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1 Name and surname
Thomas George Zlosnik

2 Diplomas, scientific degrees
• DPhil (PhD) in Astrophysics – October 2005 – September 2008

Institution: University of Oxford, United Kingdom Department of Astrophysics
PhD thesis: Cosmological consequences of modified theories of gravity
Supervisor: Professor Pedro Ferreira

• MPhys – October 2001 – September 2005
Institution: University of Oxford, United Kingdom Department of Physics

3 Information on previous employment in scientific institutions
• Postdoctoral Fellow – October 2008 – November 2011

Institution: Perimeter Institute for Theoretical Physics, Waterloo, Canada

• Postdoctoral Fellow – May 2012 – May 2014
Institution: Theoretical Physics Department, Imperial College London, United Kingdom

• Vědecký Pracovńık (Scientist) – September 2016 – September 2022
Institution: Czech Academy of Sciences, Prague, Czechia.

• NCN Polonez Bis Fellow – October 2022 – Present Day
Institution: Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Poland

4 Description of the achievement according to Art.219 Paragraph
1 Point 2 of the Act

4.1 Title of the achievement
A single-themed series of publications entitled Lorentz symmetry in gravitation and the dark matter problem.

4.2 List of selected publications
Publications that belong to the series will be cited with the letter [H], publications involving the applicant
that do not belong to the series will be cited with the letter [O], and citations to external works not involving
the applicant will be cited with the letter [E]. The list of thematically related publications:

1. An introduction to the physics of Cartan gravity [H1]
Hans Westman, Tom Zlosnik
Annals Phys. 361 330-376 (2015)

2. Spacetime and dark matter from spontaneous breaking of Lorentz symmetry [H2]
Tom Zlosnik, Federico Urban, Luca Marzola, and Tomi Koivisto
Class. Quant. Grav., 35(23), 235003 (2018)

3. Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light [H3]
Constantinos Skordis and Tom Zlosnik
Phys. Rev. D, 100(10), 104013 (2019)

4. New Relativistic Theory for Modified Newtonian Dynamics [H4]
Constantinos Skordis and Tom Zlosnik
Phys. Rev. Lett., 127(16), 161302 (2021)
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5. Aether scalar tensor theory: Linear stability on Minkowski space [H5]
Constantinos Skordis and Tom Zlosnik
Phys. Rev. D, 106(1), 104041 (2022)

6. Paths to gravitation via the gauging of parameterized field theories [H6]
Tomi Koivisto and Tom Zlosnik
Phys. Rev. D, 107(12), 124013 (2023)

7. Hamiltonian formulation of gravity as a spontaneously-broken gauge theory of the Lorentz group [H8]
Mehraveh Nikjoo and Tom Zlosnik
Class. Quant. Grav., 40(1), 015007 (2023)

8. Aether scalar tensor theory: Hamiltonian Formalism [H7]
Marianthi Bataki, Constantinos Skordis, and Tom Zlosnik
Phys. Rev. D, 110, 044015 (2024)

9. Dynamical system analysis of cosmological evolution in the Aether scalar tensor theory [H9]
João Lúıs Rosa and Tom Zlosnik
Phys. Rev. D, 109(2), 024018 (2024)

5 Presentation of significant scientific activity
5.1 Introduction
We are currently in an era of enormous advances in cosmology, where the distribution of large-scale structure
in the universe and the relic-radiation from the big bang are being measured with unprecedented precision.
This data contains a wealth of information about the evolution and composition of the universe, from the
earliest known times to the present day.

Meanwhile, the previous century has seen the parallel rise of two physical theories which each possess
incredible explanatory power. The first of which is Einstein’s General Relativity (GR) which describes
gravitation in terms of the curvature of spacetime (indeed identifying the gravitational field with spacetime
itself). This theory has passed every known test in the solar system and has recently received further support
from the direct detection of gravitational waves as predicted by the theory. The second is the Standard Model
(SM) of particle physics, which not only had extraordinary success in accounting for particle data at the
time of its creation but has successfully predicted the existence of a variety of particles, the most recent
being the Higgs boson.

However, it has been found on scales ranging from galaxies to clusters of galaxies to the very largest scales
in the cosmos that the application of GR along with the SM yields predictions at odds with the data. In
each of these cases, visible matter behaves as if there were some additional, unseen matter present, sourcing
the gravitational field. Remarkably, the cosmic abundance of this matter – termed dark matter (DM) – is
several times that of the known matter of the SM.

The DM problem has spurred a great deal of theoretical activity. Cosmological and astrophysical con-
straints suggest that it is not comprised of ingredients from the SM. The majority of the search for DM
candidates has been in the form of new particle physics beyond the SM– for example, sterile neutrinos, the
lightest supersymmetric partner, and the axion. A significant amount of effort has gone in into detecting
signatures of DM particle candidates. To this day, there does not exist widely accepted evidence for such
signatures.

All known effects due to DM are via its effect on the gravitational field and hence via the motion of
matter, for example the orbits of stars in galaxies or the gravitational lensing of light around galaxies. As
such, it remains a possibility that the DM effect is something that arises not from new particles, but an
alternative model of the gravitational field produced by known matter sources. In a sense this is not a new
situation in physics. In 1846, the planet Neptune was discovered, with its existence having been postulated
earlier by using Newton’s theory of gravity to model its perturbative effect on the orbit of the planet Uranus.
Decades later, the planet Vulcan was hypothesized as the source of the disagreement between the observed
perihelion precession of Mercury and the predictions of Newton’s theory. However, famously the resolution
to this problem came not from new matter but from the modification to Newton’s law implied by GR.
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There is another, independent open problem in cosmology that echoes the gradual discovery of the
contents of the solar system. Given the known abundances of SM particles in the universe and DM as well
as ‘standard’ couplings between matter and gravity, the theory of GR predicts the geometry of the universe
in the past, with the universe becoming of higher and higher temperature and spacetime curvature at earlier
times until GR’s classical description of spacetime likely breaks down. This forms an ‘expansion’ history of
the universe, spanning about 13.7 billion years in time [E110]. In the night sky we detect a relic of radiation
from the early universe called the cosmic microwave background (CMB). Its temperature is - up to small
deviations - uniform throughout the entire sky. This is a problem for the cosmic history described above
as the CMB photons created in the universe that eventually reach earth from opposite directions in the sky
would have emerged from regions in space that were never in causal contact with each other according to
GR and the assumed matter content. This is the CMB horizon problem A solution to this problem takes
the form of cosmic inflation - a period of extremely rapid expansion in the early universe created by new
degrees of freedom in physics. Not only does this solve the CMB horizon problem but models of inflation
additionally appear to provide - via the quantum vacuum fluctuations of the new degrees of freedom -a good
explanation for the origin of the primordial inhomogeneities in the universe’s matter distribution that later
evolve to become galaxies. Current data doesn’t discriminate between cosmic inflation arising from a new
matter field in physics [E80], the effect of non-minimal coupling between known matter and gravity [E69],
and modifications to Einstein’s theory [E12].

The Habilitiation series is concerned with two sets of models co-developed by the applicant which seek
to extend the theory of General Relativity to incorporate the dark matter effect as a manifestation of
gravitation. All the models share the feature of spontaneously breaking Lorentz symmetry at the level of
their field equations. This has the effect of defining a preferred time direction/state of rest at each point in
spacetime. The models are divided into two types:

• Type A: These are models where the gravitational degrees of freedom arise from a Cartan-geometric
description of spacetime rather than a description based on Riemannian geometry. Nonetheless, re-
markably, the spacetime metric and extensions to GR including an effective DM-like matter component
will be shown to emerge.

• Type B: These are models where the geometric description of gravity remains much as in GR but with
the addition of new fields in the gravitational sector. Alongside the metric tensor gµν that is present
in GR, a pair of fields (ϕ,Aµ) are additionally posited. The effect of these new degrees of freedom will
be shown to resemble DM in cosmology but, remarkably, more closely resemble a breakdown of the
Newtonian limit of GR in the regime of weak gravitational fields.

5.2 Motivation and goals
The goal of the series of publications is the exploration of the idea that effects attributed to DM may, rather,
be due in some part to an interaction between known matter and the gravitational field/spacetime that is
not accounted by GR. This will involve the exploration of two models of gravitation that were co-created
by the applicant. Each model can be considered to be an extension of GR in the sense that each model can
resemble GR in certain regimes so that it passes the same experimental constraints that GR does.

In the standard model of cosmology, DM on large scales currently outweighs (by mass) the entirety of
the matter of the SM by a factor of around six [E110], and so an advance in our understanding of the effects
attributed to DM would mark significant progress in our understanding of the constituents of the universe.
In looking to see whether some of this effect may be due to - in effect - new degrees of freedom in the
gravitational sector, any compelling results in this direction would necessarily increase our understanding of
the gravitational field/spacetime. This could be of vital importance for open questions such as the nature of
gravitation as a quantum theory. Though an explanation for DM in terms of extensions to GR is the ‘road
less travelled’, the importance of the DM effect in our universe alongside the inevitable theoretical advances
that would accompany success in this research area constitute a strong motivation.

The series of publications presented here regard two independent extensions of GR that were co-created
by the applicant. Detailed aims of these publications can be summarized as follows:

• Initial introduction of novel extensions to GR [H1, H2, H4].
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• Development of solutions to these models [H3, H5, H9]. The aim of this is to either a) use solutions
to compare a model’s predictions to observational constraints, or b) use solutions to characterize the
health of the model - for example, explorations of whether pathological behavior exists in the model
classically or quantum mechanically.

• Development of the canonical/Hamiltonian formulation of these models. This enables the deduction of
important general results about the models as classical theories of gravity (for example the number of
propagating degrees of freedom, stability properties), puts the theories’ equations of motion in a form
(Hamilton’s equations of motion) which can aid the development of analytical and numerical solutions,
and is a potentially important steps towards future attempts to quantize the models [H7, H8].

• Generalizations of the models and explorations of their theoretical basis [H6].

5.3 Summary
5.3.1 Type A models

Einstein’s development of General Relativity heralded a remarkable result: that space and time are most
conveniently considered as a unified object - spacetime - and that spacetime is the gravitational field.
Einstein was able to make use of the mathematics of Riemannian geometry to describe spacetime as a four
dimensional manifold on which is defined a (pseudo) Riemannian metric gµν . At a point in spacetime,
the metric gives information about local physical distances whereas derivatives of the metric enable the
construction of a connection Γ̊ρ

µν(g, ∂g) which can be used to define covariant derivatives of tensor fields on
the manifold. Finally, another tensor built from Γ̊ρ

µν(g, ∂g) and its derivatives - the Riemann curvature tensor
Rρ

µνσ characterizes the ‘non-flatness’ of spacetime and the physical manifestation of this is the gravitational
interaction that we observe.

This description of gravity has turned out to be enormously successful though with the aforementioned
caveats mentioned in Section 5.1 regarding the need to introduce new forms of matter to explain the distri-
bution and dynamics under gravity of known matter in the universe. If DM and cosmic inflation indicate a
shortcoming in our understanding of the gravitational field then it may be that its description in terms of
Riemannian geometry - and specifically it description entirely in terms of a metric tensor gµν - may be an
approximation even within classical gravitation. We will argue that an alternative formulation of differential
geometry due to the French mathematician Élie Cartan [E32] allows for a description of the gravitational
field that extends GR to include degrees of freedom that may be lead to compelling phenomenology. In
particular, we will focus on a model that may be relevant to the DM problem.

In Section 5.4.1 we provide a brief introduction to Cartan geometry and its use in the description of the
gravitational field. In Section 5.4.2 we develop a set of models of gravitation based on Cartan-geometrical
principles and provide a Hamiltonian/canonical analysis which demonstrates that a specific subset of the
models yields an extension to GR with an additional, effective DM-type contribution to the gravitational
field equations. In Section 5.4.3 these models are considered from an alternative perspective: that of models
that arise from the ‘gauging’ of non-gravitational physical theories that nonetheless possess spacetime dif-
feomorphism symmetry. An overview of phenomenology of the models and scope for generalization of the
model is given in Section 5.4.4.

Results in context: The surprising result that GR can be described as a spontaneously-broken gauge
theory of the de Sitter (SO(1, 4)) or anti de Sitter group (SO(2, 3)) was discovered by MacDowell and
Mansouri [E9], with substantial development of the idea shortly afterwards by Stelle and West [E13]. In
this picture, gravity can be described by a gauge field/connection valued in the Lie algebra of one of these
groups and a gravitational ‘Higgs’ field which breaks the symmetry down to the symmetry of the Lorentz
group (SO(1, 3)). These are to be regarded as ‘internal’ symmetries and independent of the spacetime
diffeomorphism symmetry generally present in gravitational theory. The relation of the work of [E13] to
Cartan’s approach to geometry was investigated in detail in series article [H1].

Though the mathematical ingredients of approaches such as [E13] strongly resemble the gauge theories
of particle physics, there was a crucial difference: it was assumed that the ‘Higgs’ field is non-dynamical/has
no degrees of freedom and this has been the general approach in this area of research. This is of course is
stark contrast to the Higgs field of the standard model. I feel that the most significant advance that I have
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made in this area is the discovery of a number of Cartan-geometrical models of gravity where this ‘Higgs’
field is a genuinely dynamical field and that this introduces compelling phenomenology that may be related
to open problems in cosmology such as the nature of DM.

5.3.2 Type B models

The earliest evidence for the existence of DM came not from the very largest scales in the universe but from
astrophysical systems such as clusters of galaxies where it was found that galaxies seemed to be under a
gravitational influence greater than that which they were able to provide amongst themselves [E1, E2, E3]. A
similar phenomenon on a smaller scale was later observed with the motion of stars within individual galaxies
[E8, E11]. Milgrom proposed [E15, E16, E17] that this latter effect could, instead, result from modifying the
inertia or dynamics of baryons or the gravitational law at accelerations smaller than a0 ∼ 1.2 × 10−10m/s2.
The latter is further explored in [E18] where if gradients of the gravitational potential Φ are smaller than
a0, nonrelativistic gravity is effectively governed by

∇⃗ ·

(
|∇⃗Φ|
a0

∇⃗Φ
)

= 4πGNρ. (1)

Here, GN is the Newtonian gravitational constant, and ρ the matter density. These models are referred to
as modified Newtonian dynamics (MOND).

Much work has gone into deducing astrophysical consequences of MOND, its consistency with data
[E76]. It is inherently nonrelativistic and, thus, impossible to test in many regimes where GR is known to
explain gravitational phenomenon as well as cosmological settings where systems such as the CMB require a
relativistic treatment. Furthermore, in the absence of a fully relativistic ‘completion’, it is not known when
(1) is expected to break down. This can be compared to the situation of the Newtonian limit of GR, where
GR gives a precise account of when corrections to Newton’s theory become important. Therefore, to test
the equation (1) it is vital to develop fully-relativistic theories whose field equations reduce to this form in
some appropriate limit. The Type B models are specific examples of such theories. The models are notable
in that - as will be shown - they are the first gravitational models that reduce to (1) in the appropriate limit
whilst also being a successful alternative to DM on the largest, cosmic scales.

In Section 5.5.1, a general class of models will be considered, illustrating what conditions they must
satisfy for gravitational waves in the model to propagate at the speed of light. This is an extremely important
constraint on theories of modified gravity. In Section 5.5.2 a more specific set of models will be proposed
(the AeST models) and it will be demonstrated that these are models that possess a MOND limit in the
appropriate regime and that provide an account of large scale cosmological data as good as the standard
cosmological model but without DM. The recovery of this result and the limit (1) within the same theoretical
framework is arguably a significant achievement. In Section 5.5.3 the stability of Minkowski space in the
AeST models is explored, and in Section 5.5.4 the full non-perturbative Hamiltonian formulation of the
models is developed. Finally in Section 5.5.5, a number of further cosmological results involving the AeST
models are briefly discussed.

Results in context: MOND was proposed as a non-relativistic modification to gravity in 1983 at a time
when data regarding the large scale structure of the universe was very limited. In the following decades, a
number of experiments (for example COBE [E29], WMAP [E40], and Planck [E111]) measured observables
such as the pattern of anisotropies in the CMB with ever-increasing accuracy. The picture that emerged
was that GR alongside significant contributions from DM and a cosmological constant Λ was an excellent
match for the data. The fact that DM is an indispensable part of the standard model of cosmology led to
a popular perception in the field that even if the modification to Newton’s law (1) can be embedded in a
fully relativistic theory of gravity, it is unlikely that such a model could successfully describe results from
precision cosmology. Independent of this, the observation that the speed of gravity is - to high accuracy-
equal to the speed of light led to claims [E101] that relativistic completions of (1) would likely be in conflict
with the data. The Type B models that are described in the series are a proof of concept that there do exist
theories of gravity that have the phenomenology of MOND, gravitational waves that propagate at the speed
of light, and that successfully describe cosmological data without the addition of DM.
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5.4 Model A
5.4.1 Cartan geometry and gravitation

Riemannian geometry forms the mathematical basis of Einstein’s General Relativity. The metric represen-
tation of Riemannian geometry consists of the pair of variables {gµν ,Γρ

µν}. Whilst the metric tensor gµν

encodes all information of distances between points on a manifold, the affine connection Γρ
µν encodes the

information about parallel transport of tangent vectors uµ as well as enable the construction of a covariant
derivative ∇µ acting on tensors. Conceptually gµν and Γρ

µν are independent objects. Within Riemannian
geometry, however, the connection Γρ

µν is required to be metric-compatible and torsion-free:

• Metric compatibility: ∇ρgµν ≡ ∂ρgµν − Γσ
µρgσν − Γσ

νρgµσ = 0.

• Zero torsion: Γρ
µν − Γρ

νµ = 0

The affine connection can then be uniquely determined from the metric

Γ̊ρ
µν = 1

2g
ρσ

(
∂µgσν + ∂νgµσ − ∂σgµν

)
(2)

and it becomes natural to view the metric as the primary variable and the affine connection as a secondary,
derived quantity.

An alternative approach due to Cartan [E32] is a generalization of an intuitive way of probing the
geometry of a surface. Consider a curved two dimensional surface. If we want to know the length of a path
between two points on that surface, we can imagine taking a ball and rolling it (without slipping or twisting)
along the path. In this way we can connect a length on a potentially complicated curved surface to a set
of infinitesimal rotations of the ball. Additionally, it can be shown [H1] that the intrinsic curvature of this
surface at a point is in correspondence with how much a ball has rotated after being rolled (again without
slipping or twisting) around a small loop beginning and ending at that point. By way of example, consider
a two dimensional surface coordinatized by coordinates xµ embedded in three dimensional Euclidean space
R3 (coordinatized by Euclidean coordinates XA and with Euclidean metric δAB). The ball placed on the
surface at a point p1 defines a vector V A(p1) corresponding to a line of squared-length δABV

AV B 1. If the
ball is rolled to a nearby point p2 then the contact between the ball and the surface defines a new vector

V A(p2) = V A(p1) + ∂µV
A(p1)δxµ + . . . (3)

where dots denote terms of higher order in the small coordinate increments δxµ. Meanwhile, the original
vector V A(p1) has been ‘rolled’ by the rotation of the ball and we can define this rolled vector V|(p2) at
point p2 to be related to its original value at p1 via

V A
| (p2) = V A(p1) −AA

Bµ(p1)V Bδxµ + . . . (4)

Note that the rolling preserves the norm of the vector, hence VA|(p2)V A
| (p2) = VA(p1)V A(p1) 2. Then, using

(4) it follows that:

AAB
µ = −ABA

µ (5)

If the surface has a metric gµν then infinitesimal path joining p1 and p2 has squared-length δs2
g = gµνδx

µδxν .
As the ball has been rolled without slipping, this should correspond to the squared infinitesimal arc length
δs2

b subtended on the ball, where
1Here and throughout this document we will use the Einstein summation convention that repeated indices are understood

to be summed over.
2Where indices are lowered and raised with δAB and δAB respectively.
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δs2
B = δAB(V A(p2) − V A

| (p2)(V B(p2) − V B
| (p2))

= δABDµV
ADνV

Bδxµδxν (6)
DµV

A ≡ ∂µV
A +AA

BµV
B (7)

The identification δs2
g = δs2

b partially fixes the symbols AA
Bµ - in this embedding picture it corresponds

to rolling the ball without slipping. That the intrinsic curvature should be a measure how much the ball
has been rotated when rolled around a path corresponds to rolling also without slipping and this fixes the
remainder of AA

Bµ [H1].
Thus, the geometry of a surface can be characterized in terms of {gµν(x),Γρ

µν(x)}, or, equivalently, the
variables {V A(x), AA

Bµ(x)}. The rolling process can be thought of as a rotation in 3d space that depends
on the position xµ on the surface i.e. a series of local SO(3) transformations. Then, the role of AA

Bµ(x) is as
a connection/gauge field, which can used to construct a covariant derivative DµV

A(x) acting on the vector
V A(x) which distinguishes between parts of the connection AA

Bµ that contain information about the metric,
and parts that contain information about curvature. Indeed one can dispense entirely with the embedding
picture and construct a description of the geometry from {V A(x), AA

Bµ(x)}. A compelling feature of these
variables is they have great similarity to the mathematical ingredients of the spontaneously-broken gauge
theories of the standard model: AA

Bµ is a gauge field valued in the Lie algebra of SO(3) whereas V A is a
‘gravitational’ Higgs field whose non-vanishing vacuum expectation value spontaneously breaks the original
symmetry (here SO(3)) to a smaller one (SO(2)).

