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Abstract

In this dissertation, we are concerned with finding an approximate solution to the linear partial differ-

ential equations with a highly oscillatory potential function and a strongly elliptic differential operator.

We consider evolution equations involving first- or second-time derivatives, such as the heat equation or

the wave equation. Such equations present significant challenges in numerical treatment and standard

methods are mostly ineffective for them.

In the first part of the thesis, we analytically derive the Modulated Fourier expansion for a linear

partial differential equation with a multifrequency highly oscillatory potential. The Modulated Fourier

expansion (MFE) is an important technique in computational mathematics used, inter alia, to study

the long–time behavior of Hamiltonian systems with highly oscillatory solutions. Moreover, MFE can

be utilized in numerical-asymptotic approach as an ansatz for finding approximate solution to linear

or nonlinear highly oscillatory differential equations. To derive the Modulated Fourier Expansion

for the considered problem, we show that the solution of the equation is expressed as a convergent

Neumann series in the appropriate Sobolev space. Then, by using integration by parts and the theory

of semigroups, we expand asymptotically each of integrals from the Neumann series into a sum of

known coefficients. By organizing terms appropriately we obtain formulas for the coefficients of the

Modulated Fourier expansion. The proposed approach enables, firstly, to determine the coefficients for

this expansion and secondly, to derive a general formula for the error associated with the approximation

of the solution by MFE.

In the second part of the thesis we propose, using the results of the first part, a third-order numerical

integrator based on the Neumann series and the Filon quadrature, designed mainly for highly oscillatory

partial differential equations. The method can be applied to equations that exhibit small or moderate

oscillations; however, counter-intuitively, large oscillations increase the accuracy of the scheme. The

proposed approach enables the easy improvement of the method’s accuracy and the straightforward

estimation of its error.

The proposed computational methods are illustrated with many examples. For each equation in

the numerical examples of this dissertation, we know the analytical solution. Thus, we do not need to

compute reference solutions using a supercomputer. Using the proposed methods, we can accurately

compare the numerical approximation with the function satisfying the equation.
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Streszczenie

W niniejszej rozprawie zajmujemy się problemem aproksymacji rozwiązania wysoko oscylującego rów-

nania różniczkowego cząstkowego z silnie eliptycznym operatorem różniczkowym. Rozważamy równa-

nia ewolucyjne z pierwszą lub drugą pochodną względem zmiennej czasowej. Oscylacje są wywoływane

przez funkcję potencjału równania. Takie równania są trudne w aproksymacji numerycznej, ponieważ

standardowe i dobrze znane metody są dla nich zazwyczaj nieskuteczne.

W pierwszej części rozprawy wyprowadzamy analitycznie zmodyfikowane rozwinięcie Fouriera dla

liniowego równania różniczkowego cząstkowego z wysoko oscylującą funkcją potencjału z wieloma częs-

totliwościami. Zmodyfikowane rozwinięcie Fouriera (w skrócie piszemy MFE) jest ważnym narzędziem

w matematyce obliczeniowej, które jest wykorzystywane między innymi do badania zachownania

rozwiązania wysoko oscylującego równania Hamiltona na długim przedziale czasowym. Ponadto MFE

może być również wykorzystywane w numeryczno-asymptotycznym podejściu jako ansatz w celu znale–

zienia przybliżonego rozwiązania liniowego lub nieliniowego wysoko oscylującego równania różniczko–

wego. Aby analitycznie wyprowadzić zmodyfikowane rozwinięcie Fouriera dla rozważanego problemu

na początku pokazujemy, że rozwiązanie równania może być przedstawione jako suma zbieżnego szeregu

Neumanna w odpowiedniej przestrzeni Sobolewa. Następnie, korzystając z całkowania przez części i

teorii półgrup, rozwijamy asymptotycznie wyrazy szeregu Neumanna w sumy o znanych współczyn-

nikach. Grupując odpowiednio wyrazy otrzymujemy poszukiwane rozwinięcie asymptotyczne równania.

Proponowane podejście umożliwia po pierwsze wyznaczenie współczynników MFE, a po drugie osza-

cowanie błędu wynikającego z aproksymacji rozwiązania przez zmodyfikowane rozwinięcie Fouriera.

W drugiej części rozprawy wykorzystujemy wyniki z pierwszej części pracy i przedstawiamy metodę

numeryczną tworzoną w oparciu o szereg Neumanna i kwadraturę Filona. Metoda może być stosowana

do równań które nie oscylują, jednakże wbrew intuicji duże oscylacje zwiększają dokładność schematu

numerycznego. Proponowane podejście pozwala na łatwe szacowanie błędu metody i umożliwia poprawę

rzędu zbieżności w prosty sposób.

Metody obliczeniowe które prezentujemy w rozprawie, są ilustrowane wieloma przykładami. Dla

każdego równania w przykładach numerycznych znamy rozwiązanie analityczne. Nie musimy więc

obliczać rozwiązań referencyjnych za pomocą superkomputera. Możemy dokładnie porównać aproksy-

mację numeryczną przy użyciu proponowanych metod z funkcją spełniającą równanie.
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Notations

Ω open and bounded subset of Rm with smooth boundary

L2(Ω) standard L2 space with norm ∥u∥2 =
(∫

Ω
|u(x)|2dx

)1/2

H2p(Ω) standard Sobolev space with norm ∥u∥H2p(Ω) =

 ∑
|p|≤2p

∥Dpu∥22

1/2

p = (p1, . . . , pm) multi-index notation, |p| = p1 + · · ·+ pm

C∞c (Ω) set of smooth functions with compact support

Hp
0 (Ω) the closure of C∞c (Ω) in Hp(Ω)

∥T∥X←X operator norm, ∥T∥X←X = sup∥v∥X≤1 ∥Tv∥X , where
∥ ∥X is a norm in space X

C([0, t⋆], X) space of all continuous functions u : [0, t⋆] → X such that
maxt∈[0,t⋆] ∥u(t)∥X <∞, where ∥ ∥X is a norm in space X

Ck([0, t⋆], X) space of all functions u : [0, t⋆] → X whose derivatives
in [0, t⋆] up to order k are in C([0, t⋆], X)

L linear differential operator

σd(t) d-dimensional simplex with vertices (0, . . . , 0), (0, . . . , 0, t), . . . , (t, . . . , t)

O(·) big-O notation
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Chapter 1

Introduction

This thesis is concerned with presenting computational methods for highly oscillatory partial differen-
tial equations. To be precise, the subject of our consideration is the following problem

∂tu(x, t) = Lu(x, t) + f(x, t)u(x, t), t ∈ [0, t⋆], x ∈ Ω ⊂ Rm,

u(x, 0) = u0(x), x ∈ Ω,
(1.1)

with zero boundary conditions, where domain Ω is an open and bounded subset of Rm, t⋆ > 0 and L
is a linear differential operator. Complex valued function f(x, t) from the equation (1.1) is a highly
oscillatory of type

f(x, t) =
N∑

n=−N
n̸=0

αn(x, t)e
inωt, ω ≫ 1, N ∈ N, (1.2)

where frequency parameter ω is assumed to be large. Such equations appear in many ‘real-life’ prob-
lems and play a significant role in electronic engineering, electromagnetics, quantum mechanics, and
computing scattering frequencies. Apart from the many applications, highly oscillatory phenomena
are fascinating objects to study from the mathematical point of view as they are common in many
mathematical problems and are difficult in numerical approximation. For this reason, they are the
subject of active study by many mathematicians.

Highly oscillatory differential equations may be split into equations with intrinsic and extortionist
high oscillation. The former are generated by the inner nature of the equation. The important examples
include the Airy equation

u′′(t) + k2tu(t) = 0,

the semiclassical Schrödinger equation

iϵ∂tu(x, t) = −ϵ
2

2
∆u(x, t)− V (x)u(x, t),
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for (x, t) ∈ Rd×R, where ϵ≪ 1 is a small parameter, and the following system of differential equations

ẍ = Ω2x+ g(x), Ω =

(
0 0

0 ωI

)
, (1.3)

where ω ≫ 1, x = x(t), ẍ = x′′(t), and g is a non-linear function. The equation (1.3) is important in
computational mathematics as it is strongly connected with a Fermi–Pasta–Ulam Problem, [17].

In this thesis, we focus on finding an approximate solution for the second type of highly oscillatory
differential equation, in which the highly oscillatory nature of the equation is imposed by the external
source of type (1.2). An example of such an equation is (1.1), which we will work on.

1.1 Why not the standard numerical schemes?

In traditional numerical methods applied to highly oscillatory problems, it is usually required that the
time step h satisfies the condition hω < 1. This causes the method to become extremely expensive
when ω is large. This occurs because conventional schemes are constructed using Taylor expansions,
where error formulas involve expressions with high derivatives of a highly oscillatory function. To
provide a more detailed understanding of the challenges associated with the numerical approximation
of highly oscillatory differential equations, let us apply Duhamel’s formula to equation (1.1) and write
it in the following integral form

u(t+ h) = ehLu(t) +

∫ h

0
e(h−τ)Lf(t+ τ)u(t+ τ)dτ, (1.4)

where u0 and f(s), u(s) for fixed s are elements of appropriate Banach spaces and {etL}t≥0 is a
semigroup operator. Let us note that f (k)(t) = O(ωk), and therefore the magnitudes of subsequent
time-derivatives of functions u and f grow drastically. This implies that approximating the integral
from equation (1.4) using standard quadrature rules, as in basic numerical schemes, leads to a significant
error.

Example 1. Consider a simple ODE

u′(t) = tu(t) + cos(ωt)u(t), t ∈ [0, 1],

u(0) = 1,
(1.5)

with parameter ω ≫ 1. The analytical solution of (1.5) is equal to

u(t) = esin(ωt)/ω+t2/2.

To find an approximate solution of equation (1.5), we employ the well-known fourth-order Runge–Kutta
scheme

k1 = f(un, tn),

k2 = f(un +
k1h

2
, tn +

h

2
),
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Figure 1.1: Error of approximation in the L2-norm of the solution to equation (1.5) by the fourth-order
Runge–Kutta scheme, for different values of parameter ω.

k3 = f(un +
k2h

2
, tn +

h

2
),

k4 = f(un + hk3, tn + h),

un+1 = un +
h

6
(k1 + 2k2 + 2k3 + k4),

where h is a sufficiently small time step, function f is given by f(u, t) = tu+cos(ωt)u and u0 = u(0) =

1. In the above scheme uN ≈ u(1), N = 1/h. Figure (1.1) presents the error of approximation the
solution to equation (1.5) by the Runge–Kutta fourth-order method, for a few values of parameter ω.
While for ω = 1 the numerical scheme provides the expected fourth-order accuracy, larger oscillatory
parameters such as ω = 103 or ω = 104 spoil the convergence rate and significantly increase the error
constant. The reason for this is the dependence of the method’s error on higher-order time derivatives
of the solution. This is unfavourable in highly oscillatory problems because the magnitude of the error
is directly proportional to the magnitude of ωm for certain m > 1. For that reason, there is a need to
look for alternative, more efficient methods for highly oscillatory problems. As we will see, counter-
intuitively, high oscillations facilitate finding approximate solutions of differential equations, as long
as we consider the problem more carefully and use appropriate methods dedicated to highly oscillatory
phenomena.

It should also be mentioned that modern computational mathematics focuses not only on providing
fast and accurate numerical method but also that the method should preserve some relevant invariants
and geometric properties of the equations. The examples of the typical invariants important in differ-
ential equations derived from physics are the conservation of energy and the preservation of unitarity.
A branch of computational mathematics that focuses on the study of qualitative features of differential
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equations is Geometric Numerical Integration [5, 17]. This approach provides that numerical methods
can be effective over a long time interval.

This dissertation is written based on two papers [28] and [29], in which we propose two methods
to approximate the solution to equation (1.1). The paper [28] is a generalisation of the results first
obtained in the article [23]. The research presented in articles [23, 28] was motivated by the paper [12].

1.2 Asymptotic expansion of a highly oscillatory solution

Suppose that u(x, t) is the solution of the equation (1.1). In paper [28], we aim to present the solution
u(x, t) as the following partial sum of the asymptotic expansion

u(x, t) = p0,0(x, t) +

R∑
r=1

1

ωr

S∑
s=−S

pr,s(x, t)e
isωt

︸ ︷︷ ︸
=:U

[R]
as (t)

+
1

ωR+1
ER,S(x, t), ω ≫ 1, (1.6)

for any time variable t > 0, where coefficients pr,s(x, t) and magnitude of error constant ER,S(x, t)

are independent of ω. The asymptotic expansion U
[R]
as (t) of type 1.6 is also known as a Modulated

Fourier expansion (MFE) or frequency expansion. Approximating the highly oscillatory solution by
the sum U

[R]
as (t) has several advantages. If parameter ω is large, then it seems that only the first few

terms of sum (1.6) are necessary to provide a good approximation, and the remaining terms become
less relevant. Furthermore, increasing the parameter ω should improve the accuracy of approximating
u(x, t) by sum (1.6). On the other hand, as we have already seen, the larger value of ω, the more
inefficient the Runge-Kutta scheme becomes, see Figure 1.1.

The Modulated Fourier expansion (1.6) is an important technique in computational mathematics
used, inter alia, for analysing highly oscillatory ODEs or PDEs over long times [7, 15, 16, 24, 31,
34]. A detailed description of the Modulated Fourier expansion can be found in [17]. Furthermore,
MFE can be utilized in numerical-asymptotic approaches as an ansatz for solving numerically linear or
nonlinear highly oscillatory differential equations [9, 10, 12]. In short, this ansatz is inserted into the
equation, and subsequently, the coefficients pr,s in the sum (3.4) are determined either recursively or
numerically by solving non-oscillatory differential equations. This approach allows us to approximate
highly oscillatory equations with great accuracy.

In our approach, we do not assume that the ansatz (1.6) solves equation (1.1). Instead, we demon-
strate that the solution of equation (1.1) can be expressed as a sum of type (1.6), and we derive the
coefficients of expansions (1.6) purely analytically. In addition, so far it is known that the sum U

[R]
as (t)

approximates the solution with an error of form Cω−R−1, but the constant C is unknown. Our ap-
proach enables us to derive a formula for this constant. This may be important in practise, as this
constant can be large, especially when the number R in sum U

[R]
as (t) is big.

To express the solution of equation (1.1) as a partial sum of the asymptotic expansion of type
(1.6), we show that the Neumann series converges to the solution in H2p(Ω) Sobolev norm for any
time variable t > 0, where 2p is the order of a differential operator L. Any term of the Neumann
series is expressed by a sum of multivariate integrals. By using integration by parts and the theory
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of semigroups, we expand asymptotically each of highly oscillatory integrals from the Neumann series
into a sum of known coefficients. By organizing terms appropriately with respect to magnitudes ω−r

and frequencies eisωt, we obtain sum (1.6). We also consider the occurrence of the resonance points
in highly oscillatory integrals from the Neumann series. This issue will be discussed more precisely in
Chapter 3. The paper [28] describes this result and will be discussed in Chapter 3.

1.3 Numerical integrator for highly oscillatory equation based on the
Neumann series

The method based on the asymptotic expansion of the solution briefly described in Section 1.2, is
low-cost, effective, and provides a small error for highly oscillatory equations. However, although the
sum U

[R]
as (t) yields an excellent numerical approximation, for fixed parameter ω in general it does not

converge to the solution of the equation (1.1) as R→ ∞. To overcome this limitation, using the results
presented in [28], in paper [29], instead of approximating the integrals which appearing in the Neumann
series by the partial sum of the asymptotic expansion, we approximate them by the Filon method.
The Filon method is a quadrature rule designed for highly oscillatory integrals. Using this approach,
we obtain a third-order numerical scheme that converges to the solution as the step size h→ 0 and/or
as ω → ∞. The local error of the proposed method is bounded by Cmin

{
h4, h2ω−2, ω−3

}
, where the

constant C is independent of both h and ω. Therefore, the numerical integrator can also be applied
to equations with small or moderate oscillation; however, large oscillations significantly enhance the
accuracy of the scheme. The proposed approach based on the Neumann series enables improvement
of the method’s accuracy and straightforward estimation of its error. Moreover, by representing the
solution as the Neumann series, the time derivatives of the solution, which can be large for highly
oscillating equations, do not appear in the error formula of the numerical scheme. The paper [29]
describes this numerical method and will be presented in Chapter 4.

Due to the generality of equation (1.1), both methods can also be applied to differential equations
with a second-time derivative, such as the wave equation or the Klein-Gordon equation.

The proposed numerical methods are illustrated by numerous examples. We know the analytical
solution for each equation in the numerical examples of this dissertation. This facilitates an accurate
and precise comparison of the solution with the numerical approximation using the proposed methods.

Let us also note that long and technical proofs of the theorems in this dissertation are provided in
the Appendix.
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Chapter 2

Basic tools

In this chapter, we introduce important concepts, definitions, and present some theory that will be
used in Chapter 3 and Chapter 4. For more details about the applications of the semigroup theory to
partial differential equations, we refer to [14, 27]. Quadrature methods for highly oscillatory integrals
are presented in [13], while details about the spectral and the splitting methods can be found in [32,
33], [25].

2.1 Application of the semigroup theory to PDEs

The theory of semigroup is widely utilized in computational mathematics as a useful and practical
tool for investigating partial differential equations. This chapter discusses the basic properties of the
semigroup operator and application of semigroup theory to PDEs.

For certain type of differential operator L, and suitable initial-boundary conditions, the abstract
Cauchy problem ∂tu(x, t) = Lu(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x),
(2.1)

has a solution that can be written as u(x, t) = [u(t)](x) = S(t)u0, for some bounded linear operator
S(t) = etL : H → H, where H is an appropriate Hilbert space. This leads to the following definitions.
Let X be a Banach space.

Definition 1. A family {S(t)}t≥0 of bounded linear operators S(t) : X → X is called a C0-semigroup,
or strongly continuous semigroup, if

1. S(0)u = u, ∀u ∈ X,

2. S(t+ s)u = S(t)S(s)u, ∀ t, s ≥ 0, ∀u ∈ X,

3. ∀u ∈ X the mapping [0,∞) ∋ t 7→ S(t)u is continuous.

Definition 2. Let D(L) be a set defined by

D(L) = {u ∈ X : lim
t→0+

S(t)u− u

t
exist in X}. (2.2)
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Then operator L : D(L) → X such that

Lu := lim
t→0+

S(t)u− u

t
for u ∈ D(L), (2.3)

is called the infinitesimal generator of the semigroup {S(t)}t≥0.

To refer to the semigroup operator {S(t)}t≥0 we will also write etL := S(t) for all t ≥ 0.

Theorem 1. Let u ∈ D(L). Then, for the strongly continuous semigroup operator {S(t)}t≥0 the
following properties hold

1. S(t)u ∈ D(L) for each t ≥ 0,

2. d
dtS(t)u = LS(t)u = S(t)Lu for each t > 0.

Proposition 1. For strongly continuous semigroup operator {S(t)}t≥0, there exist constants ω ∈ R
and M ≥ 1 such that

∥S(t)∥X←X ≤Meωt,

for all t ≥ 0.

Definition 3. A linear operator L : D(L) → X is called closed if for any sequence uk ∈ D(L), such
that uk → u and Luk → v as k → ∞, then u ∈ D(L) and v = Lu.

Theorem 2. If L is the infinitesimal generator of strongly continuous semigroup {S(t)}t≥0, then D(L)
is dense in X and L is a closed operator.

Theorem 3. Suppose that L is a closed linear operator, {S(t)}t≥0 is a semigroup generated by L and
function f ∈ C([0, t⋆], D(L)). Then

L
∫ t

0
S(t− τ)f(τ)dτ =

∫ t

0
S(t− τ)Lf(τ)dτ, (2.4)

for any t ≤ t⋆.

Proofs of the above theorems can be found in almost every book dedicated to semigroup theory
(for example, in [14, 27, 30]).

We are mainly interested in the application of the semigroup theory to partial differential equations.
Let Ω be an open and bounded in Rm set with smooth boundary ∂Ω. We assume that L is a differential
operator of order 2p

L =
∑
|p|≤2p

ap(x)D
p, Dp =

∂p1

∂xp11

∂p2

∂xp22
. . .

∂pm

∂xpmm
, x ∈ Ω ⊂ Rm, (2.5)

where multi-index p = (p1, . . . , pm) is an m-tuple of non-negative integers and ap are smooth, complex-
valued functions on Ω̄. Domain of L is the set D(L) = H2p(Ω)∩Hp

0 (Ω), where H2p(Ω) is the standard
Sobolev space. The space Hp

0 (Ω) is the closure of C∞c (Ω) in Hp(Ω), where C∞c (Ω) consists of smooth
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functions with compact support. The space D(L) = H2p(Ω) ∩Hp
0 (Ω) is also Banach space with norm

∥ ∥D(L) = ∥ ∥H2p(Ω).

Theorem 4. Let u, v ∈ Hp(Ω) and let Ω be a domain in Rm with smooth boundary ∂Ω. If 2p > m,
then product uv ∈ Hp(Ω). Moreover, there exist a constant C > 0 depending on p, m and Ω such that

∥uv∥Hp(Ω) ≤ C∥u∥Hp(Ω)∥v∥Hp(Ω). (2.6)

Proof of the above theorem can be found in [1].

Theorem 5. Let Ω ⊂ Rm, 4p > m and let functions u ∈ D(L) = H2p(Ω)∩Hp
0 (Ω), f ∈ H2p(Ω). Then

uf ∈ D(L).

