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Abstract

In this dissertation, we are concerned with finding an approximate solution to the linear partial differ-
ential equations with a highly oscillatory potential function and a strongly elliptic differential operator.
We consider evolution equations involving first- or second-time derivatives, such as the heat equation or
the wave equation. Such equations present significant challenges in numerical treatment and standard
methods are mostly ineffective for them.

In the first part of the thesis, we analytically derive the Modulated Fourier expansion for a linear
partial differential equation with a multifrequency highly oscillatory potential. The Modulated Fourier
expansion (MFE) is an important technique in computational mathematics used, inter alia, to study
the long—time behavior of Hamiltonian systems with highly oscillatory solutions. Moreover, MFE can
be utilized in numerical-asymptotic approach as an ansatz for finding approximate solution to linear
or nonlinear highly oscillatory differential equations. To derive the Modulated Fourier Expansion
for the considered problem, we show that the solution of the equation is expressed as a convergent
Neumann series in the appropriate Sobolev space. Then, by using integration by parts and the theory
of semigroups, we expand asymptotically each of integrals from the Neumann series into a sum of
known coefficients. By organizing terms appropriately we obtain formulas for the coefficients of the
Modulated Fourier expansion. The proposed approach enables, firstly, to determine the coefficients for
this expansion and secondly, to derive a general formula for the error associated with the approximation
of the solution by MFE.

In the second part of the thesis we propose, using the results of the first part, a third-order numerical
integrator based on the Neumann series and the Filon quadrature, designed mainly for highly oscillatory
partial differential equations. The method can be applied to equations that exhibit small or moderate
oscillations; however, counter-intuitively, large oscillations increase the accuracy of the scheme. The
proposed approach enables the easy improvement of the method’s accuracy and the straightforward
estimation of its error.

The proposed computational methods are illustrated with many examples. For each equation in
the numerical examples of this dissertation, we know the analytical solution. Thus, we do not need to
compute reference solutions using a supercomputer. Using the proposed methods, we can accurately

compare the numerical approximation with the function satisfying the equation.
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Streszczenie

W niniejszej rozprawie zajmujemy si¢ problemem aproksymacji rozwigzania wysoko oscylujacego row-
nania rézniczkowego czastkowego z silnie eliptycznym operatorem rézniczkowym. Rozwazamy réwna-
nia ewolucyjne z pierwsza lub druga pochodna wzgledem zmiennej czasowej. Oscylacje sa wywolywane
przez funkcje potencjatu réwnania. Takie rownania sg trudne w aproksymacji numerycznej, poniewaz
standardowe i dobrze znane metody sa dla nich zazwyczaj nieskuteczne.

W pierwszej czesci rozprawy wyprowadzamy analitycznie zmodyfikowane rozwiniecie Fouriera dla
liniowego réwnania rézniczkowego czastkowego z wysoko oscylujaca funkcjg potencjatu z wieloma czes-
totliwosciami. Zmodyfikowane rozwiniecie Fouriera (w skrocie piszemy MFE) jest waznym narzedziem
w matematyce obliczeniowej, ktore jest wykorzystywane miedzy innymi do badania zachownania
rozwigzania wysoko oscylujacego réwnania Hamiltona na dtugim przedziale czasowym. Ponadto MFE
moze by¢ rowniez wykorzystywane w numeryczno-asymptotycznym podejsciu jako ansatz w celu znale—
zienia przyblizonego rozwigzania liniowego lub nieliniowego wysoko oscylujacego réwnania rézniczko—
wego. Aby analitycznie wyprowadzi¢ zmodyfikowane rozwiniecie Fouriera dla rozwazanego problemu
na poczatku pokazujemy, ze rozwigzanie réwnania moze by¢ przedstawione jako suma zbieznego szeregu
Neumanna w odpowiedniej przestrzeni Sobolewa. Nastepnie, korzystajac z calkowania przez czesci i
teorii potgrup, rozwijamy asymptotycznie wyrazy szeregu Neumanna w sumy o znanych wspolczyn-
nikach. Grupujac odpowiednio wyrazy otrzymujemy poszukiwane rozwiniecie asymptotyczne rownania.
Proponowane podejscie umozliwia po pierwsze wyznaczenie wspodlczynnikéw MFE, a po drugie osza-
cowanie btedu wynikajacego z aproksymacji rozwigzania przez zmodyfikowane rozwiniecie Fouriera.