For the case of the four dimensional spacetime of our universe, the transformations can be taken to be
local SO(1, 4) (de Sitter group) or SO(2, 3) (anti de Sitter group) transformations where the field V A, if it
dynamically achieves a non-vanishing spacelike (de Sitter case) or timelike (anti de Sitter case) expectation
value, the remnant symmetry in gravitation is the local SO(1, 3) (Lorentz group) symmetry of the Einstein-
Cartan formulation of gravity. Actions for the gravitational field can be constructed which display this
structure [E10, E14]. The novelty of the approach of [H1] was to consider V A as a genuine dynamical field,
in contrast to prior approaches such as [E14] that constrain V A so that it has no dynamical degrees of
freedom; arguably this procedure is artificial and would be analogous to constraining the electroweak Higgs
field which would in essence remove the Higgs boson from the SM. It is shown in [H1] that Cartan-geometrical
models of gravity with dynamical symmetry breaking of SO(2, 3) or SO(1, 4) gauge symmetry can lead to
a swathe of novel extensions to GR. For example, a simple polynomial action in fields {V A, AA

Bµ} contains
the Peebles-Ratra scalar tensor theory [O15, E39] whilst an extension of this action allows for cosmological
solutions displaying a classical change of metric signature from Euclidean to Lorentzian in the early universe
[O14].

A remarkable feature of GR is its local spacetime diffeomorphism symmetry. Despite its elegant formula-
tion as a spacetime theory where the basic variables are the spacetime metric gµν and spacetime connection
Γρ

µν , the theory may be cast in canonical/Hamiltonian form where the spacetime manifold is assumed to
have topology R × Σ (and that the surface Σ can be coordinatized by coordinates xa with R coordinatized
by a coordinate time t). where the pullback of the spacetime metric to Σ is a spatial metric hab (with ac-
companying pullback γc

ab of Γρ
µν to Σ). It is the field hab and its momentum π̃ab that become the dynamical

fields describing gravitation. We have seen how a rolling connection can contain the information about the
intrinsic geometry {hab, γ

c
ab} of a surface.

Can the notion of a Cartan connection be extended so as to additionally include information about such
a surface is evolving with respect to a spacetime that it is a submanifold of i.e. can a rolling connection
contain information about {hab, γ

c
ab, π̃

ab}? This is the focus of series publication [H2] and the result is a
surprising connection between Cartan geometry, representation theory of the complexified Lorentz group,
and an earlier formulation of gravitation due to Ashtekar [E19] which was found to greatly simplify the
canonical formalism for gravity.

Instead of considering a two dimensional surface embedded in R3 we consider a three dimensional surface
(coordinatized by xa) embedded in C1,3 (coordinatized by ZI) and instead of a ball, one considers ‘rolling’ an
object with contact vector ϕI satisfying ηIJϕ

IϕJ ≡ ϕ2 < 0 ∈ R . Then one can transport the object on the
manifold according to a connection AI

Ja which preserves the norm ϕ2. The transformation of configuration
of the object is therefore described by an element of the complexified Lorentz group SO(1, 3)C and AI

Ja is
valued in its Lie algebra. Rolling in C4 generalizes the earlier R3 example in that the rolling can involve
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‘imaginary twisting’ that creates a purely imaginary part to the rolled vector ϕI .
Recall that an object F IJ valued in the Lie algebra of SO(1, 3)C (i.e. F IJ = −F JI) one can decompose the

form into self-dual (+) and anti self-dual (-) parts as F IJ = F+IJ +F−IJ , F±IJ = 1
2 (F IJ ∓ iϵIJ

KLF
KL/2)

where ϵIJ
KLF

±KL = ±2iF±IJ 3. Hence AIJ
µ can be decomposed into self-dual and anti self-dual parts

A±IJ
a. It is shown in [H2] that the metric hab on the surface can be associated with

hab = ηIJDaϕ
IDbϕ

J (8)

where Daϕ
I ≡ ∂aϕ

I +AI
Jaϕ

J . Furthermore, we identify A+IJ
a with a complex combination of the Christoffel

symbols γc
ab associated with hab and the extrinsic curvature Kab of the surface as if it were embedded in

a curved spacetime with metric gµν . This specific combination is precisely the pullback of the self-dual
Ashtekar connection to spatial hypersurfaces [E19]. Thus, one a three dimensional surface, the connection
AI

Ja can be constructed to contain information about distances in the surface, the intrinsic curvature
of the surface, and the extrinsic curvature of the surface as it were embedded in a specific curved four
dimensional spacetime. Remarkably, it was found in [H2] that there exists a simple polynomial action for
fields {ϕI ,AI

Jµ which gives rise to field equations with dynamical solutions where the pullback AI
Ja of

the spacetime Cartan connection AI
Jµ} to surfaces of constant ϕ2 yielded precisely the content of AI

Ja

described in the construction above. Furthermore, a preliminary analysis suggested, importantly, this action
principle possessed a General Relativistic limit (corresponding specifically to Ashtekar’s chiral formulation
of GR) whilst additionally possessing solutions that represent an effective DM contribution to the Einstein
equations. A detailed analysis of this action in Hamiltonian form will be discussed in detail Section 5.4.2
and in the action in Lagrangian form will be discussed in detail in Section 5.4.3.

5.4.2 Hamiltonian formulation of gravity as a spontaneously-broken gauge theory of the
Lorentz group

Maintaining general spacetime covariance is a typical requirement in gravitational theories. Dynamical fields
are spacetime tensors and actions are coordinate-independent functionals built entirely from these fields. As
such, there is a-priori no preferred notion of time in gravitational theory. However, significant insights can
be gained into the structure of generally covariant theories by choosing a single coordinate by which to
measure the change of fields over the spacetime manifold. This is the 3+1 decomposition of physical theories
and enables the canonical/Hamiltonian analysis of the theory. Canonical/Hamiltonian analysis of a classical
field theory is a very valuable tool. It allows for the determination of the number of degrees of freedom that
a theory has, and the casting of the Euler-Lagrange equations as a set of differential equations which are
first order in time - via Hamilton’s equations of motion - is typically very valuable for the determination
of solutions to the theory, be it via analytical or numerical methods. Furthermore, by its very nature, the
casting of a theory in canonical form opens the path to canonical quantization of the theory. The canonical
formulation of GR has also served as a starting point for alternative non-perturbative quantization methods
such as loop quantum gravity [E23].

The starting point is a generalization of the action considered in [H2]:

S[ϕI , ω+IJ
µ , ω−IJ

µ ] =
∫
d4x ϵ̃µναβϵIJKLDµϕ

IDνϕ
J

(
g+R

KL
αβ(ω+) + g−R

KL
αβ(ω−)

)
(9)

We assume that the spacetime manifold M is topologically R×Σ, where Σ is a three-dimensional submanifold
of M and R may be coordinatized by a number t which can be thought of as ‘coordinate time’. However,
we emphasize that t is to be regarded as a number labeling different submanifolds of M and may not be
straightforwardly related to proper time as determined by a spacetime metric (indeed we will encounter
solutions of the models (9) where no notion of proper time exists). Furthermore, we are primarily interested
in solutions to the theory in the bulk spacetime and will neglect boundary conditions and surface integrals.
Hence our treatment will be exact only in cases where Σ is a closed manifold [E27]. Alongside the label t
for coordinate time, we will use a set of three coordinates {xa} (a = 1, 2, 3) to cover the manifold Σ. In
accordance with the 3+1 decomposition, we introduce the following decomposition of the fields ω±IJ

µ :
3We use the convention ηIJ = diag(−1, 1, 1, 1) and introduce the Levi Civita symbol ϵIJKL = ϵ[IJKL].
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ω±IJ
µdx

µ = Ω±IJdt+ β±IJ
adx

a (10)

Furthermore, for notational compactness, we introduce the following quantities:

R±IJ
ab ≡ 2

(
∂[aβ

±IJ
b] + β±IK

[a|β
±J
K |b]

)
(11)

eI
a ≡ ∂aϕ

I + βI
Jaϕ

J (12)

The Lagrangian density for the action (9) can be cast into the following form which yields the same field
equations as the original action:

L̃(ϕI , P̃I , β
±IJ
a , P̃ a±

IJ ,Ω±IJ , V I , V ±IJ
a ) = P̃I ϕ̇

I + P̃+c
IJ β̇

+IJ
c + P̃−c

IJ β̇
−IJ

c − H̃ + ∂aℓ̃
a (13)

Where

H̃ = −Ω+IJ G̃+
IJ − Ω−IJ G̃−

IJ + V IC̃I + V +IJ
a C̃+a

IJ + V −IJ
a C̃−a

IJ (14)

G̃+
IJ ≡ D(β+)

c P̃+c
IJ +

[
P̃[IϕJ]

]+ (15)

G̃−
IJ ≡ D(β−)

c P̃−c
IJ +

[
P̃[IϕJ]

]− (16)
C̃I = P̃I − 2g+ϵIJKLε̃

abceJ
aR

+KL
bc − 2g−ϵIJKLε̃

abceJ
aR

−KL
bc (17)

C̃+c
IJ = P̃+c

IJ − 2g+
[
ϵIJKLε̃

abceK
a e

L
b

]+ (18)

C̃−c
IJ = P̃−c

IJ − 2g−
[
ϵIJKLε̃

abceK
a e

L
b

]− (19)

where we’ve introduced the ‘spatial covariant derivative’ with respect to any of B = {β, β+, β−}:

D(B)
a Y AB...

CD... ≡ ∂aY
AB...

CD... + BA
EaY

EB...
CD... + BB

EaY
AE...

CD... + . . .

− BE
CaY

AB...
ED... − BE

DaY
AB...

CE... + . . . (20)

The total derivative ∂aℓ̃
a will be neglected as an ignorable boundary term. The Lagrangian density (13)

is in canonical form, with phase space being coordinatized by fields (ϕI , β±IJ
a ), their momenta (P̃a, P̃

a±
IJ )

subject to constraints (15)-(19) which are enforced by stationarity of the action with respect to the Lagrange
multiplier fields (Ω±IJ , V I , V ±IJ

a ).
The Hamiltonian analysis then proceeds by calculating the time evolution of constraints using the Euler-

Lagrange equations following from (13). It is to be required that the constraints are preserved by time
evolution and within the equations of motion this either fixes Lagrange multiplier fields in terms of the
phase space fields or leads to new constraints amongst the phase space variables, the preservation of which
under time evolution must further be checked until no new constraints are generated. Upon completion of
this constraint analysis, the final set of constraints can be grouped into two categories: first class constraints:
these are constraints that commute with all other constraints according to the unconstrained phase space
Poisson bracket; second class constraints: these are constraints that do not commute with all other con-
straints. It is found that the constraint structure crucially depends on the value of the constants (g+, g−).
If g+ ̸= g− the theory has constraint structure shown in Figure 1. If g+ = g−, the theory has the constraint
structure shown in Figure 2.

For the general case g+ ̸= g−, the classification of constraints is illustrated in Figure 1. Given the
classification of constraints, we can now count how many complex degrees of freedom the model possesses.
The dimensionality of the phase space per spatial point is

P = 8 (ϕI , P̃I) + 18 (β+IJ
a , P̃+a

IJ ) + 18 (β−IJ
a , P̃−a

IJ ) = 44
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C̃I G̃+IJ G̃−IJ C̃+a
IJ C̃−a

IJ

H̃ I = C̃I + Z̄+JKI
aC̃

+a
JK + Z̄−JKI

aC̃
−a
JK

Figure 1: The structure of constraints in the case g+ ̸= g−. First-class constraints are blue whilst constraints
that are individually second-class are shown as green. The constraint analysis reveals that a linear combi-
nation of second-class constraints yields the first-class constraints H̃ I . Symbols Z̄±JKI

a are built from the
phase space fields and are defined in [H8].

C̃I G̃+IJ G̃−IJ Pa
bC̃

+b
IJ ∂aϕ

2C̃+a
IJ Pa

bC̃
−b
IJ ∂aϕ

2C̃−a
IJ

H̃ I = C̃I + Ū+JKI
aC̃

+a
JK + Ū−JKI

aC̃
−a
JK

Figure 2: The structure of constraints in the case g+ = g−. First class constraints are blue whilst second
class constraints are green. Unlike in the case g+ ̸= g−, a subset of the individual C̃±a

IJ constraints are first
class. As in the g+ ̸= g− constraint analysis reveals that a linear combination of individually second class
constraints yields the first class constraints H̃ I . Symbols Ū±JKI

a are built from the phase space fields and
are defined in [H8].

The number of first-class constraints is

F = 3 (G̃+IJ) + 3 (G̃−IJ) + 4 (H̃ I) = 10

and the number of second-class constraints is

S = 9 (C̃+a
IJ ) + 9 (C̃−a

IJ ) = 18

The number of degrees of freedom per spatial point is therefore

DOF = 1
2(P − 2F − S)

= 3 (21)

For the special case g+ = g−, the classification of constraints is illustrated in Figure 2. As in the previous
case, the dimensionality of the phase space per spatial point is

P = 8 (ϕI , P̃I) + 18 (β+IJ
a , P̃+a

IJ ) + 18 (β−IJ
a , P̃−a

IJ ) = 44

However, now the number of first-class constraints is

F = 3 (G̃+IJ) + 3 (G̃−IJ) + 4 (H̃ I) + 3(∂aϕ
2C̃+a

IJ ) + 3 (∂aϕ
2C̃−a

IJ ) = 16

and the number of second-class constraints is

S = 6 (Pa
bC̃

+b
IJ ) + 6 (Pa

bC̃
−b
IJ ) = 12

The number of degrees of freedom per spatial point is therefore
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DOF = 1
2(P − 2F − S)

= 0 (22)

Therefore the theory with g+ = g− possesses no degrees of freedom. Indeed, this case has more first-class
constraints than the case g+ ̸= g− and so it is to be expected that this specific case has more symmetry than
the general case. Indeed, the action (9) in this case possesses a symmetry under the transformation:

ϕI → ϕI , ωIJ±
µ → ωIJ±

µ + ∂µϕ
2ξ±IJ (23)

By examining the propagation of linear metric perturbations on Minkowski space, it can be shown that only
for the cases (g+ = 1, g− = 0) and (g− = 0, g+ = 1) is the expression of GR recovered [H8]. We will restrict
ourselves to these two cases and first focus on the former case and later demonstrate how the latter case
can be straightforwardly recovered. When (g+ = 1, g− = 0), the primary Hamiltonian density H̃ simplifies
considerably. Recalling its general form

H̃ = −Ω+IJ G̃+
IJ − Ω−IJ G̃−

IJ + V IC̃I + V +IJ
a C̃+a

IJ + V −IJ
a C̃−a

IJ , (24)

the constraints now simplify to:

G̃+
IJ ≡ D(β+)

c P̃+c
IJ +

[
P̃[IϕJ]

]+ (25)

G̃−
IJ ≡ D(β−)

c P̃−c
IJ +

[
P̃[IϕJ]

]− (26)
C̃I = P̃I − 2ϵIJKLε̃

abceJ
aR

+KL
bc (27)

C̃+c
IJ = P̃+c

IJ − 2
[
ϵIJKLε̃

abceK
a e

L
b

]+ (28)
C̃−c

IJ = P̃−c
IJ (29)

Given these simplifications, it is possible to algebraically solve for the (β−IJ
a , P̃−a

IJ ) and eliminate them from
the variational problem. Firstly, from (29) we have P̃−a

IJ = 0. Then, recalling the definition (12), the
constraint C̃+c

IJ can be regarded as an equation for which one can solve for β−IJ
a = β−IJ

a (β+, P̃+, ϕ, ∂ϕ).
Therefore the second-class constraints can be solved. Given these solutions, the constraint G̃−

IJ simplifies to[
P̃[IϕJ]

]− = 0; if we decompose P̃ I = Π̃ϕI + P̃ I
⊥, where P̃ I

⊥ϕI = 0, then G̃−
IJ = 0 can be taken to imply

the solution P̃ I
⊥ = 0 which we now adopt. Additionally the quantity V IC̃I can be expressed in terms of

Arnowitt-Deser-Misner densitized lapse and shift functions (N˜ ≡ N/
√
q,Na) [E27] and the remaining phase

space variables so that the gravitational Lagrangian density can be written:

L̃[P̃+a
IJ , β

+IJ
a , Π̃, ϕ2,Ω+IJ , N˜ , Na] = 1

2Π̃ϕ̇2 + P̃+a
IJ β̇

+IJ
a + Ω+IJ

(
D(β+)

a P̃+a
IJ

)
−N˜

(
ξΠ̃√

q

√
−ϕ2 + 1

4q
ab∂aϕ2∂bϕ2 − 1

4 P̃
+a
IK P̃

+bK
JR

+IJ
ab

)
−Na

(
1
2Π̃∂aϕ

2 + P̃+b
IJ F

+IJ
ab − β+IJ

a D
(β+)
b P̃+b

IJ

)
(30)

where √
q and qab has been expressed in terms of P̃+a

IJ [H8] and we have redefined Ω+IJ → Ω+IJ +Naβ+IJ
a

so that the constraint obtained from the Na equation of motion when smeared with a field ζa generates
(non-Lorentz covariant) spatial diffeomorphisms f → f+Lζf on fields f in the phase space coordinatized by
(ϕ2, Π̃, β+IJ

a , P̃+a
IJ ). The Lagrangian density that we have recovered corresponds to the canonical formulation

of Ashtekar’s theory of gravity [E27] coupled to a field ϕ2 = ηIJϕ
IϕJ whose dynamics is classically that

of a pressureless perfect fluid when ϕ2 < 0 [E77, H6]. If ϕ2 < 0 and local coordinates are selected so that
∂aϕ

2 for some region of spacetime then the energy density of the fluid is of sign ξΠ̃ and so the choice of the
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sign of ξ = ∓1 reflects the relative sign of the energy density and Π̃. More generally, ϕ2 by definition is not
positive-definite and its equation of motion is:

1
2∂tϕ

2 = Nξ

√
−ϕ2 + 1

4q
ab∂aϕ2∂bϕ2 + 1

2N
a∂aϕ

2 (31)

The equation of motion for ϕ2 differs from the equation of motion for, for example, the Higgs boson of the
standard model; unlike that case, ∂tϕ

2 is independent of the field’s momentum Π̃ and generally the right-
hand side of (31) will be non-zero whenever the spacetime metric is non-degenerate meaning that generally
the magnitude of ϕ2 will vary throughout spacetime. Notably there do exist solutions to the theory’s field
equations where, furthermore, the sign of ϕ2 varies throughout spacetime [H6]. If instead, we had chosen the
parameters (g+ = 0, g− = 1) we would have instead recovered the anti-self-dual formulation of Ashtekar’s
theory coupled to an effective matter component described by (ϕ2, Π̃), the Lagrangian density of which can
be recovered from (30) by the replacement of (β+IJ

a , P̃+a
IJ ) with (β−IJ

a , P̃−a
IJ ). Can the degree of freedom

ϕ2 = ηIJϕ
IϕJ act as a useful ‘clock field’ in physics? If we choose initial data such that ∂aϕ

2|t=t0 = 0 then
the equation of motion for ϕ2 at the initial moment becomes:

1
2∂tϕ

2 = ξN
√

−ϕ2 (32)

The condition that ∂aϕ = 0 will be preserved if N = N(t). Given this condition, we can regard the
integration of equation (32) as providing a functional relation between ϕ2 and t. If N = 1/ξ (which implies
that t corresponds to proper time [H8]) then ϕ2 = −t2 is a solution. If instead N = 1/(2ξ

√
t) then ϕ2 = −t

is a solution. Therefore we will associate a choice of N(t) with a partial spacetime gauge fixing (Na is left
undetermined) and denote the associated time coordinate as tϕ. We may additionally solve the Hamiltonian
constraint for Π̃ in this gauge to yield the following Lagrangian density:

L̃[P̃+a
IJ , β

+IJ
a ,Ω+IJ , Na] ∗= P̃+a

IJ

∂

∂tϕ
β+IJ

a − HP hys + Ω+IJ

(
D(β+)

a P̃+a
IJ

)
−Na

(
P̃+b

IJ F
+IJ
ab − β+IJ

a D
(β+)
b P̃+b

IJ

)
(33)

HP hys = −N(tϕ)
4√

q
P̃+a

IK P̃
+bK

JR
+IJ

ab (34)

Therefore we recover an action principle for gravity with a phase space coordinatized by fields (P̃+a
IJ , β

+IJ
a ),

with a physical Hamiltonian density HP hys and phase space constraints implemented by stationarity of the
action under variation of (Ω+IJ , Na). Note that now N appears not as an independent field but as a fixed
function of time and only in gauges ∂tϕ

N(tϕ) = 0 does the physical Hamiltonian not have explicit time-
dependence (as opposed to the implicit time-dependence it possesses via its dependence on time-varying
phase space fields), which corresponds to the case where

√
−ϕ2 measures metric proper time. The extension

to GR is encoded in the fact that HP hys is not constrained to vanish. Non-vanishing values would be
interpreted as an effective energy density of an additional dust-like gravitating component in physics [H6].

The presence of degrees of freedom which would classically correspond to a pressureless perfect fluid
have been proposed as solutions to the ‘problem of time’ in quantum gravity [E24, E26, E28, E77]. In
particular in [E77] a pressureless perfect fluid Lagrangian described by phase space fields (T (xa), PT (x2))
was proposed, with it argued that the canonical gauge choice T = t may be imposed prior to quantization.
Notably, the classical equations of motion generally do not allow T to be used as a global time variable due to
the generic formation of caustics on surfaces of constant T [E92]. This suggests that if the flow of time T in
the quantum theory remains unimpeded, then quantum corrections to the classical equations of motion may
become important near would-be caustic formation. An interesting illustration of this is how the classical
Big Bang singularity of a dust-dominated universe can be replaced by an effective bounce when dust-time is
used in a quantum cosmological description of the system [E114]. If degrees of freedom described by fields
(ϕI , P̃I) or (T, P̃T ) are to play the role of DM, then these corrections may have an experimental signature via
how they affect the distribution and evolution of DM density. The phenomenology of Model B is discussed
in more detail in Section 5.4.4.