Definition 4. Let A be the differential operator of form (2.5). We say that the operator A is strongly
elliptic if there exist a constant θ > 0 such that

Re(−1)p
∑
|p|=2p

ap(x)ξ
p ≥ θ|ξ|2p (2.7)

for all x ∈ Ω̄ and ξ ∈ Rm, where ξp = ξp11 ξ
p2
2 . . . ξpmm , |ξ| =

∑m
j=1 ξj.

We state two important theorems that are central to the considerations presented in Chapters 3
and 4 (for more details we refer to [27]).

Theorem 6. Let −L be a strongly elliptic operator of order 2p on a bounded domain Ω ⊂ Rm with
smooth boundary ∂Ω. Then L is the infinitesimal generator of a strongly continuous semigroup on
L2(Ω).

Theorem 7. Let Ω ⊂ Rm be a bounded domain with smooth boundary ∂Ω. Assume that −L is a
strongly elliptic operator in Ω of order 2p with smooth coefficients ap(x) of Ω̄. If u ∈ H2p(Ω)∩Hp

0 (Ω)

then the following a-priori estimate holds

∥u∥H2p(Ω) ≤ C
(
∥Lu∥L2(Ω) + ∥u∥L2(Ω)

)
, (2.8)

where constant C is independent of u.

Note that we do not need to restrict ourselves to the differential operator L of even degree or
defined on a bounded domain Ω. It is sufficient for L to be an infinitesimal generator of a strongly
continuous semigroup on an appropriate Banach space. The following question arises: what type of
differential operators are generators of a strongly continuous semigroup? Well-known theorems, such as
the Hille-Yosida theorem, the Lumer-Phillips theorem and Stone’s theorem, characterize the generators
of strongly continuous semigroups of linear differential operators on Banach space.
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2.2 Computational methods for the Cauchy problem

A natural question arises how to effectively approximate expressions of the form etL, where L is a
differential operator (2.5). Recall that etLu0 is the solution of the Cauchy problem

∂tu(x, t) = Lu(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x),

u(x, t) = 0, x ∈ ∂Ω.

(2.9)

With luck, we can find an analytical solution, but usually it is difficult, or even impossible to find a
formula that satisfies the above problem. To compute etLu0, we will take advantage of spectral and
splitting methods, important tools in numerical analysis.

2.2.1 Spectral methods

This section describes basic facts concerning spectral methods. Suppose that N ∈ N is an even number.
A periodic function can be expanded into a Fourier series, provided it is sufficiently regular. Therefore,
one can approximate the 2π-periodic function v in [0, 2π] by a trigonometrical polynomial, which
results from the truncation of the Fourier series

v(x) ≈
N/2∑

k=−N/2+1

cke
ikx,

where

ck =
1

2π

∫ 2π

0
v(s)e−iksds.

If function v(x) is smooth and periodic, coefficient ck can be approximated by the trapezoidal rule
with excellent accuracy

ck =
1

2π

∫ 2π

0
v(s)e−iksds ≈ 1

N

N∑
j=1

v

(
2πj

N

)
e−ik2πj/N =: v̂k.

Let now introduce the N-equispaced grids {x1, . . . , xN} on the interval [0, 2π]

xj = jh = j
2π

N
, 1 ≤ j ≤ N, h =

2π

N
, (2.10)

and the set of the corresponding values {v1, . . . , vN}, where vj = v(xj), j = 1, . . . , N . A discrete

Fourier transform is a sequence {v̂k}
N
2

k=−N
2
+1

, such that

v̂k =
1

N

N∑
j=1

e−ikxjvj , k = −N
2

+ 1, . . . ,
N

2
. (2.11)
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The inverse discrete Fourier transform is given by

vj =

N/2∑
k=−N/2+1

eikxj v̂k, j = 1, . . . , N. (2.12)

Based on (2.12) we define interpolating function p (interpolating polynomial) such that

p(x) =

N/2∑
k=−N/2+1

eikxv̂k,

with v̂k given by (2.11). Since {v̂k} is N -periodic, for even N we have v̂−N/2 = v̂N/2. Straightforward
calculations show that function p(x) is equal to [32]

p(x) =

N∑
j=1

v(xj)hj(x), (2.13)

where
hj(x) =

1

N
sin

(
N
x− xj

2

)
cot

(
x− xj

2

)
.

In addition, one can show that function p satisfies

p(xj) = v(xj), j = 1, . . . , N,

therefore trigonometric polynomial p is the interpolant of function v. By wj we denote the approxima-
tion of the derivative of the function v at the point xj

wj ≈ v′(xj).

Having the interpolating polynomial p we set

wk = p′(xk) =
N∑
j=1

v(xj)h
′
j(xk) (2.14)

The formula (2.14) can be written in a matrix form

w = K1v,

where

w = (w1, w2, . . . , wN )T ,

v = (v(x1), v(x2), . . . , v(xN ))T ,
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and K1 ∈ MN×N (R) is the first order differentiation matrix. The entries (K1)k,j , k, j = 1, . . . , N of
matrix K1 can be derived explicitly by computing the derivative of function p at point xk, k = 1, . . . , N

(K1)k,j =

{
0 if j = k,
(−1)k+j

2 cot (k−j)h
2 if j ̸= k.

Similarly, one can compute the entries (K2)k,j , k, j = 1, . . . , N of the second order differentiation
matrix K2 ∈MN×N (R)

(K2)k,j =


− π2

3h2 − 1
6 if j = k,

− (−1)k+j

2 sin−2
(
(k−j)h

2

)
if j ̸= k.

Both matrices K1 and K2 are circulant and symmetric, for example K2 is of the following form

K2 =



. . .
...

. . . −1
2 csc

2(2h2 )

. . . 1
2 csc

2(h2 )

− π2

3h2 − 1
6

1
2 csc

2(h2 )
. . .

−1
2 csc

2(2h2 )
. . .

...
. . .


(where function csc(x) = 1

sin(x)). Circulant matrix can be diagonalized using the fast Fourier transform
to compute the exponential matrix exp(tK2) with a low computational cost.

Example 2. Let v1 and v2 be functions such that

v1(x) = ecos
2(x), x ∈ [0, 2π],

and

v2(x) =

{
e
− 1

1−x2 if x ∈ (−1, 1),

0 otherwise.

Function v2 may be regarded as periodic. By using spectral methods, we approximate second derivative
of function vj, ∂2xxvj ≈ K2vj, vj = (vj(x1), . . . , vj(xN ))T , j = 1, 2. Figure 2.1 presents the error of
such the approximation for different value of N . It is vivid that Fourier spectral methods are particularly
effective for smooth and periodic functions [33].

Non-periodic functions can be approximated on a bounded interval by the Chebyshev spectral
methods. Suppose we wish to approximate function f on interval [−1, 1] (functions defined on a
different bounded domain can be rescaled to [−1, 1]). For such functions, equispaced grids cause a big
error of approximation, therefore to minimise the error, we use Chebyshev points (roots of Chebyshev
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Figure 2.1: Spectral approximation of the second derivative of functions v1(x) = ecos
2(x) (left graph)

and v2(x) = e−1/(1−x
2) if x ∈ (−1, 1), v2(x) = 0 otherwise (right graph). The error is evaluated in

maximum norm ∥ ∥∞.

polynomial) instead

xj = cos(jπ/N), j = 0, 1, . . . , N, 1 = x0 < x1 < · · · < xN = −1, N ∈ N. (2.15)

For values f(xj) = fj , j = 0, 1, . . . , N there exist unique polynomial of degree ≤ N such that p(xj) =
fj , 0 ≤ j ≤ N . As in the case for periodic functions we denote wj ≈ f ′(xj) and set wj = p′(xj). To
find vector w = (w0, w1, . . . , wN ) that approximates the derivative of function f on interval [−1, 1] it
is sufficient to multiply vector f = (f0, f1, . . . , fN )T by the Chebyshev differentiation matrix DN ∈
M(N+1)×(N+1)(R)

w = DNf ,

where

(DN )kj =



2N2+1
6 , if k = j = 0,

−2N2+1
6 , if k = j = N,

−xj

2(1−x2
j )
, if k = j = 1, . . . , N − 1,

ci
cj

(−1)i+j

(xi−xj)
, if k ̸= j, i, j = 1 . . . , N − 1,

and coefficients c0 = cN = 2, cj = 1 for 1 ≤ j ≤ N − 1.
In the multivariate case Ω ⊂ Rm, m > 1, differential operator L (e.g., when L = ∆) can also be

approximated by the spectral methods, see [33].
Spectral methods in an unbounded domain are currently an intensive object of research.

2.2.2 Splitting methods

Splitting methods are widely used in computational mathematics to solve differential equations numer-
ically. An interesting application of such methods is presented in the article [19], in which the authors
use splitting methods to numerically approximate the Korteweg-de Vries equation.
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Suppose that the differential operator L for the Cauchy problem (2.9) is of the form L = ∆ + h,
where h(x) is a space dependent function. Let h̄ = (h1, . . . , hN ) ∈ RN be a vector such that hj = h(xj),
j = 1, . . . , N , {xj} is the space grid and let IN ∈ MN×N (R) be the identity matrix. In general,
we cannot diagonalize matrix K2 + IN h̄ similarly as before to compute effectively exp(t(K2 + IN h̄)).
Certainly one can find the value of exp(t(K2+IN h̄)) by computer program expm, but the computational
cost will be large – especially in a higher space dimension. Therefore, to approximate expression
exp(t(K2+ IN h̄)), we may use the splitting methods. The simplest splitting is the Lie-Trotter method

eh(A+B)u0 = ehAehBu0 +O(h2), (2.16)

where A and B are some matrices that do not need to commute and h = T/n is a small time step. On
the whole time interval [0, T ] we have

eT (A+B)u0 =
(
ehAehB

)n
u0 +O(h).

In other words, instead of considering the equation

u′(t) = (A+B)u(t), u(0) = u0, (2.17)

which may be difficult in numerical approximation, we are dealing with the simpler equations ()

u′(t) = Au(t), u(0) = u1 and u′(t) = Bu(t), u(0) = u2. (2.18)

Then the combination of the solutions (2.18) is the approximation of the solution (2.17). More accurate
scheme is the Strang splitting

eh(A+B)u0 ≈ eAh/2eBheAh/2u0 +O(h3). (2.19)

It is possible to construct schemes which converge faster than the Lie-Trotter and Strang splitting, but
it involves larger error constant and higher computational costs.

Example 3. Consider the equationut(x, t) = ∂2xxu(x, t)− x2u(x, t), x ∈ (−10, 10), t ∈ [0, 1],

u(x, 0) = u0(x) = e−
x2

2 .
(2.20)

Function u satisfying problem (2.20) is u(x, t) = e−
x2

2 e−t. Initial condition u0(x) = e−
x2

2 is not peri-
odic, but it is close to zero on the boundary, so it may be regarded as periodic in practical computations.
Figure 2.2 presents the error of the Strang splitting method

eh(K2−INx2) ≈ e−hINx2/2ehK2e−hINx2/2u0

evaluated in supremum norm, for N = 256 grid points.
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Figure 2.2: Numerical approximation of the Strang splitting method applied to the equation (2.20).
The error is evaluated in supremum norm ∥ ∥∞.

2.3 The Neumann series

Let us consider the following ordinary differential equation

Y ′(t) = A(t)Y (t), Y (0) = Y0, (2.21)

where Y : R → Cn and A(t) is an n×n time-dependent matrix. Equation (2.21) can be written in the
following form

Y (t) = Y0 +

∫ t

0
A(τ)Y (τ)dτ. (2.22)

By iterating equation (2.22), one can show that the solution of the problem (2.22) is given by the series

Y (t) =

∞∑
d=0

T dY0, (2.23)

where

T dY0 =

∫ t

0
A(τ1)

∫ τ1

0
A(τ2)· · ·

∫ τd−1

0
A(τd)Y0dτd . . . dτ1.

The series (2.23) is known as the Neumann series and the Dyson series [20], and it converges to the
solution of equation (2.22) for all values of t provided that the matrix A(t) is bounded [6].
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2.4 Quadrature methods for highly oscillatory integrals

As mentioned, the solution u of equation (1.1) can be expressed as a convergent Neumann series. For
function f of the form (1.2), the Neumann series is an infinite sum of multivariate highly oscillatory
integrals. Hence, to approximate the solution of (1.1), we need to be able to approximate such integrals.

In general, oscillatory integrals is of the following form

I[h, σ] =

∫
σ
h(s)eiωg(s)ds, (2.24)

where σ ⊂ Rd is a domain of the integral and h, g : Rd → R. We assume that functions h and g

are sufficiently smooth and ω ≫ 1. For such integrals, standard quadrature rules based on Taylor
expansion are inadequate in numerical approximation due to the large error constant. There are
some quadrature rules dedicated to integrals of the form (2.24), such as: the asymptotic expansion,
the Filon-type method and the Levin collocation method. In this dissertation, we consider integral
(2.24) with oscillator g(s) = nTs, where n, s ∈ Rd, and σ = σ(t) being a d-dimensional simplex with
vertices (0, . . . , 0, 0), (0, . . . , 0, t), (0, . . . , 0, t, t), . . . , (t, . . . , t, t). In this chapter, we briefly describe the
asymptotic method, which will be used in Chapter 3, and the Filon method, which will be utilized in
Chapter 4.

Asymptotic expansion

Applying integration by parts repeatedly, we obtain the following formula

∫ t

0
eiωτh(τ)dτ =

r−1∑
m=0

(−1)m

(iω)m+1

[
eiωt∂mτ h(τ) τ=t

− ∂mτ h(τ) τ=0

]
︸ ︷︷ ︸

=:Sr(t)

+
(−1)r

(iω)r

∫ t

0
eiωτ∂rτh(τ)dτ︸ ︷︷ ︸

=:Er(t)

.

(2.25)

Sum Sr(t) approximates the integral with error |Er(t)| ≤ Cω−r, where constant C is independent of
ω, but depends on t, function h and its successive derivatives. We say that Sr(t) is the r-partial sum
of the asymptotic expansion of integral I[h, (0, t)]. In general, for ω ≫ 1 the sum Sr(t) provides a
significant approximation of a highly oscillatory integral. However, the series S∞(t) it is not always
convergent. Instead, we write∫ t

0
eiωτh(τ)dτ ∼ S∞(t) =

∞∑
m=0

(−1)m

(iω)m+1

[
eiωt∂mτ h(τ) τ=t

− ∂mτ h(τ) τ=0

]
, ω → ∞, (2.26)

where the expression on the right hand side is a formal series. Symbol ∼ means that for each N =

1, 2, . . . we have∣∣∣∣∣
∫ t

0
eiωτh(τ)dτ −

N−1∑
m=0

(−1)m

(iω)m+1

[
eiωt∂mτ h(τ) τ=t

− ∂mτ h(τ) τ=0

]∣∣∣∣∣ = O(ω−N−1).



16

In other words, series S∞(t) may diverge, but partial sum Sr(t) provides excellent approximation of
integral I[h, (0, t)] for large parameter ω.

Throughout the dissertation, we will use the standard notation deriving from the asymptotic anal-
ysis. By g ∼ O(ω−d) we understand that function g has the asymptotic expansion whose first term
decays like O(ω−d). In (2.25) we have Sr(t) ∼ O(ω−1) and Er(t) = O(ω−r−1).

To analyze multivariate integrals 2.24 over a domain σ ⊂ Rd we need the following

Definition 5. Point s ∈ ∂σ is called a resonance point if gradient ∇g(s) of oscillator g is orthogonal
to the boundary of σ. We say that the nonresonance condition is satisfied if for every s ∈ ∂σ gradient
∇g(s) is not orthogonal to the boundary of σ.

If oscillator g(s) = nTs and σ(t) is a d-dimensional simplex, then the nonresonance condition
means that vector n is not orthogonal to the faces of simplex σ(t).

Theorem 8. Suppose that σ(t) ⊂ Rd is a d-dimensional simplex and that the nonresonance condition
is satisfied. Let h be a real valued function. Then [22]

I[h, σ(t)] =

∫
σ(t)

h(s)eiωn
T sds ∼ O(ω−d).

Filon method

The Filon method is a quadrature rule designed for highly oscillating integrals. We restrict ourselves
to describing only the simplest version of the Filon method. Suppose that Hermite interpolation
polynomial p approximate function h, p(s) ≈ h(s). Let p satisfies the following conditions

p(k)(0) = h(k)(0), p(k)(t) = h(k)(t), k = 0, 1, . . . N.

Then the Filon method reads ∫ t

0
h(s)eiωsds ≈

∫ t

0
p(s)eiωsds,

and the integral
∫ t
0 p(s)e

iωsds is computed explicitly. One can show that the error of the above ap-
proximation satisfies ∣∣∣∣∫ t

0
h(s)eiωsds−

∫ t

0
p(s)eiωsds

∣∣∣∣ ≤ C
1

ωN+1
,

where constant C is independent of ω [13]. This means that the Filon method is as efficient as the
asymptotic method for highly oscillatory integrals. In addition, for small values of ω it behaves similarly
to standard quadrature rules.

In the same way, we approximate a multivariate highly oscillatory integral. Function h : Rd → R
is interpolated by the corresponding polynomial p, and then integral

∫
σ(t) p(s)e

iωnT sds is computed
explicitly. We have ∫

σ(t)
h(s)eiωn

T sds ≈
∫
σ(t)

p(s)eiωn
T sds.
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In order to approximate the solution of a partial differential equation of type (1.1), we need to
approximate the integrals appearing in the Neumann series in which the non-oscillatory functions are
vector values. This greatly complicates the calculations. In our approach, to expand asymptotically a
multivariate highly oscillatory integral of vector-valued function over a d-dimensional simplex, we will
repeatedly exploit Fubini’s theorem, properties of the semigroup operator, and integration by parts. In
this section, we provide an example of the asymptotic expansion for univariate and bivariate integrals
appearing in the Neumann series. The general results involving integrals over a d-dimensional simplex
will be presented in Chapter 3 and in Appendix A.1. We need the following

Lemma 1. Let α ∈ D(Lk), where D(Lk) = {u ∈ D(Lk−1) : Lk−1u ∈ D(L)} and let L be the infinites-
imal generator of a strongly continuous semigroup {etL}t≥0. The k-th time derivative of expression
e(t−τ)LαeτL is [4]

∂kτ

(
e(t−τ)LαeτL

)
= e(t−τ)L

[
. . .
[
[α,L],L

]
, . . .

]
︸ ︷︷ ︸
L appears k times

eτL = (−1)ke(t−τ)LadkL
(
α
)
eτL, (2.27)

where ad0L
(
α
)
= α, adkL

(
α
)
=
[
L, adk−1L

(
α
)]

and [X,Y ] ≡ XY − Y X is the commutator of X and Y .

Theorem 9. For the infinitesimal generator L of strongly continuous semigroup and function α ∈
D(Lr), r ∈ N, the following identity holds

∫ t

0
eiωτe(t−τ)LαeτLdτ =

r−1∑
m=0

1

(iω)m+1

[
eiωtadmL

(
α
)
etL − etLadmL

(
α
)]

+
1

(iω)r

∫ t

0
eiωτe(t−τ)LadrL(α)e

τLdτ.

(2.28)

Proof. The assertion follows immediately by using Lemma 1 and formula (2.25) applied to function
h(τ) = e(t−τ)LαeτL.

Consider now the following bivariate integral∫ t

0
e(t−τ2)Lαn2e

iωn2τ2

∫ τ2

0
e(τ2−τ1)Lαn1e

τ1Leiωn1τ1dτ1dτ2. (2.29)

We assume that each appearing expressions Lkαnj , j = 1, 2 are well defined, and numbers n1, n2
satisfy n1 > 0, n2 > 0. The domain of the integral is a two dimensional simplex

σ2(t) = {τ := (τ1, τ2) ∈ R2 : t ≥ τ2 ≥ τ1 > 0}.

By employing Fubini’s theorem, Theorem 9, and Lemma 1, we expand the integral (2.29) with accuracy
O(ω−r) in the spirit of the expansion (2.28).∫ t

0
e(t−τ2)Lαn2e

iωn2τ2

∫ τ2

0
e(τ2−τ1)Lαn1e

τ1Leiωn1τ1dτ1dτ2 =

r−1∑
k1=0

1

(iωn1)k1+1

∫ t

0
e(t−τ2)Lαn2e

iωn2τ2
[
eiωn1τ2adk1L (αn1)e

τ2L − eτ2Ladk1L (αn1)
]
dτ2 +
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1

(iωn1)r

∫ t

0
e(t−τ2)Lαn2e

iωn2τ2

∫ τ2

0
eiωn1τ1e(τ2−τ1)LadrL(αn1)e

τ1Ldτ1dτ2 =

r−1∑
k1=0

1

(iωn1)k1+1

∫ t

0
eiωτ2(n1+n2)e(t−τ2)Lαn2ad

k1
L (αn1)e

τ2L − eiωn2τ2e(t−τ2)Lαn2e
τ2Ladk1L (αn1)dτ2 +

1

(iωn1)r

∫ t

0
e(t−τ2)Lαn2e

iωn2τ2

∫ τ2

0
eiωn1τ1e(τ2−τ1)LadrL(αn1)e

τ1Ldτ1dτ2.

Now for each index k1, we integrate by parts r − 1 − k1 times the two integrals, which appear in the
penultimate line.

r−1∑
k1=0

1

(iωn1)k1+1

∫ t

0

eiωτ2(n1+n2)e(t−τ2)Lαn2
adk1

L (αn1
)eτ2Ldτ2 =

r−2∑
k1=0

1

(iωn1)k1+1

r−2−k1∑
k2=0

1

(iω(n1 + n2))k2+1

[
eiωt(n1+n2)adk2

L

(
αn2

adk1

L (αn1
)
)
etL − etLadk2

L

(
αn2

adk1

L (αn1
)
)]

+

r−1∑
k1=0

1

(iωn1)k1+1

1

(iω(n1 + n2))r−1−k1

∫ t

0

eiωτ2(n1+n2)e(t−τ2)Ladr−1−k1

L

(
αn2

adk1

L (αn1
)
)
eτ2Ldτ2 = (⋆).

