whenever
the measurement device fails to detect the incoming quantum
system (the “no-click” event). We now describe a much more
broadly applicable numerical method for the estimation of the
critical parameters of individual measurement devices in generic
network Bell scenarios.

A versatile numerical tool for estimation of critical parameters
For generic Bell scenarios, a more versatile measure of the
nonlocal behavior of an individual measurement device, for
instance, A1, which takes into the raw three-outcome experimental
behavior, p(exp), is the amount of certifiable randomness,
Hmin(Gx(p(exp))), where Hmin(⋅) is the min-entropy, and Gx(p(exp)) is
maximum guessing probability34,

GxðpðexpÞÞ ¼ max
p~a

P
~a2f± 1;?g

p~að~ajx; 1Þ

s.t.
P

~a2f± 1;?g
p~a ¼ pðexpÞ

8~a 2 f± 1;?g : p~a 2 Q;

(16)

where p~að~ajx; 1Þ ¼
P

~b2f± 1;?gp~að~a; ~bjðx; 1Þ; yÞ, fp~a 2 R72
þ g are

convex decompositions of the raw experimental behavior
pðexpÞ 2 R72

þ , wherein we have absorbed the convex coefficients
into the respective decompositions, and Q is the convex set of
quantum behaviors, p � fpð~a; ~bjðx; iÞ; yÞg 2 R72

þ .
Observe that, for any behavior possessing a local hidden

variable explanation for A1 of the form (6), we can, without loss of
generality, take the response schemes to be deterministic, i.e.,

Fig. 2 Isotropic versus tilted strategies. The critical detection
efficiency, η�A1 , of Alice’s measurement device placed away from the
source, A1, versus the effective detection efficiency, η, close to the
source, obtained with the analytical trade-off (9), when the party’s
employ the isotropic strategy, Qiso, for the symmetric case, ηA0 ¼
ηB ¼ 1 (top solid blue curve), and for the asymmetric case, ηA0 ¼ η,
ηB= 1 (dashed orange curve), and when the party’s employ the
tilted strategies, QηA0 ;ηB

, for the symmetric case (middle solid yellow
curve), and for the asymmetric case (bottom solid purple curve),
with perfect visibilities, νB ¼ νA0 ¼ νA1 ¼ 1. The critical detection
efficiency starts declining after η exceeds the respective threshold
values: η ¼ 2

1þ ffiffi
2

p 	 0:828, η ¼ 1ffiffi
2

p 	 0:707, for the symmetric, and the
asymmetric cases, respectively, when the parties employ the
isotropic strategy, Qiso, and η ¼ 2

3 	 0:67, η ¼ 1
2, for the symmetric,

and the asymmetric cases, when the parties use the tilted strategies,
QηA0 ;ηB

, respectively. In both symmetric and asymmetric cases, the
tilted strategies, QηA0 ;ηB

, perform better than the isotropic strategy,
Qiso, at minimizing the critical detection efficiency, η�A1 .
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pAλ ðajx; i ¼ 1Þ 2 f0; 1g. This observation in-turn implies that for an
experimental behavior p(exp) possessing a local hidden variable
explanation for Alice’s device A1 similar to (6), the outcomes of A1
can always be perfectly guessed if one has access to the local
hidden variable λ, such that Gx(p(exp))= 1. On the contrary, if the
outcomes of A1 cannot be guessed perfectly (prior to the specific
round of the experiment), i.e., the guessing probability optimiza-
tion yields Gx(p(exp)) < 1, no local hidden variable explanation for
the experimental behavior, similar to (6), exists. Consequently, the
critical parameters for witnessing loophole-free nonlocality,
ðη�A1 ; ν�A1Þ, correspond to the threshold values of ðηA1 ; νA1Þ, for
which, Gx(p(exp)) < 1.
This measure is particularly well-suited for generic network Bell

scenarios entailing many spatially separated parties, wherein we
are interested in the certification of the nonlocal behavior of
individual measurement devices when other measurement
devices may or may not be already witnessing loophole-free
nonlocality. Moreover, apart from the direct relevance to DI
randomness certification, Hmin(Gx(p(exp))), constitutes a crucial
ingredient in the security proofs of more complex DI cryptography
protocols.
The optimization problem (16) is extremely arduous to solve

because of the constraint p~a 2 Q. Instead, to retrieve progressively
tightening upper-bounds on the maximum guessing probability,
Gx(p(exp)), and the estimation of the critical parameters ðη�A1 ; ν�A1Þ,
we employ the Nieto-Silleras hierarchy of semi-definite pro-
grams33,34, which relaxes the constraint p~a 2 Q, to p~a 2 QL, where
QL are the convex relaxations of the quantum set, Q, correspond-
ing to Navascués–Pironio–Acín hierarchy, L 2 Nþ denotes the
level of the relaxation, such that, Q⊂QL+1⊂QL for all L 2 Nþ, and
limL!1 QL ¼ Q38. In Fig. 3 we plot the critical detection efficiency
of A1, η�A1 versus its visibility νA1 , for an experimentally relevant
case, while keeping the “no-click” as an additional outcome,
~a; ~b 2 f± 1;?g, and using the second level of the Nieto-Silleras
hierarchy, i.e., with the relaxed constraint p~a 2 Q2. In Fig. 3, we
also plot the corresponding curve retrieved analytically using (9)
and the assignment strategy, ⊥↦+1. The plot serves to

demonstrate the advantage of the numerical technique, and in
particular, of keeping the entire raw experimental behavior over
the analytical technique and the post-processing strategy of
assigning a valid outcome to the “no-click” event.

DISCUSSION
In this work, we introduced a scheme to overcome the most
significant impediment in realizing long-distance loophole-free
nonlocal correlations, namely, the detection loophole. Our scheme
exploits the properties of short-distance loophole-free nonlocal
correlations, which can be readily attained in present-day Bell
experiments to extend them to longer distances. Specifically, we
considered Bell experiments wherein the involved parties
randomly choose the location of their measurement devices in
each round. To demonstrate the considered effect, we stuck to the
most straightforward generalization of the Bell-CHSH experiment,
wherein only Alice randomly chooses the location of her
measurement devices based on an input i∈ {0, 1}. However, our
approach can be applied to more complex scenarios as well. For
instance, consider the case wherein, along with Alice, Bob
randomly chooses the location of his measurement device, Bj,
based on an input j∈ {0, 1}, in each round of the experiment
(Fig. 4). When i= j= 0, both parties place their devices close to the
source and witness strong loophole-free nonlocal correlations.
Consequently, in the rounds when a party places their measure-
ment device close to the source while the other places their
device away from the source, i.e., when either i= 0, j= 1 or i= 1,
j= 0, loophole-free nonlocal correlations can be certified at
arbitrarily low detection efficiency and visibility. This observation,
in turn, enables the certification of loophole-free nonlocal
correlations between measurement devices placed arbitrarily far
away from the source and each other when i= j= 1.
Physically moving the measurement device during the experi-

ment is arduous and impractical. Therefore, experiments aimed at
showcasing the considered effect could employ relay-switches,
which alter the path of the quantum system transmitted from the
source actively, which is to say, based on inputs from the involved
parties, in each round of the experiment. We call such Bell
experiments “routed” Bell experiments, specifically for the simple
case depicted in Fig. 1, such a relay switch can be placed between
the source and the measurement device A1. In each round of the
experiment, Alice transmits her choice of i∈ {0, 1} to the relay
switch, which then transmits the quantum system from the source
to either the measurement device, A0, placed close to the source
or A1, placed further away, based on the input from Alice, i.
The generalized or routed Bell experiments introduced in this

work are closely related to the EPR steering scenarios39; however,
the “trust structure” is different. Specifically, in bipartite steering
scenarios, the measurement device of one of the spatially
separated parties, referred to as the “steering party”, is completely
characterized or “trusted.” On the other hand, our treatment of the
generalized or routed Bell experiments is completely DI, i.e., all
devices along with the source remain completely uncharacterized
or “untrusted”. We use the fact that the devices close to the source
witness nonlocal correlations, specifically, a violation of CHSH
inequality, to characterize Bob measurement device B subse-
quently. We then use this characterization of Bob’s measurement
device to derive operational consequences of local hidden
variable models for A1, such as (9). Finally, we demonstrate the
operational quantum violation of these consequences.
Besides increasing the distance over which loophole-free

nonlocal correlations can be sustained, our scheme enables the
certification of nonlocal behavior of off-the-shelf measurement
devices. Finally, it follows from the proof of Theorem 1 that the
parties can extend extremal loophole-free nonlocal correlations to
an arbitrarily large number of additional measurement devices
placed away from the source. These observations together enable

Fig. 3 Analytical versus numerical estimation. Upper bounds on
the critical detection efficiency, η�A1 , of Alice’s measurement device
placed away from the source, versus the effective visibility between
(A1, B), νA1 , calculated analytically using (9), when the parties use the
tilted strategy, QηA0 ;ηB