14

5.4.3 Gravitation via the gauging of parameterized field theories

The model (9) can be interpreted from the perspective of Cartan gravity. An alternative perspective is in
terms of the gauging of non-gravitational physical theories so as to recover the gravitational interaction,
which is the focus of series publication [H6].

The notion of gauge symmetry is a crucial part of the mathematical structure of the standard model of
particle physics. Consider an action Sχ[χ] describing the dynamics of a matter field χ that is invariant under
a global (i.e. independent of location in spacetime) continuous symmetry represented by the transformation
χ → Uχ (where indices are suppressed for notational compactness). Typically the action will not be invariant
under local symmetry transformations (U = U(xµ)) as derivative terms ∂µχ present in the Lagrangian then
do not transform homogeneously under this transformation. However, the global symmetry can generally
be promoted to a local one by the introduction of an additional field Aµ - called a gauge field or connection
- which allows for the creation of a covariant derivative which - if the transformation U can be represented
as a matrix and χ belongs to the fundamental representation of the symmetry group - takes the form:

∂µχ → D(A)
µ χ ≡ ∂µχ+Aµχ (35)

If, under the U transformation, Aµ → UAµU
−1 − ∂µUU

−1 then D
(A)
µ χ → UD

(A)
µ χ. The extension of

the definition of D(A)
µ to matter fields in other representations of the symmetry group is straightforward.

Alongside the modification Sχ[χ] → Sχ[χ,Aµ], the process is then completed by the introduction of an
action SA[Aµ, χ] which allows for the dynamics of Aµ to be well defined. An example of this process
would be that of a complex scalar field theory, where the Lagrangian density in inertial coordinates in
Minkowski spacetime is Lϕ = − 1

2η
µν∂µϕ

∗∂νϕ − V (ϕ∗ϕ) is invariant under global U(1) transformations
ϕ → eiαϕ. The U(1) invariance can be made local by introducing a field Aµ to construct the covariant
derivative D(A)

µ ϕ = ∂µϕ+Aµϕ; the resultant locally U(1) invariant action for ϕ is then supplemented by the
Lagrangian density LA = − 1

4F
µνFµν , where Fµν = 2∂[µAν], which provides dynamics for the field Aµ.

We will consider a similar gauging process in the context of gravitation, first reviewing existing results
that show how it can be used to recover the model (9). To recap, special relativistic theories are commonly
formulated in terms of matter fields existing in a space with fixed-geometrical structure i.e. Minkowski
space and its accompanying metric tensor ηµν . An alternative approach is to not assume the presence of
ηµν but rather introduce a set of four scalar fields XI(xµ) which are dynamical in the sense the action is
stationary with respect to small variations of these fields and this results in them having own equations
of motion. Actions can be constructed so that dynamically the fields end up configured to play the role
of inertial coordinate fields in spacetime with an effective metric emerging via the combination η̃µν =
ηIJ∂µX

I∂νX
J , where ηIJ = diag(−1, 1, 1, 1). Such theories are referred to as ‘parameterized field theories’.

An interesting property of these theories is that the absence of fixed geometrical structure (such as ηµν)
means that such actions possess a symmetry with respect to spacetime diffeomorphisms in the manner
familiar from gravitational theory. In addition, the actions for parameterized field theories possess a global
symmetry:

XI → ΛI
JX

J + P I (36)

The combined effect of the orthogonal matrix ΛI
J (representing a Lorentz transformation of XI) with P I

is that of a global Poincaré transformation of XI , analogous to the global coordinate transformations that
preserve ηµν = (−1, 1, 1, 1) i.e. that preserve the form of the Minkowski metric in inertial coordinates.

For concreteness, consider the case of the electromagnetic field. The following action yields Maxwell’s
equations upon small variations of the field Aµ:

S[Aµ] = −1
4

∫
d4x
√

−det[η]ηµαηνβFµνFαβ (37)

where ηµν is the non-dynamical metric tensor of Minkowski spacetime, Fµν ≡ 2∂[µAν], and {xµ} are some
set of coordinates describing points in spacetime (not necessarily Minkowski coordinates). Due to the fixed,
flat geometry of spacetime there exist ‘inertial’ coordinate systems coordinatized by {XI}, for which in a
general coordinate system {xµ}
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ηµν = ηIJ
∂XI

∂xµ

∂XJ

∂xν
(38)

where ηIJ = diag(−1, 1, 1, 1). One might imagine looking to recover metric structure from ηIJ
∂XI

∂xµ
∂XJ

∂xν

instead of the fixed background metric ηµν and promote the fields XI to being dynamical. Then, consider
the following action:

S[Aµ, X
I ] = −1

4

∫
d4x
√

−det[η̃]η̃µαη̃νβFµνFαβ (39)

where

η̃µν ≡ ηIJ
∂XI

∂xµ

∂XJ

∂xν
(40)

and where ηIJ = diag(−1, 1, 1, 1) and η̃µν is the matrix inverse of η̃µν , which is assumed to exist. The action
(39) is manifestly invariant under the global transformation (36) and the equation of motion for XI can be
shown to be

0 = ∂µ

(√
−det[η̃]∂XI

∂xν
Tµν

)
(41)

where Tµν is the stress energy tensor of the electromagnetic field; therefore the equation of motion for
XI expresses conservation of the stress energy tensor. There exist solutions XI(xµ) for which there exist
coordinates such that ∂XI/∂xµ ∗= δI

µ. In these coordinates, η̃µν = diag(−1, 1, 1, 1) and so we see that XI

here play the role of inertial coordinates in Minkowski spacetime. As expected, for these solutions, this
form of η̃µν is preserved by the transformation (36). Generally, the recovery of familiar classical field theory
and quantum theory in Minkowski space is possible in the parameterized approach, though interestingly the
latter makes use of techniques originating in the loop quantum gravity research program [E55].

The standard route to gravitation has been via Einstein’s GR where ηµν is promoted to a dynamical field
(denoted gµν) with its own action which is given - up to the necessary Gibbons–Hawking–York boundary
term - by the Einstein-Hilbert action:

Sg[gµν ] = 1
16πG

∫
d4x

√
−gR(g, ∂g) (42)

where R is the Ricci formed from the Levi-Civita connnection and G is Newton’s gravitational constant.
This approach must be modified somewhat when fermionic fields are present. The actions of the standard
model of particle physics consists of the following dynamical fields: gauge fields Aµ (spacetime one-forms),
the electroweak Higgs field ϕ (a spacetime scalar), and fermionic fields ΨA and χA′ (Weyl spinors i.e.
spacetime scalars in the fundamental representations of SL(2, C)) alongside the non-dynamical object ēI

µ (a
spacetime one form in the fundamental representation of SO(1, 3) such that ηIJ ē

I
µē

J
ν ≡ ηµν). These actions

are invariant under global SL(2, C) transformations which act only on the Weyl spinors and on ēI
µ via the

group homomorphism between SL(2, C) and SO(1, 3). The Lagrangian four forms L that are integrated to
produce the actions of the standard model transform as differential forms under diffeomorphisms that act
on both dynamical and non-dynamical fields but also transform as forms under diffeomorphisms that act
only on the dynamical fields for diffeomorphisms generated by vector fields ξµ that satisfy £ξηµν = 0 (where
£ξ denotes the Lie derivative) i.e. ξµ that satisfy this equation are the Killing vectors of Minkowski space.
There are ten independent ξ(i)µ and their commutator [ξ(i), ξ(j)] satisfies the Lie algebra of the Poincaré
group ISO(1, 3). In this sense the actions of the standard model possess a global SL(2, C) symmetry and
the Lagrangian forms exhibit a global ISO(1, 3) covariance. It was shown by Kibble [E6] (building on
earlier work by Utiyama [E4]) that the global SL(2, C) symmetry could be promoted to a local one by the
introduction of a gauge field ω valued in the Lie algebra of SL(2, C) - such that the covariant derivative
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D
(ω)
µ χA′ ≡ ∂µχ

A′ + ωA′

B′µ
χB′ , where ωA′

B′µ
= 1

8ωIJµ(σ̄IσJ − σ̄JσI)A′

B′ , transforms homogeneously under
this transformation. Additionally, the remaining presence of non-dynamical, prior geometry was removed by
the introduction of a dynamical field eI

µ to appear in place of ēI
µ - such that ηIJe

I
µe

J
ν ≡ gµν . The introduction

of the set of dynamical fields {eI
µ, ω

A′

B′µ} into the matter actions suggests that the gauging process should
be completed by providing action allowing for a consistent dynamics of these degrees of freedom i.e. the
introduction of gravitation as a dynamical interaction. A simple possibility is the following action:

Sg[ω, e] = 1
64πG

∫
d4xεµναβϵIJKLe

I
µe

J
νR

KL
αβ(ω) (43)

where εµναβ is the Levi-Civita density and RIJ
µν ≡ 2∂[αω

IJ
β] +2ωI

K[αω
KJ

β]. The action (43) is the Palatini
action in the Einstein-Cartan formulation of gravity and its equations of motion are classically equivalent to
GR with an additional matter term quadratic in fermionic currents.

This procedure can be interpreted as a combined gauging of internal symmetries and the limited spacetime
covariances of the original non-gravitational actions which leads to a theory of matter and gravity that possess
a local internal SL(2, C) symmetry and is generally covariant in the sense that the action is invariant under
infinitesimal diffeomorphisms generated by vector fields ζµ that vanish at the boundary of the action’s
integration that act on the dynamical fields χ as χ → χ+ £ζχ [E115]. We note that the gauging procedure
does not uniquely fix the gravitational action but rather suggests a family of potential actions, each of which
must possess a symmetry under both local SL(2, C) transformations and spacetime diffeomorphisms. Indeed,
allowing the gravitational action to consist of terms up to quadratic order in RKL(ω) and T I ≡ deI +ωIJ ∧eJ

is the approach of Poincaré gauge theory which permits a wealth of interesting phenomenology [E79].
Now we return to the parameterized approach as applied to the actions of the standard model of particle

physics. In the place of the non-dynamical field ēI
µ we instead have ∂µX

I . Due to the fields XI now
being dynamical, the actions are generally covariant as well as possessing an additional invariance under the
following global transformations:

XI → ΛI
JX

J + P I (44)

where ΛJI = Λ−1
IJ (where indices have been lowered with ηIJ). We consider the case where only the Lorentz

transformation XI → ΛI
JX

J in (36) is promoted to a local invariance. A derivative that transforms
homogeneously under local Lorentz transformations can be constructed:

D(A)
µ XI = ∂µX

I + AI
JµX

J (45)

i.e. under a transformation represented by ΛI
J(x) we haveD(A)

µ XI → ΛI
JD

(A)
µ XJ if AI

Jµ → ΛI
KAK

Lµ(Λ−1)L
J−

∂µΛI
K(Λ−1)K

J . Additionally, a covariant derivative D(A)
µ acting on Weyl spinors can be defined using AI

Jµ

so that, for example D(A)
µ χA′ transforms homogeneously under local SO(1, 3) ≃ SL(2, C) transformations.

Matter actions originally possessing the global Poincaré invariance (44) then possesses a local Lorentz in-
variance under the replacement ∂µX

I → D
(A)
µ XI and ∂µΨ → D

(A)
µ Ψ for spinor fields Ψ. To complete the

picture it is additionally necessary to introduce an action for the gravity itself. A potential action for gravity
is:

Sg[A, X] = 1
2

∫
d4xεµναβcIJKLD

(A)
µ XID(A)

ν XJRKL
αβ(A) (46)

where

cIJKL = α(ϵIJKL + 2βηI[KηL]J) (47)
RIJ

αβ(A) = 2∂[αAIJ
β] + 2AI

K[αAKJ
β] (48)

Note that this is the same as the action (9) under the identification XI → ϕI , AIJ
µ → ωIJ

µ and g± = α
2
(
1∓iβ

)
.

The gauging of a global symmetry of parameterized field theories does not suggest a unique gravitational field,
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with additional terms higher order in curvature possible. As a Lagrangian counterpart to the Hamiltonian
analysis of [H8], we will see now that four dimensional metric structure and gravitational dynamics described
by an extension to GR can emerge from a theory whose gravitational fields are {AIJ

µ , XI}. Coupling to matter
fields χ is implemented by the promotion ∂µX

I → D
(A)
µ XI and the use of the Lorentz covariant derivative

D
(A)
µ = ∂µ + 1

2 AIJµJ
IJ acting on spinors, where JIJ are the generators of SL(2, C):

Sm = Sm[χ(m), D(A)XI ,AIJ(J)] =
∫

Lm (49)

where χ(m) are matter fields. The Lorentz-invariant XIX
I scalar is permitted to appear in actions but we

do not consider coupling of this quantity to matter - indeed, any actions which have a symmetry under
‘covariantly constant’ translations XI → XI + P I subject to D

(A)
µ P I = 0 cannot feature such terms.

The promotion ∂µX
I → D

(A)
µ XI in matter actions suggests that the quantity gµν ≡ ηIJD

(A)
µ XID

(A)
ν XJ

will indeed play the role of the spacetime metric tensor. To help show the relation of this model to GR
in the Lagrangian formalism we introduce the auxiliary field eI

µ which is to equal D(A)
µ XI ‘on shell’ and

replaces instances of D(A)
µ XI in Sg and Sm, with this equality implemented via the use of an action which

introduces a Lagrange multiplier three-form field λI , which written in the language of differential forms is
Sλ =

∫
λI ∧ (D(A)XI − eI) so the total action S = Sg + Sλ + Sm takes the form:

S[e,A, X, λ, χ(m)] =
∫ [

cIJKLe
I ∧ eJ ∧RKL + λI ∧

(
D(A)XI − eI

)]
+ Sm[χ(m), e,A] (50)

The equations of motion obtained by varying S with respect to e, A, X, and λ are:

−2cIJKLe
J ∧RKL + ∂Lm

∂eI
− λI = 0 (51)

−D(A)(cIJ[MN ]e
I ∧ eJ) + ∂Lm

∂AMN (J) + λ[MXN ] = 0 (52)

D(A)λI = 0 (53)
D(A)XI − eI = 0 (54)

where, for example, δeLm = ∂Lm

∂eI ∧ δeI . We now assume that XIX
I ̸= 0 over the region of spacetime of

interest so that we may define a projector orthogonal to XI : PI
J = δI

J − 1
XKXK X

IXJ . We therefore have
that:

eI
µ = 1

X2 EµX
I + EI

µ (55)

where EI
µ ≡ PI

JD
(A)
µ XJ , hence XIE

I
µ = 0. By the definition D(A)

µ XI = eI
µ we have Eµ = 1

2∂µX
2 and hence:

gµν ≡ ηIJe
I
µe

J
ν = ηIJD

(A)XID(A)XJ = 1
4X2 ∂µX

2∂νX
2 + EI

µEIν (56)

To cover distinct cases, we can define XIX
I = ξX 2 where ξ = −1 if XIX

I is timelike and ξ = 1 if XIX
I

is spacelike. It’s useful to clarify the signature of the tensor hµν ≡ EI
µEIν . The quantities gµν and hµν

are each Lorentz gauge-independent. For the case ξ = −1 and XI is real, we can find a gauge where
XI ∗=

√
−XJXJδI

0 where η00 = −1; therefore, as XIE
I = 0, the signature of hµν is (0,+,+,+) and it

can be considered as a spatial metric orthogonal to the timelike vector ∂µX2. Alternatively, for the case
where ξ = 1 and XI is real, we can find a gauge where XI ∗=

√
XJXJδI

1 where η11, implying that in this
case the signature of hµν is (0,−,+,+) and it can be considered as a timelike metric orthogonal to the
spacelike vector ∂µX2. As we have seen, only for the values β = ±i does a General-Relativistic limit of the
theory exist [H2]. For concreteness we consider the case β = i. By taking the anti-self dual part of (52) and
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assuming that AIJ
µ (J) = A+IJ

µ i.e. covariant derivatives of spinor fields are to be built using A+IJ
µ (which is

a consistent choice for coupling to spinor fields [E21]) it follows that λI ∝ XI and so we may define the field
ϱ via λI = (ϱ/X )XI , following which the equations of motion become:

−4αϵIJKLe
J ∧RKL(A+) + ∂Lm

∂eI
− 1

X
XIϱ = 0 (57)

−2αD(A+)(ϵIJ[KL]e
I ∧ eJ)+ + ∂Lm

∂A+KL
= 0 (58)

∂µX∂µX = ξ (59)
dϱ = 0 (60)

EI ∧ ϱ = 0 (61)

where indices are raised with gµν , taken to be the matrix inverse of (56). Equation (58) in the absence of
coupling of the source term due to spinor coupling to the A+IJ

µ field4 implies [E27] that the solution for the
self-dual A+IJ

µ is given by the self dual part of the Levi-Civita spin connection ΓIJ
µ (e, ∂e) which is defined

to be the solution to the equation deI + ΓI
J ∧ eJ = 0 [E27]. We can make contact with standard notation

by writing the three-form Einstein equation as a tensor equation:

4αϵIJKLε
µναβeJ

µR
KL

να(A+) = 2
3!

[
∂Lm

∂eI

]
µνα

εµναβ + 2
3!XIϱµναε

µναβ (62)

We now make the following ansatz for ϱ which satisfies (61):

ϱµνα = −1
2ξ

√
−gεµναβ∂

βXρ (63)

Now, multiplying (62) by eI
ζ and using XIe

I
ζ = 1

2ξ∂ζX 2 as well as defining α ≡ 1/(64πG) we have:

R̄µν − 1
2 R̄gµν = 8πG

(
T (m)

µν + ρ∂µX∂νX
)

(64)

where R̄IJ
µν is the curvature two-form associated with ΓIJ

µ (e, ∂e), Rµ
ν ≡ Rσµ

σν , and we’ve defined the
stress energy tensor for matter fields:

T (m)
µν = 1

3!2√
−g

eI
(νgµ)σε

αβγσ

[
∂Lm

∂eI

]
αβγ

(65)

The equation dϱ = 0 becomes:

0 = ∂µ

(√
−gρ∂µX

)
(66)

We see then from (64) and (66) that when ξ = −1, Einstein’s equations in the presence of an additional
dust-like fluid component with density ρ and four-velocity V(ξ=−1)µ = ∂µX are recovered. Additionally it
follows from (59) that

V µ
(ξ=−1)∇̄µV

ν
(ξ=−1) = 0 (67)

where ∇̄µ is the covariant derivative according to the Christoffel symbols Γα
µν(g, ∂g) i.e. V µ

(ξ=−1) describes
timelike geodesic curves in spacetime. Alternatively, for the case ξ = 1 (XIX

I > 0), the equations (64)
4The inclusion of such sources will modify the solution for A+IJ

µ so that a term involving spinor currents will appear when
the metric Einstein equations are ultimately recovered.
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and (66) still apply but with a different interpretation: the vector V µ
(ξ=1) is spacelike and, satisfying

V µ
(ξ=1)∇̄µV

ν
(ξ=1) = 0 the fields describe spacelike geodesic curves in spacetime. As such, the source term

due to ρ in (64) is more readily interpreted as a ‘dark pressure’. We will see in that there exist simple
solutions where in some parts of spacetime XIXI < 0, in others XIXI > 0 and in others XIXI = 0 (either
by XI vanishing or being null) - therefore in such cases the projector PIJ cannot be globally defined. By way
of illustration and comparison to GR, we can consider the action of the present model in FRW symmetry,
wherein the action can be shown to be, after elimination of certain components of AIJ

µ using the equations
of motion:

S[a, T ] b= 3
8πG

∫ √
h̄d3xdta3Ṫ

(
− 1
a2

ȧ2

Ṫ 2
+ k

a2

)
(68)

Note that the action (68) has reduced to an instance of parameterized particle mechanics which is a refor-
mulation of Newtonian mechanics where the Newtonian time T is promoted to a dynamical field [E25]. We
can introduce new fields PT and N such that PT is a Lagrange multiplier term enforcing the definition of
the ‘time velocity’ N = Ṫ , with the action becoming:

S[PT , T,N, a, ϕ] b=
∫ √

h̄d3xdt

[
PT

(
Ṫ −N

)
+ a3N

(
3

8πG

(
− 1
N2

1
a2 ȧ

2 + k

a2

))]
(69)

Varying T and N we have:
3

8πGN2

(
ȧ2

a2 + k

a2

)
= PT

a3 (70)

ṖT = 0 (71)

whilst equations of motion obtained by varying a is identical to those in GR. Equations (70) and (71) arise
from the field equations (57) and (60) restricted to FRW symmetry. Additionally, PT itself is the analogue
of the integration constant E - the total energy of the system - in parameterized particle mechanics [E25]
and it has an observational effect: it would be interpreted as a DM component in the universe.

We now show that the model admits several distinct field configurations that solve the field equations and
result in the spacetime metric being that of Minkowski space. Recall that in the case of the non-gravitational
parameterized field theory, a Minkowski metric was recovered via

η̃µν = ηIJ
∂XI

∂xµ

∂XJ

∂xν
(72)

We will now show that two distinct solutions in the gravitational theory lead to the recovery of Minkowski
space. Remarkably, one of these solutions describes a flat spacetime metric with non-zero curvatureRIJ

αβ(A).
To aid visualization, figures showing the profile of the field XI in Minkowski space are shown in Figure 5.4.3.