Due to simple relations
∑r

k1=0

∑r−k1
k2=0 ak1bk2 =

∑r
k1+k2=0 ak1bk2 ,

∑r
k1=0 ak1,r−k1 =

∑
k1+k2=r ak1,k2

and by simplifying expressions where necessary, we obtain

(⋆) =
r−2∑

k1+k2=0

1

(iω)k1+k2+2

1

nk1+1
1 (n1 + n2)k2+1

[
eiωt(n1+n2)adk2

L

(
αn2

adk1

L (αn1
)
)
etL − etLadk2

L

(
αn2

adk1

L (αn1
)
)]

+

1

(iω)r

r−1∑
k1+k2=0

1

nk1+1
1

1

(n1 + n2)k2

∫ t

0

eiωτ2(n1+n2)e(t−τ2)Ladk2

L

(
αn2

adk1

L (αn1
)
)
eτ2Ldτ2.

In a similar way, we expand asymptotically the remaining integrals

r−1∑
k1=0

1

(iωn1)k1+1

∫ t

0
eiωn2τ2e(t−τ2)Lαn2e

τ2Ladk1L (αn1)dτ2 =

r−2∑
k1+k2=0

1

(iω)k1+k2+2

1

nk1+1
1 nk2+1

2

[
eiωtn2adk2L (αn2)e

tLadk1L (αn1)− etLadk2L (αn2)ad
k1
L (αn1)

]
+

1

(iω)r

r−1∑
k1+k2=0

1

nk1+1
1

1

nk22

∫ t

0
eiωτ2n2e(t−τ2)Ladk2L (αn2)e

τ2Ladk1L (αn1)e
τ2Ldτ2.

To sum up the above calculation, the approximation of integral (2.29) by the partial sum of the
asymptotic expansion is as follows∫ t

0
e(t−τ2)Lαn2e

iωn2τ2

∫ τ2

0
e(τ2−τ1)Lαn1e

τ1Leiωn1τ1dτ1dτ2 = S2
r (t) + E2

r (t),

where sum S2
r (t) and error of the expansion E2

r (t) are equal to
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S2
r (t) =
r−2∑

k1+k2=0

1

(iω)k1+k2+2

(
1

nk1+1
1 (n1 + n2)k2+1

[
eiωt(n1+n2)adk2

L

(
αn2ad

k1

L (αn1)
)
etL − etLadk2

L

(
αn2ad

k1

L (αn1)
)]

+
1

nk1+1
1 nk2+1

2

[
eiωtn2adk2

L (αn2
)etLadk1

L (αn1
)− etLadk2

L (αn2
)adk1

L (αn1
)
])

,

E2
r (t) =

1

(iωn1)r

∫ t

0

e(t−τ2)Lαn2e
iωn2τ2

∫ τ2

0

eiωn1τ1e(τ2−τ1)LadrL(αn1)e
τ1Ldτ1dτ2 +

1

(iω)r

r−1∑
k1+k2=0

1

nk1+1
1

1

(n1 + n2)k2

∫ t

0

eiωτ2(n1+n2)e(t−τ2)Ladk2

L

(
αn2

adk1

L (αn1
)
)
eτ2Ldτ2 +

+
1

(iω)r

r−1∑
k1+k2=0

1

nk1+1
1

1

nk2
2

∫ t

0

eiωτ2n2e(t−τ2)Ladk2

L (αn2
)eτ2Ladk1

L (αn1
)eτ2Ldτ2.

It can be observed that the calculation becomes tedious and complicated even for a bivariate inte-
gral. For obvious reasons, the computations involving the asymptotic expansions of higher-dimensional
integrals tend to be even more complex. Fortunately, as our numerical experiments demonstrate, a
few initial terms of the Neumann series allow us to approximate the solution of the highly oscillatory
differential equation with high accuracy.

The above calculations demonstrate our approach to approximating highly oscillatory integrals over
a d-dimensional simplex. For each integral, we apply Fubini’s theorem, and then, by using integration
by parts, we expand asymptotically univariate integrals. The general result for an integral over a
d-dimensional simplex will be presented in Chapter 3 and proven in Appendix A.1. The sum S2

r (t)

satisfies S2
r (t) ∼ O(ω−2). In bivariate integral of the form (2.29) we assumed that numbers n1 > 0

and n2 > 0. If n1 and n2 satisfy n1 + n2 = 0, we cannot perform the integration by parts for the
outer integral, because the frequency exponent would vanish, i.e. eiωt(n1+n2) = 1. In this case, (n1, n2)
is orthogonal to the boundary of the simplex σ2(t) and we only have S2

r ∼ O(ω−1). This makes the
asymptotic expansion of integrals even more complicated. In such a situation, (n1, n2) is called a
resonance point.

(t, t)

(0, 0)

(0, t)

n⃗1

n⃗2

Figure 2.3: Simplex σ2(t) and two vectors n⃗1 = (n,−n) and n⃗2 = (−n, n) orthogonal to the boundary
of σ2(t).
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Chapter 3

Asymptotic expansions for the solution of
a linear PDE with a multifrequency
highly oscillatory potential

This chapter is written based on the article [28]. Let us recall the problem under consideration – we
study the following highly oscillatory partial differential equation

∂tu(x, t) = Lu(x, t) + f(x, t)u(x, t), t ∈ [0, t⋆], x ∈ Ω ⊂ Rm,

u(x, 0) = u0(x),
(3.1)

with zero boundary conditions, where Ω is an open and bounded subset of Rm with smooth boundary
∂Ω, t⋆ > 0 and L is a linear differential operator of degree 2p, p ∈ N, defined by the formula

L =
∑
|p|≤2p

ap(x)D
p, Dp =

∂p1

∂xp11

∂p2

∂xp22
. . .

∂pm

∂xpmm
, x ∈ Ω ⊂ Rm. (3.2)

Multi-index p is an m-tuple of nonnegative integers p = (p1, p2, . . . , pm) and ap(x) are smooth,
complex-valued functions of x ∈ Ω̄. We assume that function f(x, t) in equation (3.1) is a highly
oscillatory of type

f(x, t) =
N∑

n=1

αn(x)e
inωt, ω ≫ 1, N ∈ N, (3.3)

where αn are complex-valued, sufficiently smooth functions. The proposed method can be efficiently
applied also in the case of functions αn depending on the time variable t. This will be demonstrated
in numerical experiments. We aim to express the solution of (3.1) as the following partial sum of the
asymptotic expansion

u(x, t) = p0,0(x, t) +
R∑

r=1

1

ωr

S∑
s=0

pr,s(x, t)e
isωt +

1

ωR+1
ER,S(x, t), t ∈ [0, t⋆], x ∈ Ω ⊂ Rm, (3.4)

where coefficients pr,s and the magnitude of error ER,S are independent of parameter ω.
Needless to say, the general form of equation (3.1) encompasses many important equations from
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both classical and quantum physics. The most important examples include the heat equation and
the Schrödinger equation. We demonstrate that our methodology is also applicable to equations with
second-order time derivatives, such as the wave equation and the Klein-Gordon equation. Highly
oscillatory differential equations of type (3.1) arise in various fields, including electronic engineering
[8, 10], when computing scattering frequencies [11], and in quantum mechanics [12, 21].

The research presented in this chapter is inspired by the article [12], in which the authors use a series
of type (3.4) as ansatz to approximate the solution of the Klein–Gordon equation. After incorporating
such ansatz to the equation, coefficients pr,s are determined either recursively or numerically by solving
the non-oscillatory differential equations. The method turned out to be particularly effective for large
oscillatory parameter ω, for which the standard numerical schemes were very expensive and inaccurate.
This motivated us to take a closer look at the issue of asymptotic expansion of solution to a highly
oscillatory equation. However, it is important to answer the following questions:

1. How to prove, that the solution of equation (3.1) indeed can be presented as the asymptotic
series of type (3.4)?

2. Is it possible to obtain coefficients pr,n purely analytically (not by solving numerically differential
equations)?

3. How to derive the error bound of the method?

4. Is the series (3.4) convergent?

5. Our numerical experiments regarding the paper [12] show that for small parameter ω, adding
subsequent terms of series (3.4) make the approximation worse. Why is this happening?

This chapter partially answers the above questions.
In our approach, instead of employing an ansatz, we derive the partial sum of the asymptotic

expansion (3.4) purely analytically. This approach enables us to obtain formulas for the coefficients
pr,n of sum (3.4), eliminating the need to determine them by solving a system of differential equations.
Furthermore, this approach allows us to derive a formula for the error in the approximation by the
asymptotic sum (3.4).

To express the solution of equation (3.1) as the asymptotic series, we take advantage of the method-
ology proposed for computing highly oscillatory integrals. To find the approximate solution, firstly,
we show that the Neumann series – in other words, a series of multivariate integrals – converges to
the solution of equation (3.1) in the Sobolev space H2p(Ω), where 2p is the order of the differential
operator L defined in (3.2). Then, by using integration by parts and the theory of semigroups, we
expand asymptotically each of these integrals into a sum of known coefficients. This is the most com-
plicated and technical part at this stage, since the domain of each integral is a d-dimensional simplex,
d = 1, 2, . . . and, as a result, the number of terms in the asymptotic expansion grows exponentially
when d increases. Fortunately, our numerical experiments show that one can achieve a small enough
error even for not large values of d. By organizing terms appropriately with respect to magnitudes
ω−r and frequencies eisωt, we obtain sum (3.4). Given that the Neumann series converges for any time
variable t, we attain a long-time behavior of the highly oscillatory solution of equation.
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The solution to equation (3.1), after spatial discretization, can also be expressed as the Magnus
series [4]. The Magnus expansion is particularly important in approximating the solution of the
Schrödinger equation, since any truncation of the Magnus series preserves unitarity. However, to
the best of the author’s knowledge, the convergence of the Magnus series has been proven only for
sufficiently small time variables t > 0 and only for bounded operators [18, 26]. Representing the
solution of equation (3.1) as the Neumann series allows its approximation for any large time variable
t.

By considering the potential function f in the form (3.3), we avoid the occurrence of resonance
points in the highly oscillatory integrals comprising the Neumann series. In the paper [23], the authors
present the asymptotic expansion of the solution of (3.1), in which function f has a single frequency
f(x, t) = α(x)eiωt. Paper [28] is the next step towards approximating the solution of equation (3.1)
with a more general potential of the following form

f(x, t) =

N∑
n=−N
n̸=0

αn(x, t)e
inωt, ω ≫ 1, N ∈ N. (3.5)

For such a function, resonance points will appear repeatedly in the integrals which constitute the
Neumann series. In this context, resonance occurs when the vector n ∈ Zd in the frequency term
ein

T τ , where τ ∈ Rd, is orthogonal to the boundary of the integral
∫
σd(t)

f(τ )ein
T τdτ , with σd(t)

representing a d-dimensional simplex. In this manuscript, we consider a special case of such a situation
and demonstrate that if the vector n is orthogonal to one edge of the simplex σd(t), then resonance
points vanish in the sum of these integrals.

The results presented in paper [28], described in this chapter, extend those previously introduced in
[23]. Specifically, we consider a potential function f with multifrequencies (3.3), rather than one with
a single frequency. Furthermore, we establish the convergence of the Neumann series in the Sobolev
norm, instead of the L2 norm, namely we provide the convergence in the norm of Sobolev space
H2p(Ω). Additionally, we demonstrate the applicability of the proposed methodology to equations
featuring second-order time derivatives. The resonance case is also considered.

The chapter is organized as follows: in Section 3.1 we show that the solution of (3.1) can be
expressed as the Neumann series. In Section 3.2, we convert each term of the Neumann series into a
sum of multivariate highly oscillatory integrals. Then we introduce necessary definitions which will be
needed in Section 3.3 for the asymptotic expansion of each highly oscillatory integral. Section 3.4 is
devoted to the error analysis of the proposed approximation. Section 3.5 concerns highly oscillatory
integrals with resonance points which form the Neumann series. In Section 3.6, we show the application
of the asymptotic method to the wave equation. Numerical simulations are presented in Section 3.7.

3.1 Representation of the solution as the Neumann series

In this section, we show that the solution of (3.1) can be presented as the Neumann series for any
t > 0. For convenience, we introduce necessary notations and making a general assumption

Notations 1. By H2p(Ω) = W 2p,2(Ω), where p is a nonnegative integer, we understand the Sobolev
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space equipped with standard norm ∥ ∥H2p(Ω), and Hp
0 (Ω) is the closure of C∞0 (Ω) in the space Hp(Ω).

In this chapter, for convenience, the norm in the space D(L) := Hp
0 (Ω)∩H2p(Ω) is denoted by ∥ ∥ :=

∥ ∥H2p(Ω). Additionally, we slightly abuse the notation and also denote u(t) := u(·, t) as an element
of an appropriate Banach space.

The following assumption will apply in this chapter.

Assumption 1. Suppose that

1. Ω is an open and bounded set in Rm with smooth boundary ∂Ω.

2. Operator −L : D(L) := Hp
0 (Ω)∩H2p(Ω) → L2(Ω), where L is of form (3.2), is a strongly elliptic

of order 2p and has smooth, complex-valued coefficients ap(x) on Ω̄.

3. u0 ∈ D(L) and f ∈ C
(
[0, t⋆];H2p(Ω)

)
.

We emphasize that the space D(L) is the Banach space since it is a closed subspace of the Banach
space H2p(Ω).

Expressing the solution u(t) of equation (3.1) with the highly oscillatory potential (3.3) as the
Neumann series facilitates its numerical approximation. Namely, having expressed u(t) as the following
series

u(t) =
∞∑
d=0

T detLu0,

for certain linear operator T , each term T detLu0 is actually a sum of multivariate highly oscillatory
integrals. In the following, we will show that if such an integral satisfies the nonresonance condition,
then T detLu0 ∼ O(ω−d). Intuitively, for a large parameter ω ≫ 1, further terms of the Neumann series
become less relevant in numerical approximation.

We start by applying Duhamel’s formula, and we write equation (3.1) in the integral form

u(t) = etLu0 +

∫ t

0
e(t−τ)Lf(τ)u(τ)dτ, (3.6)

where u0 and f(τ), u(τ) for fixed τ are elements of the appropriate Banach spaces. Assumption 1
guarantees that differential operator L is the infinitesimal generator of a strongly continuous semigroup
{etL}t≥0 on L2(Ω) and therefore maxt∈[0,t⋆] ∥etL∥L2(Ω)←L2(Ω) ≤ C(t⋆), where C(t⋆) is some constant
independent of t [14, 27]. Moreover, since the following a priori estimate holds

∥u∥H2p(Ω) ≤ C
(
∥Lu∥L2(Ω) + ∥u∥L2(Ω)

)
, (3.7)

for any u ∈ D(L), where C > 0 is a constant [27], operator etL is also bounded in norm ∥ ∥ of space
D(L) for any t ∈ [0, t⋆]. Indeed, by using (3.7) we have

∥etL∥D(L)←D(L) = sup
∥u∥≤1

∥etLu∥ ≤ C sup
∥u∥≤1

(
∥LetLu∥L2(Ω) + ∥etLu∥L2(Ω)

)
= C sup

∥u∥≤1

(
∥etLLu∥L2(Ω) + ∥etLu∥L2(Ω)

)
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≤ C∥etL∥L2(Ω)←L2(Ω) sup
∥u∥≤1

(
∥Lu∥L2(Ω) + ∥u∥L2(Ω)

)
≤ C∥etL∥L2(Ω)←L2(Ω) sup

∥u∥≤1

(
C1∥u∥+ ∥u∥L2(Ω)

)
≤ C(t⋆)

and again constant C(t⋆) depends on coefficients ap(x) of L, but is independent of time variable t.
By variation of constant representation (3.6), operator {etL}t≥0 is bounded, although the subject of
consideration is equation (3.1), which features unbounded operator L on space L2(Ω).

We introduce sequence
{
u[n]
}∞
n=0

⊂ C ([0, t⋆];D(L)) =: V

u[n](t) =
n∑

d=0

T detLu0, u[0](t) = etLu0, t ∈ [0, t⋆]. (3.8)

Linear operator T : V → V is determined by

Tu(t) =

∫ t

0
e(t−τ)Lf(τ)u(τ)dτ, t ∈ [0, t⋆], (3.9)

where L is the infinitesimal generator of a strongly continuous semigroup, and function f ∈ C
(
[0, t⋆];H2p(Ω)

)
.

We show that sequence (3.8) is convergent to the solution u ∈ C1([0, t⋆];L2(Ω)) ∩ C([0, t⋆];D(L)) of
equation (3.1). We use the estimation of a product of two functions in a Sobolev norm

∥hg∥H2p(Ω) ≤M∥h∥H2p(Ω)∥g∥H2p(Ω), Ω ⊂ Rm, 2p > m/2, (3.10)

for h, g ∈ H2p(Ω), where M depends only on p and m. In the beginning, we show that expression
T du(t)

T du(t) =

∫ t

0
e(t−τ1)Lf(τ1)

∫ τ1

0
e(τ1−τ2)Lf(τ2)· · ·

∫ τd−1

0
e(τd−1−τd)Lf(τd)u(τd)dτd . . . dτ1,

for fixed t, is uniformly bounded in norm ∥ ∥ of space D(L) by a constant independent of t.

Lemma 2. Suppose that Assumption 1 is satisfied. Let u ∈ V (V is the domain of operator T defined
in (3.9)), and 2p > m/2. Then there exist a constant M (depending only on p and m), such that

∥T du(t)∥ ≤MdCd
1C

d
2C3

(t⋆)d

d!
, t ∈ [0, t⋆], (3.11)

where C1 := maxt∈[0,t⋆] ∥etL∥D(L)←D(L), C2 := maxt∈[0,t⋆] ∥f(t)∥ and C3 := maxt∈[0,t⋆] ∥u(t)∥.

Proof. By applying inequality (3.10), and using basic properties of the operator norm, we can easily
estimate ∥T du(t)∥ for a fixed time t.

∥T du(t)∥ =

∥∥∥∥∫ t

0
e(t−τ1)Lf(τ1)

∫ τ1

0
e(τ1−τ2)Lf(τ2)· · ·

∫ τd−1

0
e(τd−1−τd)Lf(τd)u(τd)dτd . . . dτ1

∥∥∥∥
=

∥∥∥∥∫ t

0

∫ τ1

0
· · ·
∫ τd−1

0
e(t−τ1)Lf(τ1)e

(τ1−τ2)Lf(τ2) . . . e
(τd−1−τd)Lf(τd)u(τd)dτd . . . dτ1

∥∥∥∥
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≤
∫ t

0

∫ τ1

0
· · ·
∫ τd−1

0

∥∥∥e(t−τ1)Lf(τ1)e(τ1−τ2)Lf(τ2) . . . e(τd−1−τd)Lf(τd)u(τd)
∥∥∥dτd . . . dτ1

≤
∫ t

0

∫ τ1

0
· · ·
∫ τd−1

0

∥∥∥e(t−τ1)L∥∥∥∥∥∥f(τ1)e(τ1−τ2)Lf(τ2) . . . e(τd−1−τd)Lf(τd)u(τd)
∥∥∥dτd . . . dτ1

≤ C1C2M

∫ t

0

∫ τ1

0
· · ·
∫ τd−1

0

∥∥∥e(τ1−τ2)Lf(τ2) . . . e(τd−1−τd)Lf(τd)u(τd)
∥∥∥dτd . . . dτ1 =: (⋆)

Constant M comes from inequality (3.10). Proceeding analogously and repeatedly we obtain

(⋆) ≤ MdCd
1C

d
2C3

∫ t

0

∫ τ1

0
· · ·
∫ τd−1

0
dτd . . . dτ1 ≤MdCd

1C
d
2C3

(t⋆)d

d!
, ∀t ∈ [0, t⋆],

and the right hand side of the above inequality is independent of t, which completes the proof.

Theorem 10. Suppose that Assumption 1 is satisfied, 2p > m/2 and t ∈ [0, t⋆]. Then series

∞∑
d=0

T detLu0, t ∈ [0, t⋆],

converges absolutely and uniformly to the solution u⋆ of equation (3.1), and u⋆ ∈ C1([0, t⋆];L2(Ω)) ∩
C([0, t⋆];D(L)).

Proof. Let us denote C1 := maxt∈[0,t⋆] ∥etL∥D(L)←D(L), C2 := maxt∈[0,t⋆] ∥f(t)∥. By (3.11), we estimate

max
t∈[0,t⋆]

∥T detLu0∥ ≤MdCd+1
1 Cd

2∥u0∥
(t⋆)d

d!︸ ︷︷ ︸
=:Ad

, ∀ d ∈ N.

Since
∑∞

d=0Ad = C1∥u0∥ exp(t⋆MC1C2) and space D(L) is the Banach space, the Weierstrass M-
test provides that sequence

{
u[n]
}∞
n=0

is convergent absolutely and uniformly to some function u⋆ ∈
C([0, t⋆], D(L)). Thus, for each t ∈ [0, t⋆] we have

u⋆(t) := lim
n→∞

u[n](t) =

∞∑
d=0

T detLu0, (3.12)

where u[n] is defined by (3.8). The operator I−T is a bijection and function u⋆ is the solution of (3.6).
Indeed, it is easy to observe that

(I − T )

n∑
d=0

T d =

n∑
d=0

T d(I − T ) = I − Tn+1.