, where ηB= νB= 0.993,
ηA0 ¼ 0:966; νA0 ¼ 0:993, and the assignment strategy, ⊥↦+1 (solid
blue curve), and numerically using certifiable randomness as a
measure for the nonlocal behavior of A1, and the second level (Q2) of
Nieto-Silleras hierarchy of semi-definite programs, while keeping the
“no-click” event as an additional outcome, ~a; ~b 2 f± 1;?g (orange
circles). The curves demonstrate the advantage of keeping the “no-
click” as an additional outcome, ~a; ~b 2 f± 1;?g over the post-
processing strategy of assigning a valid outcome to the “no-click”
event, ⊥↦ +1.
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applications such as a central hub equipped with expensive state-
of-the-art measurement apparatus witnessing strong loophole-
free nonlocal correlations and distributing them to an arbitrary
number of remotely located commercial off-the-shelf measure-
ment devices, making loophole-free nonlocality much more
broadly accessible. To summarize, we anticipate our findings to
significantly accelerate the advent of DI information processing as
a near-term commonplace technology.
Apart from the direct application of the routed Bell experiments

introduced here to Device Independent Randomness Certification
with very inefficient detectors, the fact that local hidden variable
explanations of the form (4) and (6) are isomorphic to quantum
explanations entailing local measurements on separable states
implies that the violation of their operational consequences, such
as the violation of the trade-off (9), in routed Bell experiments can
enable Device Independent Entanglement Certification and
Quantification40 at arbitrarily large distances. Moreover, the
scheme proposed in this work can implement DIQKD protocols,
enabling remote measurement devices to share a secret key.
Although naive DIQKD protocols based on this scheme are secure
against passive source-based attacks and eavesdroppers placed
between the source and Alice’s closest measurement device A0,
they are susceptible to active device-controlling attacks by
eavesdroppers placed between Alice’s measurement devices (A0,
A1). Specifically, in the Supplementary Note, we demonstrate that
for a measurement device with N inputs and N0 outputs, there
exist two distinct active attacks which render any DIQKD protocol
insecure whenever the detection efficiency of such a measure-
ment device is below minf1N ; 1

N0g. In our set-up this translates to a
minimum detection efficiency of 12 for all measurement devices for
completely secure DIQKD. Therefore, a crucial open question
remains whether the generalized or routed Bell experiments
introduced in this work can be used to implement improved
DIQKD protocols with lower critical detection efficiency and
visibility requirements than standard DIQKD protocols.

Furthermore, while the bipartite quantum strategies considered
here are well suited to the routed Bell experiments, tripartite no-
signaling quantum strategies are an interesting alternative natural
generalization to the local hidden variable models described in (6).
Specifically, probability distributions explainable via such local
hidden variable models can be interpreted as those stemming
from local measurements performed on a shared tripartite
classical-quantum-quantum state. It then follows that the most
obvious modeling of the fully quantum case is promoting the
classical register of Alice’s distant device to a quantum register
such that the devices measure a tripartite quantum-quantum-
quantum state. However, such tripartite quantum strategies have
an additional implicit no-signaling constraint between Alice’s
devices compared to the bipartite quantum strategies considered
in the article. Consequently, even the most straightforward
experimentally implementable quantum strategy for the general-
ized or routed Bell experiments wherein the source shares
(potentially noisy) maximally entangled states to the devices
cannot be accounted for by such tripartite quantum strategies, nor
could such strategies violate the trade-off (9). Nevertheless, it is
interesting to explore in more detail the role of tripartite quantum
strategies, especially strategies involving genuine tripartite entan-
glement in routed Bell experiments. Finally, it would be interesting
to replace the guessing probability maximization (16) with the
minimization of conditional von Neumann entropies41 and
investigate the behavior in the context of the generalized or
routed Bell experiments introduced in this work.
Note Added: After completion and communication of the first

version of our manuscript we were informed of an independent
work42 which resolves the open question of enabling DIQKD
protocols based on the routed Bell experiments introduced in this
article with lower critical requirements than standard DIQKD
schemes. In particular, the scheme employs jointly-measurable
measurements for Alice’s device A1 as classical models, instead of
the local hidden variable models invoked here.

Fig. 4 Symmetric generalization. The graphic is a schematic depiction of the next generalization to the generalized or routed Bell
experiment depicted in Fig. 1. Along with Alice, in each round of the experiment, Bob chooses the location of his measurement device, Bj,
based on a randomly chosen input bit, j∈ {0, 1}. When j= 0, Bob places his measurement device, B0, close to the source with an effective
detection efficiency and visibility, ðηB0 ; νB0 Þ. When j= 1, he places her measurement device, B1, further away from the source, with a lower
detection efficiency and visibility, ðηB1 ; νB1Þ, such that ηB1<ηB0 , νB1<νB0 . Our results imply that in rounds with i= j= 1, loophole-free nonlocal
correlations can be certified between the measurement devices, (A1, B1), placed arbitrarily far away from each other.
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This paper explores the application of quantum nonlocality, a renowned and unique phenomenon acknowl-
edged as a valuable resource. Focusing on an alternative application, we demonstrate its quantum advantage
for mobile agents engaged in specific distributed tasks without communication. The research addresses the
significant challenge of rendezvous on graphs and introduces a distributed task for mobile agents grounded
in the graph domination problem. Through an investigation across various graph scenarios, we showcase the
quantum advantage. Additionally, we scrutinize deterministic strategies, highlighting their comparatively lower
efficiency compared to quantum strategies. The paper concludes with a numerical analysis, providing further
insights into our findings.

DOI: 10.1103/PhysRevA.109.042201

I. INTRODUCTION

Quantum information has emerged as a valuable asset in a
multitude of tasks inherent to information and communication
technologies. Remarkably, quantum cryptography stands out
as an example, where the harnessing of quantum entanglement
has paved the way for innovative protocols ensuring secure
key exchange and robust randomness certification [1]. Despite
these achievements, the phenomena of Bell inequalities and
nonlocality, which defy the boundaries of correlations allowed
in classical physics [2,3], have remained largely unexplored
for other pragmatic endeavors. In particular, their potential
for distributed tasks in facilitating the coordination of actions
among distributed agents with a shared goal, even in situations
with limited or no communication, remains almost untapped
[4], with preliminary trials in [5,6].

In the realm of quantum information, the accomplishments
have been particularly pronounced in quantum cryptogra-
phy [1], where the manipulation of quantum entanglement
has enabled the creation of novel protocols guaranteeing the
confidentiality and integrity of exchanged keys, as well as
certifying the security of random data [7]. The potential
of quantum phenomena achieved with the aid of entangle-
ment has been illustrated by multiple examples of so-called
nonlocal games [8–10]. A prominent example of them are
the exclusive alternative (XOR) games [11], and gener-
alizations thereof [12–15]. However, amidst these striking
achievements, the captivating domains of Bell inequalities and
nonlocality [16], which intrinsically challenge the limitations
imposed by classical physics on correlations, have not been
widely applied to other practical tasks. A notable area that

*giuseppe.viola.res@gmail.com
†piotr.mironowicz@gmail.com

remains unexplored is their potential application in orchestrat-
ing the collaboration of distributed agents striving towards a
collective objective, even in scenarios where communication
is restricted or absent, like the rendezvous task [17].

This paper delves into the realm of quantum entangle-
ment and its application in coordinating distributed tasks on
graphs. The groundwork is laid with two fundamental prob-
lems of graph theory: rendezvous and graph domination [18].
These problems serve as the foundation for exploring the
potential benefits of quantum entanglement in achieving co-
ordinated actions among distributed agents striving to achieve
a common goal on graphs. We continue and extend the inves-
tigations initiated in [6] where it was shown how to exploit
quantum resources for the rendezvous task.

To tackle this topic, we use semidefinite programming
(SDP) [19–21], in particular two prominent methods: the
Navascués-Pironio-Acín method (NPA) [22,23] and the see-
saw method [24]. These techniques offer valuable insights into
the quantum nonlocality, which challenges the boundaries set
by classical physics. We explore how quantum entanglement
enables distributed agents to achieve rendezvous with no com-
munication, surpassing classical constraints. Then, the paper
introduces the domination distributed task for agents. We are
in this way laying out the framework for incorporating quan-
tum entanglement as a resource for enhanced coordination.
To demonstrate the practical implications of the findings, the
paper presents a series of numerical calculations and examples
involving various graph structures. These numerical simula-
tions showcase the effectiveness of quantum entanglement in
scenarios of distributed actions of agents, illustrating the po-
tential advantages of using quantum strategies over classical
ones.

The organization of this paper is the following. In Sec. II
we discuss the two relevant problems of graph theory, viz.,
the task of rendezvous of mobile agents, and the problem
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of domination number in graphs. We show how to turn the
latter problem into a task for mobile agents. Then we discuss
multipartite probability distributions in classical and quantum
physics and show how to express distributed tasks as so-called
Bell, or nonlocal, games investigated in quantum theory. In
Sec. III we briefly describe the numerical methods used in
this paper based on SDP. Next, in Sec. IV we provide ana-
lytical results about deterministic strategies that can be used
by the agents for the tasks. The results showing the quantum
advantage of the tasks are presented in Sec. V. We discuss the
obtained results in Sec. VI and conclude in Sec. VII.

II. DISTRIBUTED TASKS FOR AGENTS

We will now describe the tasks for mobile agents inves-
tigated in this paper. The rendezvous task is discussed in
Sec. II A. In Sec. II B we cover the domination number of
graphs and then propose a distributed task inspired by it.
The examples of graphs considered in this paper are given in
Sec. II C together with definitions of selected terms used in
describing mobile agents. In Sec. II D we introduce classical
and quantum probability distributions and Bell games. Finally,
in Sec. II E we show how to relate distributed tasks with Bell
games.