Clearly a solution to the vacuum equations of motion (51)-(54) for β = ±i is if the curvature two-form
RI

J = 0. Then, one can find a gauge where AIJ
µ

∗= 0 and in this gauge

gµν
∗= ηIJ∂µX

I∂µX
J (73)

The equations of motion admit solutions where XI can coordinatize the entire spacetime such that gµν = ηµν .
Note that here XI = 0 at a single point in spacetime. Such a solution is not unique. Additional XI related
to the original solution by XI → ΛI

JX
J + P I - where ΛI

J ∈ SO(1, 3)C , P
I ∈ C4 and ∂µΛI

J = ∂µP
I = 0 -

are also solutions i.e. there are a family of solutions related by global complexified Poincaré transformations.
An alternative possibility is to consider the case of timelike XI in FRW symmetry and obtain a solution
where the scale factor a(t) = Cst., implying that the metric tensor gµν takes Minkowski form. Indeed it can
readily be seen that from the equations of motion that the connection A±IJ

µ is non-vanishing, with curvature:

R0i = − 1
t2
dt ∧ dxi − i

t2
ϵijkdx

j ∧ dxk (74)

Rij = 2
t2
dxi ∧ dxj − i

t2
ϵijkdt ∧ dxk (75)
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Figure 3: Profiles for XI in a plane coordinatized by inertial coordinates (x, t) leading to Minkowski metric
with zero (left panel) and non-zero (right panel) spacetime curvature respectively. Points where XI = 0 are
given in black.

Here XI now vanishes on the 3-surface t = 0. Remarkably, the curvature tensor is non-zero for this
solution with flat spacetime metric5. Note that the curvature diverges as t → 0. However, nonetheless the
gravitational action Sg remains zero for all moments of time as it only depends on the self-dual curvature
which - as can be verified from (74) and (75) - always vanishes. The existence of solutions with a maximally
symmetric metric in the presence of fields which spontaneously break local Lorentz invariance is reminiscent
of ghost condensate [E41] and Einstein-Aether [E36] models which permit Minkowski space as a solution
to the field equations despite the presence of, respectively, a scalar field ϕ with non-zero time derivative or
vector field Aµ with timelike expectation value. The evolution of linear perturbations around these solutions
are considered in more detail in [H6, H8].

Finally we note that is also possible to find solutions to the gravitational field equations where the four
dimensional metric corresponds to that of flat four dimensional Euclidean space i.e. where coordinates exist
so that the metric can globally be put in the form gµν = ηIJD

(A)
µ XID

(A)
ν XJ = diag(1, 1, 1, 1). This may

be recovered from the non-vanishing curvature Minkowski solution via analytic continuation of A±IJ
µ or by

considering a zero-curvature solution for which in the gauge AIJ
µ

∗= 0 we have XI = (it, xi) where (t, xi)
comprise a set of inertial coordinates in spacetime. Interestingly the field XI in the non-zero curvature
solution introduces a ‘preferred’ (imaginary) time coordinate but nonetheless the resultant Euclidean geom-
etry with four dimensional metric δµν possesses symmetry under the group of diffeomorphisms generating
global ISO(4) coordinate transformations. In a more general context, consider the case where there exists
an SO(1, 3)C gauge where XI ≡ iS(xµ)δI

0 where S(xµ) is assumed real and hence XIX
I = S2. In this gauge

we have EI
µ

∗= iSAI
0µ. Therefore the only non-vanishing EI

µ are Ei
µ where i, j, k = 1 . . . 3 and

gµν = 1
S2 ∂µS

2∂νS
2 − S2ηijA

i
0µA

j
0ν (76)

So if Ai
0µ in this gauge are purely imaginary then the spacetime metric is real and of Euclidean signature.

5.4.4 Phenomenology of the model and prospects for further investigation

The extension to GR (30) looks potentially promising: the requirement that a General Relativistic limit only
occurs when the self-dual parts of the spatial pullback of the spin connection and its momenta represent

5This is the opposite of the case of teleparallel gravity where the spacetime curvature is zero but nonetheless metrics with
non-vanishing Riemannian curvature (i.e. curvature built from the Christoffel symbols) exist as solutions to the field equations
[E78].
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the gravitational degrees of freedom implies that in this limit the gravitational Hamiltonian takes a simple,
polynomial form. The presence of the new degree of freedom ϕ2 in this model produces a gravitational effect
equivalent to that of a pressureless perfect fluid in the classical equations of motion. Given that an extremely
wide array of cosmological and astrophysical data points towards the presence of an additional, unknown
gravitational component that behaves as such a fluid on large scales [E110], it is tempting to speculate
whether the new degree of freedom may be responsible for at least some of this effect. A good approximation
to all DM models on large, cosmological scales is expected to be the hydrodynamical description in which the
DM is described by a fluid with density ρ(x) and four velocity uµ where the four velocity obeys the geodesic
equation according to the metric gµν . Generally a configuration uµ specified on an initial Cauchy surface
will evolve so that ∇µu

µ diverges in finite time (the formation of caustics), preventing further evolution of
the field via the equation of motion (66) [E71]. It is not difficult to find initial data so that the pathological
behaviour arises on timescales orders of magnitude shorter than the age of the universe [E92] and so the
viability of model’s classical equations of motion is called into question. A possibility is that a cosmic
skeleton of singular structures would appear in such a scenario; a consequence of this scenario would be that
supermassive black holes would form with such ease that the observed mass of the presumed black hole in
the centre of the Milky Way galaxies constrains the cosmic abundance of such ‘irrotational’ DM to be a
small fraction of the total amount in our universe [E81].

However, the model (9) should be understood first as a quantum theory. It is possible that if the field ϕ2

plays a role in determining a privileged and global time in quantum gravity then there may be observable
consequences of this. By way of example, one approach [E28, E77] has been to construct the canonical
formulation of the action for GR coupled to a pressureless dust component

S[g, ρ,X ] =
∫
d4x

√
−g
[

1
16πGR− ρ(∂µX∂µX + 1)

]
, (77)

and then implement a time gauge fixing constraint X ∗= t prior to quantization. Hence, if X plays the role
of time in the putative quantum theory of gravity (and allowed to flow eternally without obstruction), it is
not clear that the caustic pathologies which prevent the use of X as a global clock in the classical theory can
emerge as a limit of the quantum theory. Indeed there is evidence that caustics are indeed avoided when
spherical collapse of the pressureless perfect fluid is considered for the model of GR coupled to a pressureless
fluid quantized in accordance with [E119]. Additionally, it is known in the context of FRW-symmetric
spacetimes, the big bang singularity associated with the classical equations (64) and (66) may be avoided in
the quantum theory restricted to this symmetry [E114, E118]. A criticism of such approaches [E26] has been
that it has not been clear how degrees of freedom (ρ,X ) could appear in a physical theory and we regard it
as encouraging that they arise naturally from a theory based on the action (9).

However, it should be emphasized that this approach to the quantization of GR coupled to a pres-
sureless fluid is not universal. Rather, [E58] considered the fluid part of the action decoupled from grav-
ity and constructed the canonical formulation of this part in isolation, recovering a Hamiltonian density
H = Π(X )

√
1 + ∂iX∂iX , where Π(X ) is the canonical momentum of X and i denotes a spatial coordi-

nate index which is raised with a flat Euclidean inverse metric. The authors then consider an expansion
around a background solution X = t, Π(X ) = ρ0 (∂µρ0 = 0) with δX = χ/

√
ρ0, δΠ(X ) = Πχ

√
ρ0 where

ρ0 is to be interpreted as the background density of the pressureless perfect fluid. It follows then that
H = 1

2∂
iχ∂iχ + 1

2√
ρ0

Πχ∂
iχ∂iχ + . . . , which suggests that the perturbative expansion breaks down for en-

ergy scales Λ ∼ ρ
1/4
0 which for the current cosmic DM density corresponds to Λ ∼ 10−3eV suggesting that

perturbative quantization of the fluid part of (77) is limited to energy scales E ≪ Λ, which has been argued
to be unacceptable for a component of a candidate theory of quantum gravity. It is unlikely that a quantum
theory based on this perturbative approach is equivalent to the one based on gauge fixing X = t prior to
quantization.

Another possibility is that new degrees of freedom beyond those present in Model A or (77) become
active in regimes close to the formation of caustics, in effect causing the velocity field uµ to depart from
geodesic motion and leading to caustic avoidance. A well-known example of this is the ‘UV completion’ of
(77) in terms of a massive, complex scalar field Φ = λeiϕ. In curved spacetime the Lagrangian for such a
field is
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LΦ = 1
2

√
−g(−gµν∂µΦ∗∂νΦ −M2|Φ|2) = 1

2
√

−g
(

− gµν∂µλ̃∂ν λ̃

M2 − λ̃2(gµν∂µϕ̃∂ν ϕ̃+ 1
))

(78)

where λ̃ = Mλ, ϕ̃ = ϕ/M . In the limit M → ∞ and with the identification λ̃2 = 2ρ, ϕ̃ = X , we see that LΦ
tends to the form of the fluid part of (77) and indeed it can be shown that solutions for gravity coupled to LΦ
can approach those of (77) for sufficiently large M . For finite M it follows from the λ̃ equation of motion that
the ‘four-velocity’ uµ ≡ ∂µϕ̃/

√
−(∂ν ϕ̃∂ν ϕ̃) does not satisfy the geodesic equation and it can be shown that

caustics associated with this field do not form [E92]. Thus an alternative to important quantum corrections
to the classical equations of motion of Model A or (77) arising would be such a ‘UV completion’ of the model
(46) so as to introduce new degrees of freedom to ameliorate the problem of caustics. Such a scenario is not
inconceivable: for example, despite the great success of GR, a leading candidate for cosmic inflation and the
origin of structure in the universe is the Starobinsky model of inflation [E12] which considers a correction√

−gR2 to the Einstein-Hilbert Lagrangian; this model is equivalent to a scalar tensor theory and the new
scalar degree of freedom in gravitation can be of great importance at high energy scales - for example in
sourcing large scale structure in the universe [E45].

A final possibility is that the constraint uµu
µ + 1 = 0 with uµ = ∂µX remains in place so that uµ

always satisfies the geodesic equation but that new, additional terms in the action become important close
to caustic formation so as to create a repulsive gravity effect, stopping ∇µu

µ from diverging. Indeed, a DM
effect with a number of similar characteristics to that following from (46) was discovered in the context of
the projectable Hořava-Lifshitz gravity [E62, E61] where the four velocity of the DM fluid takes the form
uµ = −∂µT where T (x) is a scalar field which acts as a preferred time coordinate in spacetime. It has been
argued that caustics should be expected to not form in such theories due to a) corrections to the Lagrangian
that depend on the extrinsic curvature of surfaces of constant T (and so may include ∇µu

µ) which modify
classical gravitational dynamics so as to provide a repulsive effect preventing the divergence of ∇µu

µ and
b) quantum behaviour of the gravitational degrees of freedom, akin to how the big bang singularity may be
avoided in minisuperspace quantum cosmological models of a system comprising GR and dust. As we have
discussed, behaviour b) may also arise from the action (46) whilst corrections of the type a) are conceivable:
it may be checked that equations of motion for the model β = ±i (46) imply that the extrinsic curvature of
surfaces of constant X is contained within the torsion D(A)eI = RI

J(A)XJ and so additional terms in the
action of higher order in these parts of the curvature may be able to dynamically prevent singular behaviour
in this extrinsic curvature.

The question of the corrections that should be expected to equations (64) and (66) and how they affect
the viability of a DM candidate arising from a description of gravity in terms of a spontaneously-broken
gauge theory of the Lorentz group remains an open one. The scenario that geodesic motion is modified by
repulsive gravity effects in the vicinity of would-be caustics is perhaps most immediately testable given the
effect such a modification would have on the propagation of light, leading to a potential gravitational lensing
signature.

We now briefly comment on the coupling of Model A to matter. A surprising result of the model
is the existence of solutions with Minkowski spacetime metric yet possessing non-zero gauge field cur-
vature RIJ(A). In a Minkowski coordinate basis (t, xi), the solution implies that A+IJ = 0, A−IJ =
(2/t)(n[IEJ] + i

2ϵ
IJKLnKEL) where nI = XI/

√
−XJXJ where EL are spatial coordinate basis one-forms

satisfying ELn
L = 0 whilst the metric gµν = D

(A)
µ XID

(A)
ν XI = ηµν . Any field that couples to A−IJ in

isolation (i.e. aside from the coupling to A−IJ contained within gµν) will be affected by the background
curvature. Here appears an apparent choice in the coupling between spinor fields and gravity. Consider the
kinetic term for a − (minus) chirality spinor χA′ . There are two independent possibilities:

iϵIJKLe
J ∧ eK ∧ eL ∧

(
χ∗AσI

AA′D(A−)χA′)
(79)

−iϵIJKLe
J ∧ eK ∧ eL ∧

(
D(A+)χ∗AσI

AA′χA′)
(80)

It is the latter possibility that was considered by Ashtekar et al. [E21] in the self-dual Einstein Cartan theory
where the field A−IJ does not appear in the formalism and hence the term (79) cannot be constructed. It was
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shown that the coupling (80) nonetheless allowed the recovery of familiar results from the coupling of gravity
to spinors in Einstein-Cartan theory. In the present model, if the coupling (80) is chosen then the spinor field
does not ‘see’ the curvature of the background. If, on the other hand, the coupling (79) is chosen then a brief
calculation shows that if χA′ is part of a Dirac spinor Ψ (for example the left handed electron-neutrino in the
standard model) then the following couplings appear in the spinor Lagrangian on this background: aIΨ̄γIΨ
and bIΨ̄γ5γIΨ where aI , bI ∼ nI/t. Such couplings have been widely studied in the context of Lorentz-
violating extensions of the standard model [E33] and contemporary constraints [E113] on the magnitude
of components of bI would correspond to a t value of the order of several months. The fact that {aI , bI}
diverge t → 0 is perhaps indicative that treating the matter coupling to gravity via a term (79) as a small
perturbation to the background describing Minkowski space with non-vanishing curvature is not consistent.
Nonetheless, it is conceivable that the field configuration {XI ,AIJ} producing the geometry accessible to
experiment approximates a part of this solution and so the above Lorentz-violating matter couplings may be
relevant, however a definitive answer likely depends on the resolution of the DM propagation issue discussed
earlier. A more detailed study of the coupling of Model A to matter with an emphasis on symmetries and
conserved Noether currents was recently undertaken [O20].

The model may also have characteristic experimental signatures from early universe physics. For the case
of Ashtekar’s chiral formulation of gravity (whose canonical formulation arises from (30) in the limit Π̃ → 0),
it has been argued [E74] that whatever the ultimate form that the quantized theory takes, it should possess
a regime which is mappable to a classical cosmological background with metric perturbations describable in
terms of the usual inflationary calculation of tensor vacuum quantum fluctuations. Given this assumption, it
was found that the primordial spectrum of tensor modes of + and − chirality differed [E74, E68], in contrast
to the case of tensor modes in standard inflationary cosmology where gravity is described by metric GR and
no such effect exists. Remarkably, such effects in primordial tensor modes may be observable via their effect
on the cross-correlation between CMB temperature and polarization fluctuations [E56]. Given this, a first
step that could be taken in the case of (30) would be to allow for the effect of additional degrees of freedom
(Π̃, ϕ2) in the quantization of cosmological perturbations and see how the above picture is affected.

An alternative approach is to look to describe the behavior of the model as a quantum theory in situations
of high symmetry. This has been carried out for Ashtekar’s chiral formulation of gravity in the context of
loop quantum cosmology [E86, E90, E83] and this approach could be generalized to the case of the model
considered here6.

Finally we briefly discuss possible generalizations of Model A. A natural generalization of (9) would
be the introduction of fields (ψ+, ψ−) (potentially with non-trivial Lorentz index structure) such that the
hitherto constant (g+, g−) are reflective of expectation values of these fields. The General-Relativistic limits
(g+ = 1, g− = 0) and (g+ = 0, g− = 1) would then potentially arise from spontaneous symmetry breaking
(with the action formally symmetric under the transformations (23) and accompanying transformation of
(ψ+, ψ−)) and with time variation of the new dynamical fields being of significance in the early universe.

An alternative approach is to look to enlarge the gauge symmetry of the model. It was found in [O18]
that a gauge theory of the complexified general linear group GL(4, C) could reduce to (9) following a process
of dynamical symmetry breaking.

5.5 Model B
5.5.1 A general class of gravitational theories as alternatives to DM where the speed of

gravity always equals the speed of light.

In the absence of direct detection of a particle with the right properties to account for the entirety of DM,
it remains a possibility that the effects attributed to DM represent a shortcoming in our understanding of
the nature of gravity, GR may not describe gravity accurately in regimes where it was previously expected
to - presumably on the large scales where there is evidence for a DM effect. Generally, attempts to extend
GR so as to modify the ‘force of gravity’ on large scales so as to mimic the presence of DM introduce
additional fields into the gravitational sector. [E31, E43, E57, E59, E67] introduce additional fields into the
gravitational sector whose influence on the visible matter produces DM like effects. Any additional fields

6It is interesting to note that despite the classical equivalence of parameterized field theory to the theory of matter fields
propagating in fixed Minkowski space background, the Dirac quantization of the former theory faced technical obstacles [E34],
the resolution of which required the use of techniques originally developed in the loop quantum gravity paradigm [E55].
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coupled non-trivially to the spacetime curvature generally lead to gravitational wave speed different than
GR.

Gravitational waves (GW) from the merger of a binary neutron star system have recently been observed
by the advanced Laser Interferometer Gravitational Observatory (aLIGO) and the VIRGO interferometer
[E91]. Within seconds of this event (GW170817) being detected, a gamma ray burst was independently
observed from the same location [E96, E99]. Given the high likelihood that these represent signals from the
same event, the specific small time difference - given the large distance between the location of emission (the
galaxy NGC 4993) - implies that (in units where the speed of light is unity), the speed of propagation of
GW cT obeys

|c2
T − 1| ≲ 10−15. (81)

This is a remarkably stringent constraint and has led the exclusion of many modified theories of gravity
proposed in order to explain the phenomenon of dark energy [E93, E95, E94, E98, E108]. Equally important
is the impact of these observations on gravitational theories functioning as effective DM proxies. This
stringent constraint has also been used in [E105] to place constraints on the Einstein-Aether theory [E37].

Early evidence for DM came in the form of observations of the motion of stars within galaxies [E11],
where it was found that stars towards the outer regions of galaxies had orbital velocity significantly higher
than expected due to the Newtonian gravitational field produced by visible matter. In 1983, Milgrom showed
[E15] that this motion of stars could instead result from a modification to the inertia/dynamics of stars at
low Newtonian accelerations. Shortly afterwards it was found that these same effects could alternatively
result from a non-linear modification to the Poisson equation of Newtonian gravity [E18]. These models are
referred to as MOdified Newtonian Dynamics (MOND). To make progress it is clearly necessary to look to
recover MOND from a theory that can also account for the experimental successes of GR. Perhaps the most
widely-known relativistic theory leading to MOND-like behavior is the Bekenstein-Sanders Tensor-Vector-
Scalar (TeVeS) theory [E31, E43] which depends on a metric ĝµν , a unit-timelike (with respect ot the metric
ĝµν vector field Aµ and a scalar field ϕ. All types of matter are taken to couple universally to a metric gµν

via

gµν = e−2ϕĝµν − 2 sinh(2ϕ)AµAν (82)

and as such the Einstein Equivalence Principle is obeyed. Due to the algebraic relation between the two
metrics, there is only one tensor mode propagating gravitational wave perturbation (two polarizations) in
this theory just as in GR. The cosmology of TeVeS theory has been extensively investigated in [E49, E51,
E88, O17].

The speed of the tensor mode GW in TeVeS theory is in general different than the speed of light, and it is
then natural to ask what is the status of the TeVeS paradigm after GW170817. Using a variety of methods,
a number of articles [E101, E102, E103] have tackled this question. The authors of [E101] compared the
Shapiro time delay of gravitational versus electromagnetic waves, as they pass through the potential wells
of galaxies, proposed earlier as a generic test of TeVeS theory [E52]. Such a test is superior to testing the
propagation speed on a FRW background spacetime considered in [E93, E95, E94, E98, E105] in the case
of other theories. The delay was calculated there by comparing the geodesics of ĝµν to the geodesics of
gµν , however, as the metric is not an observable the generality of their result is unclear. For instance, [O1]
reformulated TeVeS theory using a single metric (gµν) so that no geodesic comparisons are possible in that
formulation7. A different method is necessary In [E102, E103] the speed of all six types of GW present in
TeVeS theory [E66] has been considered on a Minkowski background and after imposing (81), analysis of the
remaining parameter space led to the conclusion that TeVeS theory is ruled out.

In [H3], the propagation of GW on perturbed FRW spacetimes was investigated, which includes the
Shapiro time delay effect. It was shown that the original TeVeS theory [E43] and its generalization [E57,
E63] is indeed ruled out by the GW170817/GW170817a events, in agreement with previous studies [E101,
E102, E103]. However, it is additionally shown that there exists a previously unknown class of relativistic
MOND theories also based on the Tensor-(timelike)Vector-Scalar paradigm, where the speed of gravity
always equals the speed of light while retaining the effective bi-metric description leading to the usual
MOND phenomenology in galaxies.