Since ∥Tn+1∥ → 0 as n→ ∞, for each t ∈ [0, t⋆] we obtain

(I − T )u⋆(t) = etLu0,

which is the equivalent form of equation (3.6). Moreover, one can observe that the mapping t 7→ u⋆(t)
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is differentiable for each t > 0, when u0 ∈ D(L) and f ∈ C([0, t⋆], H2p(Ω)). Indeed, by considering the
mild formulation of (3.1), namely

u⋆(t) = etLu0 +

∫ t

0
e(t−τ)Lf(τ)u⋆(τ)dτ, (3.13)

of course the first part etLu0 is continuously differentiable, d
dte

tLu0 = LetLu0, ∀t > 0, and since u⋆(τ) is
continuous, function g(t), defined as g(t) :=

∫ t
0 e

(t−τ)Lf(τ)u⋆(τ)dτ , is also continuously differentiable.
Since L is a closed operator, in addition holds

d

dt
u⋆(t) = etLLu0 + f(t)u⋆(t) +

∫ t

0
e(t−τ)LLf(τ)u⋆(τ)dτ.

Each expressions on the right-hand side are well-defined as u0, f(t)u⋆(t) ∈ D(L) for any t ∈ [0, t⋆].

Thus, we showed that solution u⋆ of (3.13) belongs to space C1([0, t⋆];L2(Ω)) ∩ C([0, t⋆];D(L)).

The above convergence proof of sequence (3.8) is similar to that presented in [23]. However, to
show the convergence of (3.8) to the solution of equation (3.1), one needs to provide convergence of
sequence (3.8) in the appropriate Sobolev norm.

Needless to say, the existence and uniqueness of linear evolution equations is a well-known and
well-established theory in mathematics. Theorem 10 is only needed to show that solution to the
equation can be presented as a series of multivariate integrals. This fact we utilize in the numerical
approximation a highly oscillatory solution. It is easy to notice that in the proof of Theorem 10,
operator T need not be a contraction mapping, but the Neumann series is still convergent. It can be
shown that for arbitrarily time variable t > 0, there exists number s, such that for any d > s, operator
T d is a contraction mapping ∥T d∥ < 1.

Remark 1. The mild formulation of equation (3.1) allows us to relax the assumptions on the initial
condition u0. Instead of requiring u0 ∈ D(L), let us assume for a moment that u0 ∈ L2(Ω) and
additionally that f is a bounded function ∥f∥∞ < ∞. By following a similar approach to the proof
of Theorem 10, one can also establish the convergence of the sequence (3.8) in the norm of the space
C([0, t⋆];L2(Ω)) to the mild solution u⋆ of equation (3.1). In this case, the additional assumption
2p > m/2 becomes redundant.

Series (3.12) is called the Neumann series. Equation (3.6) can be expressed symbolically as

u(t) = etLu0 + Tu(t).

It can be easy verified that for each n, the term u[n](t) satisfies the relation

u[n](t) = etLu0 + Tu[n−1](t), u[0](t) = etLu0.

Therefore, in the remaining text, we will use the terms ‘n-th partial sum of the Neumann series’ and
‘n-th iteration of the equation’ interchangeably to refer to the expression u[n](t).
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3.2 Presenting terms of the Neumann series as a sum of multivariate
integrals

By Theorem 10, the solution to equation (3.1) can be expressed as the Neumann series u(t) =∑∞
d=0 T

detLu0. In this section, we show that for function f , defined in (3.3), each term T detL, d =

1, 2, . . . of the Neumann series is a sum of multivariate highly oscillatory integrals. Subsequently, we
will prove that each T detL can be approximated by a partial sum of the asymptotic expansion. By
linearity of semigroup operator {etL}t≥0, we convert expression T detL into a more convenient form, for
function f defined in (3.3)

T detL =

∫ t

0

∫ τd

0

· · ·
∫ τ2

0

e(t−τd)Lf(τd)e
(τd−τd−1)Lf(τd−1) . . . e

(τ2−τ1)Lf(τ1)e
τ1Ldτ1 . . . dτd =

∑
1≤n1,...nd≤N

∫ t

0

∫ τd

0

· · ·
∫ τ2

0

e(t−τd)Lαnd
e(τd−τd−1)Lαnd−1

. . . e(τ2−τ1)Lαn1e
τ1Leiω(τ1n1+···+τdnd)dτ1 . . . dτd =

∑
n∈{1,...,N}d

∫
σd(t)

Fn(t, τ )e
iωnT τdτ =

∑
n∈{1,...,N}d

I[Fn, σd(t)],

where

τ = (τ1, τ2, . . . , τd),

Fn(t, τ ) = e(t−τd)Lαnd
e(τd−τd−1)Lαnd−1

. . . e(τ2−τ1)Lαn1e
τ1L, (3.14)

I[Fn, σd(t)] =

∫
σd(t)

Fn(t, τ )e
iωnT τdτ (3.15)

and σd(t) denotes a d-dimensional simplex

σd(t) = {τ := (τ1, τ2, . . . , τd) ∈ Rd : t ≥ τd ≥ τd−1 ≥ · · · ≥ τ2 ≥ τ1 ≥ 0}.

Using the above notation, solution u(t) of (3.6) can be written as

u(t) = etLu0 +

∞∑
d=1

∑
n∈{1,...,N}d

I[Fn, σd(t)]u0.

Each Fn(t, τ ) is a linear operator, Fn(t, τ ) : D(L) → D(L) and n ∈ Nd is a vector corresponding to
Fn in the sense that n appears in the frequency exponent of integral (3.15).

In our approach, to expand asymptotically multivariate highly oscillatory integral of type (3.15),
we will exploit repeatedly Fubini’s theorem, properties of the semigroup operator and integration by
parts. Therefore one should be able to compute successive partial derivatives of the expression of type
(3.14). We use the identity (2.27) from Lemma 1

∂kτ

(
e(t−τ)LαeτL

)
= e(t−τ)L

[
. . .
[
[α,L],L

]
, . . .

]
︸ ︷︷ ︸
L appears k times

eτL = (−1)ke(t−τ)LadkL
(
α
)
eτL,

where recall ad0L
(
α
)
= α, adkL

(
α
)
=
[
L, adk−1L

(
α
)]

and [X,Y ] ≡ XY − Y X is the commutator of X
and Y .
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Unless otherwise stated, we assume that each appearing expression of type Lkαn is well defined for
any functions αn, n = 1, . . . , N .

In the asymptotic expansion of integral of type (3.15), the number of terms in a partial sum of
the asymptotic series grows exponentially as the dimension d of the domain increases, therefore to
facilitate the notation and keep the whole terms of the sum under control, we introduce the following
definitions.

Definition 6. By vd
ℓ ∈ {0, 1}d, ℓ = 0, 1, . . . d we denote the vertices of simplex σd(1)

vd
0 = (1, 1, 1, . . . , 1, 1);

vd
1 = (0, 1, 1, . . . , 1, 1);

...

vd
ℓ = (0, . . . , 0︸ ︷︷ ︸

ℓ zeros

, 1, . . . , 1).

Definition 7. Let Φd
ℓ , ℓ = 0, 1, . . . , d, be a family of points such that

Φd
0 = {(1, 1, . . . , 1)},

Φd
ℓ = {ϕ ∈ {0, 1}d : ϕ = (ϕ1, ϕ2, . . . , ϕd), ϕℓ = 0, ϕj = 1, for j > ℓ}

In other words, ϕ ∈ Φd
ℓ if the last zero is at ℓ-th coordinate of ϕ, next coordinates are ones only.

Definition 8. For ϕ = (ϕ1, ϕ2, . . . , ϕd) ∈ {0, 1}d and multi-index k = (k1, . . . , kd), we define the
sequence of partial derivatives of F (t, τ1, τ2, . . . , τd)

Fk[ϕ](t) = ∂kdτd

(
. . . ∂k2τ2

(
∂k1τ1 F (t, τ1, τ2, . . . , τd) τ1=ϕ1τ2

)
τ2=ϕ2τ3

. . .
)

τd=ϕdt

Definition 8 we understand as follows: first, we compute the k1-th partial derivative for variable
τ1. Then we substitute in place of τ1 variable τ2 or 0. Subsequently, we compute the k2-th partial
derivative with respect to variable τ2 and then again we substitute τ2 = τ3 or τ2 = 0 and so on. We
proceed in this manner until we compute the kd-th partial derivative with respect to τd and substitute
τd = ϕdt, where ϕd = 0 or ϕd = 1. We introduce the above definition as the order of partial derivatives
at points is significant for operator defined in (3.14).

Example 4. To present how Definition 8 operates for Fn definied in (3.14), we compute the first few
expressions Fk

n [ϕ](t) for d = 1, 2. We assume that αn, n = 1, . . . , N are sufficiently smooth functions.

F k1
n1
[1](t) = ∂k1τ1

(
e(t−τ1)Lαn1e

τ1L
)

τ1=t
= (−1)k1adk1L

(
αn1

)
etL,

F k1
n1
[0](t) = ∂k1τ1

(
e(t−τ1)Lαn1e

τ1L
)

τ1=0
= (−1)k1etLadk1L

(
αn1

)
,

Fk
n [(1, 1)](t) = ∂k2τ2

(
∂k1τ1

(
e(t−τ2)Lαn2e

(τ2−τ1)Lαn1e
τ1L
)

τ1=τ2

)
τ2=t

= (−1)|k|adk2L

(
αn2ad

k1
L (αn1)

)
etL,

Fk
n [(1, 0)](t) = ∂k2τ2

(
∂k1τ1

(
e(t−τ2)Lαn2e

(τ2−τ1)Lαn1e
τ1L
)

τ1=τ2

)
τ2=0

= (−1)|k|etLadk2L

(
αn2ad

k1
L (αn1)

)
,

Fk
n [(0, 1)](t) = ∂k2τ2

(
∂k1τ1

(
e(t−τ2)Lαn2e

(τ2−τ1)Lαn1e
τ1L
)

τ1=0

)
τ2=t

= (−1)|k|adk2L
(
αn2

)
etLadk1L

(
αn1

)
,
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Fk
n [(0, 0)](t) = ∂k2τ2

(
∂k1τ1

(
e(t−τ2)Lαn2e

(τ2−τ1)Lαn1e
τ1L
)

τ1=0

)
τ2=0

= (−1)|k|etLadk2L
(
αn2

)
adk1L

(
αn1

)
.

It can be shown that expression Fk
n [ϕ], for operator Fn defined in (3.14), takes the following form

Fk
n [ϕ](t) =

∑
m≤k

(
k

m

)
(−1)|m|+|k|Lrd+1αnd

Lrdαnd−1
. . .Lrℓ+1αnℓ+1

etLLrℓαnℓ
. . .Lr2αn1Lr1 ,

for certain vector ϕ ∈ Φd
ℓ , sufficiently smooth functions αn, n = 1, . . . , N and multi-indexes k =

(k1, . . . .kd), m = (m1, . . . ,md). Numbers r1, . . . rd+1 satisfy r1 + · · · + rd+1 = |k| and m ≤ k means
mi ≤ ki for i = 1, 2, . . . , d.

3.3 Asymptotic expansion of a highly oscillatory integral subject to
nonresonance condition

Let n = (n1, . . . , nd) ∈ Nd be a vector. In this section, we assume that the coordinates of n satisfy the
nonresonance condition:

nj + nj−1 + · · ·+ nr+1 + nr ̸= 0, (3.16)

for each 1 ≤ j ≤ r ≤ d. This condition implies that n is not orthogonal to the faces of the simplex
σd(t). This case encompasses situations where the highly oscillatory potential f takes the form (3.3).
In this section, we shows that the integral I[Fn, σd(t)] defined in (3.15) can be expressed as a partial
sum of the asymptotic series. Let us start with the first term of the Neumann series. By applying
integration by parts, the integral [Fn1 , (0, t)] can be presented as the following sum:

∫ t

0
eiωτn1e(t−τ)Lαn1e

τLu0dτ =
r−1∑
k=0

1

(iωn1)k+1

[
eiωtn1adkL

(
αn1

)
etL − etLadkL

(
αn1

)]
u0 (3.17)

+
1

(iωn1)r

∫ t

0
eiωτn1e(t−τ)LadrL

(
αn1

)
eτLu0dτ,

and the above expansion approximates the integral with error O(ω−r−1). The general formula for the
integral I[Fn, σd(t)] over a d-dimensional simplex is unfortunately much more complicated. However,
equation (3.17) shows the main idea of our considerations. In the later derivation, we will use simple
tools, including induction, Fubini’s theorem and identity (3.17).

The following definition determines coefficients that will appear as a result of integrating by parts
in highly oscillatory integrals.

Definition 9. For vector ϕ ∈ Φd
ℓ , vertex vd

ℓ of simplex σd(1), ℓ = 0, 1, . . . , d, multi-indexes k =

(k1, . . . , kd+1), k̃ = (k1, . . . , kd) and vector n = (n1, . . . , nd) ∈ Nd satisfying condition (3.16), we
introduce the following rational numbers

Ak1 [ϕ1](n1) =
(−1)ϕ1+1

nk1+1
1

,
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Ak [(ϕ, ϕd+1)]((n, nd+1)) = Ak̃[ϕ](n)
(−1)ϕd+1+1

[(vd
ℓ , 1) · (n, nd+1)]kd+1+1

.

One can express terms Ak [ϕ](n) explicitly, namely for ϕ = (ϕ1, ϕ2, . . . ϕd) ∈ Φd
ℓ we have

Ak[ϕ](n) = (3.18)
(−1)ϕ1+1

nk1+1
1

(−1)ϕ2+1

(n1ϕ1 + n2)k2+1

(−1)ϕ3+1

((n1ϕ1 + n2)ϕ2 + n3)
k3+1

. . .
(−1)ϕd+1

(. . . ((n1ϕ1 + n2)ϕ2 + n3)ϕ3 + · · ·+ nd)
kd+1

yet recursive definition will be needed later in the proof of Theorem 11. Due to assumption (3.16), we
never divide by zero in the above expressions.

Example 5. For d = 3 we compute coefficients Ak[ϕ](n) for different ϕ ∈ Φ3
ℓ , ℓ = 0, 1, 2, 3.

ℓ = 0, Ak[(1, 1, 1)](n) =
1

nk1+1
1 (n1 + n2)k2+1(n1 + n2 + n3)k3+1

,

ℓ = 1, Ak[(0, 1, 1)](n) =
−1

nk1+1
1 (n2)k2+1(n2 + n3)k3+1

,

ℓ = 2, Ak[(0, 0, 1)](n) =
1

nk1+1
1 nk2+1

2 nk3+1
3

,

ℓ = 2, Ak[(1, 0, 1)](n) =
−1

nk1+1
1 (n1 + n2)k2+1nk3+1

3

,

ℓ = 3, Ak[(0, 0, 0)](n) =
−1

nk1+1
1 nk2+1

2 nk3+1
3

,

ℓ = 3, Ak[(1, 1, 0)](n) =
−1

nk1+1
1 (n1 + n2)k2+1(n1 + n2 + n3)k3+1

,

ℓ = 3, Ak[(0, 1, 0)](n) =
1

nk1+1
1 nk2+1

2 (n2 + n3)k3+1
,

ℓ = 3, Ak[(1, 0, 0)](n) =
1

nk1+1
1 (n1 + n2)k2+1nk3+1

3

.

Coefficients Ak[ϕ](n) appear is the asymptotic expansion of integral (3.15). They play a funda-
mental role in our research in the asymptotic analysis of highly oscillatory integrals with resonance
points.

Remark 2. In the subsequent part of the paper, we employ the following notation: If n = (n1, . . . , nm) ∈
Zm is an m-dimensional vector, then ñ = (n1, n2, . . . , nm−1) ∈ Zm−1 represents a (m−1)-dimensional
vector obtained by excluding the last coordinate nm from n.

To simplify complex notation in the proof Theorem 11, we will also write F := Fn for the operator
defined in (3.14), if vector n corresponding to F is clear from the context.

Theorem 11. Let F be the operator defined in (3.14), and let n be the vector corresponding to F

that satisfies the nonresonance condition (3.16). Integral (3.15) can be expressed as the r-partial sum
S(d)
r (t) of the asymptotic series with error E(d)

r (t)

I[F, σd(t)] =

∫
σd(t)

F (t, τ )eiωn
T τdτ = S(d)

r (t) + E(d)
r (t), (3.19)
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where

S(d)
r (t) =

r−d∑
|k|=0

(−1)|k|

(iω)d+|k|

d∑
ℓ=0

eiωtn
T vd

ℓ

∑
ϕ∈Φd

ℓ

Ak[ϕ](n)F
k[ϕ](t) (3.20)

and error E(d)
r (t) of the expansion is in recursive form

E(1)
r (t) =

(−1)r

(iω)r
1

nr1

∫ t

0

eiωτ1n1∂rτ1F (t, τ1)dτ1, (3.21)

E(d)
r (t) =

(−1)r−d+1

(iω)r

∑
|k|=r−d+1

d−1∑
ℓ=0

∑
ϕ∈Φd−1

ℓ

1(
nTvd

ℓ

)kd
Ak̃[ϕ](ñ)

∫ t

0

eiωτdn
T vd

ℓ ∂kd
τd

(
e(t−τd)Lαnd

F k̃[ϕ](τd)
)
dτd

+

∫ t

0

e(t−τd)Lαnd
E(d−1)

r (τd)e
iωndτddτd, for d ≥ 2.

Proof of the Theorem 11 can be found in Appendix A.1.
Let us note that we cannot consider an infinite expansion in (3.19) because S(d)

r (t) may not converge
to I[F, σd(t)] as r → ∞, even if ω ≫ 1.

Theorem 11 states that the integral I[F, σd(t)] ∼ O(ω−d) can be approximated by the sum (3.20),
with an error O(ω−r) as given by the form (3.21). A similar result was first obtained in [22], where the
authors provide the asymptotic expansion of a multivariate highly oscillatory integral over a regular
simplex. However, our result differs in that the integrand is a vector-valued function, instead of a real-
valued function, which makes the formulas for the asymptotic expansion of highly oscillatory integrals
more complicated. In addition, for our further considerations, the coefficients Ak[ϕ](n) and the error
E

(d)
r (t) of the expansion must be explicitly derived.

3.4 Error analysis. First four terms of the Modulated Fourier ex-
pansion

In this section, we provide the error analysis of the approximation of the solution to equation (3.1)
using the sum (3.4). Additionally, we furnish ready-to-use formulas for the first four terms of the
partial sum (3.4) of the asymptotic expansion.

By Theorem 11, each integral I[Fn, σd(t)], for vector n satisfying the nonresonance condition
(3.16), and for sufficiently smooth functions αn, n = 1, . . . , N , can be expressed as a partial sum of
the asymptotic expansion

I[Fn, σd(t)] = S
(d)
r,n(t) + E

(d)
r,n(t),

where S(d)
r,n(t) is the sum corresponding to operator Fn and S(d)

r,n(t) ∼ O(ω−d). Moreover, for the r-th
partial sum of the Neumann series holds

u[r](t) =

r∑
d=0

T detLu0 = etLu0 +

r∑
d=1

∑
n∈{1,...,N}d

I[Fn, σd(t)]u0.

Therefore, it is possible to approximate the solution u(t) of equation (3.1) by a sum of type (3.4).
Furthermore, since the Neumann series converges for any time t, the asymptotic expansion is well-
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defined without the need for time steps.
We prove that the sum consists of terms of S(d)

r,n(t)u0, d = 1, 2, . . . , r

U [r]
as (t) = etLu0 +

r∑
d=1

∑
n∈{1,...,N}d

S(d)
r,n(t)u0.

approximates the solution of (3.1) with error O(ω−r−1).

Theorem 12. Let u(t) be the solution of (3.1) and u[r](t) =
∑r

d=0 T
detLu0 be the r−th partial sum of

the Neumann series. We denote ∥ ∥2 := ∥ ∥L2(Ω) and ∥ ∥q,2 := ∥ ∥H2p(r+1)(Ω), where q := 2p(r+ 1).
By T we mean the operator T =

∑∞
d=0 T

d. For t > 0, the following error estimations hold

(1) ∥u(t)− u[r](t)∥2 ≤ sup
∥v(t)∥2≤1

∥Tv(t)∥2∥T r+1etLu0∥2 = O(ω−r−1),

(2) ∥u(t)− U [r]
as (t)∥2 ≤ sup

∥v(t)∥2≤1
∥Tv(t)∥2∥T r+1etLu0∥2 +

r∑
d=1

∑
n∈{1,...,N}d

∥E(d)
r,n(t)u0∥2 = O(ω−r−1).

Proof. Let t > 0. According to Theorem 10, solution u(t) of (3.1) can be expressed as the Neumann
series u(t) =

∑∞
d=0 T

detLu0. Therefore we have

∥u(t)− u[r](t)∥2 =

∥∥∥∥∥
∞∑

d=r+1

T detLu0

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
d=0

T dT r+1etLu0

∥∥∥∥∥
2

≤ sup
∥v(t)∥2≤1

∥Tv(t)∥2∥T r+1etLu0∥2.

By Theorem 11, we have ∥T r+1etLu0∥2 ≤
∑

n∈{1,...,N}d
(
∥S(r+1)

r+1,n(t)u0∥2 + ∥E(r+1)
r+1,n(t)u0∥2

)
= O(ω−r−1).

To show (2) we use the triangle inequality

∥u(t)− U [r]
as (t)∥2 ≤ ∥u(t)− u[r](t)∥2 + ∥u[r](t)− U [r]

as (t)∥2

≤ sup
∥v(t)∥2≤1

∥Tv(t)∥2∥T r+1etLu0∥2 +
r∑

d=1

∑
n∈{1,...,N}d

∥E(d)
r,n(t)u0∥2,

and for each n ∈ {1, . . . , N}d, in fact we have ∥E(d)
r,n(t)u0∥2 = O(ω−r−1). Indeed, each integral that

forms error E(d)
r,n(t)u0 is, of course, highly oscillatory, and integrating by parts each of them results in

(3).