A. Rendezvous on graphs

The rendezvous problem, as formulated by Alpern [17], is
a mathematical problem that deals with the challenge of two
or more mobile agents trying to meet at a specific location
without any form of communication. In its simplest form,
the rendezvous problem involves two mobile agents, referred
to as players or parties, that are initially located in different
positions within a known environment. The objective is for
both players to reach a common meeting point simultaneously.
The key constraint is that the players cannot communicate
with each other and have no knowledge of each other’s current
position.

To elucidate the concept of the rendezvous problem we
refer to the following two motivating examples. The first one
is named the telephone problem and is formulated as follows:
“In each of two rooms, there are n telephones randomly strewn
about. They are connected in a pairwise fashion by n wires.
At discrete times t = 0, 1, 2, . . . players in each room pick
up a phone and say ‘hello.’ They wish to minimize the time t
when they first pick up paired phones and can communicate”
[25]. This problem is the spatial rendezvous on a complete
graph, i.e., a graph where an edge exists between every pair of
vertices.

The second motivating problem is the Mozart Café ren-
dezvous problem: “Two friends agree to meet for lunch at the
Mozart Café in Vienna on the first of January, 2000. However,
on arriving at Vienna airport, they are told there are three (or n)
cafés with that name, no two close enough to visit on the same
day. So each day each can go to one of them, hoping to find
his friend there” [26].

One variant of the rendezvous problem is the “symmetric
rendezvous” where both players have equal capabilities and
constraints or are following the same strategy [27–30]. In
this case, the goal is to find a strategy that ensures both
players meet at some vertex, regardless of their initial posi-

tions. Another variant is the “asymmetric rendezvous,” where
the players have different capabilities or constraints and are
following the same strategy [31–34]. For example, one player
may have limited mobility or restricted vision compared to the
other player. In this case, the objective is to find a strategy that
maximizes the probability of meeting at the rendezvous point
while taking into account the differences in capabilities.

The importance of studying the rendezvous problem lies in
its relevance to various real-world applications. For instance,
in search and rescue missions, autonomous robots or drones
may need to coordinate their movements to cover a large
area efficiently and meet at a specific location to exchange
information or resources. Similarly, in autonomous vehicle
systems, vehicles may need to coordinate their routes and tim-
ing to avoid collisions and efficiently utilize shared resources
like charging stations [35].

By understanding and solving the rendezvous problem,
researchers can develop efficient strategies for coordinating
multiple agents without relying on direct communication.
This can lead to improved efficiency, resource utilization, and
safety in various domains. More generally, the problem is
about coordinating action when the communication is prohib-
ited or severely limited; see, e.g., [36] for an overview.

For this paper, we will use the following definition.
Definition 1. Given a graph, and a number h � 1, the

rendezvous task is defined as the task in which r � 2 agents,
placed uniformly randomly among the vertices of the graph,
move along edges of the graph h times. They are successful if,
after crossing the edges h times, they are all positioned in the
same vertex. They can establish a strategy before being placed
on the graph, but they are not allowed to communicate before
each of the agents has completed their move.

If h = 1 then the rendezvous task is called single-step.
Note that, for the single-step task, to allow strategies for

which the agents can end their movement on the same vertex
in which they started, each of the vertices of the graph must
be connected with itself.

B. Domination on graphs

The domination number is a fundamental concept in graph
theory [37,38]. It quantifies the minimum number of vertices
needed to control, or dominate, all other vertices in a graph.
In essence, it identifies the smallest set of vertices where each
vertex either belongs to the set or is adjacent to at least one
member of the set. Formally, consider a graph G = (N, E )
with a vertex set N and an edge set E . A dominating set D
is a subset of N such that every vertex in N is either part
of D or adjacent to a vertex in D. The domination number,
denoted as γ (G), is defined as the minimum cardinality of
any dominating set D.

Various variants of the domination number exist, each
imposing specific conditions on dominating sets. Common
variants include the following.

(1) Total domination number [39,40]: This requires that
every vertex in the graph is adjacent to at least one vertex in
the dominating set, ensuring direct control over each vertex.

(2) Independent domination number [41–43]: In this vari-
ant, the dominating set must also be an independent set,
meaning no two vertices in the set are adjacent. This variant
seeks dominating sets without redundant control.
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FIG. 1. Some of the graphs analyzed in this paper.

(3) Connected domination number [44]: Here, the dom-
inating set must induce a connected subgraph, ensuring an
efficient path between any two vertices in the set for com-
prehensive control over the entire graph.

The domination number and its variants have various ap-
plications and usefulness in different domains. For network
design, the domination number can be used to optimize net-
work design problems, such as determining the minimum
number of sensors or routers required to monitor or control
a network effectively. By finding an optimal dominating set,
resources can be allocated efficiently while maintaining net-
work connectivity. In the area of facility location, this quantity
can help in determining the optimal location of facilities,
such as hospitals, fire stations, or surveillance cameras, to
ensure maximum coverage and control over a given area. By
minimizing the domination number, the cost and resources re-
quired for facility placement can be reduced. The domination
number can be also applied in social network analysis to iden-
tify influential individuals or groups. By finding dominating
sets in social networks, it is possible to identify key players
who have control or influence over a large portion of the
network.

The domination problem until now has been investigated
only from the static global point of view, where the entity was
deciding which vertices can be used to dominate the graph. In
our paper, we propose a distributed approach to the problem
and treat it as a dynamic task of a group of mobile agents who
start at not known in advance locations, and want to organize
themselves without communication so that they dominate as

large part of a graph as possible. To be more specific, in this
paper, we use the following definition.

Definition 2. Given a graph, and a number h � 1, the
domination task is defined as the task in which r � 2 agents,
placed uniformly randomly among the vertices of the graph,
move along edges of the graph h times. They try to dominate
as many vertices as they can, counting the dominated points
only after all the agents completed their moves.

A vertex is said to be dominated when an agent occupies it
or it is connected with an edge to a vertex where there is an
agent.

The agents can establish a strategy before being placed on
the graph, but they are not allowed to communicate before
each of the agents has completed their move.

If h = 1 then the domination task is called single-step.
Note that, for the single-step task, to allow strategies for

which the agents can end their movement on the same vertex
in which they started, each vertex of the graph must be con-
nected with itself.

C. Considered scenarios and definitions

In Fig. 1 we present some of the graph scenarios with
which we dealt. With the name “n-gon” we refer to the graphs
described by a polygon with n vertices, with the name “n-line”
we refer to the graphs described by a line connecting n ver-
tices, while with the name “n-line curly” we refer to a n-line
graph where the extrema are connected with themselves.

With the exception of the n-line curly graphs, for which we
provided a specific definition, for all the graphs we included
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the word “curly” in their name when each of their vertices is
connected with itself.

Let r denote the number of agents performing a given dis-
tributed task, let N be the set of all the nodes of the considered
graph, and let n be the number of nodes, n = |N |. Let us
introduce the following notation.

(1) pi(a|x) denotes the probability that the ith agent will go
to the node a ∈ N when starting from the node x ∈ N .

(2) Si := {pi(a|x)}a,x∈N is the classical strategy for the ith
agent.

(3) pi(a) := 1
n

∑
x∈N pi(a|x) is the probability to find the

ith agent in the node a ∈ N .
(4) S̃i := {pi(a)}a∈N .
Note that S̃i is uniquely determined by the set Si. A strategy

is called deterministic (for all the agents) if and only if all
the elements of Si, ∀i ∈ {1, . . . , r}, are either zeros or ones.
Given the set of strategies adopted by the agents {Si}i∈{1,...,r},
the strategies Si’s are called symmetric if they are all equal
among each other.

D. Classical and quantum probabilities and Bell games

The classical joint probability distribution P(a, b|x, y) for
obtaining outcomes a and b in response to inputs x and y is
expressed as a sum over a hidden variable λ, viz.,

P(a, b|x, y) =
∑

λ

P(λ)PA|X,�(a|x, λ)PB|Y,�(b|y, λ). (1)

Each term in the sum corresponds to a specific hidden state
λ and is weighted by the probability P(λ) of observing that
hidden state. The conditional probabilities PA|X,�(a|x, λ) and
PB|Y,�(b|y, λ) represent the likelihood of obtaining outcomes
a and b for Alice and Bob, respectively, given their inputs
x and y and the hidden state λ. The probability distribution
P�(λ) characterizes the likelihood of different hidden internal
states. The normalization condition

∑
λ∈� P�(λ) = 1 ensures

that the probabilities are properly scaled. This formulation
captures the classical statistical description of the behavior of
the devices and is often called a local hidden variables (LHV)
model, which assumes that the measurement outcomes are
determined by preexisting properties of the system that are
independent of the measurement settings

A bipartite quantum probability distribution of joint mea-
surement results refers to the statistical distribution of
outcomes obtained from a joint measurement performed on
a bipartite quantum system. The bipartite system is described
by a density operator ρ. The joint measurement performed
by Alice and Bob is typically represented by a set of posi-
tive operator-valued measures (POVMs), denoted as M(a, x)
[N (b, y)], where a (b) and x (y) represent the measurement
outcomes and settings of Alice (Bob). These POVMs satisfy
the completeness relation

∑
a M(a, x) = 1 [

∑
b N (b, y) = 1],

where 1 is the identity operator [45].
The bipartite quantum probability distribution P(a, b|x, y)

gives the probability of obtaining measurement outcomes a
and b when Alice and Bob use measurement settings x and y,
respectively. It is calculated using the Born rule, which states
that the probability is given by

P(a, b|x, y) = Tr[ρM(a, x) ⊗ N (b, y)]. (2)

Here, Tr[ρM(a, x) ⊗ N (b, y)] represents the trace of the prod-
uct of the density operator ρ and the corresponding POVM
elements M(a, x) and N (b, y). The bipartite quantum prob-
ability distribution captures the correlations between Alice’s
and Bob’s measurement outcomes. These correlations can
exhibit various phenomena such as entanglement, nonlocality,
or classical correlations depending on the quantum state ρ.
We denote the set of all possible quantum bipartite probability
distributions by Q.