7Other single-metric theories such as the Horndeski theory studied in [E93, E95, E94, E98, E108] and Einstein-Aether theory
studied in [E105] may also yield Shapiro time delay different than the one in GR.
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A slight generalization of TeVeS is given by the following action [E57, E63] which depends on the three
above fields and the two auxiliary fields λA and µ:

Ŝ = 1
16πG

∫
d4x
√

−ĝ
[
R̂− K̂ + λA (AρAρ + 1) − µĝαβ∇̂αϕ∇̂βϕ− V̂ (µ)

]
+ SM[g] (83)

Here G is the bare gravitational constant, ĝ and R̂ are the determinant and scalar curvature of ĝµν respec-
tively, V̂ is a free function of µ, SM [g] is the action for all matter fields and K̂ = K̂µναβ∇̂µAν∇̂αAβ is
obtained using

K̂µναβ = c1ĝ
µαĝνβ + c2ĝ

µν ĝαβ + c3ĝ
µβ ĝνα + c4ĝ

νβAµAα (84)
The indices of Aµ are always raised using ĝµν , the inverse metric of ĝµν , i.e. ĝµρĝρν = δµ

ν). We emphasise
that in contrast to [E57, E63] we allow here the cI (I = 1 . . . 4) to be functions of the scalar field ϕ and this
comes out to be very important when analyzing the speed of GW. The original TeVeS theory is obtained
when cI = {2KB − 1

4 ,−
1
2 ,−2KB + 3

4 ,KB − 1
4 }, for a constant KB [E63]. For notational compactness we

define cIJ... ≡ cI + cJ + . . . .
The emergence of MOND behavior in the quasistatic weak field limit in the constant cI case has been

analysed extensively in [E63]. We revisit that analysis here in order to show that it remains unchanged even
when cI are functions of ϕ. In particular, one expands the scalar field as ϕ = ϕ0 +φ with ϕ0 a constant and
φ time independent. The quasistatic metric is such that ĝ00 = −e−2ϕ0(1 − 2Ψ̂) and ĝij = e2ϕ0(1 − 2Φ̂)γij .
In this coordinate system the vector field has components A0 = −e−ϕ0(1 + Ψ̂) and Ai = 0. Using the metric
transformation (82) we find the components of the metric gµν so that

ds2 = −(1 + 2Ψ)dt2 + (1 − 2Φ)γijdx
idxj (85)

where
Ψ̂ = Ψ − φ, Φ̂ = Φ − φ, (86)

With this ansatz, the vector field equations are identically satisfied while the Einstein and scalar field
equations reduce to

∇⃗2Ψ̂ = 8πG
2 − c1 + c4

ρ (87)

∇⃗i

(
µ∇⃗iφ

)
= 8πGρ (88)

Φ̂ = Ψ̂ (89)

where ρ is the matter energy density and where the cI ’s are evaluated at ϕ = ϕ0 in (87). The non-dynamical
field µ is obtained via a constraint equation found from the action upon variation wrt µ and this equation
depends on the form of V̂ (µ). Not all functions V̂ (µ) lead to either Newtonian or MONDian limiting behaviors
and the ones that do so must have appropriate properties discussed in [E63]. In order to determine the speed
of propagation of GW, we need the tensor mode equation on an FRW background. We assume a metric gµν

such that

ds2 = − dt2 + a2 (γij + χij) dxidxj (90)

where a is the scale factor, γij is the spatial metric of constant curvature κ and χij is the tensor mode
GW which is traceless γijχij = 0 and transverse ∇⃗iχ

i
j = 0, where ∇⃗i is the spatial covariant derivative

compatible with γij . As we are interested only in the tensor mode, we let the perturbations of ϕ and Aµ

to zero so that ϕ = ϕ̄(t) and A0 = −e−ϕ̄ with Ai = 0. The perturbed Einstein equations for the tensor
mode have been obtained for constant cI in [E57]. In the case where cI = cI(ϕ), we find an additional term
present such that

e2ϕ̄ (1 − c13)
[
χ̈i

j +
(

3H + 4 ˙̄ϕ
)
χ̇i

j

]
− e2ϕ̄ dc13

dϕ
˙̄ϕχ̇i

j − 1
a2 e

−2ϕ̄
(

∇⃗2 − 2κ
)
χi

j = 16πGe−2ϕ̄Σ(g)i
j (91)

where Σ(g)i
j is a traceless source term due to matter. The only difference from the constant cI case is the

appearance of the dc13
dϕ term multiplying χ̇i

j . Now in the original and in the generalized TeVeS theories it is
clear that the speed of propagation of the tensor mode is given by

c2
T = e−4ϕ̄

1 − c13
(92)
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Thus, in general c2
T will differ from unity putting this theory in conflict with the observations that require

c2
T ≈ 1 unless some mechanism sets ϕ̄ to be an approximately constant value at very low redshift and equal

to ϕ̄ = − 1
4 ln(1 − c13). This is highly unlikely but even if possible, we show below that the Shapiro time

delay rules this case out. If cI are functions of ϕ, however, there seems to be enough freedom to change this
fact. In particular, the unique choice of

c13(ϕ) = 1 − e−4ϕ (93)

transforms (91) into

χ̈i
j + 3Hχ̇i

j − 1
a2 (∇⃗2 − 2κ)χi

j = 16πGΣ(g)i
j (94)

which is identical to the tensor mode equation in GR and thus with this choice c2
T = 1.

We have shown above that the choice (93) leads to GW tensor mode propagation as in GR while main-
taining MONDian behavior. When gravitational and electromagnetic wave pass through potential wells
generated by matter, however, they incur an additional (Shapiro) time delay and as [E52] proposed, it may
be used to put strong constraints on such theories. We thus examine whether the condition (93) is sufficient
to ensure tensor mode propagation with c2

T = 1 even when including the effect of inhomogeneities. In these
situations the physical metric gµν takes the form

ds2 = −(1 + 2Ψ)dt2 + a2(1 − 2Φ) (γij + χij) dxidxj (95)

where the hierarchy χij ≪ Φ,Ψ ∼ 10−5 has been assumed. Furthermore TeVeS’s scalar field ϕ takes the
form ϕ = ϕ̄+φ (with φ ≪ 1) while the vector field has components A0 = −e−ϕ̄(1 + Ψ̂) and Ai = −aeϕ̄∇⃗iα.
The expressions (86) relate the potentials between the two frames. Given (95) the metric ĝµν will not be in
diagonal form but will contain terms coming from the vector perturbation α. In general the potentials are
assumed to be space and time dependent.

Defining T ik
j = ∇⃗iχk

j + ∇⃗jχ
ki − 2

3 ∇⃗lχk
lδ

i
j , after a lengthy and tedious calculation, the tensor mode

equation for χij is found to be

e2ϕ̄

[
(1 − c13)

(
1 − 2Ψ̂

)
− dc13

dϕ
φ

]
χ̈i

j + e2ϕ̄Aχ̇i
j −

{
1
a2 e

−2ϕ̄
[
(1 + 2Φ̂)

(
∇⃗2 − 2κ

)
+ ∇⃗k(Ψ̂ − Φ̂)∇⃗k

]
− 1
a

Bk∇⃗k

}
χi

j

+ 1
a2 e

−2ϕ̄(1 + 2Φ̂)
(

∇⃗i∇⃗kχ
k

j + ∇⃗j∇⃗kχi
k − 2

3∇⃗l∇⃗kχ
k

lδ
i
j

)
+ 1
a2 e

−2ϕ̄

{
∇⃗k(Ψ̂ − Φ̂)T ik

j

− 2
[
∇⃗k∇⃗j

(
Φ̂ − Ψ̂

)
χik − 1

3∇⃗k∇⃗l

(
Φ̂ − Ψ̂

)
χlkδi

j

]}
+ 1
a

Ci
j = 16πGe−2ϕ̄(1 − 2φ)Σ(g)i

j (96)

where explicit forms of the terms A, Bi, Ci
j can be found in [H3]. Allowing all potentials as well as φ and α

to vanish reduces (96) to (91). Consider first the reduction of (96) to quasistatic backgrounds, also ignoring
the source term, for the fine-tuned case where c13 = 1 − e−4ϕ0 (so that c2

T = 1 on the background). We
obtain this by setting a = 1, ϕ̄ = ϕ0 and Ψ̂ = Φ̂ from (89). Then it can be verified that the functions A, Bk,
Ci

j all vanish. In addition, considering LIGO wavelengths ∼ 1000km which are far smaller than the scale
of the potential wells, we may drop the terms containing derivatives on Ψ and φ, i.e ∂Φ ≪ ∂χ, even with
χ ≪ Φ [E108]. Finally, imposing further the gauge condition ∇⃗iχ

i
j = 0, (96) leads to(

1 − 2Φ̂
)
χ̈i

j −
(

1 + 2Φ̂
)

∇⃗2χi
j = 0 (97)

Thus in this case we expect a Shapiro time delay dictated by Φ̂, the potential formed by baryons alone. This
is not the same as Φ which is the potential seen by photons, hence, this fine-tuned case is ruled out by the
analysis of [E101]. Let us turn now to the case where (93) holds so that c2

T = 1 on FRW backgrounds. Impos-
ing (93) we find Bk = 0 and Ci

j = 0. Further using (86) we find e2ϕ̄A = e−2ϕ̄
[
3H(1 − 2Ψ − 2φ) − Ψ̇ − 3Φ̇

]
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and after choosing the gauge condition ∇⃗iχ
i
j = ∇⃗i(Φ − Ψ)χi

j , (96) turns into

(1 − 2Ψ)
[
χ̈i

j +
(
3H − Ψ̇ − 3Φ̇

)
χ̇i

j

]
− 1
a2 (1 + 2Φ)

[(
∇⃗2 − 2κ

)
χi

j + ∇⃗j∇⃗k(Φ − Ψ)χi
k − ∇⃗i∇⃗k(Φ − Ψ)χk

j

− ∇⃗k(Φ − Ψ)∇⃗kχi
j

]
= 16πGΣ(g)i

j (98)

which is the same equation as in GR. Thus, with the choice (93) the tensor mode propagates at the speed
of light even when including inhomogeneities and gives the same Shapiro time delay as for photons. To
gain further insight as to why this behavior emerges we consider the single-metric (physically equivalent)
formulation of TeVeS. As shown in [O1], one introduces a new field Bµ = Aµ leading to Bµ = e−2ϕAµ and
writes the Lagrange constraint as gµνBµBν ≡ B2 = −e−2ϕ. This makes it possible to solve for ϕ and thus
remove both ϕ and ĝµν from the action. The number of degrees of freedom remain unchanged as now Bµ

contains 4 degrees of freedom rather than the 3 of Aµ. The action S[g,B, µ] of this physically equivalent
Vector-Tensor formulation is

S = 1
16πG

∫
d4x

√
−g [R−K − U ] + Sm[g] (99)

where U = V̂ (µ)/B2 and K is given by

K = (d1 − d3)FµνFµν + d13M
µνMµν + d2J

2 + d4J
νJν + 1

2d5J
µ∇µB

2 + d6

4 (∇B2)2 + d7

2 QJ + d8

4 Q
2

(100)

and we have also defined Fµν = 2∇[µBν], Mµν = 2∇(µBν), J = ∇µB
µ, Jµ = Bα∇αBµ and Q = Bα∇αB

2.
The functions for the generalised TeVeS theory dI (I = 1 . . . 8) may be found in the appendix of [E63].

Some of the dI coefficients depend on µ so that MOND behavior may emerge upon choosing appropriate
V̂ . Allowing for a general dependence dI(B2, µ) in (99) represents a slight generalization of (83). Inter-
estingly, the dynamical tendency towards Bµ having a non-vanishing norm in this picture arises from the
presence of inverse powers of the norm B2 in the Lagrangian, rather than via a Lagrangian constraint as
in (83). In this formulation, the modification to the speed of propagation of GW is due entirely to the
coupling of gravity to the field Bµ through that field’s kinetic term. A straightforward way to see this is by
considering the case where Bµ is hypersurface orthogonal; in which case we can decompose the metric gµν

as gµν = hµν − nµnν where nµ ≡ Bµ/
√

−B2 = N∇µt for some global time function t and hµν (hµνn
ν = 0)

is the spatial metric on surfaces of constant time. Then

K = −d13B
2KµνKµν − d2B

2K2 + . . . (101)

where we have defined the extrinsic curvature tensor Kµν ≡ 1
2 Lnhµν , and . . . denote terms of linear order

or lower in Kµν . As gravitational wave perturbations reside in ‘trace-free’ small perturbations to hµν , only
the first term in (101), schematically of the form ∼ d13B

2ḣµν ḣµν will affect the speed of gravity. There will
be no deviation from GR if

d13 = 0 ⇒ d1 = −d3. (102)

The transformation of (83) into (99) gives d13 = 1−c13
B6 − 1

B2 so that d13 = 0 iff c13 = 1 − B4 = 1 − e−4ϕ,
which is condition (93).

Therefore, in summary there exists a generic class of relativistic theories of MOND based on the Tensor-
(timelike)Vector-Scalar paradigm which retain the property that GW in this class propagate as in GR. The
original TeVeS theory is not part of this class and therefore not consistent with gravitational wave constraints.
Hence, actions of the form (99) are sufficiently general that they encompass both phenomenologically viable
and non-viable models. Viable models are those for which d3 = −d1 so that the Mµν term is absent while
all remaining dI ’s can in general be functions of both B2 and µ. However, not all such viable actions lead to
MOND behavior but specific functional forms of dI do so. Indeed, it is possible to sufficiently simplify the
viable subset of (99) while retaining a MOND limit and at the same time giving a realistic cosmology. This
subset is explored in detail in the following section.
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5.5.2 A new relativistic theory for Modified Newtonian Dynamics

This section presents the first relativistic completion of MOND which reproduces galactic and lensing phe-
nomenology similar to the Bekenstein-Sanders Tensor-Vector-Scalar (TeVeS) theory [E31, E43] and, unlike
TeVeS, successfully reproduces the key cosmological observables: the anisotropies of the CMB and the spec-
trum of matter perturbations. Relativistic models of MOND (RelMOND ) have always been constructed on
phenomenological grounds rather than based on fundamental principles. Quite likely the reason is that the
MOND law is empirical, and even the observation that it is scale invariant in the deep-MOND limit [E30,
E60] has not yet led to a definitive conclusion as to how this invariance could lead to a MOND gravitational
theory. RelMOND models should obey the principle of general covariance and the Einstein equivalence
principle. These are, however, do not provide any guidance as to how such theories should look like. Indeed,
many theories obeying these have nothing to do with MOND, and many RelMOND theories obeying these
same principles are in conflict with observations. Principle-based MOND theories include [E35, E72, E100],
however, these are nonrelativistic. Still, the phenomenological approach, that we also follow, can provide
valuable guidance toward a more fundamental theory.

What are the necessary phenomenological facts that any successful MOND theory should lead to? It
must (i) return to GR (hence, Newtonian gravity) when the gradient of the weak-field limit gravitational
potential ∇⃗Φ ≫ a0 in quasistatic situations while (ii) reproducing the MOND law (1) when ∇⃗Φ ≪ a0. It
should also (iii) be in harmony with cosmological observations including the cosmic microwave background
(CMB) anisotropies and matter power spectrum (MPS), (iv) reproduce the observed gravitational lensing of
isolated objects without DM halos, and (v) propagate tensor mode gravitational waves (GWs) at the speed
of light.

We consider each requirement in turn. Clearly, (i) means that when |∇⃗Φ| ≫ a0, the standard Poisson
equation ∇⃗2Φ = 4πGNρ holds while (ii) means that when |∇⃗Φ| ≪ a0 the MOND equation (1) holds. While
in many cases [E70, E87, O4] the transition between (i) and (ii) depends only on |∇⃗Φ|, in TeVeS it is
facilitated by a scalar d.o.f. φ. We follow the latter and assume that the physics encapsulated by (i) and
(ii) fits within the TeVeS framework. A template nonrelativistic action then, is

S =
∫
d4x

{
1

8πĜ

[
|∇⃗Φ̂|2 + J (Y)

]
+ Φρ

}
, (103)

where Φ = Φ̂ + φ is the potential that couples universally to matter, Ĝ is a constant and Y = |∇⃗φ|2. The
field φ obeys

∇⃗ · [(dJ /dY)∇⃗φ] = 4πĜρ (104)

while Φ̂ obeys the Poisson equation

∇⃗2Φ̂ = 4πĜρ (105)

Emergence of MOND is then ensured if J → 2λs

3(1+λs)a0
Y3/2 as ∇⃗φ → 0. It is in this limit that a0 appears.

For a point source of mass M , the MOND-to-Newton transition occurs at rM ∼
√

(GNM/a0). A MOND
force ∼

√
GNMa0/r lends its way trivially to a Newtonian force GNM/r2 as r ≪ rM but in the inner

Solar System this is not sufficient. Corrections to r−2 due to φ will compete with the post-Newtonian force
∼ (GNM)2/r3, and these are constrained at Mercury’s orbit to less than ∼ 10−4 [E82, E106]. Suppressing
these may happen either through screening or tracking. In the former, φ is screened at large ∇⃗φ so that
Φ ≈ Φ̂ while in the latter φ → Φ̂/λs, so that GN = (1 + 1/λs)Ĝ. We model both with λs since screening is
equivalent to λs → ∞. In terms of J , tracking happens if J → λsY, while screening occurs if J has terms
Yp with p ≥ 3/2 (this may be in conflict with Mercury’s orbit even as p → ∞) or via higher-derivative terms
absent from (103).

Consider requirement (iii), that is, successful cosmology. In (103) we have a new d.o.f. φ(x⃗) and we
expect that the same will appear in cosmology, albeit with a time dependence, i.e. ϕ̄(t). Consider a flat
FRW metric so that g00 = −N2 and gij = a2γij where N(t) is the lapse function and a(t) the scale factor.
What should the expectation for a cosmological evolution of ϕ̄(t) be? The MOND law for galaxies is silent
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regarding this matter. There is, however, another empirical law which concerns cosmology: the existence of
sizable amounts of energy density scaling precisely as a−3. Within the DM paradigm such a law is a natural
consequence of particles obeying the collisionless Boltzmann equation. The validity of this law has been
tested [E104, E116] and during the time between radiation-matter equality and recombination it is valid
within an accuracy of ∼ 10−3. Do scalar field models leading to energy density scaling as ρ̄ ∼ a−3 exist?

The answer is yes: shift symmetric k essence. It has been shown [E44] that a scalar field with Lagrangian
∼ K(X̄ ) where X̄ = ˙̄ϕ2/N2, leads to dust (i.e. ρ̄ ∼ a−3) plus cosmological constant (CC) solutions provided
K(X̄ ) has a minimum at X̄ = X0 ̸= 0. Such a model is the low energy limit of ghost condensation [E42, E50]
although the latter also contains higher derivative terms ∼ (□ϕ)2 in its action. The FRW action is

S = 1
8πG̃

∫
d4xNa3

[
−3H2

N2 + K(Q̄)
]

+ Sm[g] (106)

where Q̄ = ˙̄ϕ/N and H = ȧ/a. Interestingly, (103) and (106) are shift symmetric in φ and ϕ̄ respectively.
We propose that a MOND analog on FRW is given by (106) with

K = −2Λ + K2(Q̄ − Q0)2 + . . . (107)

where Λ is the CC, K2 and Q0 parameters and (. . .) denote higher powers in this expansion. Expanding in
Q − Q0 rather than X − X0 is the most general expansion leading to dust solutions and includes the K(X̄ )
case. The CC in this model remains a freely specifiable parameter, just as in the Λ-cold DM (ΛCDM) model.
Following [E42, E50], we call this the (gravitational) Higgs phase.

Requirement (iv), that is, correct gravitational lensing without DM, requires a relativistic theory. A
minimal theory for RelMOND is a scalar-tensor theory[E18] with the scalar providing for a conformal factor
between two metrics. However, since null geodesics are unaltered by conformal transformations, such theories
cannot produce enough lensing from baryons in the MOND regime. Sanders solved the lensing problem by
changing the conformal into a disformal transformation [E31] using a unit-timelike vector field, incorporated
by Bekenstein [E43] into TeVeS. The unit-timelike vector has component A0 ∼

√
−g00 and this ensures that

the two metric potentials are equal (as in GR), so that solutions which mimic DM also produce the correct
light deflection.

Meanwhile the anisotropic scaling of the MOND law ∼ |∇⃗φ|3 compared with a well-behaved cosmology
implying terms like ˙̄ϕ2 and ˙̄ϕ4, heuristically implies (gravitational) Lorentz violation. A good way of intro-
ducing such an ingredient is via a unit-timelike vector field Aµ, much like the spirit of the Einstein-Æther
theory [E7, E38], and TeVeS [E31, E43].

The advanced Laser Interferometer Gravitational Observatory (LIGO) and Virgo interferometers [E91]
observed GWs from a binary neutron star merger. Combined with electromagnetic observations [E96, E99],
this strongly constrains the GW tensor mode speed to be effectively equal to that of light. By analyzing the
tensor mode speed, TeVeS has been shown [E101, E102, E103, H3] to be incompatible with the LIGO-Virgo
observations for any choice of parameters. The necessary d.o.f. ϕ and Aµ are also ingredients of TeVeS, only
there, a second metric was introduced as a combination of gµν , ϕ and Aµ. In [O1], ϕ and Aµ were combined
into a timelike (but not unit) vector Bµ, and it was shown that TeVeS may be equivalently formulated with
a single metric gµν minimally coupled to matter, and Bµ with a noncanonical and rather complicated kinetic
term. A general class of theories based on the pair {gµν , Bµ} was uncovered [H3] where the tensor mode
speed equals the speed of light in all situations, satisfying requirement (v).