Expression T v(t), where ∥v(t)∥2 ≤ 1 is the solution of the integral equation

ψ(t) = v(t) +

∫ t

0
e(t−τ)Lf(τ)ψ(τ)dτ. (3.22)

Suppose that f is a bounded function on [0, t⋆], ∥f∥∞ <∞, and let C1 := maxt∈[0,t⋆] ∥etL∥L2(Ω)←L2(Ω).
By Grönwall’s inequality, solution of (3.22) can be estimated in L2 norm

∥Tv(t)∥2 = ∥ψ(t)∥2 ≤ exp(tC1∥f∥∞). (3.23)

Remark 3. The upper bound (3.23) of constant ∥Tv(t)∥2 may be large, especially for a big magnitude
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of ∥f∥∞. Therefore, let us also consider a different approach to this issue. In the proof of inequality
(1) of Theorem 12, we estimate the truncation of the Neumann series

∥u(t)− u[r](t)∥2 =

∥∥∥∥∥
∞∑
d=0

T dT r+1etLu0

∥∥∥∥∥
2

. (3.24)

Let now v(t) = T r+1etLu0. It is straightforward to verify that ψ(t) =
∑∞

d=0 T
dv(t) is the solution of

the following non-homogeneous equation

ψ′(t) = Lψ(t) + f(t)ψ(t) + v′(t)− Lv(t), (3.25)

ψ(0) = v(0).

From the form of function v(t) we have

v′(t)− Lv(t) = f(t)T retLu0 + LT r+1etLu0 − LT r+1etLu0 = f(t)T retLu0

and v(0) ≡ 0. Therefore, equation (3.25) reads

ψ′(t) = (L+ f(t))ψ(t) + f(t)T retLu0, (3.26)

ψ(0) = 0,

and f(t)T retLu0 = O(ω−r). Moreover, for a sufficiently small time variable t, the solution of (3.26)
can be written as

ψ(t) =

∫ t

0
Φ(t, s)f(s)T resLu0ds,

where Φ(t, s) is the solution of the homogeneous problem

Φ′(t, s) = (L+ f(s))Φ(t, s), Φ(s, s) = 1,

and Φ(t, s) = exp(Ω(t, s)), where Ω(t, s) is the Magnus expansion. If, for example, (3.1) is the
Schrödinger equation with a time dependent potential, then ∥Φ(t, s)∥2 ≡ 1 and therefore the truncation
(3.24) can be estimated in a different manner∥∥∥∥∥

∞∑
d=0

T dT r+1etLu0

∥∥∥∥∥
2

= ∥ψ(t)∥2 ≤ t∥f∥∞ max
s∈[0,t]

∥T resLu0∥2.

This provides a different estimate of the error constant ∥Tv(t)∥2.

Now we provide a ready-made formula for the sum (3.4) for R = 3, which approximates the solution
u(t) of problem (3.1) with error O(ω−4). Solution u(t) can be written as

u(t) = etLu0 + T 1etLu0 + T 2etLu0 + T 3etLu0 + TT 4etLu0,

where T =
∑∞

d=0 T
d, and the magnitude of the truncation of the Neumann series ∥TT 4etLu0∥2 =

O(ω−4).
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Each term T 1etLu0, T 2etLu0 and T 3etLu0 we expand as follows to obtain the error of the approxi-
mation O(ω−4)

T 1etLu0 =
∑

n1∈{1,...,N}

(
S(1)
3,n1

(t) + E
(1)
3,n1

(t)
)
u0,

T 2etLu0 =
∑

n∈{1,...,N}2

(
S(2)
3,n(t) + E

(2)
3,n(t)

)
u0,

T 3etLu0 =
∑

n∈{1,...,N}3

(
S(3)
3,n(t) + E

(3)
3,n(t)

)
u0.

The partial sum of the asymptotic expansion that approximates solution u(t) is equal to

U [3]
as (t) = etLu0 +

∑
n1∈{1,...,N}

S(1)
3,n1

(t)u0 +
∑

n∈{1,...,N}2
S(2)
3,n(t)u0 +

∑
n∈{1,...,N}3

S(3)
3,n(t)u0,

where S(1)
3,n1

(t)u0, S(2)
3,n(t)u0 and S(3)

3,n(t)u0, by identity (3.20), are of the following form

S(1)
3,n1

(t)u0 =
1

in1ω

(
ein1ωtαn1e

tL − etLαn1

)
u0 +

1

(in1ω)2
(
ein1ωtad1L(αn1)e

tL − etLad1L(αn1)
)
u0

+
1

(in1ω)3
(
ein1ωtad2L(αn1)e

tL − etLad2L(αn1)
)
u0,

S(2)
3,n(t)u0 =

1

(iω)2

(
eiωt(n1+n2)

1

n1(n1 + n2)
αn2αn1e

tL − eiωtn2
1

n1n2
αn2e

tLαn1 +
1

n2(n1 + n2)
etLαn2αn1

)
u0

+
1

(iω)3

(
eiωt(n1+n2)

(
1

n21(n1 + n2)
αn2

ad1L(αn1
)etL +

1

n1(n1 + n2)2
ad1L(αn2

αn1
)etL

)
+ eiωtn2

(
−1

n21n2
αn2e

tLad1L(αn1)−
1

n1n22
ad1L(αn2)e

tLαn1

)
+

1

n1n2(n1 + n2)
etLαn2ad

1
L(αn1)

+
−1

n1(n1 + n2)2
etLad1L(αn2

αn1
) +

1

n1n22
etLad1L(αn2

)αn1

)
u0,

S
(3)
3,n(t)u0 =

1

(iω)3

(
eiωt(n1+n2+n3)

n1(n1 + n2)(n1 + n2 + n3)
αn3αn2αn1e

tL − eiωt(n2+n3)

n1n2(n2 + n3)
αn3αn2e

tLαn1

+
eiωtn3

n2n3(n1 + n2)
αn3

etLαn2
αn1

− 1

(n1 + n2 + n3)(n2 + n3)n3
etLαn3

αn2
αn1

)
u0.

Expressions of type etLu0, etLαnju0, etLad1L(αnj )u0, etc. can be computed either explicitly, or very
efficiently and accurately by using the spectral methods [33] and/or the splitting methods [25].

To summarize, each terms of the Neumann series T detLu0 can be written as the following sum
together with the error

T detLu0 =
1

ωd

dN∑
s=0

eiωsP d
d,s +

1

ωd+1

dN∑
s=0

eiωsP d
d+1,s + · · ·+ 1

ωr

dN∑
s=0

eiωsP d
r,s +

1

ωr+1
Ed

r .
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P d
j,s consists of terms of Sd

r,n(t)u0, independent of ω, which stand next to frequency eiωs and magnitude
1
ωj . Ed

r is the whole error associated with the approximation of T detLu0 by the partial sum of the
asymptotic series.

It is very convenient to present the idea of the asymptotic expansion in the following table

T 1etLu0 = 1
ω

∑N
s=0 e

iωsP 1
1,s + 1

ω2

∑N
s=0 e

iωsP 1
2,s + 1

ω3

∑N
s=0 e

iωsP 1
3,s+ . . . + 1

ωr

∑N
s=0 e

iωsP 1
r,s + 1

ωr+1E
1
r

T 2etLu0 = 1
ω2

∑2N
s=0 e

iωsP 2
2,s + 1

ω3

∑2N
s=0 e

iωsP 2
3,s+ . . . + 1

ωr

∑2N
s=0 e

iωsP 2
r,s + 1

ωr+1E
2
r

T 3etLu0 = 1
ω3

∑3N
s=0 e

iωsP 3
3,s+ . . . + 1

ωr

∑3N
s=0 e

iωsP 3
r,s + 1

ωr+1E
3
r

...
. . .

...

T retLu0 = 1
ωr

∑rN
s=0 e

iωsP r
r,s + 1

ωr+1E
r
r

The error of the method consists of truncating the Neumann series and truncating the asymptotic
expansion each term T detLu0, d = 1, . . . r.

3.5 Asymptotic expansion – integrals with resonance points

Theorem 11 allows for the asymptotic expansion of integral I[Fn, σd(t)] provided that vector n satisfies
the nonresonance condition (3.16). However, given the potential function of a more general form (3.5)
with negative frequencies, solution of problem (3.1) can be presented as

u(t) = etLu0 +

∞∑
d=1

∑
n∈Nd

I[Fn, σd(t)]u0,

where Nd is a set of all possible vectors n

Nd := {−N, . . . ,−2,−1, 1, 2, . . . , N}d. (3.27)

Set Nd comprises vectors n which are orthogonal to the simplex σd(t) or its boundary. Coordinates
of such n satisfy

nj + nj−1 + · · ·+ nr+1 + nr = 0,

for certain 1 ≤ j < r ≤ d. For those vectors we cannot apply Theorem 11 since otherwise we would
divide by zero in expressions (3.18). Our advantage is, however, that instead of one integral with
resonance points, we are to deal with a sum of such integrals. In Theorem 11, an increase in the
dimension of integral results in an increase in the rate of decay – while I[F, σd−1(t)] ∼ O(ω−d+1),

I[F, σd(t)] ∼ O(ω−d). This is because at any step of the proof we could integrate by parts each
integral since, due to non-resonance assumption, the argument of frequency exponent nTvd

ℓ ̸= 0 and
then eiωtn

T vd
ℓ never vanish.

At this stage we consider integral I[Fn, σd(t)] with vector n = (n1, n2, n3, . . . , nd) ∈ Nd whose
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coordinates satisfy

n1 + · · ·+ nd = 0 and nj + nj+1 + · · ·+ nj+r ̸= 0 for j = 1, . . . , d, 1 ≤ j + r ≤ d. (3.28)

In other words, n is orthogonal only to the edge of simplex σd(t) contained in line {(x1, x2, . . . , xd) ∈
Rd : x1 = x2 = · · · = xd}. In such a situation, we have nTvd

0 = n1 + · · ·+ nd = 0 and therefore in the
proof of Theorem 11 we cannot integrate by parts the last, outer integral with eiωτdn

T vd
0 . The general

case involving the whole set (3.27) is a matter of further research.
Let nj ∈ Nd, j = 1, . . . , d be vectors satisfying (3.28), such that

n1 = (n1, n2, n3, . . . , nd−1, nd),

n2 = (n2, n3, n4, . . . , nd, n1),

...

nj = (nj , nj+1, . . . , nd, n1, . . . , nj−1),

...

nd = (nd, n1, n2, . . . , nd−2, nd−1).

If n1 ∈ Nd, then vectors nj , j = 2, . . . d belong to set Nd as well. Because of assumption (3.28),
for each j = 1, . . . , d we have

∑d
j=1nj = 0. From the coordinates of vectors nj we form the following

fractional numbers

A[ñ1] =
1

n1(n1 + n2)(n1 + n2 + n3) . . . (n1 + n2 + n3 + · · ·+ nd−1)
,

A[ñ2] =
1

n2(n2 + n3)(n2 + n3 + n4) . . . (n2 + n3 + n4 + · · ·+ nd)
,

...

A[ñk+1] =
1

nk+1(nk+1 + nk+2) . . . (nk+1 + nk+2 + · · ·+ nd + n1 + · · ·+ nk−1)
,

...

A[ñd] =
1

nd(nd + n1)(nd + n1 + n2) . . . (nd + n1 + n2 · · ·+ nd−3 + nd−2)
.

(We use cyclic notation ns = ns+d for s ∈ Z).

Lemma 3. Let nj, j = 1, . . . , d be vectors which satisfy condition (3.28). Then

d∑
j=1

A[ñj ] = 0.

Proof. It is sufficient to apply the partial fraction decomposition to A[ñ1], by treating n1 as a variable
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and other numbers nr, r ̸= 1 as constants. We aim to express A[ñ1] as

A[ñ1] =

d−1∑
j=1

Nj

n1 + · · ·+ nj
, (3.29)

for certain numbers Nj , j = 1, . . . d − 1. Let us fix index j. To determine coefficient Nj , we use
Heaviside’s Cover-up Method. Substituting n1 = −(n2 + · · ·+ nj) we have

Nj =
1

n1(n1 + n2) . . . (n1 + · · ·+ nj−1)(n1 + · · ·+ nj+1) . . . (n1 + · · ·+ nd−1) n1=−(n2+···+nj)

=
(−1)j−1

(n2 + · · ·+ nj) . . . njnj+1(nj+1 + nj+2) . . . (nj+1 + · · ·+ nd−1)

=
1

(nj+1 + · · ·+ n1) . . . (nj+1 + nj+2 + · · ·+ nj−1)nj+1(nj+1 + nj+2) . . . (nj+1 + . . . nd−1)

=
nj+1 + · · ·+ nd

nj+1(nj+1 + nj+2) . . . (nj+1 + · · ·+ nd−1)(nj+1 + · · ·+ nd)(nj+1 + · · ·+ n1) . . . (nj+1 + · · ·+ nj−1)

(in the penultimate equality we used assumption (3.28)). Now since nj+1+ · · ·+nd = −(n1+ · · ·+nj),
substituting Nj into (3.29) we obtain

A[ñ1] =

d−1∑
j=1

−1

nj+1(nj+1 + nj+2) . . . (nj+1 + · · ·+ nj−1)
= −

d−1∑
j=1

A[ñj+1],

which completes the proof.

Now let us notice, that if multi-index k̃ = (k1, . . . , kd−1) satisfy |k̃| = 0 and ϕ = (1, . . . , 1) ∈ Φd−1
0 ,

then Ak̃[ϕ](ñj) = A[ñj ], where Ak̃[ϕ](ñj) are the coefficients from Definition 9. In other words,
numbers A[ñj ], j = 1, . . . , d appear with the first term 1

(iω)d−1 of the asymptotic expansion of integral
I[Fñj

, σd−1(t)].

Theorem 13. Let nj ∈ Nd be vector which satisfies (3.28) and let Fnj be the operator defined in
(3.14) with corresponding vector nj , j = 1, . . . , d. Then

d∑
j=1

∫
σd(t)

Fnj (t, τ )e
iωnT

j τdτ ∼ O(ω−d).

In other words, the sum of these integrals with resonance points over a simplex σd(t) decays in the
same manner as an integral over the same domain without resonance points.

Proof. Let Fnj (t, τ ) = e(t−τd)Lαnd,j
e(τd−τd−1)Lαnd−1,j

. . . e(τ2−τ1)Lαn1,je
τ1L be the operator with corre-

sponding vector nj = (n1,j , n2,j , . . . , nd,j) , and let S(d−1)
r,ñj

, E
(d−1)
r,ñj

be the partial sum of the asymptotic
series and the error of approximation of integral I[Fñj

, σd−1(t)]. We use Fubini’s theorem and then
we apply Theorem 11 to expand asymptotically I[Fñj , σd−1(t)]. It is possible since the nonresonance
condition is violated only for the vectors nj ∈ Nd, j = 1, . . . , d.

d∑
j=1

∫
σd(t)

Fnj (t, τ )e
iωnT

j τdτ =
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d∑
j=1

∫ t

0
e(t−τd)Lαnd,j

I[Fñj
, σd−1(τd)]e

iωτdnd,jdτd =

d∑
j=1

∫ t

0
e(t−τd)Lαnd,j

(
S(d−1)
r,ñj

(τd) + E
(d−1)
r,ñj

(τd)
)
eiωτdnd,jdτd =

d∑
j=1

r−d+1∑
|k̃|=0

(−1)|k̃|

(iω)d−1+|k̃|

d−1∑
ℓ=1

∑
ϕ∈Φd−1

ℓ

Ak̃[ϕ](ñj)

∫ t

0
e(t−τd)Lαnd,j

F k̃
ñj
[ϕ](τd)e

iωτdn
T
j vd

ℓ dτd

︸ ︷︷ ︸
=:P1(t)

+

d∑
j=1

r−d+1∑
|k̃|=0

(−1)|k̃|

(iω)d−1+|k̃|
Ak̃[(1, . . . , 1)](ñj)

∫ t

0
e(t−τd)Lαnd,j

F k̃
ñj
[(1, . . . , 1)](τd)e

iωτdn
T
j vd

0dτd

︸ ︷︷ ︸
=:P2(t)

+

d∑
j=1

∫ t

0
e(t−τd)Lαnd,j

E
(d−1)
r,j (τd)e

iωτdnd,jdτd.

Now since vectors nj , j = 1, . . . , d satisfy (3.28), we have nT
j v

d
0 = 0, so eiωτdn

T
j vd

0 = 1 and there-
fore we cannot expand asymptotically expression P2(t). However, if |k̃| = 0 then for each j holds
e(t−τd)Lαnd,j

F k̃
ñj
[(1, . . . , 1)](τd) = e(t−τd)Lα1α2 . . . αde

τdL since functions αj commute with each other.
As a consequence, in expression P2 , by Lemma 3, terms with |k̃| = 0 vanish, so P2 is equal to

P2(t) =

d∑
j=0

n−d+1∑
|k̃|=1

(−1)|k̃|

(iω)d−1+|k̃|
Ak̃[(1, . . . , 1)](ñj)

∫ t

0
e(t−τd)Lαnd,j

F k̃
ñj
[(1, . . . , 1)](τd)dτd

and thus P2(t) ∼ O(ω−d). Expression P1(t) we integrate by parts according to Theorem 11 since each
integrals of expressions P1(t) has no resonance points, therefore P1(t) ∼ O(ω−d) and consequently
P1 + P2 ∼ O(ω−d).

In the asymptotic series of
∑d

j=0 I[Fnj , σd(t)], in expressions which were denoted by P2 in the proof
of Theorem 13, appear terms with integral∫ t

0
e(t−τd)Lαnd,j

F k̃
ñj
[(1, . . . , 1)](τd)dτd

yet they are not highly oscillatory, so we expect we can approximate them effortlessly and effectively,
for example by Gauss-Legendre quadrature.

Example 6. Consider set N2 = {n1 = (−1, 1),n2 = (1,−1)} and two integrals

I[Fn1 , σ2(t)] and I[Fn2 , σ2(t)].

Then I[Fn1 , σ2(t)]+I[Fn2 , σ2(t)] ∼ O(ω−2) and the first term of the asymptotic expansion of I[Fn1 , σ2(t)]+
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I[Fn2 , σ2(t)] is equal to

1

(iω)2

(
α1e

tLα−1e
iωt + α−1e

tLα1e
−iωt − 2etLα1α−1 +

∫ t

0

e(t−τ2)Lα−1ad
1
L(α1)e

τ2Ldτ2 +

∫ t

0

e(t−τ2)Lα1ad
1
L(α−1)e

τ2Ldτ2

)
.

Occurring integrals are not highly oscillatory and can be computed, for example, by Gauss-Legendre
quadrature with high accuracy.

To summarise this section, it is much more difficult to provide formulas for coefficients of the
asymptotic expansion for integrals with resonance points. However, Theorem 13 describes the asymp-
totic behaviour of terms from the Neumann series, and it seems possible to use this fact to construct
quadrature rules based on the Filon method.

3.6 Application of the method to the wave equation

As an example of the application of the asymptotic method, we consider the following second-order
PDE

∂2ttu = Lu(x, t) + f(x, t)u(x, t), t ∈ [0, t⋆], x ∈ Ω ⊂ Rm, (3.30)

u(x, 0) = u1(x), ∂tu(x, 0) = u2(x),

u = 0 on ∂Ω× [0, t⋆],

with function f given in (3.3). We write (3.30) as a first-order system

∂t

 u

v

 =

 0 I

L 0

 u

v

+ f

 0 0

I 0

 u

v

 ,
where v = ∂tu. Thus

∂t

 u

v


︸ ︷︷ ︸

φ

=

 0 I

L 0


︸ ︷︷ ︸

A

 u

v

+
N∑

n=1

einωt

 0 0

αn 0


︸ ︷︷ ︸

βn

 u

v



and therefore

∂tφ = Aφ+ hφ, φ(x, 0) = [u1(x), u2(x)], A[u, v]T = [v,Lu]T , βn[u, v]
T = [0, αnu]

T , (3.31)

where h(x, t) =
∑N

n=1 e
inωtβn(x) is a highly oscillatory function and φ is a vector valued function.

Suppose that L is a second-order differential operator which has symmetric form

Lu =

m∑
i,j=0

∂xj (aij∂xiu)− cu,
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where aij = aji, i, j = 1, . . . ,m and c ≥ 0. For simplicity, assume that ∥αn∥∞ < ∞, ∀n = 1, . . . , N .
By applying Duhamel’s formula, we write (3.31) as

φ(t) = etAφ0 +

∫ t

0
e(t−τ)Ah(τ)φ(τ)dτ. (3.32)

Operator A : D(A) :=
[
H2(Ω) ∩H1

0 (Ω)
]
×H1

0 (Ω) → H1
0 (Ω) × L2(Ω) is the infinitesimal generator of

a C0-semigroup {etA} on H1
0 (Ω)× L2(Ω) [14]. Using the same arguments as in the proof of Theorem

10, one can show that the Neumann series converges absolutely and uniformly in the norm of space
H1

0 (Ω)× L2(Ω) to the solution of equation (3.32).
It is worth mentioning that the structure of the terms βn causes certain terms in the asymptotic

expansion to vanish. We obtain even more zeros when we allow negative frequencies e−inωt and when
the coefficients αn satisfy the condition α−n = αn. This facilitates the derivation of the coefficients
in the asymptotic expansion, reduces the computational time, and enhances more the accuracy of the
method. This suggests that the asymptotic expansion works particularly well for equations with the
second time derivative in the form of (3.30).