A bipartite game is a linear functional over probability
distribution of the form

B[P(a, b|x, y)] =
∑

a,b,x,y

βa,b,x,yP(a, b|x, y) (3)

for some coefficients {βa,b,x,y}. Equation (3) can be easily
generalized to more parties.

It is worth noting that in some cases, the bipartite quantum
probability distribution may be incompatible with classical
theories. This means that it cannot be explained solely by
LHV models. If this is the case for a given game, then such
a game is called a Bell game or nonlocal game [2,3]. Its max-
imal value over classical distributions is called the classical
bound and denoted C, and its maximal value over quantum
distributions is called the Tsirelson bound and denoted by Q
[8], Q > C.

In the case in which the agents participating in the domi-
nation or rendezvous tasks have access to quantum resources,
they share a chosen quantum state before being placed on the
graph. Once on the graph, they can measure their own state
depending on the node they are at and choose which node to
move to based on the outcome of their local measurement.

E. Distributed tasks as Bell games

The success probability of a distributed task involving two
agents, Alice and Bob, can be expressed as a linear functional
of joint probabilities P(a, b|x, y), where successes are as-
signed a coefficient of 1 and failures are assigned a coefficient
of 0. This approach allows us to quantify the likelihood of
success based on the joint probabilities of the agents’ actions
and observations.

To understand this concept better, let us break down the no-
tation used. In this point of view the probabilities P(a, b|x, y)
as defined in Sec. II D represent the joint probability distribu-
tion of Alice’s action a, Bob’s action b, Alice’s observation x,
and Bob’s observation y. Thus, it captures the probabilistic
relationship between the actions and observations of both
agents. We note that the observation is performed depending
on the agent’s local situation, like information about its posi-
tion in a graph, and the action depends on the measurement
result.

Indeed, in a distributed task, Alice and Bob may need
to coordinate their actions or make decisions based on their
individual observations. The success of the task depends on
how well they align their actions and observations to achieve
the desired outcome. By considering the joint probabilities
P(a, b|x, y), we can analyze the likelihood of success in dif-
ferent scenarios. To express the success probability as a linear
functional, we assign coefficients to each possible outcome
(success or failure) based on its desirability. In this case,
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successes are assigned a coefficient of 1, indicating their
importance in determining overall success. Failures, on the
other hand, are assigned a coefficient of zero since they do
not contribute to the success of the task. Let S(a, b, x, y) be a
relevant scoring function of a distributed task. Using the coef-
ficients for all possible outcomes and their corresponding joint
probabilities, we obtain a linear combination that represents
the score as ∑

a,b,x,y

S(a, b, x, y) × P(a, b|x, y), (4)

which is in the form of a bipartite game. This approach allows
us to quantify the likelihood of success in distributed tasks
by considering the joint probabilities and assigning appropri-
ate coefficients to different outcomes. By manipulating these
coefficients, we can prioritize certain outcomes or adjust the
importance of different actions and observations in determin-
ing success or normalize events to interpret the score as a
success probability of a task.

This approach allows us to analyze the likelihood of
success based on the agents’ actions and observations and
compare the capabilities possible in classical and quantum
probability distributions. We say that we have a quantum
advantage for a given task if the score is a Bell game with
Q > C.

III. NUMERICAL OPTIMIZATION METHODS

In this section, we describe the SDP method in Sec. III A.
This optimization technique is used to formulate two tools
allowing for calculations of the success measure in dis-
tributed tasks, viz., NPA and see-saw. The former, discussed
in Sec. III B, provides upper, and the latter, discussed in
Sec. III C, lower bounds on successes, respectively.

A. Semidefinite programming

SDP is a mathematical optimization technique that ex-
tends the concepts of linear programming to handle matrices
and, in particular, positive semidefinite matrices. It addresses
problems where the goal is to optimize a linear objective
function subject to linear equality and semidefinite inequal-
ity constraints. SDP finds applications in diverse fields [46],
including quantum information [19–21]. Advancements in al-
gorithmic design and improvements in computational power
have significantly enhanced the efficiency of SDP solvers.
Modern interior-point methods [47] have proven to be ef-
fective in solving large-scale SDP, making them a versatile
tool for addressing complex optimization problems [48]. For
m, n ∈ N+ the primal optimization task of SDP is

minimize cT x subject to F (x) � 0, (5)

where c ∈ Rm, F (x) := F0 + ∑m
i=1 xiFi, Fi ∈ Rn×n, and x ∈

Rm is the variable. The so-called dual of this problem with
a symmetric matrix variable Z ∈ Rn×n is

maximize − Tr[F0Z] subject to Tr[FiZ] = ci,

for i = 1, . . . , m, Z � 0.

(6)

B. Navascués-Pironio-Acín method

The NPA method, introduced by Navascués et al. in 2007
[22], is a mathematical framework used to study quantum
correlations and entanglement in quantum information theory.
It provides a systematic approach to analyze the behavior
of quantum systems and their correlations. Recall that in
quantum mechanics, entanglement refers to the phenomenon
where two or more particles become correlated in such a
way that their states cannot be described independently. These
correlations are stronger than any classical (or local) correla-
tions and play a crucial role in various quantum information
processing tasks.

This technique aims to quantify and characterize these
quantum correlations by constructing a hierarchy of SDPs.
The hierarchy is defined by introducing a sequence of op-
erators that capture the correlations between systems under
consideration and are associated with different levels of the
hierarchy. Moving up the hierarchy, at each level, new se-
quences of operators are introduced that constrain or restrict
additional correlations beyond those captured at lower levels.
The NPA method provides a systematic way to compute these
moment operators at each level and study the properties of
quantum correlations rigorously. In this paper, we employ the
so-called almost quantum [49] level 1 + ab, and more precise,
but also more computationally demanding, level 2.

Let us now explain NPA in more detail. As we mentioned,
quantum probability distributions P(a, b|x, y) [see Eq. (2)] are
challenging to characterize due to their inherent complexity.
Recall that they belong to the set Q if certain conditions are
met, namely, if there exists a Hilbert space H, a state (vector)
|ψ〉, and a set of operators (measurements) {Ea

x , Eb
y }a,b,x,y

satisfying specific criteria. These criteria include Hermitian
properties of operators, orthogonality of different measure-
ment outcomes, normalization conditions, and commutativity
of measurements between Alice and Bob. The probability
distribution is then expressed as an inner product involving
measurements of the quantum states. However, characterizing
Q without quantum formalism poses a challenge. The NPA
method provides a solution by defining a hierarchy {Qk}∞k=1
of SDP problems. This hierarchy offers increasingly accurate
approximations of Q, with higher levels yielding more precise
solutions, albeit at the expense of increased computational
complexity. Ultimately, the hierarchy converges to the quan-
tum set Q [23], reflecting the effectiveness of the NPA method
in characterizing quantum correlations.

A sequence of operators is formed by concatenating
projective measurement operators. For instance, E1

2 E3
2 F 2

1 E1
1

represents a sequence of four operators. Exploiting the com-
mutativity of Alice’s operators Ea

x with Bob’s operators F b
y ,

we can rearrange the sequence as E1
2 E3

2 E1
1 F 2

1 . Given that
Ea

x Ea′
x = 0 and F b

y F b′
y = 0 for a 	= a′ and b 	= b′, and lever-

aging the commutation property, we obtain, for instance,
E2

1 F 3
3 E1

1 = E2
1 E1

1 F 3
3 = 0 since E2

1 and E1
1 are orthogonal.

Moreover, as Ea
x are projectors, (Ea

x )k = Ea
x for any k � 1,

and similarly for F b
y [20,50].

The length of a sequence of operators S denotes the
minimal number of projectors required to express it. The
null sequence corresponds to the identity operator, de-
noted by 1, with its length defined as zero. Consider an
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n-element set S of sequences of operators, such as S1+ab =
{1, Ea

x , F b
y , Ea

x F b
y }a∈A,b∈B

x∈X,y∈Y
. By employing the NPA method, one

constructs a hierarchy of relaxations using different choices of
the set of sequences S . Specifically, a set Sk is composed of
all sequences of operators {Ea

x , Eb
y } with a length at most k.

It follows that S1+ab = S1 ∪ {Ea
x Eb

y }, where S1+ab is defined
accordingly.

The NPA method aims to characterize a given bipartite
probability distribution as quantum, implying the existence
of a realization with a state |ψ〉 and projective measure-
ments {Ea

x , F b
y }. This realization satisfies, for all settings

x ∈ X and y ∈ Y and outcomes a ∈ A and b ∈ B, the
equation P(a, b|x, y) = 〈ψ |Ea

x F b
y |ψ〉. Considering operators

Oi and Oj in the set S , let �Oi,Oj be defined as 〈ψ |O†
i O j |ψ〉.