A subset of the general class of actions considered in [H3] depends on a scalar ϕ and unit-timelike vector
Aµ such that

S =
∫
d4x

√
−g

16πG̃

[
R− KB

2 FµνFµν + 2(2 −KB)Jµ∇µϕ− (2 −KB)Y − F(Y,Q) − λ(AµAµ + 1)
]

+ Sm[g]

(108)

where Fµν = 2∇[µAν], Jµ = Aα∇αAµ, and the Lagrange multiplier λ imposes the unit-timelike constraint
on Aµ. In addition F(Y,Q) is a free function of Q = Aµ∇µϕ and Y = qµν∇µϕ∇νϕ where qµν = gµν +AµAν

is the three-metric orthogonal to Aµ. Notice that (108) is shift symmetric under ϕ → ϕ+ ϕ0.
On FRW ϕ = ϕ̄(t) while A0 = −N and Ai = 0, hence Y = 0 and Q = Q̄. We define K(Q̄) = − 1

2 F(0, Q̄)
so that (108) turns precisely into (106), which we have argued that it satisfies requirement (iii). In the
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weak-field quasistatic limit, we set g00 = −1 − 2Ψ and gij = (1 − 2Φ)γij and assume that Aµ aligns with the
time direction so that A0 = 1 − Ψ and Ai = 0. The scalar is expanded as ϕ = ϕ̄+ φ with φ̇ ≪ |∇⃗φ| and ˙̄ϕ
may be set to its (late Universe) FRW minimum Q0. Hence, Q = (1 − Ψ)Q0. Then (108) leads to Ψ = Φ
which can be substituted into the action to get

S = −
∫
d4x

{
2 −KB

16πG̃

[
|∇⃗Φ|2 − 2∇⃗Φ · ∇⃗φ+ |∇⃗φ|2 − µ2Φ2 + J (Y)

]
+ Φρ

}
(109)

where J (Y) = F(Y,Q0)/(2 − KB). Compared with (103) a new term appears which looks like a “mass
term” for Φ, with µ =

√
2K2

2−KB
Q0. The solution for Φ will be as obtained from (103) only for r ≲ rC where

rC ∼
(
rMµ−2)1/3, and oscillatory for r ≳ rC . We require µ−1 ≳ 1Mpc so that MOND behavior according

to (103) may still be attained in galaxies. Thus, the quasistatic limit has at least three parameters: λs, a0
and µ.

While matter couples only to Φ, gravity comes with two potentials Φ and φ whose action is not diagonal
but contains the mixing term Jµ∇µϕ → ∇⃗Ψ · ∇⃗φ. Without the latter, φ decouples and no modification of
gravity arises in this situation, apart from µ2Φ which is akin to ghost condensation [E42, E50]. Diagonalizing
by setting Φ = Φ̂ + φ and identifying G̃ = (1 − KB

2 )Ĝ turns (109) into (103) (plus the µ2Φ2 term). Since,
Ψ = Φ, (109) leads to the right lensing whenever the solution for Φ mimics DM. This satisfies requirements
(i), (ii) and (iv).

The theory just presented was constructed to lead to a FRW universe resembling ΛCDM. Given a
general K(Q), we define the energy density as 8πG̃ρ̄ = Q dK

dQ − K and pressure as 8πG̃P̄ = K so that the
usual FRW equations are satisfied. The field equation for ϕ̄ may be integrated once to give dK

dQ = I0
a3 for

initial condition I0. When K obeys the expansion (107), then Q = Q0 + I0/a
3 + . . ., so that ρ̄ = ρ̄0/a

3 + . . .,
where 8πG̃ρ̄0 = Q0I0. The pressure is P̄ = w0ρ̄0/a

6 + . . . where w0 = 8πG̃ρ̄0
4Q2

0K2
is the equation of state at

a = 1, that is, w = w0/a
3 + . . . so that P̄ = wρ̄. A time-varying w implies an adiabatic sound speed

c2
ad = dP̄ /dρ̄ = dK/dQ

Qd2K/dQ2 and if K obeys (107) then c2
ad = 2w0/a

3 + . . .. Clearly, w ≥ 0 and c2
ad ≥ 0, where

the zero point is reached as a → ∞. As the solution depends on the initial condition I0, the density ρ̄ is not
(classically) predicted.

For a proper cosmological matter era in the Higgs phase we need w0 to be sufficiently small. Observa-
tions [E104, E116] give w ≲ 0.02 at a ∼ 10−4, hence, w0 ≲ 2 × 10−14. Meanwhile, µ−1 ≳ Mpc in order not
to spoil the MOND behavior, leading to w0 >

3H2
0 Mpc2Ω0

2(2−KB) ≳ 10−8. Unless the effect of the µ term in (109) is
alleviated in some future theory, the Higgs phase cannot be extended too long in the past, and higher terms in
(107) must be taken into consideration. Within the present setup, one can arrange this with a function K(Q)
which suppresses w and c2

ad during most of the cosmic evolution. Examples are K = 2K2Z2
0 [cosh(Z) − 1]

(“Cosh function”) and K = 2K2Z2
0

[
eZ2 − 1

]
(“Exp function”) where Z = (Q − Q0)/Z0.

The tight coupling of baryons to photons in the early Universe leads to Silk damping and wipes out all
small-scale structure in baryons, preventing the formation of galaxies in the late Universe. Within GR, cold
DM sustains the gravitational potentials during the tight coupling period, driving the formation of galaxies
and affecting the relative peak heights of the CMB as further corroborated by e.g. the Planck satellite [E111].
Checking whether this theory fits the CMB and MPS spectra requires studying linear fluctuations on FRW.

We consider scalar modes in the Newtonian gauge so that g00 = −(1+2Ψ), g0i = 0 and gij = a2(1−2Φ)γij

and perturb the scalar as ϕ = ϕ̄+φ and the vector as Aµ = {−1 − Ψ, ∇⃗iα}. The perturbed Einstein, vector
and scalar equations, then depend on the new scalar modes φ and α and their derivatives. The shear equation
remains as in GR, as do the usual perturbed Boltzmann equations for baryon, photons and neutrinos, since
they couple only to gµν .

Setting χ ≡ φ + ˙̄ϕα, γ ≡ φ̇ − ˙̄ϕΨ, E ≡ α̇ + Ψ and defining the density contrast δ and momentum
divergence θ via

δ ≡1 + w
˙̄ϕc2

ad

γ + 1
8πG̃a2ρ̄

∇⃗2 [KBE + (2 −KB)χ] (110)

θ ≡φ
˙̄ϕ

(111)
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Figure 4: The CMB temperature (T) CT T
ℓ and E-mode polarization CEE

ℓ angular power spectra for ΛCDM
and this theory for a collection of functions and parameter values. The ΛCDM parameters are angular acous-
tic scale 100θs = 1.04171, DM density Ωch

2 = 0.1202, baryon density Ωbh
2 = 0.02235, reionization optical

depth τ = 0.049, helium fraction YHe = 0.242, primordial scalar amplitude 109As = 2.078 and spectral index
ns = 0.963, while the MOND curves deviate from these within ∼ {0.07, 0.33, 3.98, 14.29, 1.57, 0.58, 2.60}
percent. MOND models have λs = ∞ and their other parameters are shown in the CT T

ℓ panel, with Q0 and
Z0 in Mpc−1. The “Higgs-like” function parameters are incompatible with a MOND limit.

the Einstein equations take the same form as in GR, i.e. δG0
0 = 8πG

∑
I ρ̄IδI and δG0

j = −8πG
∑

I(ρ̄I +
P̄I)∇⃗jθI where the index I runs over all matter species including the new variables δ and θ. These obey
standard fluid equations

δ̇ =3H (wδ − Π) + (1 + w)
(

3Φ̇ − k2

a2 θ

)
(112)

θ̇ =3c2
adHθ + Π

1 + w
+ Ψ (113)

but with nonstandard pressure contrast:

Π = c2
adδ − c2

ad
8πG̃a2ρ̄

∇⃗2 [KBE + (2 −KB)χ] (114)

Hence, the resulting system is not equivalent to a dark fluid: the nonstandard pressure, thus defined,
does not close under the fluid variables but, rather, depends on the vector field perturbations α and E. The
latter evolves with

KB
(
Ė +HE

)
=dK
dQ

χ− (2 −KB)
[ ˙̄ϕ

1 + w
Π +

(
H + ˙̄ϕ

)
χ− 3c2

adH
˙̄ϕα
]

(115)

Cosmologically, the necessary additional free parameters to ΛCDM are λs (influencing the effective cosmo-
logical gravitational strength), KB, K2 (or equivalently w0) and Q0. These fix µ appearing in the quasistatic
regime. More elaborate functions K(Q) introduce further parameters, e.g. Z0 in the case of the “Cosh” or
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Figure 5: The linear MPS P (k) for the models of Fig. 4 showing excellent fits to the Sloan Digital Sky
Survey (SDSS) data release 7 (DR7) luminous red galaxies (LRG) [E65]. We also include a bias parameter
b. Note that the (derived) Hubble constant for each model is different.

“Exp” functions above. Note that a0 does not appear in the linear cosmological regime but will play a role
once nonlinear terms from F(Y,Q) kick in.

In Figs. 4 and 5 the CMB and MPS are shown in the case of a “Cosh”, an “Exp” and a “Higgs-like”
function K(Q) = K2

4Q2
0

(
Q2 − Q2

0
)2, computed numerically by evolving the FRW background and linearized

equations using a) a Boltzmann code written by co-author Constantinos Skordis and b) a version of the
CLASS CMB code [E73] modified by myself (Thomas Zlosnik). It has been checked that the results of
both codes agree to good accuracy. We have used adiabatic initial conditions and a standard initial power
spectrum P0 = Ask

ns with amplitude As and spectral index ns. For a wide range of parameters, this
relativistic MOND theory is consistent with the CMB measurements from Planck. This happens because
c2

ad and w are small enough so that Π → 0 and we get dustlike evolution as δ̇ = 3Φ̇ − k2

a2 θ and θ̇ = Ψ,
while the vector field decouples. Note that the field Aµ also contains a ‘pure vector’/divergenceless mode
perturbation which is expected to behave similarly as in the Einstein-Æther theory [E7, E38]. This may lead
to imprints on the B-mode CMB polarization signal.

It has thus been shown that the cosmological regime of this theory reproduces the CMB and MPS power
spectra on linear scales and that MOND-like behavior emerges in the quasistatic approximation. The latter
is expected to hold for virialized objects, however, how such objects emerge from the underlying density
field, i.e. how the two regimes connect, is an open problem. This will happen at a scale which is expected to
depend on a0, µ and Q0 and quite likely the nonlinear ∼ ∇(∇ϕ)2/a0 term coming from F will play a role.
It is reasonable to expect that on mildly nonlinear scales, the quasistatic regime is not yet reached.

Setting M̃2
p = 1/(8πG̃) and canonically normalizing as ϕ̃ =

√
2K2M̃pϕ in (107), the FRW action (106)

becomes

S =
∫
d4xNa3

[
− 3M̃2

p

H2

N2 + 1
2

( ˙̃ϕ
N

− Λ2
c

)2

+ . . .

]
(116)

where Λ2
c = M̃p

√
2K2Q0. Considering the MOND limit in (108) gives M̃2

p F/2 → |∇⃗ϕ̃|3/Λ2
0 where Λ2

0 =
12 [K2(1 + 1/λs)/(2 −KB)]3/2

Mpa0. This scale is indicative of the energy scale above which quantum cor-
rections may be important and below which we can trust the classical theory. Since a0 ∼ H0/6 then
Λ0 ≳ meV ∼ (0.1mm)−1. Newton’s r−2 law has been tested down to ∼ 52µm [E117] and the curves in Figs.4
and 5 have Λ−1

0 ≲ 100nm.
Absence of ghosts to quadratic order signifies a healthy theory that could arise as a limit of a more

fundamental theory. We do not have such a theory at present but we discuss a case that may bring us closer.
The vector in (108) does not seem to obey gauge invariance but in the quadratic action (128) it does so
through mixing with diffeomorphisms of hµν . This is not an accident. Let us normalize via Âµ = MggcAµ

for some scale Mggc and insert the term − 1
4

M̃4
p

M4
ggc
λ2. Varying with λ and using the constraint to eliminate

λ from the action, perform a Stückelberg transformation Âµ → Âµ + ∇µξ/Mggc and define the covariant
derivative acting on “angular field” ξ as Dµξ = ∇µξ/Mggc + Âµ. The action turns to



33

S = SEH +
∫
d4x

√
−g
{

− 1
4g2

ggc
FµνF

µν + 1
4(DµξDµξ +M2

ggc)2
}

(117)

plus ϕ-dependent terms, where Fµν = ∇µÂν − ∇νÂµ, g2
ggc = M2

ggc
KBM̃2

p

. The resulting action is that of the
gauged ghost condensate (GGC) [E47] or bumblebee field [E22] which has been proposed as a healthy gauge-
invariant theory of spontaneous Lorentz violation. The Einstein-Æther theory, part of (108), is the (healthy)
decoupling limit of GGC by taking Mggc → ∞ if 0 < KB < 2 (in our notation) [E47]. It is argued [E47]
that Mggc can be as high as 1012GeV. Given that ϕ is shift symmetric it is natural to charge it under this
symmetry similar to ξ letting Dµϕ = ∇µϕ/Mggc + Âµ. Interestingly, we may identify Q − Q0 → DµξDµϕ
while the term Jµ∇µϕ → FµνDµξDνϕ, both multiplied by appropriate constants. The terms involving
Y may be constructed using

(
gµν + DµξDνξ/M4

ggc
)

DµϕDνϕ. Although extending our work as such does
not explain the MOND term Y3/2, it may provide promising directions for further improvements. In the
following section, a systematic study of the stability of the model with respect to linear perturbations around
Minkowski space is presented.

5.5.3 Aether scalar tensor theory: Linear stability on Minkowski space

As mentioned, typically theories of gravity different to GR (GR) introduce new degrees of freedom into the
gravitational sector beyond the metric tensor present in GR [E64, E75]. While these degrees of freedom
may have an important role to play in explaining aspects of the DS, it is crucial that they do not also
introduce instabilities that are incompatible with observation. Observational constraints suggest that there
exist regions of spacetime that can be approximated by highly symmetric solutions (for example geometry
in the solar system can be described as a perturbed Minkowski spacetime, whereas the late universe on the
largest scales can be described as perturbed de Sitter spacetime) and that these approximations persist for
a proper time at least of the order τs (for example lower bounds on the age of the solar system or the period
of Λ-domination in cosmology).

It is vital then that new degrees of freedom do not introduce instabilities that grow on timescales τi ≪ τs.
To probe this question, one can consider the propagation of small perturbations to the aforementioned highly
symmetric solutions. Classically, some theories of gravity allow perturbative modes that grow exponentially,
where the timescale τi of growth may depend on basic parameters in the theories which can lead to significant
constraints on their viability [E54]. Another possibility is that around some backgrounds, some perturbative
modes can carry negative energy –either via wrong-sign kinetic terms (ghosts) or wrong-sign mass terms
(tachyons). The former especially can signal pathological behavior in the quantum theory of these pertur-
bations, signaling at the least that the background solution cannot be considered stable. If experimental
constraints suggest that approximations to the background are long lived then this suggests that the theory
of gravity in question is not healthy. Such considerations are therefore vital when considering the viability
of a gravitational theory.

The new degrees of freedom in AeST combine with the metric to produce modified Newtonian dynamics
(MOND) phenomenology [E15, E18] in the quasistatic, weak-field limit relevant to galaxies while accounting
for precision cosmological data [E110] comparably well to the cold DM (CDM) paradigm 8. The CDM-like
cosmological behavior is unrelated to MOND but it is due to terms involving the new fields which have the
same form as shift-symmetric k-essence and ghost condensate model Scherrer2004,ArkaniHamedEtAl2003.
This results in its cosmological energy density ∝ (1+z)3 plus small decaying corrections which makes fitting
large scale cosmological data possible.

On a flat FRW background the metric takes the form ds2 = −dt2 + a2γijdx
idxj where a(t) is the scale

factor and γij is a flat spatial metric. The vector field reduces to Aµ = (1, 0, 0, 0) while ϕ → ϕ̄(t) leading to
Q → Q̄ = ˙̄ϕ and Y → 0, so that we may define K(Q̄) ≡ − 1

2 F(0, Q̄). We require that K(Q̄) has a minimum
at Q0 (a constant) so that we may expand it as K = K2

(
Q̄ − Q0

)2 + . . ., where the (. . .) denote higher
terms. This condition leads to ϕ̄ contributing energy density scaling as dust ∼ a−3 akin to [E42, E44], plus
small corrections which tend to zero when a → ∞. In principle, K could be offset from zero at the minimum

8See [E20, E31, E43, E46, E48, O4, E53, E59, E67, E70, E87, E85, E84, E97, E107, E109, E112] for alternative approaches
to the construction of relativistic theories of gravity that contain MOND phenomenology.
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Q0, i.e. K(Q0) = K0, however, such an offset can always be absorbed into the cosmological constant Λ and
thus we choose K0 = 0 by convention, implying the same on the parent function F .

In the quasistatic weak-field limit we may set the scalar time derivative to be at the minimum Q0, as
is expected to be the case in the late universe. This means that we may expand ϕ = Q0t + φ. Moreover,
in this limit F → (2 − KB)J (Y), with J defined appropriately as J (Y) ≡ 1

2−KB
F(Y,Q0). It turns out

that MOND behavior emerges if J → 2λs

3(1+λs)a0
|Y|3/2 where a0 is Milgrom’s constant and λs is a constant

which is related to the Newtonian/GR limit. Specifically, there are two ways that GR can be restored: (i)
screening and (ii) tracking. In the former, the scalar is screened at large gradients ∇⃗φ, where ∇⃗ ↔ ∇⃗i is
the spatial gradient on a flat background γij , and in the latter, λsφ becomes proportional to the Newtonian
potential, leading to an effective Newtonian constant

GN =
1 + 1

λs

1 − KB
2
G̃. (118)

Screening may be achieved either through terms in J ∼ Yp with p > 3/2 or through Galileon-type [E67]
terms which must be added to (108). Either way, for our purposes in this section, we may model screening
as λs → ∞.

We are interested in spacetime regions which are well approximated by weak gravitational fields modeled
as fluctuations on a Minkowski background ηµν and that these regions exist in the late universe where the
time derivative of the background field has settled in its minimum Q0, i.e. ˙̄ϕ → Q0. In addition, the size of
these regions is taken to be much smaller than the size of the current cosmological horizon so that we may
safely ignore the cosmological constant.