3.7 Numerical examples

In this section, we present the application of the method to various equations of type (3.1) with
parameter ω ≫ 1. For each of the equations, it is possible to find an analytical solution to compare
them accurately with a numerical approximation. The L2 norm of the error is considered in any
presented example. For each equation, the solution is approximated by partial sum of the asymptotic
expansion

u(x, t) ≈ p0,0(x, t) +
R∑

r=1

1

ωr

S∑
s=0

pr,s(x, t)e
isωt, (3.33)

for different R and ω.

Example 1.
We first consider the following equation

∂tu = (1− x2)4∂2xxu+ f(x, t)u(x, t), t ∈ [0, 3], x ∈ (−1, 1),

u(x, 0) = u0(x), (3.34)

u(−1, t) = 0 = u(1, t),

where initial condition u0 and highly oscillatory potential f take the forms

u0(x) =

e
− 1

1−x2 if x ∈ (−1, 1),

0 otherwise,
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Figure 3.1: L2 norm of the error of the method for the equation (3.34) for t = 3. We use a base–10
log scale.

f(x, t) =
1

ω2

(
(1− x2)4 + 4iωx(1− x2)2 + 2ω2(1− 3x4)

)
︸ ︷︷ ︸

α0(x)

+eiωt 1

ω2

(
−2(1− x2)4 − 4ixω(1− x2)2 + xω2

)
︸ ︷︷ ︸

α1(x)

+ e2iωt 1

ω2
(1− x2)4︸ ︷︷ ︸
α2(x)

.

The solution of (3.34) is

u(x, t) = e−
ieiωtx

ω
+ ix

ω u0(x)

and differential operator L is of the form

L = (1− x2)4∂2xx + α0.

To approximate the solution we take the first four terms of the Neumann series (the third iteration)

u[3](t) = etLu0(x) + T 1etLu0 + T 2etLu0 + T 3etLu0.

Subsequently, we expand asymptotically T 1etLu0, T 2etLu0 and T 3etLu0 with error O(ω−4). In other
words, we approximate the solution of (3.34) by the partial sum of asymptotic expansion (3.4) with
the first four terms. Figure 3.1 and Table 3.1 present the approximation error of the solution u(x, 3)

for different values of ω and different lengths R of the partial sum of the Neumann series.

Example 2.
As mentioned, the method is also applicable to the potential with time–dependent functions αn(x, t).
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R = 0 R = 1 R = 2 R = 3

ω = 10 1.12e-01 3.17e-02 2.75e-02 7.38e-02
ω = 100 1.23e-02 3.06e-04 2.68e-05 7.36e-06
ω = 1000 1.27e-03 3.15e-06 2.68e-08 1.76e-09

Table 3.1: Error of the method – equa-
tion (3.34)

R = 0 R = 1 R = 2

ω = 10 9.33e-03 5.28e-03 5.55e-05
ω = 100 5.33e-04 4.87e-05 4.94e-08
ω = 1000 4.96e-05 7.64e-08 4.86e-11

Table 3.2: Error of the method – equa-
tion (3.35)

Indeed, consider the following equation

∂tu = ∂2xxu+ eiωt sin(t)u(x, t), t ∈ [0, 5], x ∈ (0, 2π),

u(x, 0) = sin(x), (3.35)

u(0, t) = 0 = u(2π, t).

The solution of (3.35) equals

u(x, t) = e−t−1/(ω
2−1)+eiωt cos(t)/(ω2−1)−ieiωtω sin(t)/(ω2−1) sin(x).

Operator L = ∂2xx and the potential f is f(x, t) = eiωtα(x, t), where α(x, t) = sin(t) is time–dependent
function. We approximate the solution by taking the first three terms of the Neumann series

u[2](t) = etLu0 + T 1etLu0 + T 2etLu0.

To expand asymptotically integrals T 1etLu0 and T 2etLu0 we utilize the following generalization of
Lemma 1.

Lemma 4. Let α(τ) ∈ Ck([0, t⋆], D(Lk)). Then the k-th time derivative of expression e(t−τ)Lα(τ)eτL

is equal to

∂kτ

(
e(t−τ)Lα(τ)eτL

)
=

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
e(t−τ)LadℓL

(
α(k−ℓ)(τ)

)
eτL.

The proof of Lemma 4 can be found in Appendix A.2. Table 3.2 presents the error of the method up
to the second iteration.

R = 0 R = 1 R = 2

ω = 10 3.17e-02 3.17e-02 1.71e-03
ω = 100 5.45e-04 5.45e-04 2.00e-07
ω = 1000 5.54e-06 5.54e-06 1.98e-11

Table 3.3: Error of the method – equation (3.36)

R = 0 R = 1 R = 2 R = 3

ω = 10 3.58e-00 3.47e-01 2.22e-02 1.07e-03
ω = 100 1.00e-01 2.64e-04 4.62e-07 6.07e-10
ω = 1000 1.80e-02 8.41e-06 2.62e-09 6.14e-13

Table 3.4: Error of the method – equation (3.37)
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Example 3.
Consider now the wave equation with potential with negative frequencies

∂ttu = ∂xxu+ f(x, t)u(x, t), t ∈ [0, 1], x ∈ (−L,L), L = 10,

u(x, 0) = e−x
2(1/2+1/ω2), ∂tu(x, 0) = 0, (3.36)

u(−L, t) = u(L, t),

∂tu(−L, t) = ∂tu(L, t),

where function f takes the form

f(x, t) =

(
1− x2 +

(2 + x2ω2 − 4x2) cos(ωt)

ω2
− 4x2 cos2(ωt)

ω4
+
x4 sin2(ωt)

ω2

)
.

The solution of (3.36) is equal to

u(x, t) = e− cos(ωt)x2/ω2
e−x

2/2.

Due to the presence of the resonance points, we do not have a general formula for the asymptotic
expansion of the integrals that form the Neumann series in this case. Nevertheless, we can employ
Theorem 11 and Theorem 13 to approximate only terms T 1etA and T 2etA, where A is the linear op-
erator of form (3.31). Table 3.3 presents the error of the method for a different oscillatory parameter ω.

Example 4.
In the last example, we consider the equation with the biharmonic operator

∂tu(x, t) = ∂4xxxxu(x, t) + eiωtu(x, t), x ∈ (0, π), t ∈ [0, 1],

u(x, 0) = u0(x) = sin(x) exp

(
− i

ω

)
, (3.37)

u(0, t) = u(π, t) = 0,

with periodic boundary conditions. The solution is

u(x, t) = et−ie
iωt/ω sin(x).

Table 3.4 presents the error of the method for different parameter ω and different partial sums of the
asymptotic expansion.

Remark 4. One can notice that equations (3.34), (3.36) and (3.37) do not fully satisfy Assumption
1. Indeed, linear operator L form equation (3.34) does not satisfy strong ellipticity condition for x
near −1 or 1, and solutions u(x, t) of equations (3.36) and (3.37) does not satisfy the zero boundary
conditions. These are just examples to illustrate the proposed methodology and suggest that the method
can probably be applied to a broader class of differential equations.
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Chapter 4

Numerical integrator for highly oscillatory
differential equations based on the
Neumann series

This chapter is based on an article [29]. We consider the following PDE

∂tu(x, t) = Lu(x, t) + f(x, t)u(x, t), t ∈ [0, t⋆], x ∈ Ω ⊂ Rm,

u(x, 0) = u0(x),
(4.1)

with zero boundary conditions, where Ω is an open and bounded subset of Rm with smooth boundary
∂Ω, t⋆ > 0 and L is a linear differential operator of degree 2p, p ∈ N, defined in 3.2. We assume that
function f(x, t) from the equation (4.1) is a highly oscillatory of type

f(x, t) =

N∑
n=−N
n̸=0

αn(x, t)e
inωt, ω ≫ 1, N ∈ N, (4.2)

where αn are sufficiently smooth, complex-valued functions. This chapter aims to introduce a numerical
integrator designed for highly oscillatory equations of type (4.1). Given the generality of equations
(4.1), the proposed numerical scheme can be effectively applied to a range of linear partial differential
equations, including the heat equation and the wave equation.

The motivation for the research presented in this chapter is that the method for highly oscillatory
equations based on the Modulated Fourier expansion described in Chapter 3 may not converge to a
solution. This means that it is only effective for equations with large oscillatory parameter ω. In
this chapter, we present a third-order method whose accuracy improves with increasing parameter ω
and decreasing time step h. Furthermore, the proposed approach allows for easy improvement of the
convergence order of the proposed numerical integrator.

In paper [28], discussed in Chapter 3, it was shown that the solution to equation (4.1) can be
presented as the Neumann series. Subsequently, by expanding asymptotically each integral in the
Neumann series, it was demonstrated that the solution of the equation can be expressed as the Modu-
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lated Fourier expansion. In this chapter, instead of employing an asymptotic expansion for the integrals
from the Neumann series (which is effective only in cases of large oscillations), we approximate them
using quadrature rules designed for highly oscillatory integrals, such as Filon-type methods. By this
approach, we can provide that the local error of the presented numerical scheme can be estimated by
Ch4, where constant C is independent of time step h and parameter ω. Furthermore, when consid-
ering a potential function f with only positive frequencies, i.e. when only numbers n > 0 appear in
formula (4.2), one can show that the local error is bounded by Cmin

{
h4, h2ω−2, ω−3

}
, where again

the constant C is independent of both h and ω.
The convergence rate of the method can be easily improved by approximating a greater number

of integrals from the Neumann series. However, this enhancement comes at the cost of requiring
better regularity for both the initial condition u0 and the functions αn, and also leads to increased
computational complexity.

Computational methods dedicated to equations of type (3.1) are presented for example in [2, 3,
35]. In this chapter, we present a complementary approach as discussed in the aforementioned papers.
Our approach is distinguished by the following properties:

• the general form of the problem (4.1) allows our method to be applied to a variety of equations,
including the heat equation, Schrödinger equation, and the wave equation;

• the presented approach allows easy improvement of the order of convergence of the proposed
numerical integrator;

• ease of estimating the error of the method.

The chapter is organized as follows. Section 4.1 provides the derivation of the proposed numerical
integrator. Section 4.2 is dedicated to the error analysis of the method, while Section 4.3 presents the
results of numerical experiments.

4.1 Derivation of the method

For the convenience of presenting the method, we introduce the necessary notation and make the
following general assumption, which will be used throughout this chapter.

Notations 2. By H2p(Ω) = W 2p,2(Ω), where p is a nonnegative integer, we understand the Sobolev
space equipped with standard norm ∥ ∥H2p(Ω). By u[t](τ) we understand function u such that u[t](τ) =
u(t+ τ). We slightly abuse the notation and also denote u(t) := u(·, t) as an element of an appropriate
Banach space. In this chapter, for convenience, by ∥ ∥ := ∥ ∥L2(Ω) we denote the standard norm of
L2(Ω) space.

Assumption 2. Suppose that

1. Ω is an open and bounded set in Rm with smooth boundary ∂Ω.

2. Operator −L : D(L) := Hp
0 (Ω)∩H2p(Ω) → L2(Ω), where L is of form (3.2), is a strongly elliptic

of order 2p and has smooth, complex-valued coefficients ap(x). Moreover 2p > m/2.
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3. u0 ∈ D(L4) and αn ∈ C4
(
[0, t⋆], H8p(Ω)

)
, n = −N, . . . ,−1, 1, . . . , N, where

D(Lk) = {u ∈ D(Lk−1) : Lk−1u ∈ D(L)}, k = 2, . . .

The assumed regularity of functions u0 and αn is related to the accuracy of the method. Recall
that assumption 2 guaranties that differential operator L is the infinitesimal generator of a strongly
continuous semigroup {etL}t≥0 on L2(Ω) and therefore maxt∈[0,t⋆] ∥etL∥L2(Ω)←L2(Ω) ≤ C(t⋆), where
C(t⋆) is some constant independent of t.

We wish to build the method based on time steps. Therefore, based on the semigroup property,
we can modify equation (4.1) and express it as follows

∂su[t](x, s) = Lu[t](x, s) + f [t](x, s)u[t](x, s), s ∈ [0, h], x ∈ Ω ⊂ Rm, (4.3)

u[t](x, 0) = u(x, t),

where t ≥ 0 and h > 0 is a small time step. By u[t](x, s) we understand u[t](x, s) = u(x, t + s). By
applying Duhamel formula to (4.3), we obtain

u[t](s) = esLu[t](0) +

∫ s

0
e(s−τ)Lf [t](τ)u[t](τ)dτ. (4.4)

We could simply write u[t](s) = u(t + s), but the above notation helps avoid misunderstandings in
subsequent formulas.

Let Vt denotes the following space

Vt := C
(
[t, t+ h], L2(Ω)

)
, t ≥ 0, h > 0.

Define the linear operator Tt : Vt → Vt

Ttu[t](s) =

∫ s

0
e(s−τ)Lf [t](τ)u[t](τ)dτ, s ∈ [0, h],

where function f is defined in (4.2). The Neumann series for equation (4.4) reads

u[t](h) =

∞∑
d=0

T d
t e

hLu[t](0). (4.5)

Expression T d
t e

hLu[t](0), d = 1, 2, . . . , from (4.5) is equal to

T d
t e

hLu[t](0) =

∫ h

0

e(h−τd)Lf [t](τd)

∫ τd

0

e(τd−τd−1)Lf [t](τd−1)· · ·
∫ τ2

0

e(τ2−τ1)Lf [t](τ1)e
τ1Lu[t](0)dτ1 . . . dτd.

It can be shown that the series (4.5) converges in the norms ∥ ∥L2(Ω) and ∥ ∥H2p(Ω) to the solution
of equation (4.4), where 2p > m/2, for arbitrary time variable h > 0 [28]. The idea for finding
an approximate solution to equation (4.1) involves approximating the first r terms of the Neumann
series (4.5) using quadrature methods designated to highly oscillatory integrals. For convenience, we
introduce a set

Nd := {−N,−N + 1, . . . ,−1, 1, . . . , N − 1, N}d ⊂ Nd, (4.6)
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where 2N is a number of terms in sum (4.2). Using definition (4.2) of the function f and the linearity
of semigroup operator, we can write each term of the Neumann series T d

t e
hLu[t](0), d = 1, 2, . . . in a

more convenient form for our considerations

T d
t e

hLu[t](0) =
∑

n1,...,nd∈N1

∫
σd(h)

Fn(h, τ1, . . . , τd)e
iω(n1(τ1+t)+···+nd(τd+t))dτ1 . . . τd

=
∑

n∈Nd

eiωtn
T 1I[Fn, σd(h)],

where

Fn(h, τ1, . . . τd) = e(h−τd)Lαnd
[t](τd)e

(τd−τd−1)Lαnd−1
[t](τd−1) . . . e

(τ2−τ1)Lαn1
[t](τ1)e

τ1Lu[t](0), (4.7)

I[Fn, σd(h)] =

∫
σd(h)

Fn(h, τ )e
iωnT τdτ ,

τ = (τ1, τ2, . . . , τd), 1 = (1, 1, . . . , 1),

and σd(h) denotes a d-dimensional simplex

σd(h) = {τ := (τ1, τ2, . . . , τd) ∈ Rd : h ≥ τd ≥ τd−1 ≥ · · · ≥ τ2 ≥ τ1 ≥ 0}.

Using the above notation, solution u of (4.4) can be written as

u(t+ h) = u[t](h) = ehLu[t](0) +
∞∑
d=1

eiωtn
T 1

∑
n∈Nd

I[Fn, σd(h)]. (4.8)

In the proposed numerical scheme, for each time step h we take the first four terms of the above series
that approximate the function u(t+ h)

u(t+ h) ≈ ehLu[t](0) +
3∑

d=1

∑
n∈Nd

eiωtn
T 1I[Fn, σd(h)].

Then, we approximate each integral I[Fn, σd(h)] in the above sum by applying the Filon quadrature.
As a result, we derive a fourth-order local method. By employing Filon quadrature, the method’s
error converges to zero both as h → 0 and as ω → ∞. Our decision to consider only the first four
terms in the Neumann expansion is rather arbitrary. The method can be enhanced to achieve a higher
level of accuracy, albeit with increased computational costs and the requirement of better regularity
for functions u0 and αn.

Consider function F (τ) := Fn1(h, τ) from the second term of the Neumann series and the following
univariate integral ∫ h

0
F (τ)en1iωτdτ,

where n1 = −N,−N + 1, . . . ,−1, 1, . . . , N . Let p(τ) be a cubic Hermite interpolating polynomial

F (τ) ≈ p(τ) = F (0) + a1,1τ + a1,2τ
2 + a1,3τ

3,
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which satisfy the conditions: p(0) = F (0), p(h) = F (h), p′(0) = F ′(0), p′(h) = F ′(h). We have∫ h

0
F (τ)ein1ωτdτ ≈

∫ h

0
p(τ)ein1ωτdτ,

and the moments ∫ h

0
τkein1ωτdτ, k = 0, 1, 2, 3,

can be calculated explicitly. Let now F (τ1, τ2) := Fn(h, τ1, τ2), n ∈ N2, and consider a bivariate
integral ∫ h

0

∫ τ2

0
F (τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2. (4.9)

We approximate function F (τ1, τ2) in points (0, 0), (0, h) and (h, h), the vertices of the simplex σ2(h),
by linear function p(τ1, τ2),

F (τ1, τ2) ≈ p(τ1, τ2) = F (0, 0) + a2,1τ1 + a2,2τ2.

The approximation of integral (4.9) by the Filon quadrature rule reads∫ h

0

∫ τ2

0
F (τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2 ≈
∫ h

0

∫ τ2

0
p(τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2,

and the integral on the right-hand side can be computed explicitly. Similarly, we proceed with the
triple integral. Function F (τ1, τ2, τ3) := Fn(h, τ1, τ2, τ3), n ∈ N3 is approximated by linear function
p at the vertices of the simplex σ3(h): (0, 0, 0), (0, 0, h), (0, h, h), (h, h, h),

F (τ1, τ2, τ3) ≈ p(τ1, τ2, τ3) = F (0, 0, 0) + a3,1τ1 + a3,2τ2 + a3,3τ3.

Then we have∫ h

0

∫ τ3

0

∫ τ2

0

F (τ1, τ2, τ3)e
iω(n1τ1+n2τ2+n3τ3)dτ1dτ2dτ3 ≈

∫ h

0

∫ τ3

0

∫ τ2

0

p(τ1, τ2, τ3)e
iω(n1τ1+n2τ2+n3τ3)dτ1dτ2dτ3.

The precise formulas for determining the coefficients ai,j are presented in the Appendix A.3.
The proposed algorithm for computing the successive approximation of the solution u can be

expressed in the following form:

uk+1 =

(
ehL +

∑
n1

∫ h

0

(
a1,0 + a1,1τ + a1,2τ

2 + a1,3τ
3) en1iω(τ+tk)dτ

+
∑
n1,n2

∫ h

0

∫ τ2

0

(a2,0 + a2,1τ1 + a2,2τ2)e
iω(n1(τ1+tk)+n2(τ2+tk))dτ1dτ2 (4.10)

+
∑

n1,n2,n3

∫ h

0

∫ τ3

0

∫ τ2

0

(a3,0 + a3,1τ1 + a3,2τ2 + a3,3τ3)e
iω(n1(τ1+tk)+n2(τ2+tk)+n3(τ3+tk))dτ1dτ2dτ3

)
uk

tk+1 = tk + h, k = 0, 1, . . . ,K − 1,

where u0 = u0, t0 = 0, tK = t⋆, n1, n2, n3 ∈ {−N,−N + 1, . . . ,−1, 1, . . . , N} and the coefficients ai,j
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are chosen so that the corresponding polynomial satisfies the Hermite interpolation conditions. Each
of the integrals appearing in the scheme is computed explicitly. Furthermore, the expression ehL and
the coefficients ai,j of the interpolating polynomials, after spatial discretization, can be computed very
efficiently and accurately using spectral method or splitting methods.

As we will see in the numerical examples, the proposed numerical scheme can be successfully applied
to partial differential equations with the second-time derivative. For details, we refer to Chapter 3,
Section 3.6.

4.2 Local error analysis

The entire error of the method comes from two sources: the approximation of each integral from the
partial sum of the Neumann series, and the error associated with the truncation of the Neumann
expansion. In [28], the authors provide the asymptotic expansion of integral I[Fn, σd(h)] from the
Neumann series (4.8), where Fn is the function of the form (4.7), for the special case when the
potential function f has positive frequencies, specifically when f takes the form

f(x, t) =
N∑

n=1

αn(x, t)e
inωt, ω ≫ 1, N ∈ N. (4.11)

In such a situation, each integral I[Fn, σd(h)] satisfies the nonresonance condition and therefore can
be approximated by the partial sum S(d)

r (h) of the asymptotic expansion

I[Fn, σd(h)] =

∫
σd(h)

F (h, τ )eiωn
T τdτ = S(d)

r (h) + E(d)
r (h), r ≥ d,

where E
(d)
r (h) = O(ω−r−1) is the error related to approximation of integral I[Fn, σd(h)] by sum

S(d)
r (h) ∼ O(ω−d). A similar result was first obtained in [22], where the authors provided the asymp-

totic expansion of a multivariate highly oscillatory integral over a regular simplex. However, in our
analysis, the non-oscillatory function Fn is vector-valued rather than real-valued. We begin the error
analysis of the proposed numerical method by considering function f from equation (4.1) in the form
(4.11). Recall that ∥ ∥ denotes the standard norm of L2(Ω) space. In the following estimations, C is a
constant that depends on functions αn, initial condition u[t](0) of equation (4.3), their derivatives, solu-
tion u, differential operator L and t⋆, but it is independent of the time step h and the oscillatory param-
eter ω. Let us also note that since by Assumption 2, the function f ∈ C4

(
[0, t⋆], H8p(Ω)

)
, we can apply

the Sobolev embedding theorem to conclude that ∥f(s)∥∞ <∞ for all s ∈ [0, t⋆]. Therefore, the norm
of product of two functions f and u can easily be estimated as ∥f(s)u(s)∥ ≤ ∥f(s)∥∞∥u(s)∥, ∀s ∈ [0, t⋆].