Consequently, �Ea
x ,Eb

y
= P(a, b|x, y) and �1,1 = 1. This equa-

tion defines an n × n matrix, where rows and columns are
indexed by elements of S , forming the so-called moment
matrix �.

The elements of � satisfy linear constraints: �i, j =
�k,l if and only if O†

i O j = O†
kOl , and O†

i O j = 0 im-
plies �i, j = 0. For v ∈ Cn and V = ∑

j v jO j , it fol-

lows that v†�v = ∑
i, j v

∗
i �i, jv j = ∑

i, j v
∗
i 〈ψ |O†

i O j |ψ〉v j =
〈ψ |V †V |ψ〉 = |〈V |ψ〉|2 � 0, thereby ensuring � � 0. We
obtain the relaxation by requiring the existence of such �

instead of the existence of states and operators realizing
P(a, b|x, y). This method is particularly useful for analyzing
complex quantum systems and can provide valuable insights
into the nature of quantum correlations and phenomena. The
results obtained from NPA, as it constitutes a relaxation, pro-
vide an upper bound on the exact solution of the quantum
optimization problem.

C. See-saw method

An alternative approach to optimization over quantum
distributions Q, when we have certain restrictions on the di-
mensions of operators included in the setup, is the so-called
see-saw [24] method. Again, we consider bipartite quantum
probabilities given by expressions of the form of Eq. (2). It
is easy to see that expressions that are linear combinations of
probabilities given by formulas of the form of Eq. (3), such as
Bell-type operators, are linear in each term, viz., the quantum
state, Alice’s measurement operators, and Bob’s measurement
operators. However, since the optimization must be done over
all these groups of variables, the whole expression is nonlin-
ear.

The key idea of the see-saw method is the alternating use
of a series of optimizations for which two of the expressions
constituting Eq. (2) are treated as constants, and the third of
them is a variable subjected to optimization by SDP methods
with the objective function being the considered Bell operator.
For this purpose, in the first iteration, two of the terms take
fixed, often randomly chosen, values.

To be more specific, see-saw allows us to maximize a
given Bell expression, which serves as a score function in the
considered bipartite games. This Bell expression, denoted as
B[P(a, b|x, y)], quantifies the correlations between measure-
ment outcomes a and b for settings x and y. It is computed

as a weighted sum of bipartite probabilities P(a, b|x, y), as
defined in Eq. (2), where the coefficients βa,b,x,y weight the
contributions of each outcome to the overall score.

At each iteration of the see-saw method, the quantum state
and measurements of both Alice and Bob are optimized to
maximize the Bell expression. This involves three main op-
timization steps: first, the state ρ is optimized while holding
the measurements of Alice and Bob constant; next, all Alice’s
measurements M(a, x) are optimized while keeping the state
and Bob’s measurements fixed; finally, Bob’s measurements
N (b, y) are optimized while the state and Alice’s measure-
ments are held constant.

During each iteration, the value of the Bell expression is
computed using the updated quantum state and measurements.
If the improvement in the Bell expression value falls below
a predefined threshold or the maximum number of iterations
is reached, the optimization process terminates. Through this
iterative procedure, the see-saw method efficiently explores
the space of possible quantum correlations, even though it is
not guaranteed to be converging towards the optimal solution
that globally maximizes the Bell expression. Nonetheless, by
providing explicit quantum state and measurements, it sheds
light on the quantum nature of the underlying system. Indeed,
note that while the NPA method provides an approximation
of the quantum set of probabilities from its exterior, meaning
a relaxation, the see-saw method finds direct representations
of the quantum state and measurements implementing the
found distribution. Thus, any solution obtained by the see-saw
method is a lower bound on the exact solution of the quantum
optimization problem, complementing the results from NPA.

IV. PROPERTIES OF SYMMETRIC DETERMINISTIC
STRATEGIES FOR DISTRIBUTED TASKS

In Sec. IV A we prove lemmas showing that deterministic
symmetric strategies are sufficient for consideration of LHV
models for the rendezvous task, and then in Sec. IV B we
prove an analogous result for the domination task.

A. Symmetric deterministic strategies for rendezvous on graphs

Given any set of strategies {Si}i∈{1,...,r} we have the success
probability W ({Si}i∈{1,...,r}) given by

W ({Si}i∈{1,...,r}) =
∑
a∈N

r∏
i=1

pi(a) = W̃ ({S̃i}i∈{1,...,r}) (7)

so the success probability is completely determined by the set
{S̃i}i∈{1,...,r}.

Lemma 1. Symmetric strategies for the rendezvous task are
at least as good as nonsymmetric strategies.

Proof. We have that

W̃ ({S̃i}i∈{1,...,r}) =
∑
a∈N

r∏
i=1

pi(a) �
r∏

i=1

r

√∑
a∈N

pi(a)r

� max
i∈1,...,r

∑
a∈N

pi(a)r = W̃ ({S̃i∗ , . . . , S̃i∗ }), (8)
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where i∗ is the value of i for which the maximum is reached.
Here for the first estimation we used the Hölder inequality for
sums [51].

So, given any set of strategies adopted by the r agents, the
winning probability is upper bounded by the success prob-
ability of the symmetric strategy which employs a suitable
strategy chosen among the set of the given strategies. �

Lemma 2. Symmetric deterministic strategies for the
rendezvous task are at least as good as symmetric nondeter-
ministic strategies.

Proof. Given any nondeterministic strategy S =
{p(a|x)}a,x∈N , repeated for each of the agents, and the
associated set S̃ = {p(a)}a∈N , we have that it is always
possible to build a deterministic strategy, repeated for each of
the agents, which has a greater success probability. In fact,
if S1 is not deterministic, there is at least one input node x0

for which there are at least two nodes a1 and a2 for which
p(a1|x0), p(a2|x0) > 0.

Without loss of generality, we consider the case in which
p(a1) � p(a2). A better strategy S′ = {p′(a|x)}a,x∈N , repeated
for each of the agents, is built by assigning to the node x0

a probability p′(a1|x0) = p(a1|x0) + p(a2|x0) and p′(a2|x0) =
0, and the same probabilities in all the other cases. This is
true because, for any b, c ∈ N , r � 2 with p(b) � p(c) and
0 < ε � p(c), we have that

p(b)r + p(c)r < (p(b) + ε)r + [p(c) − ε]r . (9)

Then, it is possible to repeat this procedure until you obtain a
deterministic strategy.

So any nondeterministic symmetric strategy has a lower
success probability of at least one symmetric deterministic
strategy. �

Putting together the previous two results from Lemmas 1
and 2 we get the Corollary 1.

Corollary 1. It is possible to find the optimal strategy for
the rendezvous problem by investigating only deterministic
symmetric strategies.

Note that these results may not be applicable in other
variants of the rendezvous task, such as when agents cannot
be placed in the same initial nodes, in which case it is still
possible to find the optimal solution by investigating only de-
terministic strategies, because the success probability remains
a linear function of the probabilities, which are subject to
linear constraints.

B. Deterministic strategies for domination on graphs

Let us now consider the graph domination task.
Lemma 3. Deterministic strategies for the domination task

are at least as good as nondeterministic strategies.
Proof. Let us consider K ({S j} j∈{1,...,r}) the score, i.e., the

average number of dominated points, of a given strategy
{S j} j∈{1,...,r}. A set of strategies that provides a score at least
as high as K ({S j} j∈{1,...,r}) can be obtained by replacing the
strategy of the first agent with the following deterministic
strategy.

Knowing the strategies {Sj} j∈{2,...,r}), for any fixed input
x ∈ N for the first agent the best move would be to go to the
accessible node which would provide the highest increment
in the score, knowing what is the probability that any node is

going to be dominated by any of the other agents. Assigning
this deterministic strategy to the first agent the score is greater
or equal to the case in which they were using any other
strategy.

Then, repeating the procedure for each of the agents and
updating the strategies employed by them, we obtain the
thesis. �

V. RESULTS

The content of this section includes the results of ren-
dezvous with quantum entanglement in Sec. V A, domination
with quantum entanglement in Sec. V B, and a detailed analy-
sis of selected cases in Sec. V C.

In the following will be presented the scenarios where we
applied this technique and the tables that contain the results
obtained.

In tables the columns “Classical” denote the maximum
values which can be achieved by classical strategies. The
columns “Random” denote the value obtained when the par-
ties choose in a random uniform way which node to reach
from the starting position. The values associated with the
column “NPA” are calculated for the level 1 + ab when they
appear without an asterisk; otherwise, they are calculated for
level 2. The column “Adv.” contains the gain obtained by
using quantum resources compared to the optimal classical
strategy. The quantity is expressed in percents, and is calcu-
lated according to the following expression:

Q − R

C − R
− 1 = Q − C

C − R
, (10)

where C denotes the classical value, i.e., the highest value
that can be achieved when the parties can use only classical
strategies. R denotes the average success probability for the
rendezvous task and the average number of dominated nodes
for the domination task, when the agents choose in a random
uniform way which node to reach from the starting position,
selecting the node to reach among the nodes that can be
reached while respecting the rules of the given task. Q denotes
the value achieved when the agents employ the strategy found
with the see-saw technique.