We expand the metric as gµν = ηµν − hµν , where η00 = −1 and ηij = γij , the vector field 9 as Aµ =
(−1+ 1

2h
00, A⃗i) and the scalar as ϕ = Q0t+φ. Thus our degrees of freedom are the metric perturbation hµν ,

vector field perturbation A⃗i (only its 3-dimensional part remains free) and the scalar field perturbation φ,
all of which are in general functions of both space and time. We raise/lower spatial indices with the spatial
metric γij , i.e. A⃗i = γijA⃗j and set |A⃗|2 = A⃗ · A⃗ = A⃗iA⃗

i (and use similar notation for other spatial vectors).
Our perturbative variables are amenable to spacetime gauge transformations generated by a vector field

ξµ. Generally, for a tensor Y, its perturbation δY = Y − Ȳ from its background form Ȳ transforms as
δY → δY + LξȲ, where Lξ is the Lie derivative. Usually, on Minkowski space only the metric has a
nonzero background value (ηµν), so that other fields besides the metric perturbation are gauge invariant
on such a background; this is typical of dark fields, i.e. additional degrees of freedom which contribute
to the energy density but do not mix with the metric perturbation through gauge transformations of this
kind. In the present case, however, both the vector field and the scalar field have nonzero background value:
Āµ = (−1, 0, 0, 0) and ϕ̄ = Q0t, hence, their perturbations do transform. Specifically, parameterizing ξµ as
ξµ = (ξT , ξ⃗

i), we have the usual metric gauge transformations

hµν → hµν + ∇̄µξν + ∇̄νξµ (119)

where ∇̄µ is the covariant derivative associated with the Minkowski metric ηµν . In 3 + 1 form the above
transformations are explicitly given as

h00 → h00 − 2ξ̇T (120)

h0i → h0i + ˙⃗
ξi − ∇⃗iξT (121)

hij → hij + ∇⃗iξ⃗j + ∇⃗j ξ⃗i. (122)

The perturbations A⃗ and φ transform as

A⃗ → A⃗− ∇⃗ξT (123)
φ → φ+ Q0ξT . (124)

9Strictly speaking, to satisfy the Lagrange constraint we need A0 to second order, i.e. A0 = −1 + 1
2 h00 − 3

8 (h00)2 − 1
2 |A⃗|2 −

h0iA⃗i and similarly for A0. However, for all the other terms in (108), it is sufficient to expand A0 and A0 to first order.
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Notice how the vector field transformation has the same form as gauge transformations in electromagnetism,
however, the generator here is also a diffeomorphism. With these gauge transformations at hand we can
create the following gauge-invariant variables:

{∇⃗φ+ Q0A⃗,
˙⃗
A− 1

2∇⃗h00, φ̇+ 1
2Q0h00} (125)

Hence, the fields φ and A⃗i non-trivially mix with the metric perturbation through ξT . Our aim is to then
expand the action (108) to second order in these fields. With these considerations, and having in mind the
discussion in the previous section, we then expand the function F as

F = (2 −KB)λsY − 2K2 (Q − Q0)2 + . . . (126)

since F̄(0,Q0) = 0 by convention and ∂F̄
∂Q
∣∣
{0,Q0} = 0 at the minimum. The terms denoted by (. . .) are higher

order terms which do not contribute to the second order action. We particularly note that one of these is
the MOND-type term ∼ |Y|3/2 as discussed in the previous section. This term does not contribute to the
second order action but we return to it in the discussion section. As an example, consider the function

F = − 2K2(Q − Q0)2 + λs

{
Y − 2a0(1 + λs)

√
Y + 2(1 + λs)2a2

0 ln
[
1 +

√
Y

(1 + λs)a0

]}
(127)

In the large Y limit, the expansion (178) is recovered and the leading correction is ∼
√

Y, while in the small
Y limit, the expansion is consistent with (178) upon setting λs = 0 and the leading correction is the MOND
term 2λs

3(1+λs)a0
|Y|3/2 Notice the presence of λs as a relic of its influence on the observed value of Newton’s

constant in strong gravity regimes. Expanding (108) to second order leads to

S =
∫
d4x

{
− 1

2∇̄µh∇̄νh
µν + 1

4∇̄ρh∇̄ρh+ 1
2∇̄µh

µρ∇̄νh
ν

ρ − 1
4∇̄ρhµν∇̄ρhµν +KB| ˙⃗

A− 1
2∇⃗h00|2

− 2KB∇⃗[iAj]∇⃗[iAj] + (2 −KB)
[
2( ˙⃗
A− 1

2∇⃗h00) · (∇⃗φ+ Q0A⃗) − (1 + λs)|∇⃗φ+ Q0A⃗|2
]

+ 2K2

∣∣∣∣φ̇+ 1
2Q0h

00
∣∣∣∣2 + 1

M̃2
p

Tµνh
µν

}
(128)

where for convenience we have rescaled the action S → 16πG̃S. We have also omitted the determinant √
γ

in the measure since we are dealing with integrals on Minkowski spacetime, but can be understood to be
present in all integrations. Next it is useful decompose the fields into scalar, vector and tensor modes as

h00 = − 2Ψ (129)
h0i = − ∇⃗iζ −Wi (130)
hij = − 2Φγij +Dijν + 2∇⃗(iVj) +Hij (131)
A⃗ =∇⃗α+ β⃗ (132)

where Dij = ∇⃗i∇⃗j − 1
3γij∇⃗2 is a traceless spatial derivative operator compatible with the background flat

Euclidean metric. The modes W⃗ , V⃗ and β⃗ are pure vector modes, that is, they are transverse: ∇⃗·W⃗ = ∇⃗·V⃗ =
∇⃗ · β⃗ = 0, while the mode Hij is a pure tensor mode, that is, transverse and traceless: ∇⃗iH

i
j = Hi

i = 0.
The matter stress-energy tensor Tµν is likewise decomposed as

T00 =ρ (133)
T0i =∇⃗iθ + pi (134)

Tij =Pγij +DijΣ(S) + 2∇⃗(iΣ(V)
j) + Σ(T)

ij (135)

where the scalar modes are the matter density ρ, momentum divergence θ, pressure P and scalar shear
Σ(S), the vector modes are the matter vorticinal momentum density pi and vector shear Σ(V)

i , such that
∇⃗ · p⃗ = ∇⃗ · Σ⃗(V) = 0, and the tensor mode is the tensor shear Σ(T)

ij , such that ∇⃗iΣ(T)i
j = Σ(T)i

i = 0.
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With this decomposition, the second order action splits into three distinct parts: one for the scalar modes
S(S), one for the vector modes S(V) and one for the tensor modes S(T). We consider each of these three one
by one.

The perturbations to fields Aµ and ϕ do not contribute any tensor mode components and so the tensor
mode action takes the form:

S(T) =
∫
d4x

{
ḢijḢij − ∇⃗kHij∇⃗kHij + 32πG̃Σ(T)

ij Hij

}
(136)

This corresponds to the action for tensor modes present in GR, a result consistent with the earlier, more
general calculation that tensor modes in the superclass of theories of which (108) is a special subset, propagate
at the speed of light [H3].

Now consider vector modes, which are described by the action

S(V) =
∫
d4x

{
− 1

2
(
V̇i +Wi

)
∇⃗2 (V̇ i +W i

)
+KB

[
| ˙⃗
β|2 − ∇⃗iβj∇⃗iβj − M2|β⃗|2

]
+ 16πG̃

(
p⃗ · W⃗ − Σ(V)

i ∇⃗2V i
)}

(137)

where
M2 = (2 −KB)(1 + λs)Q2

0
KB

(138)

The field β⃗ decouples from the metric fields V⃗ and W⃗ and describes two massive degrees of freedom with
mass M. Clearly then we must require KB > 0 to avoid ghosts and gradient instabilities. The mass term
M is also non-tachyonic if both 0 < KB < 2 and λs > −1. Hence, stability considerations for the vector
modes imply the following constraints on the parameter space of AeST :

0 < KB < 2, λs > −1. (139)

Notice that to this order, the vector modes β⃗ do not couple to matter and thus they are not expected to be
generated by sources to leading order.

Finally consider scalar perturbations. Considering only scalar modes in (128) and after some integrations
by parts we find the action S(S) :

S(S) =
∫
d4x

{
6
(

1
6∇⃗2ν̇ − Φ̇

)(
1
6∇⃗2ν̇ + Φ̇

)
+ 4

(
1
6∇⃗2ν̇ + Φ̇

)
∇⃗2ζ + 2|∇⃗Φ|2 − 2

3Φ∇⃗4ν + 4
(

∇⃗2Φ + 1
6∇⃗4ν

)
Ψ

+ 1
18 |∇⃗(∇⃗2ν)|2 + 2K2φ̇

2 − 4K2Q0φ̇Ψ + 2K2Q2
0Ψ2 +KB|∇⃗(α̇+ Ψ)|2 + 2 (2 −KB) ∇⃗ (α̇+ Ψ) · ∇⃗χ

− (2 −KB) (1 + λs) |∇⃗χ|2 − 16πG̃ρΨ − 16πG̃∇⃗2θ ζ − 48πG̃PΦ + 16πG̃
3 ∇⃗4Σ ν

}
(140)

where the gauge-invariant variable χφ + Q0α has been introduced that will be shown to play a prominent
role in what follows. Setting scalar matter sources to vanish and moving to Fourier space we have

S(S) =
∫
dt

d3k

(2π)3

{
− 6|Φ̇|2 + 1

6k
4|ν̇|2 + 2k2

[(
1
6k

2ν̇ − Φ̇
)
ζ∗ + c.c.

]
+ 2k2|Φ − 1

6k
2ν|2 + 2K2|φ̇− Q0Ψ|2

+KBk
2|α̇+ Ψ|2 − 2k2

[(
Φ − 1

6k
2ν

)
Ψ∗ + c.c.

]
+ (2 −KB) k2 [(α̇+ Ψ)χ∗ + c.c.] − (2 −KB) (1 + λs) k2|χ|2

}
(141)

where fields in (141) have a subscript k⃗ to explicitly show their k dependence as they are the Fourier modes
of those in (140) and (c.c) means complex conjugate.

We now find the normal modes. It is sufficient to work in the Newtonian gauge by setting ν = ζ = 0. We
set the time dependence of all perturbations to eiωt and rewrite (141) as

∫
dt
∫

d3k
(2π)3Z

†UZ + (h.c), where
Z = {Ψ,Φ, α, φ} and U is a 4×4 matrix of coefficients which depend on ω, k and the other AeST parameters.
The determinant of U is found to be

detU =4k6ω2
{

(2 −KB)
[
(2 +KBλs)k2 + 2K2Q2

0(1 + λs)
]

− 2K2KBω
2
}

(142)
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so setting detU = 0 gives the two dispersion relations

ω2 =0 (143)
ω2 =c2

sk
2 + M2 (144)

where the scalar speed of sound is
c2

s = (2 −KB)
K2KB

(1 + 1
2KBλs) (145)

Notice that the first mode does not lead to a propagating wave but rather to a mode evolving as ∼ A0 +B0t
where A0 and B0 are k-dependent constants. Interestingly also, the second mode is massive with the same
mass as the vector mode β⃗. Positivity of c2

s implies further stability conditions in addition to the ones found
above for the vector modes. Specifically, since from (139) we have λs > −1, then 1 + 1

2KBλs > 0 leading to
the condition

K2 > 0. (146)

To further understanding the nature of the scalar modes a Hamiltonian analysis is performed. This allows
the system to be ‘de-constrained’ by removing the redundant gauge and nondynamical degrees of freedom
and leads to a characterization of the significance of the ω = 0 normal mode. Starting from (141), notice that
out of the six fields, two (Ψ and ζ) do not contain time derivatives. We determine the canonical momenta
[E27] for the other four which are found to be

PΦ = − 4
(
3Φ̇ + k2ζ

)
, (147)

Pν =1
3k

4 (ν̇ + 2ζ) , (148)

Pχ =4K2 [χ̇− Q0(α̇+ Ψ)] , (149)
Pα = − 4K2Q0χ̇+ 2

(
KBk

2 + 2K2Q2
0
)

(α̇+ Ψ)
+ 2 (2 −KB) k2χ, (150)

and where χ has been used instead of φ as the dynamical variable. Performing a Legendre transformation,
the Hamiltonian density is

H = − 1
24 |PΦ|2 + 3

2k4 |Pν |2 + 1
8K2

|Pχ|2 + 1
4k2KB

|Pα + Q0Pχ|2 − 2k2|Φ − 1
6k

2ν|2 + 2 −KB

KB
k2(2 +KBλs)|χ|2

− 2 −KB

2KB

[
(Pα + Q0Pχ)χ∗ + (P ∗

α + Q0P
∗
χ)χ

]
+ CΨΨ∗ + C∗

ΨΨ + C∗
ζ ζ + Cζζ

∗ (151)

Since the variables Ψ and ζ are not dynamical, their function is to act as Lagrange multipliers imposing the
constraints

CΨ ≡2k2Φ − k4

3 ν − 1
2Pα ≈ 0 (152)

Cζ ≡ − Pν − k2

6 PΦ ≈ 0 (153)

which essentially cast ν and Pν as functions of the other variables. As usual we use the symbol ≈ to denote
weakly vanishing constraints (those that vanish only on-shell) [E5]. Notice also that the variable α is cyclic,
therefore its canonical momentum Pα is conserved and is an integral of motion.

The next step of the Hamiltonian analysis is to ensure that the constraints are preserved by time evolution
according to the Hamiltonian H =

∫
d3k

(2π)3 H. The Poisson brackets on phase space are defined as

{f, g} = (2π)3
∫
d3k

[∑
I

(
δf

δXI

δg

δP ∗
XI

− δg

δXI

δf

δP ∗
XI

)]
(154)

where I runs over {Φ, ν, χ, α}. The time evolution of a variable f is ḟ = {f,H}, so we have
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ĊΨ = Cζ , Ċζ = 0. (155)

Hence, the constraints are preserved by time evolution on-shell. Therefore as one might expect, the stability
of the primary constraints in the absence of gauge fixing does not create new constraints. Having ensured the
stability of constraints in the Hamiltonian, we can now simplify the system by employing gauge fixing. In the
Hamiltonian formulation, primary first-class constraints generate gauge transformations. The infinitesimal
change of a phase space quantity f under this gauge transformation generated by the constraint CI is given
by:

∆f = {f, C∗
I [ϵI ]} . (156)

where we have introduced the smearing C∗
I [ϵI ] of a constraint C∗

I with test function ϵI defined as

C∗
I [ϵI ] ≡

∫
d3k

(2π)3 ϵI,⃗kC
∗
I,⃗k

(157)

Consider the following gauge transformations generated by the constraints Cζ and CΨ:

∆ν =
{
ν, C∗

ζ [ϵζ ]
}

= −ϵζ (158)

∆Pν = {Pν , C
∗
Ψ[ϵΨ]} = 1

3k
4ϵΨ (159)

Thus, one may set ν and Pν to zero by a gauge transformation by choosing ϵζ = ν and ϵΨ = − 3
k4Pν . It can

then be checked what constraints are placed on the Lagrange multipliers ζ,Ψ by this gauge fixing. Invoking
two new gauge fixing constraints:

Gν ≡ ν ≈ 0 (160)
GPν

≡ Pν ≈ 0 (161)

it follows that their time evolution is given by

{Gν , H} = 3
k4GPν

− 2ζ (162)

{GPν , H} = 2
3k

4 (Ψ − Φ) + 1
9k

6Gν (163)

Therefore the following gauge restrictions are placed on the Lagrange multipliers: ζ = 0 and Ψ = Φ.
These conditions can be recognized, respectively, as a restriction to the conformal Newtonian gauge and
the content of the Einstein equation here dictating equality between metric potentials in this gauge. These
may be adopted conditions alongside the constraints Gν , GPν

in the Hamiltonian (151) and the primary
constraints, yielding in addition

PΦ ≈ 0 (164)

Φ ≈ 1
4k2Pα (165)

so that the deconstrained Hamiltonian density is

H(Dec) = 1
8K2

|Pχ|2 + 1
4k2KB

|Pα + Q0Pχ|2 − 1
8k2 |Pα|2 − 2 −KB

2KB

[
(Pα + Q0Pχ)χ∗ + (P ∗

α + Q0P
∗
χ)χ

]
+ 2 −KB

KB
k2(2 +KBλs)|χ|2. (166)

The Hamiltonian density H(Dec) is free of constraints but its form remains rather complicated. We can
make an additional simplification by making a canonical transformation to canonical pairs (PX , X), (PY , Y )
defined via
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χ =

√
KBk2 + (2 −KB)µ2

KB(2 −KB)
Q0

µk
X + 1

2
PY

(2 +KBλs)k2 + (2 −KB)(1 + λs)µ2 (167)

Pχ =

√
KB(2 −KB)

KBk2 + (2 −KB)µ2
µk

Q0

[
2(2 −KB)Q0

KB
X + PX

]
− 1

Q0

(2 −KB)(1 + λs)µ2

(2 +KBλs)k2 + (2 −KB)(1 + λs)µ2PY

(168)

α =Y +

√
KB(2 −KB)

KBk2 + (2 −KB)µ2
µk

Q0

[
Q0

KBk2X + 1
2

PX

(2 +KBλs)k2 + (2 −KB)(1 + λs)µ2

]
(169)

Pα = PY (170)

where

µ2 ≡ 2K2Q2
0

2 −KB
(171)

This gives a Hamiltonian density

H̃ = 1
4 |PX |2 +

(
c2

sk
2 + M2) |X|2 + (2 −KB)2λs

16KBK2

1 − k2
∗

k2

c2
sk

2 + M2 |PY |2 (172)

where

k2
∗ = 1 + λs

λs
µ2 (173)

It can be seen then that the system can be cast in terms of two decoupled fields, X and Y , with canonical
momenta PX and PY respectively, and each field corresponds to one of the normal modes in (144). Specifi-
cally, the field X propagates the massive modes in (144) while the field Y corresponds to the non-propagating
ω = 0 modes. One notices that the sign of the |PY |2 term in (172) is not positive definite but rather depends
on the relevant wave number k and parameters λs and k∗. Clearly as k → ∞, |PY |2 comes with a positive
sign provided λs > 0, and negative otherwise, which provides an additional condition to the one found for
vector modes in (139). Taking both scalar and vector mode conditions on the AeST parameters we require
that

0 < KB < 2 (174)
K2 > 0 (175)
λs > 0 (176)

These conditions also imply that GN > G̃ always. More generally, when k > k∗ defined by (173), the
Hamiltonian density is positive while when k < k∗, negative Hamiltonian density can occur if the |PY |2 term
in (172) becomes significant. The solutions for ω = 0 correspond to Y = A0(k⃗)t+B0(k⃗) while PY = A0(k⃗).
Thus the mode which could cause negative Hamiltonian densities is the one evolving linearly with t. Such
instabilities are likely akin to Jeans-type instabilities and do not cause quantum vacuum instability at low
momenta [E89]. As discussed in [H4], for a spherically symmetric static source of mass M , the transition
between the MOND and an oscillatory µ-dominated regime occurs at rC ∼

(
rMµ−2)1/3 where rM ∼

√
GNM

a0

is the MOND scale which signifies the transition between the Newtonian and MOND regimes on even smaller
distances. Thus, on observational grounds µ−1 must be larger than ∼ Mpc, otherwise, the MOND regime
would not occur at the scales of galaxies at distances ∼ kpc (for the Milky Way rM ∼ 8kpc). A system
with a MOND scale of ∼ Mpc occurs if its mass is ∼ 1015M⊙ which is much larger than typical masses of
bound structures. Thus, for λs ≥ 1, the scale k∗ is always hidden inside the MOND regime (i.e. k∗ < r−1

M )
so that the negative Hamiltonian does not occur in the GR limit for all systems of interest. At smaller wave
numbers < r−1

M , AeST enters the MOND regime (in which case λs = 0) which would signify that the Y -mode
always has a negative Hamiltonian. However, then there exists a higher order term ∼ |Y|3/2/a0 = |∇⃗χ|3/a0
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that is not part of the analysis above, and which may stabilize the system To investigate this, we set λs = 0
in the expansion (178) and add the MOND term

JNL = 2λs

3(1 + λs)a0
|Y|3/2 (177)

where the presence of λs above is a relic of its influence on the observed value of Newton’s constant in the
strong gravity regime so that

F = (2 −KB)JNL(Y) − 2K2 (Q − Q0)2 + . . . (178)

With this, the scalar mode action turns into

S(S,new) = S(S) − (2 −KB)
∫
d4xJNL (179)

where S(S) is given by (140). Since JNL does not contain any time derivatives, the canonical momenta
remain the same as those from the analysis of linear perturbations. Thus the Hamiltonian analysis of the
previous sections follows through so that the deconstrained Hamiltonian is

H̃(new) = H̃ + 2(2 −KB)λs

3(1 + λs)a0
|∇⃗χ|3 (180)

where H̃ is given by (172) (with λs = 0) and χ is given by (167). Observe that the nonlinear MOND term
above comes with a positive sign and also, it will dominate H̃(new) for large χ. Thus, it is suggestive that the
MOND term may make H̃(new) to be bounded from below. Indeed, that turns out to be the case for wave
numbers k > µ, as is shown in detail in an appendix of [H5]. At smaller wave numbers k < µ the MOND
term is not sufficient to make the Hamiltonian bounded from below, however, that is the regime where the
Minkowski approximation is expected to break down and expanding on FRW (or even more specifically de
Sitter) is more appropriate.

Clearly a Hamiltonian analysis of linear scalar perturbations in the AeST model around Minkowski space
has been productive. In the next section, the non-perturbative Hamiltonian formulation of the AeST model
is presented.

5.5.4 Aether scalar tensor theory: Hamiltonian Formalism

The casting of the full AeST theory into Hamiltonian form yields a number of advantages. The casting of the
model’s equations of motion in the form of Hamilton’s first-order equations of motion puts the equations of
motion in a form more amenable to numerical solution which is a vital part of modern gravitational theory,
where models are applied to complex situations where analytic solutions are not possible. The completion
of the canonical analysis also enables clarification of other issues, such as, the number of degrees of freedom
that the model possesses and whether the model is an example of an irregular system, that is, a theory
where the canonical structure varies throughout phase space. A manifestation of the latter can be that
perturbations around some backgrounds describe different number of degrees of freedom than perturbations
around others, potentially indicating an instability of that background. This can be a fatal result for a
theory if that background is one that is expected to approximate the geometry of our universe on long time
scales.