4.2.1 Positive frequencies

Lemma 5. Let F (τ) be a 4 times continuously differentiable, vector-valued function, and let p(τ)
be a cubic Hermite interpolation polynomial such that p(0) = F (0), p(h) = F (h), p′(0) = F ′(0),
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p′(h) = F ′(h). Then the error of the Filon method satisfies∥∥∥∥∫ h

0
(F − p)(τ)ein1ωτdτ

∥∥∥∥ ≤ Cmin

{
h5,

1

ω3
,
h3

ω2

}
.

Proof. The estimation that the error is bounded by Cω−3 directly follows from well-known results
concerning Filon quadrature, as described in [22]. By using the Taylor series with the remainder in
integral form, one can show that ∥F (τ) − p(τ)∥ ≤ Ch4 and ∥F ′′(τ) − p′′(τ)∥ ≤ Ch2. Therefore, by
using integration by parts, we have∥∥∥∥∫ h

0
(F (τ)− p(τ))ein1ωτdτ

∥∥∥∥ =
1

(n1ω)2

∥∥∥∥∫ h

0
(F ′′(τ)− p′′(τ))ein1ωτdτ

∥∥∥∥ ≤ C
h3

ω2
,

which completes the proof.

Lemma 6. Let F (τ1, τ2) be a vector-valued function of class C2 and p(τ1, τ2) be a linear function that
satisfies the conditions: p(0, 0) = F (0, 0), p(0, h) = F (0, h), p(h, h) = F (h, h). Let numbers n1 > 0,
n2 > 0. Then ∥∥∥∥∫ h

0

∫ τ2

0
(F − p)(τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2

∥∥∥∥ ≤ Cmin

{
h4,

h2

ω2
,
1

ω3

}
.

Proof. Since vector (n1, n2) satisfies the nonresonance condition, the integral I[F, σ2(h)] can be ex-
panded asymptotically I[F, σ2(h)] ∼ O(ω−2), and therefore the Filon method provides that the error
satisfy I[(F − p), σ2(h)] = O(ω−3). As in the case in the proof of Lemma 5, by using the Taylor
series with the remainder in integral form, we have the estimations ∥F (τ1, τ2)− p(τ1, τ2)∥ ≤ Ch2 and
∥∂1τ1 (F (τ1, τ2)− p(τ1, τ2)) ∥ ≤ Ch. For simplicity, let us assume that n1 = n2 = 1. Using integration
by parts, we get∥∥∥∥∥
∫ h

0

∫ τ2

0

(F − p)(τ1, τ2)e
iω(τ1+τ2)dτ1dτ2

∥∥∥∥∥ ≤ 1

ω

∥∥∥∥∥
∫ h

0

(F − p)(τ2, τ2)e
2iωτ2 − (F − p)(0, τ2)e

iωτ2dτ2

∥∥∥∥∥
+

1

ω2

∥∥∥∥∥
∫ h

0

∂1τ1(F − p)(τ2, τ2)e
2iωτ2 − ∂1τ1(F − p)(0, τ2)e

iωτ2dτ2

∥∥∥∥∥
+

1

ω2

∥∥∥∥∥
∫ h

0

∫ τ2

0

∂2τ1(F − p)(τ1, τ2)e
iω(τ1+τ2)dτ1dτ2

∥∥∥∥∥ .
The second and third term on the right side of the above inequality are bounded by Ch2ω−2, where C
is some constant independent of h and ω. In the case of the first expression, we again apply integration
by parts and the definition of the polynomial p, and thus get the following

1

ω

∥∥∥∥∫ h

0
(F − p)(τ2, τ2)e

2iωτ2 − (F − p)(0, τ2)e
iωτ2dτ2

∥∥∥∥ ≤

1

2ω2

∥∥∥∥∫ h

0
∂1τ2(F − p)(τ2, τ2)e

2iωτ2dτ2

∥∥∥∥+ 1

ω2

∥∥∥∥∫ h

0
∂1τ2(F − p)(0, τ2)e

iωτ2dτ2

∥∥∥∥ ≤ C
h2

ω2
,

which concludes the proof.
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In a similar vein, we estimate the error of the Filon method for the triple integral

Lemma 7. Let F (τ1, τ2, τ3) be a vector valued function of class C2 and p(τ1, τ2, τ3) be a linear func-
tion approximating F such that p(0, 0, 0) = F (0, 0, 0), p(0, 0, h) = F (0, 0, h), p(0, h, h) = F (0, h, h),
p(h, h, h) = F (h, h, h). Let numbers n1, n2, n3 > 0. Then the error of the Filon method can be estimated
as follows∥∥∥∥∫ h

0

∫ τ3

0

∫ τ2

0
(F − p)(τ1, τ2, τ3)e

iω(n1τ1+n2τ2+n3τ3)dτ1dτ2dτ3

∥∥∥∥ ≤ Cmin

{
h5,

h3

ω2
,
1

ω4

}
.

To complete the analysis of the local error, we need to estimate the truncation error of the Neumann
series. We write the solution of (4.4) as

u[t](h) =

r∑
d=0

T d
t e

hLu[t](0)︸ ︷︷ ︸
=:u[r][t](h)

+

∞∑
d=r+1

T d
t e

hLu[t](0)︸ ︷︷ ︸
=:R[r+1][t](h)

= u[r][t](h) +R[r+1][t](h),

where, in our considerations, we take r = 3.

Lemma 8. Let the function f from equation (4.4) be of the form (4.11). Then the remainder R[4][t](h)

of the Neumann series (4.5) satisfied the following estimate

∥R[4][t](h)∥ ≤ Cmin

{
h4,

h2

ω2
,
1

ω4

}
,

where constant C depends on functions αn, u[t](0) their derivatives, solution u, operator L and t⋆, but
is independent of time step h and parameter ω.

Proof. By using the basic properties of the operator norm and the fact that ∥f∥∞ <∞ we have

∥∥∥R[4][t](h)
∥∥∥ =

∥∥∥∥∥
∞∑
d=4

T d
t e

hLu[t](0)

∥∥∥∥∥ =

∥∥∥∥∥T 4
t

∞∑
d=0

T d
t e

hLu[t](0)

∥∥∥∥∥ = ∥T 4
t u[t](h)∥ ≤ Ch4 sup

s∈[0,h]
∥u[t](s)∥.

Let us now denote by Tt the operator Tt =
∑∞

d=0 T
d
t . On the other hand, we estimate

∥∥∥R[4][t](h)
∥∥∥ =

∥∥∥∥∥
∞∑
d=4

T d
t e

hLu[t](0)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
d=0

T d
t T

4
t e

hLu[t](0)

∥∥∥∥∥ =
∥∥∥TtT

4
t e

hLu[t](0)
∥∥∥

≤ sup
∥v[t](h)∥≤1

∥Ttv[t](h)∥∥T 4−k
t T k

t e
hLu[t](0)∥.

Expression T 4
t e

hLu[t](0) is a sum of highly oscillatory integrals over a 4-dimensional simplex which
satisfy the nonresonance condition and therefore ∥T 4

t e
hLu[t](0)∥ = O(ω−4). In addition, by using

basic properties of the operator norm and the simple inequality ∥uv∥L2 ≤ ∥u∥L2∥v∥∞, we have

∥T 4
t e

hLu[t](0)∥ =

∥∥∥∥∫ h

0
e(h−τ4)Lf [t](τ4)

∫ τ4

0
e(τ4−τ3)Lf [t](τ3)T

2eτ3Lu[t](0)dτ3dτ4

∥∥∥∥
≤
∫ h

0

∥∥∥∥e(h−τ4)Lf [t](τ4)∫ τ4

0
e(τ4−τ3)Lf [t](τ3)T

2eτ3Lu[t](0)dτ3

∥∥∥∥dτ4
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≤ C1

∫ h

0

∥∥∥∥∫ τ4

0
e(τ4−τ3)Lf [t](τ3)T

2eτ3Lu[t](0)dτ3

∥∥∥∥dτ4
≤ C1

∫ h

0

∫ τ4

0

∥∥∥e(τ4−τ3)Lf [t](τ3)T 2eτ3Lu[t](0)
∥∥∥dτ3dτ4

≤ C2
1

∫ h

0

∫ τ4

0

∥∥T 2eτ3Lu[t](0)
∥∥dτ3dτ4,

where the constant C1 > 0 depends on the norm of the semigroup operator {etL}t∈[0,t⋆] and the
supremum norm of the function f . Since term T 2eτ3Lu[t](0) satisfies

∥∥T 2eτ3Lu[t](0)
∥∥ = O(ω−2), we

obtain the estimate

∥T 4
t e

hLu[t](0)∥ ≤ C
h2

ω2
.

Moreover, it can be observed that expression Ttv[t](h), where ∥v[t](h)∥2 ≤ 1 is the solution of the
integral equation

ψ[t](h) = v[t](h) +

∫ h

0
e(h−τ)Lf [t](τ)ψ[t](τ)dτ.

By Grönwall’s inequality, expression ψ = Ttv[t](h) is also bounded in L2 norm for any function v[t](h)
such that ∥v[t](h)∥2 ≤ 1. Using the boundedness of operator Tt, we can estimate∥∥∥∥∥

∞∑
d=4

T d
t e

hLu[t](0)

∥∥∥∥∥ ≤ C
h4−k

ωk
, k = 1, 2, 3, 4,

which completes the proof.

Let us emphasize that the time derivatives of the solution of the highly oscillatory equation (4.4) do
not appear in the above estimates, which means that the constant C is independent of the parameter
ω.

By collecting the estimations of integrals presented in Lemmas 5, 6, 7, and estimation of the
remainder of the Neumann series in Lemma 8, one can provide the following local error bound of the
scheme.

Theorem 14. Let Assumption 2 be satisfied and let the potential function f be of the form (4.11).
Then the local error of the numerical scheme (4.10) satisfies the following estimate in the L2 norm

∥u(t0 + h)− u1∥ ≤ Cmin

{
h4,

h2

ω2
,
1

ω3

}
,

where constant C is independent of time step h and parameter ω.

4.2.2 The case involving negative frequencies

The situation becomes more complicated when we perform the error analysis of the proposed numerical
integrator for potential function f in the general form (4.2). Let n = (n1, . . . , nd) ∈ Nd, where set
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Nd is defined in (4.6). Coordinates of n may satisfy

nj + nj−1 + · · ·+ nr+1 + nr = 0,

for certain 1 ≤ j < r ≤ d, and therefore n is orthogonal to the boundary of simplex σd(h). Vector n

does not satisfy the nonresonance condition, and, as a result, simple integration by parts does not yield
error estimates similar to those presented in Lemmas 5, 6, and 7. In this case, we still obtain the fourth-
order local error estimate of the numerical scheme ∥u(t0+h)−u1∥ ≤ Ch4, where C is independent of ω
and h, but we wish to derive a numerical scheme whose accuracy improves significantly with increasing
ω.

At this stage, we consider two bivariate integrals from the Neumann series, I[Fn1 , σ2(h)] and
I[Fn2 , σ2(h)], where n1 = (−n, n) and n2 = (n,−n). Vectors n1,n2 ∈ N2 are orthogonal to the
boundary of simplex σ2(h). By integration by parts one can show that I[Fn1 , σ2(h)] ∼ O(ω−1),
I[Fn2 , σ2(h)] ∼ O(ω−1) but sum of the integrals satisfies (I[Fn1 , σ2(h)] + [Fn2 , σ2(h)]) ∼ O(ω−2) [28].
We exploit this fact by imposing an additional interpolation condition to construct Filon’s quadrature
rule for the sum of two bivariate integrals that do not satisfy the nonresonance condition. We also
assume that coefficients of function f satisfy α−n = αn, ∀n ∈ N1, therefore Fn1 = Fn2 =: Fn.

Theorem 15. Let coefficients α−n = αn, ∀n ∈ N1 and consider function Fn of the form (4.7), i.e.
Fn(τ1, τ2) = e(h−τ2)Lαn[t](τ2)e

(τ2−τ1)Lαn[t](τ1)e
τ1Lu[t](0). Let polynomial p(τ1, τ2) = b0+ b1τ1+ b2τ2+

b3τ1τ2 satisfies the following interpolation conditions

p(0, 0) = Fn(0, 0), p(0, h) = Fn(0, h), p(h, h) = Fn(h, h),

and ∫ h

0
∂1τ1p(τ2, τ2)dτ2 =

∫ h

0
∂1τ1Fn(τ2, τ2)dτ2. (4.12)

Then∥∥∥∥∫ h

0

∫ τ2

0
(Fn − p)(τ1, τ2)e

iωn(τ1−τ2) + (Fn − p)(τ1, τ2)e
iωn(−τ1+τ2)dτ1dτ2

∥∥∥∥ ≤ Cmin

{
h4,

h2

ω2
,
1

ω3

}
.

Proof. For simplicity, we can assume n = 1. It follows from the previous considerations that (Fn −
p) = O(h2), ∂1τ1(Fn − p) = O(h) and ∂1τ2(Fn − p) = O(h). Integration by parts and application of
interpolation conditions gives∥∥∥∥∫ h

0

∫ τ2

0

(Fn − p)(τ1, τ2)e
iω(τ1−τ2) + (Fn − p)(τ1, τ2)e

iω(−τ1+τ2)dτ1dτ2

∥∥∥∥ ≤

1

ω

(∥∥∥∥∫ h

0

(Fn − p)(τ2, τ2)− (Fn − p)(0, τ2)e
−iωτ2dτ2 −

∫ h

0

(Fn − p)(τ2, τ2)− (Fn − p)(0, τ2)e
iωτ2dτ2

∥∥∥∥)+

1

ω2

∥∥∥∥∫ h

0

∂1
τ1((Fn − p)(τ2, τ2))dτ2

∥∥∥∥+ 1

ω2

∥∥∥∥∫ h

0

∂1
τ1((Fn − p)(0, τ2))e

−iωτ2dτ2

∥∥∥∥+
1

ω2

∥∥∥∥∫ h

0

∂1
τ1((Fn − p)(τ2, τ2))dτ2

∥∥∥∥+ 1

ω2

∥∥∥∥∫ h

0

∂1
τ1((Fn − p)(0, τ2))e

iωτ2dτ2

∥∥∥∥+
1

ω2

∥∥∥∥∫ h

0

∫ τ2

0

∂2
τ1(Fn − p)(τ1, τ2)e

iω(τ1−τ2)dτ1dτ2

∥∥∥∥+ 1

ω2

∥∥∥∥∫ h

0

∫ τ2

0

∂2
τ1(Fn − p)(τ1, τ2)e

iω(−τ1+τ2)dτ1dτ2

∥∥∥∥ ≤
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1

ω2

∥∥∥∥∫ h

0

∂1
τ2(Fn − p)(0, τ2)e

−iωτ2dτ2

∥∥∥∥+ 1

ω2

∥∥∥∥∫ h

0

∂1
τ2(Fn − p)(0, τ2)e

iωτ2dτ2

∥∥∥∥+ Cmin

{
h2

ω2
,
1

ω3

}
≤

Cmin

{
h2

ω2
,
1

ω3

}
,

which completes the proof.

Since the function Fn is non-oscillatory, we can compute the integral (4.12) efficiently and effort-
lessly, using methods such as Gauss-Legendre quadrature.

In the case when function f is of the form (4.2), and the coefficients of f satisfy α−n = αn, ∀n ∈ N1,
the improved scheme reads

uk+1 =

(
ehL +

∑
n1

∫ h

0

(
a1,0 + a1,1τ + a1,2τ

2 + a1,3τ
3
)
en1iω(τ+tk)dτ

+
∑

n1+n2 ̸=0

∫
σ2(h)

(a2,0 + a2,1τ1 + a2,2τ2)e
iω(n1(τ1+tk)+n2(τ2+tk))dτ1dτ2

+
N∑

n=1

∫
σ2(h)

(b0 + b1τ1 + b2τ2 + b3τ1τ2)(e
iωn(τ1−τ2) + eiωn(−τ1+τ2))dτ1dτ2

+
∑

n1,n2,n3

∫
σ3(h)

(a3,0 + a3,1τ1 + a3,2τ2 + a3,3τ3)e
iω(n1(τ1+tk)+n2(τ2+tk)+n3(τ3+tk))dτ1dτ2dτ3

)
uk,

tk+1 = tk + h.

4.3 Numerical examples

In this section, we employ the proposed numerical integrator to solve highly oscillatory heat equations
and wave equations. The L2 norm of the error is considered in any presented example. In our numeri-
cal experiments, to find an approximate solution, we use the Fourier and Chebyshev spectral methods,
as described in [32, 33]. In Examples 1, 3 and 4 we used M = 100 spatial grid points. Example 2
concerns a two-dimensional case, in which we used M = 20 grid points.

Example 1. The heat equation.
Consider the equation

∂tu = ∂2xxu+ f(x, t)u(x, t), t ∈ [0, 1], x ∈ (0, 2π),

u(x, 0) = u0(x), (4.13)

u(0, t) = 0 = u(2π, t),

with initial condition u0
u0(x) = sin(x),

and function f

f(x, t) = 1− (−i + t(ω − 3i)) cos(x)

ω︸ ︷︷ ︸
α1

eiωt +
sin(x)2t2

ω2︸ ︷︷ ︸
α2

e2iωt.
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The potential function f involves time-dependent coefficients α1 and α2 The solution to (4.13) is

u(x, t) = eie
iωt cos(x)t/ω sin(x).

Figure 4.1 displays the error of the method for equation (4.13).

Figure 4.1: Numerical approximation of the solution to equation (4.13). Error versus time step (left
graph) and error versus parameter ω (right graph).

Example 2. Two-dimensional heat equation.

∂tu(x, y, t) = ∂2xxu(x, y, t) + ∂2yyu(x, y, t) + f(x, y, t)u(x, y, t), t ∈ [0, 1], x ∈ Ω,

u(x, y, 0) = u0(x, y), (4.14)

u(x, y, t) = 0 on ∂Ω,

where domain Ω = [−1, 1]× [−1, 1]. The initial condition u0 is

u0(x, y) = sin(πx) sin(πy)ecos(πx) cos(πy)/ω,

and function f

f(x, y, t) = 2π2 +
(6π2 + iω) cos(πx) cos(πy)

ω︸ ︷︷ ︸
α1

eiωt +
0.5π2(−1 + cos(2πx) cos(2πy))

ω2︸ ︷︷ ︸
α2

e2iωt.

The solution to equation (4.14) reads

u(x, y, t) = sin(πx) sin(πy) exp(exp(iωt) cos(πx) cos(πy)/ω).

Figure 4.2 presents the error of the proposed method applied to equation (4.14).
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Figure 4.2: Numerical approximation of the solution to equation (4.14). Error versus time step (left
graph) and error versus parameter ω (right graph).

Example 3. The wave equation with nonresonance points.

∂2ttu = ∂2xxu+ f(x, t)u(x, t), t ∈ [0, 1], x ∈ (−L,L), L = 10,

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), (4.15)

u(−L, t) = u(L, t),

∂tu(−L, t) = ∂tu(L, t),

where initial conditions

u0(x) = e−x
2(1/2+1/ω2), v0(x) = − ix2

ω
u0(x),

and function f

f(x, t) = 1− x2 +
2 + x2(−4 + ω2)

ω2
eiωt − x2(4 + x2ω2)

ω4
e2iωt.

The solution to (4.15) is
u(x, t) = e−x

2/2e−e
itωx2/ω2

.

Figure 4.3 illustrates the error associated with the approximation of the solution to equation (4.15).
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Figure 4.3: Numerical approximation of the solution to equation (4.15). Error versus time step (left
graph) and error versus ω (right graph).

Example 4. The wave equation with resonance points.
In the last example, consider now the wave equation with potential function f with negative frequencies

∂2ttu = ∂2xxu+ f(x, t)u(x, t), t ∈ [0, 1], x ∈ (−L,L), L = 10,

u(x, 0) = e−x
2(1/2+1/ω2), ∂tu(x, 0) = 0, (4.16)

u(−L, t) = u(L, t),

∂tu(−L, t) = ∂tu(L, t),

where function f takes the form

f(x, t) = 1− x2 +
(2 + x2ω2 − 4x2) cos(ωt)

ω2
− 4x2 cos2(ωt)

ω4
+
x4 sin2(ωt)

ω2
.

The solution of (4.16) is equal to

u(x, t) = e− cos(ωt)x2/ω2
e−x

2/2.

Figure 4.4 presents the error of the proposed method for equation (4.16).
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Figure 4.5: The error of approximating the solutions of equations (4.13), (4.14), (4.15), and (4.16), for
ω ranging from 5 to 1000, with step size h = 1.

Figure 4.4: Numerical approximation of the solution to equation (4.16). Error versus time step (left
figure) and error versus ω (right figure) .