When, for a given scenario, within at least 100 runs of the
see-saw algorithm we did not find an average success prob-
ability greater than the one obtainable employing classical
strategies and which does not match the upper bound found
with level 2 of the NPA hierarchy, we say that the results are
inconclusive.

Inconclusive results can happen because the level of the
NPA hierarchy investigated, or the number of runs of the see-
saw algorithm, or the dimension of the investigated quantum
states, or the rank of the projectors generated with see-saw
was too low.

Applying the see-saw algorithm we investigated only pro-
jectors of rank 1 for all the cases of three agents and up to rank
2 for the cases involving two agents. For the dimension of the
generated quantum states, we have always chosen the lowest
one determined by the rank of the generated projectors.

Note that in the case of the rendezvous task, due to Lemma
2, to find the best classical value it is sufficient to investigate
only all the symmetric deterministic strategies. In the case of
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TABLE I. Results associated with the single-step rendezvous task, two agents case, when the agents can start from any position.

Name Random Classical NPA Adv. (%)

tetrahedron Fig. 1(b) 1
4

5
8 0.64506∗ 5

square curly, Fig. 1(c) 1
4

5
8 0.64506∗ 5

pentagon curly, Fig. 1(d) 1
5

13
25 0.53009∗ 3

arrow Fig. 1(g) 0.20667 13
25 0.52051∗ 0.1

clamp Fig. 1(i) 0.18827 7
18 0.40063∗ 6

hat Fig. 1(j) 0.17207 5
9 0.58333 ≈ 7

12 7

house Fig. 1(k) 0.18210 5
9 0.58333 ≈ 7

12 7

caltrop Fig. 1(m) 0.20833 5
9 0.58333 ≈ 7

12 8

cube Fig. 1(n) 1
8

5
16 0.32253∗ 5

triangle 3-gon 1
3

5
9 0.58333 ≈ 7

12 13

pentagon 5-gon 1
5

9
25 0.38090 13

hexagon 6-gon 1
6

5
18 0.29167 13

heptagon 7-gon 1
7

13
49 0.27864 11

ennagon 9-gon 1
9

17
81 0.21887 9

decagon 10-gon 1
10

9
50 0.19045 13

11-gon 1
11

21
121 0.17998 8

13-gon 1
13

25
169 0.15273 7

Three-line curly 1
3

5
9 0.58333 ≈ 7

12 13

Five-line curly 1
5

9
25 0.38090 13

Seven-line curly 1
7

13
49 0.27864 11

the domination task, due to Lemma 3, to find the best classical
value it is sufficient to investigate only all the deterministic
strategies.

Both for the domination task and rendezvous task, with
the additional constraint that the agents cannot start from the
same positions, to find the classical value it is sufficient to
study only deterministic strategies. This is true because the
average success probability for the rendezvous task and the
average number of dominated points for the domination task
are still linear functions of probabilities which are subject to
linear constraints.

When dealing with quantum strategies constrained to be
symmetric, we considered only strategies for which all the
agents can perform only the same set of measurements on
the state, which to them is associated with the same marginal
probability distribution, adjusting accordingly the constraints
when performing the see-saw technique.

A. Rendezvous with quantum entanglement

We will now present the results obtained when the agents
are dealing with the single-step rendezvous task.

Table I illustrates the scenarios where a quantum advantage
is observed for two agents undertaking the rendezvous task,
with the freedom to commence from any location, including
the same initial position for both parties.

In contrast, Table II delineates situations where this advan-
tage occurs when agents are refrained from initiating from
identical positions. This dichotomy underscores the robust-
ness of quantum strategies across diverse starting conditions,
offering a notable advantage over classical counterparts.

Expanding on this comparison, Table III delves into the
case where agents cannot start in the same positions, and they
are allowed to use only symmetric strategies. Here, the in-
troduction of symmetric strategies sheds light on the intricate
interplay between quantum and classical approaches.

Remarkably, classical strategies exhibit limitations in max-
imizing success probabilities under symmetric conditions
unless, as shown in Sec. IV A, any starting position is allowed.
On the other hand, quantum strategies continue to demonstrate
a clear advantage in both cases, as we elucidate further in
Sec. V C 1.

The juxtaposition of these findings underscores the nu-
anced dynamics at play in the rendezvous task, emphasizing
the pivotal role of starting conditions and strategy symmetry.
While classical strategies attain their peak when any starting
position is permissible, quantum strategies transcend these
limitations, showcasing their adaptability and efficacy even
under symmetric constraints. This nuanced understanding is
pivotal for harnessing the full potential of quantum strategies
in real-world applications of multiagent coordination.

When dealing with the rendezvous task with three agents
we have found no advantage when they can exploit quantum
resources, when they can start in any position, when they
cannot start in the same position, with and without the restric-
tion of using symmetric strategies for the following graphs:
square curly [Fig. 1(c)], double triangle [Fig. 1(a)], cube
[Fig. 1(n)], tetrahedron [Fig. 1(b)], arrow curly [Fig. 1(h)],
clamp [Fig. 1(i)], hat [Fig. 1(j)], and house [Fig. 1(k)]. It is not
conclusive for pentagon curly [Fig. 1(d)] and arrow [Fig. 1(g)]
when the agents cannot start in the same positions. We found
no advantage for any case for the graphs n-lines and n-lines
curly for 4 � n � 8.

042201-8



QUANTUM STRATEGIES FOR RENDEZVOUS AND … PHYSICAL REVIEW A 109, 042201 (2024)

TABLE II. Results associated with the single-step rendezvous task, two agents case, when the agents cannot start in the same positions.

Name Random Classical NPA Adv. (%)

tetrahedron Fig. 1(b) 2
9

1
2 0.53333∗ ≈ 8

15 12

square curly, Fig. 1(c) 2
9

1
2 0.53333∗ ≈ 8

15 12

pentagon curly, Fig. 1(d) 1
6

2
5 0.41316∗ 6

arrow Fig. 1(g) 0.16667 2
5 0.40490∗ 2

clamp Fig. 1(i) 0.13704 4
15 0.28229∗ 12

hat Fig. 1(j) 0.15093 7
15 0.50000 ≈ 1

2 11

house Fig. 1(k) 0.15463 7
15 0.50000 ≈ 1

2 11

caltrop Fig. 1(m) 7
40

7
15 0.50000 ≈ 1

2 11

cube Fig. 1(n) 2
21

3
14 0.22857∗ 12

We have no reason to exclude that, in the three agent case,
an advantage could be found by using more computational
resources, when dealing with the inconclusive cases, or in-
creasing the number of nodes of the graphs studied.

Let us denote the considered cases given in Tables I, II, and
III by A, B, and C, respectively. Recall that they refer to cases
when any starting position is allowed (A), when the agents
cannot start in the same positions, also with nonsymmetric
strategies (B), and when the agents cannot start in the same
positions and they use symmetric strategies (C).

We observe that if for a given graph 1 + ab is enough to
determine its exact Tsirelson bound for one of the cases (A,
B, or C) then it is enough for all cases (A, B, and C). What is
more, for cycles in all cases the NPA level 1 + ab is enough.

All the cases in C that do not appear in B are cases for
which we found that there is no advantage when the agents
share a quantum state, so they are cases for which the quantum
correlations are exploited to break the symmetry between the
agents, as will be described more in detail in Sec. V C 1.
Additionally, all the cases in B present the same average
success probabilities both for the classical and the quantum
case as the ones that they present in C, and so they are cases
for which the classical value can be reached by symmetric
strategies.

The graphs triangle, three-line curly, hat, house, and caltrop
have always the same value of classical and quantum for a
given case A or C. Except for triangle and three-line curly,
this holds also for case B.

TABLE III. Results associated with the single-step rendezvous task, two agents case, when the agents cannot start in the same positions
and they are constrained to adopt only symmetric strategies. Note that the first nine cases have identical values as those in Table II.

Name Random Classical NPA Adv. (%)

tetrahedron Fig. 1(b) 2
9

1
2 0.53333∗ ≈ 8

15 12

square curly, Fig. 1(c) 2
9

1
2 0.53333∗ ≈ 8

15 12

pentagon curly, Fig. 1(d) 1
6

2
5 0.41316∗ 6

arrow Fig. 1(g) 1
6

2
5 0.40490∗ 2

clamp Fig. 1(i) 0.13704 4
15 0.28229∗ 12

hat Fig. 1(j) 0.15093 7
15 0.50000 ≈ 1

2 11

house Fig. 1(k) 0.15463 7
15 0.50000 ≈ 1

2 11

caltrop Fig. 1(m) 7
40

7
15 0.50000 ≈ 1

2 11

cube Fig. 1(n) 2
21

3
14 0.22857∗ 12

triangle 3-gon 1
4

1
3 0.50000 ≈ 1

2 200

pentagon 5-gon 1
8

1
5 0.25000 ≈ 1

4 67

hexagon 6-gon 1
10

2
15 0.20000 ≈ 1

5 200

heptagon 7-gon 1
12

1
7 0.16667 ≈ 1

6 40

ennagon 9-gon 1
16

1
9 0.12500 ≈ 1

8 29

decagon 10-gon 1
18

4
45 0.11111 ≈ 1

9 67

11-gon 1
20

1
11 0.10000 ≈ 1

10 22

13-gon 1
24

1
13 0.08333 ≈ 1

12 18

Three-line curly 1
4

1
3 0.50000 ≈ 1

2 200

Five-line curly 1
8

1
5 0.25000 ≈ 1

4 67

Seven-line curly 1
12

1
7 0.16667 ≈ 1

6 40
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TABLE IV. Results associated with the single-step domination task, two agents case, when the agents can start from any position.