As a necessary first step towards constructing the Hamiltonian formalism for the AeST model, we must
make a distinction between space and time. Specifically, we assume that for the region of spacetime of
interest, there exists a global time coordinate t(xµ). Given this, we may define a ‘flow of time’ vector field
tµ which satisfies tµ∇µt = 1. We use the notation ḟ ≡ ∂tf for some field f . Furthermore, we may define a
vector field nµ which is normal to surfaces of constant t; as such, this field is timelike and may be defined
so that it has unit-norm i.e. gµνn

µnν = −1. We may expand this time field as tµ = Nnµ + Nµ, where
we have introduced the lapse function N and shift vector Nµ, which are given respectively by N = −tµnµ

and Nµ = qµνt
ν . We coordinatize surfaces of constant t by spatial coordinates xi, where i, j, k will be used

throughout to denote spatial coordinate indices. The full spacetime metric may be decomposed as:

gµν = −nµnν + qµν , (181)
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where qµν is the metric on the spatial hypersurface (and therefore, for example qµνn
µ = 0). It is also useful

to introduce the following tensor:

q̂µν ≡gµν +AµAν (182)

Note the difference between q̂µν defined in (182) and qµν defined in (181). It is useful to define a spatial
derivative ∂̂µ = q ν

µ ∂ν and covariant derivative Dµ compatible wiht qµν , i.e. Dαqµν = 0. Specifically:

Dµqαβ = ∂̂µqαβ − γν
µαgνβ − γν

µβgαν = 0 (183)

where γµ
αβ are Levi-Civita symbols associated with the metric qµν and derivative ∂̂µ. Given qµν and nµ, a

further useful quantity is extrinsic curvature tensor Kµν , defined as

Kµν ≡ 1
2Lnqµν = q α

µ ∇αnν (184)

In component form, we need

Kij = 1
2N (q̇ij −DiNj −DjNi) (185)

while the components of the metric, nµ and the Christoffel connection are displayed in an appendix of [H7].
We will adhere to the convention that spatial indices are always lowered and raised with the spatial metric
qij , i.e. Ki

j = qikKkj . For the vector field Âµ we consider a similar decomposition

Aµ = χnµ +Aµ (186)

where Aµ ≡ q ν
µ Aν and

χ = −nµAµ (187)

We now present the necessary steps in writing the action (108) in 3 + 1 form. One of the steps involves
solving for ϕ̇ in terms of the canonical momenta δS/δϕ̇ and this will involve having to invert potentially
very complicated combinations of functions ∂F/∂Y and ∂F/∂Q. Instead we can move this structure into
elsewhere in the theory by introducing auxiliary fields µ and ν such that we set

F(Y,Q) = −νQ2 + µY + U(ν, µ) (188)

For the scalar field ϕ, we then find the scalars Q and Y as

Q = χσ +AiDiϕ (189)
Y = |A⃗|2σ2 + 2χσAiDiϕ+

(
qij +AiAj

)
DiϕDjϕ (190)

where we have defined

σ = 1
N

(
ϕ̇−N iDiϕ

)
(191)

It is additionally useful to define following decomposition of the tensor Fµν = 2∂[µAν]:

Fij ≡ 2D[iAj] = Fij (192)

and

Fi ≡ 1
N
F0i = 1

N

[
Ȧi +Di

(
Nχ−N jAj

)]
, (193)

we define the “magnetic” aspect of Ai as

Bk = 1
2ϵ

kijFij , (194)
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with inverse Fij = ϵijkB
k and the “electric” aspect of Ai as

Ei = Fi + 1
N
ϵijkN

jBk. (195)

Then, it can be shown that the 3+1 form of the action (108) is

S =
∫
d4x

N
√
q

16πG̃

{
R + |K2| − |K|2 − 2Λ +KB

(
|E⃗|2 − |B⃗|2

)
+ 2(2 −KB)σA⃗ · E⃗

+ 2(2 −KB)
(
χE⃗ − A⃗× B⃗

)
· D⃗ϕ+ ν

(
χσ + A⃗ · D⃗ϕ

)2

− (2 −KB + µ)
[
|A⃗|2σ2 + 2χσA⃗ · D⃗ϕ+ |D⃗ϕ|2 +

(
A⃗ · D⃗ϕ

)2
]

− U(ν, µ)
}

+ Sm[g] (196)

where R is the Ricci scalar corresponding to the spatial metric qij . Note that S is a functional of the fields
(qij , Ai, ϕ, µ, ν,N,N

i). Passage to the canonical formulation of (108) is now possible. The next step in
passing to the Hamiltonian formulation is to determine the canonical momenta which are

Πij ≡ δS

δq̇ij
=

√
q

16πG̃
(
Kij −Kqij

)
(197)

Πi ≡ δS

δȦi

=
√
q

8πG̃

[
KBE

i + (2 −KB)
(
σAi + χDiϕ

) ]
(198)

Π ≡δS

δϕ̇
=

√
q

8πG̃

[
(2 −KB)A⃗ · E⃗ + νσ

− (2 −KB + µ− ν) A⃗ ·
(
σA⃗+ χD⃗ϕ

)]
(199)

Letting Π̂ ≡ Πijqij the inverse relations are

Kij =16πG̃
√
q

(
Πij − 1

2Π̂qij

)
(200)

Ξσ =8πG̃
√
q

[
Π − 2 −KB

KB
A⃗ · Π⃗

]
+
(

22 −KB

KB
+ µ− ν

)
χA⃗ · D⃗ϕ (201)

KBE
i =8πG̃

√
q

Πi − (2 −KB)
(
σAi + χDiϕ

)
(202)

where
Ξ = χ2ν −

(
22 −KB

KB
+ µ

)
|A⃗|2 (203)

while the canonical momenta for µ and ν are identically zero:

Π(µ) ≡δS

δµ̇
≈ 0 (204)

Π(ν) ≡δS

δν̇
≈ 0 (205)

Using (200), (201) and (202) to remove Kij , Ei and σ from (196) leads to the Hamiltonian form of the
action,

S =
∫
d4x

{
Πij q̇ij + ΠiȦi + Πϕ̇+ Π(µ)µ̇+ Π(ν)ν̇ −NH −N iHi − λ(µ)Π(µ) − λ(ν)Π(ν)

}
, (206)
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where we have added Lagrange multiplier fields λ(µ) and λ(ν) which impose the constraints (204) and (205)
via their equations of motion and where

Hi = − 2DjΠj
i + ΠDiϕ− D⃗ · Π⃗Ai − ϵijkΠjBk + Π(µ)Diµ+ Π(ν)Diν (207)

is the diffeomorphism constraint and

H =8πG̃
√
q

[
2ΠijΠij − Π̂2 + 1

2KB
|Π⃗|2 + C2

1
2Ξ

]
+ χ

[
C1C2

Ξ A⃗ · D⃗ϕ+ D⃗ · Π⃗ − 2 −KB

KB
Π⃗ · D⃗ϕ

]
+

√
q

16πG̃

{
− R + 2Λ +KB|B⃗|2 +

[
C2

2χ
2

Ξ + 2 −KB + µ− ν

] [
A⃗ · D⃗ϕ

]2
+ 2(2 −KB)A⃗× B⃗ · D⃗ϕ

+
[
2 −KB + µ+ (2 −KB)2

KB
χ2
]

|D⃗ϕ|2 + U
}
, (208)

the Hamiltonian constraint. For compactness of notation have defined

C1 ≡ Π − 2 −KB

KB
A⃗ · Π⃗, (209)

C2 ≡ 22 −KB

KB
+ µ− ν. (210)

Note that to arrive at the action (206) we have defined the coefficients multiplying (Π(µ),Π(ν)) to be (λ(µ) +
N iDiµ, λ

(ν) +N iDiν) which we are free to do at the beginning of the constraint analysis. This leads to the
2nd line in (207). The combination

Hpri = NH +N iHi + λ(µ)Π(µ) + λ(ν)Π(ν) (211)

is the primary Hamiltonian density and it is a sum of constraints on the phase space which is coordi-
natized by {qij ,Πij , Ai,Πi, φ,Π, µ,Π(µ), ν,Π(ν)}. These constraints are obtained by varying (206) with
{N,N i, λ(µ), λ(ν)} and are given respectively by:

H ≈ 0 (212)
Hi ≈ 0 (213)

Π(µ) ≈ 0 (214)
Π(ν) ≈ 0 (215)

where ≈ denotes that these phase space functions need only vanish on the submanifold of phase space that
they define (‘weakly vanish’). The next step is to check whether these constraints are preserved by the
time evolution generated by Hpri. It is found that for general N , λ(µ) and λ(ν), the primary constraints are
preserved if, further, the following secondary constraints hold:

S(µ) ≡ ∂H
∂µ

=
√
q

16πG̃

(
Y + ∂U

∂µ

)
≈ 0 (216)

and

S(ν) ≡ ∂H
∂ν

=
√
q

16πG̃

(
−Q2 + ∂U

∂ν

)
≈ 0 (217)

Equations (216) and (217) correspond to the Euler-Lagrange equations for the auxiliary fields µ and ν. In
other words, given a prescribed U(µ, ν) one can use (216) and (217) to determine µ(Q,Y) and ν(Q,Y),
where Q and Y are to be evaluated in phase space. Using (201) followed by (190) and (189) to collect terms
together, one finds that

Q = 1
Ξ

[(
22 −KB

KB
+ µ

)
A⃗ · D⃗ϕ+ 8πG̃

√
q
χC1

]
(218)
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Primary Secondary
Hi H Π(µ) Π(ν) S(µ) S(ν)

Hi Hi H Π(µ) Π(ν) S(µ) S(ν)

H Hi S(µ) S(ν) U (µ) U (ν)

Π(µ) 0 0 C(µ)(µ) C(ν)(µ)

Π(ν) 0 C(µ)(ν) C(ν)(ν)

S(ν) E(µ)(µ) E(µ)(ν)

S(µ) E(ν)(ν)

First Class Second Class

Table 1: Table of constraints and their Poisson Brackets, showing whether they vanish strongly, weakly,
or not at all. The classification into primary/secondary and first/second class is marked. Note also that
the combination HFC defined through (223) is first class, with λ(A) being functions of all the phase space
variables as determined through (221), even though some individual parts of HFC are second class.

and

Y = |D⃗ϕ|2 +
(
A⃗ · D⃗ϕ

)2
+ |A⃗|2

Ξ2

[
8πG̃
√
q
C1 + C2χA⃗ · D⃗ϕ

]2

+ 2χ
Ξ

(
8πG̃
√
q
C1 + C2χA⃗ · D⃗ϕ

)
A⃗ · D⃗ϕ, (219)

respectively. This procedure then reconstructs F(Q,Y) through (188) in terms of phase space variables with
the help of (218) and (219).

Having found the secondary constraints (216) and (217), the analysis is not necessarily finished. We now
define the secondary Hamiltonian through

Hsec = Hpri +
∫
d3x

[
u(µ)S(µ) + u(ν)S(ν)

]
(220)

where u(µ) and u(ν) are Lagrange multipliers enforcing the secondary constraints S(µ) and S(ν) respectively.
We then check that all constraints (primary and secondary) are preserved in time. Defining the indices
A,B,= {(µ), (ν)}, it is found that preservation in time of primary constraints is secured if uA = 0 whereas
the preservation of secondary constraints implies the following equations:

FA +
∑

B

CABλ(B) ≈ 0 (221)

where

CAB ≡ ∂S(B)

∂A
=
(

∂S(µ)

∂µ
∂S(µ)

∂ν
∂S(ν)

∂µ
∂S(ν)

∂ν

)
(222)

and FA is a function of phase space fields and the Lagrange multiplier field N . If the matrix CAB is
invertible then the two equations above determine the Lagrange multipliers λA which then become functions
of all the phase-space variables. Then the Hamiltonian analysis is complete and no further constraints in
phase-space are required, with the conclusion that the theory possesses three first class primary constraints
Hi, three second class primary constraints H and Π(A), and two second class secondary constraints S(A).
We list all the constraints and their Poisson brackets in Table 1. On the other hand, if the matrix has a
vanishing determinant, there exists a left null eigenvector which when applied to the consistency relation
may produce further constraints, called tertiary constraints. Given the forms of (218),(219) and equations
of motion (216),(217) it is to be expected that CAB is indeed invertible in general situations. Finally we
note that the determination of all constraints and their classification enables the construction of the Dirac
bracket [E25].
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Having found all the constraints and solved for the Lagrange multipliers, we may now form the first class
Hamiltonian HFC. We find this as the secondary Hamiltonian with the Lagrange multipliers substituted in
for. Given that u(A) ≈ 0, we have that Hsec ≈ Hpri, hence,

HFC =
∫
d3x

[
NH +N iHi + λ(µ)Π(µ) + λ(ν)Π(ν)

]
(223)

with λ(µ) and λ(ν) being functions of the phase-space variables {qij , Ai, ϕ,Πij ,Πi,Π, µ, ν}, that is, Π(µ) and
Π(ν) are absent from λ(A).

To summarize, this analysis has revealed the existence of four first class constraints and four second class
constraints. The first class constraints consist of the three (primary) constraints Hi defined in (207) and the
first class Hamiltonian HFC defined in (223), which is the linear combination of the primary Hamiltonian
constraint H defined in (208) (by itself second class), Hi and also Π(µ) and Π(ν). The four second class
constraints are the two canonical momenta Π(µ) and Π(ν) of the auxiliary fields µ and ν, see (204) and (205),
and the two secondary constraints S(µ) and S(ν) defined through (216) and (217). The existence of these
second class constraints arises from the presence of the auxiliary fields µ and ν. See table 1 for a summary
of these constraints.

We may use the constraint analysis to count the number of physical degrees of freedom. We have six
variables in the spatial metric qij , three in Ai and one for each of ϕ, µ and ν, that is 12 in total. Counting
in the canonical momenta doubles this to 24. We subtract the four second class constraints and twice the
number of first class constraints which remove the gauge redundant degrees of freedom, that is, we subtract
12 degrees of freedom because of the constraints. We finally divide by two to find six physical degrees of
freedom.

As a useful check on the results, the full Hamiltonian was expanded to quadratic order in perturbations
around Minkowski space and it was shown to lead to the same results as found in [H5] using slightly different
methods. In the process, it was shown that the number of perturbative degrees of freedom found in [H5]
matches the number found here using the full non-linear theory. The non-perturbative formalism may be
used to compute the quadratic Hamiltonian of AeST theory on other backgrounds in order to determine
whether those backgrounds are stable or not. Of particular interest are the cases of de Sitter space (relevant
for initial investigation of the effect of non-vanishing background curvature on perturbations) and static
spherically symmetric configurations (relevant for questions such as the stability of astrophysical systems in
this model) which will be a topic of future work.

5.5.5 Further work

The AeST model has attracted interest from other researchers, with notable results being found regarding
potential constraints on the theory via limits on the emission of Cherenkov radiation by stars in the model
[E120] and constraints placed on the theory via data from weak gravitational lensing [E121].

I have investigated additional solutions to the AeST model. In a dynamical systems analysis of a number
of AeST models in FRW symmetry was conducted [H9]. Notably, it was shown that a class of models exist
which avoid the tension of models satisfying (107) by instead producing an effective fluid (defined as the
ratio between fluid pressure and density) with equation of state that satisfies w → 0 at early cosmological
times. This new class of models can also fit cosmological data without DM.

6 Presentation of teaching, organisational, and ‘popularisation of
science’ achievements

6.1 Teaching achievements
Academic teaching

• 2012 – 2014: Teaching (via tutorials) of undergraduate physics students at Imperial College, London
to prepare them for their ‘Comprehensive’ exams. These are exams of extremely broad scope, so the
role is rather demanding.
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Recent Invited lectures

• ‘The concept of Torsion in gravitational physics’, University of Tartu, Estonia (2019)

• ‘A new relativistic theory for Modified Newtonian Dynamics’, Queen Mary University London, United
Kingdom (2021)

• ‘Dark matter or modified gravity?’, University of Gdańsk, Poland, and Chinese Academy of Sciences
Beijing China (2022)

• ‘Is Newtonian dynamics modified?’, University of Oxford , United Kingdom (2022)

• ‘Gravity and Cartan geometry’, Jagiellionian University Kraków, Poland (2022)

• ‘Gravity and Parameterized Field Theories’, Czech Academy of Sciences Prague, Czechia (2023)

• ‘An introduction to gravitation and cosmology’, Xiamen University, Malaysia (2023)

6.2 Organizational achievements
• 2016 – 2019: Assistance in planning of presence of the Czech Academy of Science at the Prague Science

Fair. I also participated in this event which consisted of engaging members of the public and helping
them with any questions about physics that they might have.

6.3 Popularisation of science achievements
• Discussion with journalists which contributed towards coverage of Model A in New Scientist and Model

B in The Atlantic and Science magazines.

• Public lecture ‘An Introduction to gravitation’, presented at the High School 3 in Gdynia, February
2024 (Around 120 attendees)

• Public lecture: ‘An Introduction to spacetime and gravity’ presented at the University of Gdańsk to
local schoolchildren (Around 160 attendees)

7 Other scientific achievements
7.1 Supervision of Students

• 2022 – Present Day: Co-supervision with Professor Pawe l Horodecki of doctoral student Mehraveh
Nikjoo.

• 2023: Supervision of undergraduate student Khai Shuen Ng who was visiting the University of Gdańsk
from Xiamen University Malaysia on a research internship project. The scope of the project was to
explore a recently proposed ’gravitational dipole’ solution to the system of GR coupled to a massless
scalar field.

• 2023: Supervision of student Toh Yu Xuan who was visiting the University of Gdańsk from Xiamen
University Malaysia on a research internship project. The scope of the project was to develop techniques
towards developing an action principle for the Newton-Cartan theory of gravity.

• 2023: Supervision of University of Gdańsk undergraduate students Marek Majoch and Wiktoria
Borkowska on a research internship project. The scope of the project was to determine the change of
appearance of the night sky under the Lorentz transformations of special relativity.

7.2 Awards and Memberships of Scientific Organizations
• I am the Principal Investigator of Polonez BIS fellowship No. 2021/43/P/ST2/02141 co-funded by

the Polish National Science Centre and the European Union Framework Programme for Research and
Innovation Horizon 2020 under the Marie Sk lodowska-Curie grant agreement No. 945339.

• I am a member of the Polish Society on Relativity (Polskie Towarzystwo Relatywistyczne)
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7.3 Track record before PhD
The main focus of my PhD was on the cosmological consequences of vector tensor models of modified gravity
- i.e. theories coupling the metric tensor to a single vector field Aµ. In [O2] it was shown that Bekenstein’s
TeVeS theory [E43] - which ostensibly takes the form of a bimetric theory with scalar and vector degrees of
freedom - can be cast as a vector tensor theory. In [O5] a vector tensor model with non-canonical kinetic
terms (I proposed this model) was shown to be the first relativistic theory of MOND that in the appropriate
limit reproduces the original proposal by Milgrom rather than a multi-field generalization thereof. In [O6]
solar system constraints on this model were considered whilst in [O7] the scope for the model to explain the
growth of large scale structure in cosmology in the absence of DM was explored. In [O3], an exploration of
FRW solutions to a self consistent effective field theory of modified gravity was conducted. In [O8, O10], a
comprehensive survey of constraints from cosmological data on the Einstein-Aether vector tensor model and
some generalizations of the model from cosmological data [E38].

Additional research involved a characterization of FRW solutions to Milgrom’s bimetric theory of modified
gravity [O9] and the role of orthographic correlations in astrophysics [O11].

7.4 Additional track record after PhD
As follows is a selection of research areas not included in the habilitation series that I have contributed to
following the completion of my PhD:

On the possibility of anisotropic curvature in cosmology [O12] In addition to shear and vorticity
a homogeneous background may also exhibit anisotropic curvature. In this publication a class of spacetimes
was shown to exist where the anisotropy is solely of the latter type, and the shear-free condition is supported
by a canonical, massless 2-form field. My main contribution was the discovery that the system of such a field
coupled to GR contains these spacetimes as solutions. Such spacetimes possess a preferred direction in the
sky and at the same time a CMB which is isotropic at the background level. A distortion of the luminosity
distances is derived and used to test the model against the CMB and supernovae (using the Union catalog),
and it is concluded that the latter exhibit a higher-than-expected dependence on angular position.

Cosmology with a spin [O13] Using the chiral representation for spinors a particularly transparent way
to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst
action is presented. In such theories torsion need not vanish, but it can be reinterpreted as a four-fermion
self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance,
and may contribute positively or negatively to the energy density, depending on the couplings considered.
Cosmological models ruled by a spinorial field were considered within this theory and it was found that
while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn
a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to
cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity
has been removed. These solutions are stable, and range from the very simple to the very complex. My
main contribution was a) the proposal of the novel couplings between fermions and the gravitational field
that allowed the existence of this variety of cosmological solutions and b) co-analysis with collaborators
Professors Tom Kibble and Joao Magueijo of said solutions.

A first-order approach to conformal gravity [O16] This article investigates whether a spontaneously-
broken gauge theory of the group SU(2, 2) may be a viable alternative to GR. The basic ingredients of the
theory are an gauge field and a Higgs field W in the adjoint representation of the group with the Higgs
field producing the symmetry breaking . The action for gravity is polynomial in and the field equations are
first-order in derivatives of these fields. The new symmetry in the gravitational sector may be interpreted in
terms of an emergent local scale symmetry and the existence of ‘conformalized’ GR and fourth-order Weyl
conformal gravity as limits of the theory was demonstrated. Maximally symmetric spacetime solutions to the
full theory are found and stability of the theory around these solutions was investigated; it was shown that
regions of the theory’s parameter space describe perturbations identical to that of GR coupled to a massive
scalar field and a massless one-form field. The coupling of gravity to matter was considered and it was shown
that Lagrangians for all fields are naturally gauge-invariant, polynomial in fields and yield first-order field
equations; no auxiliary fields are introduced. Familiar Yang–Mills and Klein–Gordon type Lagrangians are
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recovered on-shell in the general-relativistic limit of the theory. In this formalism, the general-relativistic
limit coincides with a spontaneous breaking of scale invariance and it was shown that this generates mass
terms for Higgs and spinor fields. Though my collaborator Dr Hans Westman had some input to this article,
nearly all of the above content was proposed and carried about by myself.

Parity violating Friedmann Universes [O19] This article considers extensions of the Einstein-Cartan
theory where the cosmological constant Λ is promoted to a field, at the cost of allowing for torsion even in the
absence of spinors. It was found that some standard notions about FRW universes collapse in these theories,
most notably that spatial homogeneity and isotropy may now coexist with violations of parity invariance.
The parity-violating solutions have non-vanishing Weyl curvature even within FRW models. The presence
of parity-violating torsion opens up the space of possible such theories with relevant FRW modifications;
in particular the Pontryagin term can play an important role even in the absence of spinorial matter. The
article presents a number of parity-violating solutions with and without matter. The former are the non-
self-dual vacuum solutions long suspected to exist. The latter lead to tracking and non-tracking solutions
with a number of observational problems, unless we invoke the Pontryagin term. An examination of the
Hamiltonian structure of the theory reveals that the parity-even and the parity-violating solutions belong to
two distinct branches of the theory, with different gauge symmetries (constraints) and different numbers of
degrees of freedom (d.o.f.). The parity-even branch is nothing but standard GR with a cosmological constant
which has become pure gauge under conformal invariance if matter is absent, or determined by matter (and
so not an independent d.o.f.) if non-conformally invariant matter is present. In contrast, the parity-violating
branch contains a genuinely new d.o.f. The work on the paper was split about equally between my co-author
Professor Joao Magueijo and myself.
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