The Neumann series converges for all variables t, unlike the Magnus expansion, which converges only
locally. Therefore, in the proposed scheme, any time step can be taken to find an approximate solution.
In Figure 4.5, we illustrate the error of the method for all four examples with step size h = 1, where ω
ranges from 5 to 1000. In each graph of error versus time step h, it can be observed that the proposed
method is effective for both small (ω = 5) and large (ω = 200) oscillatory parameter ω.
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4.3.1 Comparison with other methods

In this section, we compare the proposed numerical method (denoted as NF3) with selected existing
methods. For this purpose, we used schemes based on the Magnus expansion: the exponential fourth-
order method (denoted as M4) and the exponential midpoint method of order two (denoted as M2).
Both integrators are described in detail in [18]. Each scheme was applied to equations (4.13), (4.14),
and (4.15), where in each case the parameter ω = 500. As is well known, the methods M4 and M2

are very effective for nonoscillatory equations. However, for a large parameter ω which accounts for
the oscillation of the equation, their effectiveness is limited. The proposed NF3 method performs
particularly well in a highly oscillatory regime. The results of the comparisons are shown in Figures
4.6 and 4.7.

(a) Example 1 (b) Example 2

(c) Example 1 (d) Example 2

Figure 4.6: Comparison of the proposed method NF3 with the exponential 4th order method (M4)
and the exponential 2nd order midpoint method (M2). The numerical schemes have been applied to
the equations (4.13) and (4.14), where ω = 500. Top row presents accuracy of schemes and the bottom
row time of computation in seconds.
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(a) Example 3 (b) Example 4

(c) Example 3 (d) Example 4

Figure 4.7: Same as Figure 4.6 for equations 4.15 and 4.16.
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Chapter 5

Conclusion – summary and plans for
future research

In this dissertation, we have proposed two computational methods for approximating the highly oscil-
latory solution of equation (1.1). In the first method, we analytically derived the Modulated Fourier
expansion and then employed it to find an approximate solution (MFE). In the second method, we
approximated highly oscillatory integrals from the Neumann series by using quadrature rules for highly
oscillatory integrals. The second method converges to the solution as ω → ∞ or time step h → 0.
There are several plans for extending the proposed approach.

1. The primary concern is to establish rigorous estimations for the error formulas that arise in the
asymptotic expansion of highly oscillatory integrals in (3.19). This task is particularly challeng-
ing, especially when we consider a general differential operator L in the form (3.2). It should
be noted that the partial sum S(d)

r (t), used to approximate the integral I[Fn, σd(t)], may be
divergent as r → ∞. A significant advancement in the approximation of highly oscillatory PDEs
would involve determining the maximum value of r⋆, beyond which the method’s error begins to
increase.

2. The next step could involve deriving methods for equations with a more general strongly oscil-
latory potential f , as given by the formula

f(x, t) =
N∑

n=1

αn(x, t)e
iωgn(t), ω ≫ 1, N ∈ N,

where αn and gn are sufficiently smooth real or complex valued functions. This requires the use
of appropriate modifications of the Filon methods.

3. As mentioned earlier, the MFE is a widely employed tool in computational mathematics for
analyzing highly oscillatory differential equations. To the best of the author’s knowledge, it has
so far been used as an ansatz, assuming that the solution to a highly oscillatory equation can be
represented as an asymptotic series of the form (1.6). In articles [23, 28] the MFE is analytically
derived for linear partial differential equations. An ambitious goal would be to derive analytically
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MFE for the nonlinear highly oscillatory equations, for example for the problem (1.3) described
in Chapter 1.

4. There are possible modifications of the integrator proposed in Chapter 4. For integrals which
appears in the Neumann series, different extensions of the Filon method can be applied. For
example, the nonoscillatory integrands can be approximated not only at points that are the ends
of the integration interval but also at the intermediate points. This should further improve the
accuracy of the method.
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Appendix A

A.1

Theorem 16. Let F be the operator defined in (3.14), and let n be the vector corresponding to F that
satisfies the nonresonance condition (3.16). Integral (3.15) can be expressed as r-partial sum S(d)

r (t)

of the asymptotic series with error E(d)
r (t)

I[F, σd(t)] =

∫
σd(t)

F (t, τ )eiωn
T τdτ = S(d)

r (t) + E(d)
r (t), (A.1)

where

S(d)
r (t) =

r−d∑
|k|=0

(−1)|k|

(iω)d+|k|

d∑
ℓ=0

eiωtn
T vd

ℓ

∑
ϕ∈Φd

ℓ

Ak[ϕ](n)F
k[ϕ](t) (A.2)

and error E(d)
r (t) of the expansion is in recursive form

E(1)
r (t) =

(−1)r

(iω)r
1

nr1

∫ t

0

eiωτ1n1∂rτ1F (t, τ1)dτ1, (A.3)

E(d)
r (t) =

(−1)r−d+1

(iω)r

∑
|k|=r−d+1

d−1∑
ℓ=0

∑
ϕ∈Φd−1

ℓ

1(
nTvd

ℓ

)kd
Ak̃[ϕ](ñ)

∫ t

0

eiωτdn
T vd

ℓ ∂kd
τd

(
e(t−τd)Lαnd

F k̃[ϕ](τd)
)
dτd

+

∫ t

0

e(t−τd)Lαnd
E(d−1)

r (τd)e
iωndτddτd, for d ≥ 2.

Proof. We show the statement by induction on d. For d = 1 we integrate by parts r times integral
I[F, (0, t)] and thus we obtain

I[F, (0, t)] =

∫ t

0
F (t, τ1)e

iωn1τ1dτ1

=

n−1∑
k1=0

(−1)k1

(iω)1+k1

(
eiωn1

1

nk1+1
1

∂k1τ1 F (t, τ1) τ1=t
+

−1

nk1+1
1

∂k1τ1 F (t, τ1) τ1=0

)

+
(−1)r

(iω)r
1

nr1

∫ t

0
eiωτ1n1∂rτ1F (t, τ1)dτ1

=
r−1∑
k1=0

(−1)k1

(iω)1+k1

1∑
ℓ=0

eiωv
1
ℓn1

∑
ϕ∈Φ1

ℓ

Ak1 [ϕ](n1)F
k1 [ϕ](t) + E(1)

r (t)

= S(1)
r (t) + E(1)

r (t).
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Let ñ = (n1, . . . , nd−1), k̃ = (k1, . . . , kd−1) ∈ Nd−1 and n = (n1, . . . , nd), k = (k1, . . . , kd) ∈ Nd.
Suppose now the formula (A.1) is true for I[F, σd−1(t)] =

∫
σd−1(t)

F (τ )eiωñ
T τdτ .

∫
Sd(t)

F (t, τ )eiωn
T τdτ

(1)
=∫ t

0
e(t−τd)Lαnd

I[F, σd−1(τd)]e
iωτdnddτd

(2)
=

∫ t

0
e(t−τd)Lαnd

(
S(d−1)
r (τd) + E(d−1)

r (τd)
)
eiωτdnddτd

(3)
=

r−d+1∑
|k̃|=0

(−1)|k̃|

(iω)d−1+|k̃|

d−1∑
ℓ=0

∑
ϕ∈Φd−1

ℓ

Ak̃[ϕ](ñ)

∫ t

0
e(t−τd)Lαnd

F k̃[ϕ](τd)e
iωτdn

T vd
ℓ dτd +

∫ t

0
e(t−τd)Lαnd

E(d−1)
r (τd)e

iωτdnddτd
(4)
=

r−d+1∑
|k̃|=0

(−1)|k̃|

(iω)d−1+|k̃|

d−1∑
ℓ=0

∑
ϕ∈Φd−1

ℓ

Ak̃[ϕ](ñ)

{
r−d−|k̃|∑
kd=0

(−1)kd

(iω)kd+1

1

(nTvd
ℓ )

kd+1
·

·
(
eiωtn

T vd
ℓ ∂kdτd

[
e(t−τd)Lαnd

F k̃[ϕ](τd)
]

τd=t
− ∂kdτd

[
e(t−τd)Lαnd

F k̃[ϕ](τd)
]

τd=0

)
+

(−1)r−d−|k̃|+1

(iω)r−d−|k̃|+1

1

(nTvd
ℓ )

r−d−|k̃|+1

∫ t

0
∂r−d−|k̃|+1
τd

(
e(t−τd)Lαnd

F k̃[ϕ](τd)
)
eiωτdn

T vd
ℓ dτd

}
+∫ t

0
e(t−τd)Lαnd

E(d−1)
r (τd)e

iωτdnddτd
(5)
=

r−d∑
|k|=0

(−1)|k|

(iω)d+|k|

d−1∑
ℓ=0

∑
ϕ∈Φd−1

ℓ

Ak̃[ϕ](ñ)
1

(nTvd
ℓ )

kd+1

[

eiωtn
T vd

ℓ ∂kdτd

[
e(t−τd)Lαnd

F k̃[ϕ](τd)
]

τd=1·t − eiωtn
T vd

d∂kdτd

[
e(t−τd)Lαnd

F k̃[ϕ](τd)
]

τd=t·0

]
+

(−1)r−d+1

(iω)r

∑
|k|=r−d+1

d−1∑
ℓ=0

∑
ϕ∈Φd−1

ℓ

Ak̃[ϕ](ñ)
1

(nTvd
ℓ )

kd

∫ t

0
∂kdτd

(
e(t−τd)Lαnd

F k̃[ϕ](τd)
)
eiωτdn

T vd
ℓ dτd

+

∫ t

0
e(t−τd)Lαnd

E(d−1)
r (τd)e

iωτdnddτd
(6)
=

r−d∑
|k|=0

(−1)|k|

(iω)d+|k|

d−1∑
ℓ=0

eiωtn
T vd

ℓ

∑
ϕ∈Φd

ℓ

Ak[ϕ](n)F
k[ϕ](t) +

+Ak[(ϕ1, . . . , ϕd−1, 0)](n)F
k[(ϕ1, . . . , ϕd−1, 0)](t) + E(d)

r (t) =
r−d∑
|k|=0

(−1)|k|

(iω)d+|k|

d∑
ℓ=0

eiωtn
T vd

ℓ

∑
ϕ∈Φd

ℓ

Ak[ϕ](n)F
k[ϕ](t) + E(d)

r (t)

(we assume that
∑−1

k=0 ak = 0). Throughout the above inductive proof we utilize properties of integral
I[F, σd(t)], operator F, and simple summation identities. More precisely, where necessary, in the above
identities we have used:

(1) form (3.14) of function F and Fubini’s theorem,
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(2) induction hypothesis,

(3) formula for asymptotic expansion of I[F, σd−1(t)] and identity ñTvd−1
ℓ + nd = nT (vd−1

ℓ , 1),

(4) integration by parts r − d− |k̃|+ 1 times and the nonresonance condition (3.16),

(5) summation identity
∑r+1

|k̃|=0

∑r−|k̃|
kd=0 ak1,...,kd−1,kd =

∑r
|k|=0 ak1,...,kd and identity∑r−d+1

|k̃|=0
ak1,...,kd−1,r−d−|k̃|+1 =

∑
|k|=r−d+1 ak1,...,kd ,

(6) Definition 8, according to which ∂τd
[
e(t−τd)Lαnd

F k̃[ϕ](τd)
]

τd=ϕdt
= Fk[ϕ](t), and Definition 9.

We have proved that the integral I[F, σd(t)] ∼ O(ω−d) can indeed be approximated by the sum (A.2),
with an error O(ω−r) as given by the form (A.3).

A.2

Lemma 9. The k-th time derivative of expression e(t−τ)Lα(τ)eτL is

∂kτ

(
e(t−τ)Lα(τ)eτL

)
=

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
e(t−τ)LadℓL

(
α(k−ℓ)(τ)

)
eτL. (A.4)

Proof. We prove the statement by induction on k. Let k = 1.

∂1τ

(
e(t−τ)Lα(τ)eτL

)
= ∂1τ

(
e(t−τ)Lα(τ)

)
eτL + e(t−τ)Lα(τ)LeτL

= (−1)Le(t−τ)Lα(τ)eτL + e(t−τ)Lα′(τ)eτL + e(t−τ)Lα(τ)LeτL

= (−1)e(t−τ)Lad1L(α(τ))e
τL + e(t−τ)Lα′(τ)eτL

=
1∑

ℓ=0

(−1)ℓ
(
1

ℓ

)
e(t−τ)LadℓL

(
α(1−ℓ)(τ)

)
eτL.

Suppose now the formula (A.4) is valid for k − 1, k > 1. Then, by induction, we have

∂kτ

(
e(t−τ)L = α(τ)eτL

)
=

∂1τ

(
∂k−1τ

(
e(t−τ)Lα(τ)eτL

))
=

k−1∑
ℓ=0

(−1)ℓ
(
k − 1

ℓ

)
∂1τ

(
e(t−τ)LadℓL

(
α(k−1−ℓ)(τ)

)
eτL
)
=

k−1∑
ℓ=0

(−1)ℓ
(
k − 1

ℓ

)(
(−1)e(t−τ)Ladℓ+1

L (α(k−1−ℓ)(τ))eτL + e(t−τ)LadℓL
(
α(k−ℓ)(τ)

)
eτL
)
=

k−2∑
ℓ=0

(−1)ℓ+1

(
k − 1

ℓ

)
e(t−τ)Ladℓ+1

L (α(k−(ℓ+1))(τ))eτL + (−1)ke(t−τ)LadkL(α(τ))e
τL

+
k−1∑
ℓ=1

(−1)ℓ
(
k − 1

ℓ

)
e(t−τ)LadℓL

(
α(k−ℓ)(τ)

)
eτL + e(t−τ)Lα(k)(τ)eτL =
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k−1∑
ℓ=1

(−1)ℓ
(
k − 1

ℓ− 1

)
e(t−τ)LadℓL(α

(k−ℓ)(τ))eτL + (−1)ke(t−τ)LadkL(α(τ))e
τL

+
k−1∑
ℓ=1

(−1)ℓ
(
k − 1

ℓ

)
e(t−τ)LadℓL

(
α(k−ℓ)(τ)

)
eτL + e(t−τ)Lα(k)(τ)eτL =

k−1∑
ℓ=1

(−1)ℓ
(
k

ℓ

)
e(t−τ)LadℓL(α

(k−ℓ)(τ))eτL

+e(t−τ)Lα(k)(τ)eτL + (−1)ke(t−τ)LadkL(α(τ))e
τL =

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
e(t−τ)LadℓL(α

(k−ℓ)(τ))eτL.

In the penultimate equality we used the identity
(
k
ℓ

)
=
(
k−1
ℓ

)
+
(
k−1
ℓ−1
)
.

A.3

We provide precise calculations for approximating by the Filon method highly oscillatory integrals:
univariate, bivariate, and trivariate, from the Neumann series. The calculations are used in Chapter 4

Univariate integral
Consider the following integral∫ h

0
e(h−τ)Lαn1 [t](τ)e

τLu[t](0)en1iωτdτ.

We denote F (τ) := e(h−τ)Lαn1 [t](τ)e
τLu[t](0). Function F is approximated by using Hermite inter-

polation F (0) = p(0), F (h) = p(h), F ′(0) = p′(0), F ′(h) = p′(h). The polynomial p approximating
function F is equal to

p(τ) = F (0) + τF ′(0) +
τ2

h2
(3F (h)− 3F (0)− 2hF ′(0)− hF ′(h))

+
τ3

h3
(hF ′(h)− 2F (h) + 2F (0) + hF ′(0)),

= F (0) + a1,1τ + a1,2τ
2 + a1,3τ

3,

where

a1,1 = F ′(0),

a1,2 =
1

h2
(3F (h)− 3F (0)− 2hF ′(0)− hF ′(h)),

a1,3 =
1

h3
(hF ′(h)− 2F (h) + 2F (0) + hF ′(0)).

If function αn1 is dependent on time, then

F (0) = ehLαn1 [t](0)u[t](0), F ′(0) =
(
−ehLad1L(αn1 [t](0)) + ehLαn1 [t]

′(0)
)
u[t](0),
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F (h) = αn1 [t](h)e
hLu[t](0), F ′(h) =

(
−ad1L(αn1 [t](h))e

hL + αn1 [t]
′(h)ehL

)
u[t](0),

where ad1L
(
α
)
=
[
L, α

]
and [X,Y ] ≡ XY − Y X is the commutator of X and Y . Approximation of

the univariate integral is as follows∫ h

0
F (τ)en1iωτdτ ≈

∫ h

0

(
F (0) + a1,1τ + a1,2τ

2 + a1,3τ
3
)
en1iωτdτ.

Bivariate integral with nonresonnce points
We approximate the following bivariate integral∫ h

0

∫ τ2

0
F (τ1, τ2)e

iω(n1+n2)dτ1dτ2,

where F (τ1, τ2) := e(h−τ2)Lαn2 [t](τ2)e
(τ2−τ1)Lαn1 [t](τ1)e

τ1Lu[t](0). Function F is interpolated in the
nodes (0, 0), (h, h), (0, h), and F (0, 0) = p(0, 0), F (0, h) = p(0, h), F (h, h) = p(h, h), where p(τ1, τ2) is
a linear polynomial that approximate function F

F (τ1, τ2) = F (0, 0) + a2,1τ1 + a2,2τ2︸ ︷︷ ︸
p(τ1,τ2)

+O(h2),

where

a2,1 =
1

h
(F (h, h)− F (0, h)), a2,2 =

1

h
(F (0, h)− F (0, 0)),

and

F (0, 0) = ehLαn2 [t](0)αn1 [t](0)u[t](0), F (0, h) = αn2 [t](h)e
hLαn1 [t](0)u[t](0),

F (h, h) = αn2 [t](h)αn1 [t](h)e
hLu[t](0).

Approximation of the bivariate integral reads∫ h

0

∫ τ2

0
F (τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2 ≈
∫ h

0

∫ τ2

0
(F (0, 0) + a2,1τ1 + a2,2τ2)e

iω(n1τ1+n2τ2)dτ1dτ2.

Bivariate integrals with resonnce points
Consider the following sum of two integrals with resonnce points (n,−n) and (−n, n)∫ h

0

∫ τ2

0
F (τ1, τ2)e

iωn(τ1−τ2)dτ1dτ2 +

∫ h

0

∫ τ2

0
F (τ1, τ2)e

iωn(−τ1+τ2)dτ1dτ2,

where F (τ1, τ2) := e(h−τ2)Lαn[t](τ2)e
(τ2−τ1)Lαn[t](τ1)e

τ1Lu[t](0). The bivariate integrals with resonance
points necessitate the imposition of an additional interpolating condition. Let p(τ1, τ2) = F (0, 0) +
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b1τ1 + b2τ2 + b3τ1τ2, be a polynomial with coefficients bj defined by the formulas

b1 =
1

h
(F (0, h)− F (0, 0)),

b2 =
1

h
(2X + F (0, h)− F (h, h)),

b3 =
2

h2
(F (h, h)− F (0, h)−X),

where

X =

∫ h

0
∂1τ1F (τ2, τ2)dτ2 =

∫ h

0
e(h−τ2)Lαn[t](τ2)

(
−ad1L(αn[t](τ2)) + αn[t]

′(τ2)
)
eτ2Lu[t](0)dτ2.

Polynomial p satisfies the conditions

p(0, 0) = F (0, 0),

p(0, h) = F (0, h),

p(h, h) = F (h, h),∫ h

0
∂1τ1p(τ2, τ2)dτ2 =

∫ h

0
∂1τ1F (τ2, τ2)dτ2.

The Filon quadrature reads∫ h

0

∫ τ2

0
F (τ1, τ2)

(
eiωn(τ1−τ2) + eiωn(−τ1+τ2)

)
dτ1dτ2 ≈

∫ h

0

∫ τ2

0
p(τ1, τ2)

(
eiωn(τ1−τ2) + eiωn(−τ1+τ2)

)
dτ1dτ2.

Trivariate integral
The last integral to be approximated is∫ h

0

∫ τ3

0

∫ τ2

0
F (τ1, τ2, τ3)e

iω(τ1n1+τ2n2+τ3n3)dτ1dτ2dτ3,

where F (τ1, τ2, τ3) = e(h−τ3)Lαn3 [t](τ3)e
(τ3−τ2)Lαn2 [t](τ2)e

(τ2−τ1)αn1 [t](τ1)e
τ1Lu[t](0). Function F is

interpolated in the nodes (0, 0, 0), (0, 0, h), (0, h, h), (h, h, h) and F (0, 0, 0) = p(0, 0, 0), F (0, 0, h) =

p(0, 0, h), F (0, h, h) = p(0, h, h), F (h, h, h) = p(h, h, h).

F (τ1, τ2, τ3) ≈ p(τ1, τ2, τ3) = F (0, 0, 0) + a3,1τ1 + a3,2τ2 + a3,3τ3,

where

a3,3 =
1

h
(F (0, 0, h)− F (0, 0, 0)),

a3,2 =
1

h
(F (0, h, h)− F (0, 0, h)),

a3,1 =
1

h
(F (h, h, h)− F (0, h, h)),
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and

F (0, 0, 0) = ehLαn3 [t](0)αn2 [t](0)αn1 [t](0)u[t](0),

F (0, 0, h) = αn3 [t](h)e
hLαn2 [t](0)αn1 [t](0)u[t](0),

F (0, h, h) = αn3 [t](h)αn2 [t](h)e
hLαn1 [t](0)u[t](0),

F (h, h, h) = αn3 [t](h)αn2 [t](h)αn1 [t](h)e
hLu[t](0).

Approximation of the trivariate integral is∫ h

0

∫ τ3

0

∫ τ2

0
F (τ1, τ2, τ3)e

iω(τ1n1+τ2n2+τ3n3)dτ1dτ2dτ3 ≈∫ h

0

∫ τ3

0

∫ τ2

0
(F (0, 0, 0) + a3,1τ1 + a3,2τ2 + a3,3τ3)e

iω(τ1n1+τ2n2+τ3n3)dτ1dτ2dτ3.
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