Name Random Classical NPA Adv. (%)

pentagon curly, Fig. 1(d) 4.2 4.64 4.67361∗ 8
caltrop Fig. 1(m) 5.458333 5.88889 5.916667 6
spike Fig. 1(e) 4.51333 4.92 4.93 2
clamp Fig. 1(i) 4.94907 5.44444 5.45453 2
pentagon 4.2 4.6 4.67361 18
hexagon 4.50000 4.95000 5.0000 13
heptagon 4.71428 5.08163 5.15517 20
octagon 4.875 5.1875 5.23928 17
9-gon 5 5.24691 5.29434 19
10-gon 5.1 5.3 5.33680 18
11-gon 5.18182 5.39669 5.43395 17
12-gon 5.25 5.47222 5.5 13
13-gon 5.30769 5.50888 5.54543 18
Six-line curly 4.11111 4.44445 4.44895 1

It is worth noting that, at least for the cases analyzed, if for
a cycle the number of vertices is divisible by 4 then there is no
advantage in any case A, B, or C.

B. Domination with quantum entanglement

In Tables IV and V we present the results obtained when
the agents deal with the graph domination task when they can
exploit quantum resources.

For the two agents case we found that there is not an
advantage for any case associated with the following graphs:
double triangle [Fig. 1(a)], tetrahedron [Fig. 1(b)], square
curly [Fig. 1(c)], arrow [Fig. 1(g)], arrow curly [Fig. 1(h)],
pyramid double [Fig. 1(l)], hat [Fig. 1(j)], cube [Fig. 1(n)],
three-line curly, and four-line curly.

In the case of spike curly [Fig. 1(f)], we found that there
is no advantage in using quantum resources when the agents
can start from any position, while we found an advantage
of +0.224% when they cannot start in the same position,
although with see-saw we did not obtain the value found with
level 2 of the NPA hierarchy.

When the agents cannot start in the same positions we did
not find any advantage for all n-line curly with 4 � n � 8.

When dealing with the three agents cases we found no
advantage when the agents cannot start in the same positions
for all n-line and n-line curly with 4 � n � 8 and, when they
can start in any position not conclusive for n-line and n-line
curly with 4 � n � 7 and for n = 8 we found no advantage.
In the case of n-gon, when the agents can start in the same
positions, we found no advantage for 5 � n � 8, while, for
the same graphs, when the agents can start in any positions,
the results are inconclusive.

We have no reason to exclude that, in the three agent case,
an advantage could be found by using more computational
resources, when dealing with the inconclusive cases, or in-
creasing the number of nodes of the graphs to study.

C. Detailed analysis of selected cases

We will now consider several examples of strategies for the
rendezvous and domination tasks to illustrate their working.
In Sec. V C 1 we discuss one of the cases from Table III with
particularly high advantage and discuss the role of quantum
resources in this particular case. Next, in Sec. V C 2, we dis-
cuss the quantum nature of the advantage for the rendezvous
task with agents that are not symmetric. Finally, in Sec. V C 3

TABLE V. Results associated with the single-step domination task, two agents case, when the agents cannot start in the same positions.

Name Random Classical NPA Adv. (%)

pentagon curly, Fig. 1(d) 4,27778 4.7 4.73987 9
clamp Fig. 1(i) 5.01482 5.4 5.41210∗ 3
caltrop Fig. 1(m) 5.48750 5.86667 5.9 9
spike Fig. 1(e) 4.56944 4.9 4.9125 4
pentagon 4.25 4.5 4.59201 37
hexagon 4.60000 4.93333 5.00000 20
heptagon 4.83333 5.09524 5.18103 33
octagon 5 5.21429 5.27346 28
9-gon 5.125 5.27778 5.33113 35
10-gon 5.22222 5.34444 5.37423 24
11-gon 5.3 5.43636 5.47735 30
12-gon 5.36364 5.51515 5.54545 20
13-gon 5.41667 5.51515 5.59088 29
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0 1 2

FIG. 2. Graph with a three-line curly structure.

we explicitly illustrate a particular case of quantum advantage
for the domination task.

1. Three-line curly graph with symmetric strategies for rendezvous

Considering the case of the single-step rendezvous task
with two agents, when the agents cannot start in the same
positions and they are constrained to adopt only symmet-
ric strategies, we now focus on the particular case of the
graph three-line curly, as reported in Table III. We have
that in this case the best classical strategy achieves the av-
erage success probability C = 1

3 , while, when the players
choose randomly the node to reach, they have an average
success probability R = 1

4 . The quantum success probability
is Q = 1

2 .
For the three-line curly graph, shown in Fig. 2, if one of the

parties starts in node 0 and the other in node 1, they win only
if the former decides to stay in node 0, and the other moves to
node 0, and this happens with probability 1

4 = 1
2 × 1

2 . If one
of the parties starts in node 0 and the other in node 2, they
win only if both decide to move to node 1, with probability 1

4 .
Finally, if one of the parties starts in node 1 and the other in
node 2 they win only if the former moves to node 2, and the
latter decides to stay in node 2, which happens, for the random
strategy, again with probability 1

4 . Thus the average winning
probability with random strategy is 1

4 .
The optimal symmetric deterministic strategy is the follow-

ing: If the party is in node 0 or 1, then it should move to the
possible node with the smaller label, i.e., 0; if the party is in
node 2 it should move to the possible node with the largest
label, i.e., 2.

Stating this more explicitly, for the three-line curly graph,
when using the optimal deterministic strategy, if one of the
parties starts in node 0 and the other in node 1, the former
stays in node 0, and the latter moves to node 0, and they win.
If one of the parties starts in node 0 and the other in node 2,
then the former stays in node 0, and the other stays in node 2,
and they fail. If one of the parties starts in node 1 and the other
in node 2, the former moves to node 0, and the latter stays in
node 2, and they fail. Thus, the winning probability is 1

3 .
In the quantum case, the strategy is found apply-

ing see-saw, finding the quantum state ρ shared by the
agents and the measurements performed by them, viz.,
{M(a, x)}x∈{0,1,2},a∈{0,1} and {N (b, y)}y∈{0,1,2},b∈{0,1}, with x and
y denoting the input node and a and b denoting the output
of the measurement. It is sufficient to consider only measure-
ments to which there are associated two outcomes because in
this graph each vertex is attached to at most two edges. In this
example the joint probability distribution of the measurement
results {P(a, b|x, y)}a,b∈{0,1},x,y∈{0,1,2} can be transformed to
a strategy {P̃(ã, b̃|x, y)}ã,b̃∈{0,1},x,y∈{0,1,2} where ã and b̃ de-
note the output nodes, for example, if the agent is starting
in the vertex x ∈ {0, 1, 2}, associating to the output a = 0
the vertex labeled by the smallest number among the ones
which can be reached starting from the input node x and

01

2

3

4
5

FIG. 3. Graph with the “hat” structure.

associating to the output a = 1 the vertex labeled by the
largest number among the ones which can be reached start-
ing from the input node x. We have the following quantum
strategy {P(a, b|x, y)}a,b∈{0,1},x,y∈{0,1,2}:

P(1, 0|0, 0) = P(0, 1|0, 0) = P(0, 0|1, 0) = P(1, 1|1, 0)

= P(1, 0|2, 0) = P(0, 1|2, 0) = P(0, 0|0, 1)

= P(1, 1|0, 1) = P(1, 0|1, 1) = P(0, 1|1, 1)

= P(0, 0|2, 1) = P(1, 1|2, 1) = P(1, 0|0, 2)

= P(0, 1|0, 2) = P(0, 0|1, 2) = P(1, 1|1, 2)

= P(1, 0|2, 2) = P(0, 1|2, 2) = 0.5, (11)

and zero otherwise.
So, considering only the cases for which x 	= y, we have

that the average success probability provided by this strategy
is

Q = P(0, 0|1, 0) + P(0, 1|2, 0) + P(0, 0|0, 1)

6

+ P(1, 1|2, 1) + P(1, 0|0, 2) + P(1, 1|1, 2)

6
= 0.5

(12)

where 6 is the number of possible inputs for the agents for
which they are not starting in the same node. So, applying
Eq. (10), we obtain that the advantage is 200%.

2. Hat graph with nonsymmetric strategies for rendezvous

We will now discuss the hat graph shown in Fig. 1(j), and
repeated here in Fig. 3 for convenience.

In the case in which Alice and Bob cannot start in the same
position and without the symmetric strategy constraint, the
optimal deterministic strategy, leading to the result stated in
Table II, is the following: Alice starting from nodes 0 or 3 or 4
or 5 goes to node 1; from node 1 and 2 she goes to node 3. The
same strategy holds for Bob. This covers 12 possible initial
positions. Since we consider the case in which the agents start
at different positions, we have 30 possible initial locations.
The parties win when Alice starts from nodes {0, 3, 4, 5} and
Bob starts from nodes {0, 3, 4, 5}, as then they meet at node
1. This covers 12 possible initial positions. The other winning
possibilities are when they meet at node 3, which happens in
two cases when Alice starts from node 1 and Bob starts from
node 2 and vice versa. The average success probability in this
case is 14

30 = 7
15 .

One of the quantum strategies giving the optimal value
0.5 uses the entangled state 1√

2
(|00〉 + |33〉) on Hilbert space
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C4 ⊗ C4. For x = 0 the measurements of Alice are the fol-
lowing:

M(0, 0) = |0〉〈0 | + 0.25|1〉〈1 | + 0.25|2〉〈2 |, (13a)

M(1, 0) = M(3, 0) = 0.25(| 1〉〈1 | + | 2〉〈2 |), (13b)

M(2, 0) = 0.25(| 1〉〈1 | + | 2〉〈2 |) + | 3〉〈3 |. (13c)

For x = 1 the measurements are

M(0, 1) = 0.75| 0〉〈0 | + 0.25(| 1〉〈1 | + | 2〉〈2 | + | 3〉〈3 |)
+ α(| 0〉〈3 | + | 3〉〈0 |), (14a)

M(1, 1) = 0.25(| 0〉〈0 | + | 1〉〈1 | + | 2〉〈2 |) + 0.75| 3〉〈3 |
− α(| 0〉〈3 | + | 3〉〈0 |), (14b)

and

M(2, 1) = M(3, 1) = M(1, 0). (14c)

Then, for x = 2 Alice uses the measurements

M(0, 2) = 0.75| 0〉〈0 | + 1

3
(| 1〉〈1 | + | 2〉〈2 |) + 0.25| 3〉

× 〈3 | + α(| 0〉〈3 | + | 3〉〈0 |), (15a)

M(1, 2) = 0.25| 0〉〈0 | + 1

3
(| 1〉〈1 | + | 2〉〈2 |) + 0.75| 3〉

× 〈3 | − α(| 0〉〈3 | + | 3〉〈0 |), (15b)

M(2, 2) = 1

3
(| 1〉〈1 | + | 2〉〈2 |), (15c)

and M(3, 2) = 0. The measurements for x = 3 and 5 are

M(0, 3) = M(0, 5) = 0.25(| 0〉〈0 | + | 1〉〈1 | + | 2〉〈2 |)
+ 0.75| 3〉〈3 | + α(| 0〉〈3 | + | 3〉〈0 |), (16a)

M(1, 3) = M(1, 5) = 0.75| 0〉〈0 |
+ 0.25(| 1〉〈1 | + | 2〉〈2 | + | 3〉〈3 |)
− α(| 0〉〈3 | + | 3〉〈0 |), (16b)

and

M(2, 3) = M(3, 3) = M(2, 5) = M(3, 5) = M(1, 0). (16c)

Finally, for x = 4 the measurement is given by

M(0, 4) = | 0〉〈0 | + 1

3
(| 1〉〈1 | + | 2〉〈2 |), (17a)

M(1, 4) = M(2, 4) = 1

3
(| 1〉〈1 | + | 2〉〈2 |) + | 3〉〈3 |,(17b)

and M(3, 4) = 0.
The measurements of Bob are the same, and thus the quan-

tum strategy is symmetric.
Let us now discuss some of the probabilities which occur

in this case. For instance, let Alice start at node 0 and Bob at
node 1. With probability 0.5 Alice goes to node 1 or 3, and
Bob with probability 0.5 goes to node 0 or 3, but due to quan-
tum steering [53–56], which is an effect of the entanglement,
the probability of both parties arriving at node 3 is 3

8 > 1
2 × 1

2 .
A similar situation happens for all other 23 pairs of possible
settings, excluding the six discussed below.

A different type of movement occurs in the following six
cases. The first two cases are when one of the parties starts at

FIG. 4. Pentagon with optimal classical strategies of Alice and
Bob for domination. Red arrows denote moves of one of the parties,
and blue arrows denote moves of the other party.

node 0 and the other at node 4. Then with probability 0.5, they
both move to node 1, and with probability 0.5 they both move
to node 3, so they win with probability 1. Analogous action is
performed when parties are at nodes 1 and 2 and the parties
meet either at node 0 or at node 3. Similarly for starting at a
pair of nodes 3 and 5 the parties meet either at 0 or at 1 with
certainty.

The total winning probability is thus 3
8× 24

30 + 1× 6
30 = 0.5.

3. Domination task on a pentagon

Now, we consider the other cooperation tasks, viz., the
domination.

In the case in which the agents can start from any posi-
tion, the optimal classical strategy is shown in Fig. 4. It can
be noticed that the strategy can be summarized as trying to
concentrate on one of the parties, as Alice, near nodes 1 and
2, and the other party near nodes 3 and 4. It can be calculated
that the parties on average will dominate 4.6 nodes.

One of the quantum strategies achieving the optimal value
has the following properties.

First, consider the case in which Alice and Bob start in
the same position, which happens in 5 out of 25 cases. In
this case, we have that half of the times Alice moves in the
“clockwise” direction [17,25,36,52], while Bob moves “coun-
terclockwise,” and in the other half of the times Alice moves
counterclockwise while Bob moves clockwise, dominating in
both cases the five nodes.

Now let us consider the case when the starting nodes of
Alice and Bob are neighboring. This happens in 10 out of 25
possible initial position pairs. In this case, with a probability
about p1 ≈ 0.3273, they are moving in opposite directions,
so that after their movement they will be separated by one
node. Thus they will dominate all five nodes; in Fig. 5 it is
represented with green ultr-thin arrows.

With the same probability p1, they will move towards each
other, effectively exchanging their positions. They will dom-
inate four nodes; in Fig. 5 this move is represented with blue
ultrathick arrows. With smaller probability 0.5 − p1 ≈ 0.1727
both will move either clockwise or counterclockwise, and
dominate four nodes.

The remaining possible case is when the starting nodes
of Alice and Bob are not neighboring. This happens in 10
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FIG. 5. Pentagon with optimal quantum strategies of Alice and
Bob for domination. Arrows denote the moves of the parties in
different cases, and the labels refer to probabilities of the movement;
see the text in Sec. V C 3 for the description.

out of 25 possible initial positions. The quantum strategy
implies that with probability p2 ≈ 0.452 24, both parties move
clockwise, and with the same probability they both move
counterclockwise, and thus after the movement they are still
not neighboring. In that case, they dominate all five nodes. In
Fig. 5 this move is represented with yellow dashed ultrathick
arrows.

With smaller probability 0.5 − p2 ≈ 0.047 73, the first of
the parties is moving clockwise, and the second counter-
clockwise; with the same probability the first is moving
counterclockwise and the second clockwise. Depending on
the exact starting node locations, the former situation will
lead either to the moving of both parties to the same node,
dominating three nodes, or to the moving to two neighboring
nodes, dominating four nodes; both situations happen with
equal probability. In Fig. 5 this move is represented with red
dashed and cyan dashed thick arrows.

Summarizing, the average number of dominated nodes is

5

25
× 5 + 10

25
× [p1 × 5 + (1 − p1) × 4]

+ 10

25
× [2p2 × 5 + (0.5 − p2) × 4 + (0.5 − p2) × 3]

≈ 4.6736. (18)

VI. DISCUSSION

The two problems under scrutiny in this paper, namely,
rendezvous on graphs and the introduced domination on
graphs task for mobile agents, represent specific instances of a
broader concept known as pattern formation [57–60]. Among
the array of challenges in pattern formation research, the most
akin task is dispersion on graphs [61], wherein the agents’
objective is to efficiently spread throughout a defined territory,
or graph exploration [62]. These problems are particularly
significant as they find applications across a range of fields,
encompassing robotics, networking, and distributed systems,
and they grapple with fundamental issues pertaining to ef-
fective coordination and information exchange among mobile
agents operating within a graph-based framework.

In the seminal paper preceding our current research [6], the
focus was primarily on cubic graphs and cycles. Our present

paper extends this investigation to explore the broader appli-
cability of the conclusions drawn from the advantage quantum
entanglement offers in the context of rendezvous tasks for
mobile agents. This paper aims to establish the extent to which
these findings can be generalized and the ubiquity of situations
where quantum entanglement provides a strategic edge.

On the other hand, it is both surprising and somewhat
disappointing that, on graphs where a quantum advantage was
observed for two parties, we could not identify any gain for
three agents. Consequently, investigating whether such an ad-
vantage is feasible, at least in certain scenarios, for more than
two agents becomes a crucial avenue for further exploration.
Uncovering such examples appears to be a nontrivial task. If
it turns out to be unattainable, it would be valuable to discern
and understand the underlying reasons for this limitation.

VII. CONCLUSIONS

In our paper, we introduced a distributed task for mobile
agents, specifically the domination task, drawing inspiration
from a classical concept in graph theory. Our exploration en-
compassed various scenarios across different types of graphs
for both the domination task and another crucial multiagent
task, namely, rendezvous. After obtaining some results about
classical strategies, we examined cases involving two and
three agents. Intriguingly, we consistently observed a quantum
advantage for scenarios involving two parties, while no such
advantage was found for three parties. This highlights the
potential efficacy of the proposed method for tasks involv-
ing two agents and prompts further investigation into why
it proves challenging to identify examples for three agents.
This, along with the quest for general analytical formulas for
various families of graphs, remains an open question for future
explorations.

It is important to note that this approach offers the pos-
sibility to search for Bell inequalities associated with tasks
with an arbitrary number of inputs and number of outputs
associated with each input by building one of the suitable
graphs and, after selecting a communication task, looking for
gaps between the maximum success probabilities associated
with classical and quantum strategies.
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