W drugiej czesci rozprawy wykorzystujemy wyniki z pierwszej czeéci pracy i przedstawiamy metode
numeryczng tworzona w oparciu o szereg Neumanna i kwadrature Filona. Metoda moze by¢ stosowana
do réwnan ktore nie oscyluja, jednakze whrew intuicji duze oscylacje zwiekszaja doktadnosé schematu
numerycznego. Proponowane podejscie pozwala na tatwe szacowanie btedu metody i umozliwia poprawe
rzedu zbieznosci w prosty sposob.

Metody obliczeniowe ktore prezentujemy w rozprawie, sg ilustrowane wieloma przyktadami. Dla
kazdego rownania w przyktadach numerycznych znamy rozwiazanie analityczne. Nie musimy wiec
obliczaé¢ rozwiazan referencyjnych za pomoca superkomputera. Mozemy doktadnie poréwnaé aproksy-

macje numeryczng przy uzyciu proponowanych metod z funkcja speliajgca réwnanie.
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Chapter 1

Introduction

This thesis is concerned with presenting computational methods for highly oscillatory partial differen-

tial equations. To be precise, the subject of our consideration is the following problem

Owu(z,t) = Lu(x,t) + f(z,t)u(x,t), tel0,t*], zeQCR™,
u(z,0) = up(z), =€,

(1.1)

with zero boundary conditions, where domain 2 is an open and bounded subset of R™, ¢* > 0 and £
is a linear differential operator. Complex valued function f(z,t) from the equation ([1.1)) is a highly

oscillatory of type
N

fla,t)= Y an(z, )™, w>1, NEeN, (1.2)

n=—N
n#0

where frequency parameter w is assumed to be large. Such equations appear in many ‘real-life’ prob-
lems and play a significant role in electronic engineering, electromagnetics, quantum mechanics, and
computing scattering frequencies. Apart from the many applications, highly oscillatory phenomena
are fascinating objects to study from the mathematical point of view as they are common in many
mathematical problems and are difficult in numerical approximation. For this reason, they are the
subject of active study by many mathematicians.

Highly oscillatory differential equations may be split into equations with intrinsic and extortionist
high oscillation. The former are generated by the inner nature of the equation. The important examples

include the Airy equation
u (t) + k*tu(t) = 0,

the semiclassical Schrédinger equation

62
iedpu(x,t) = —EAu(x,t) — V(z)u(z,t),



for (z,t) € R xR, where € < 1 is a small parameter, and the following system of differential equations

i =%+ g(x), 0= <8 u?[) , (1.3)

where w > 1, z = z(t), & = 2”(¢), and g is a non-linear function. The equation (1.3)) is important in
computational mathematics as it is strongly connected with a Fermi—Pasta—Ulam Problem, [17].

In this thesis, we focus on finding an approximate solution for the second type of highly oscillatory
differential equation, in which the highly oscillatory nature of the equation is imposed by the external
source of type . An example of such an equation is , which we will work on.

1.1 Why not the standard numerical schemes?

In traditional numerical methods applied to highly oscillatory problems, it is usually required that the
time step h satisfies the condition hw < 1. This causes the method to become extremely expensive
when w is large. This occurs because conventional schemes are constructed using Taylor expansions,
where error formulas involve expressions with high derivatives of a highly oscillatory function. To
provide a more detailed understanding of the challenges associated with the numerical approximation
of highly oscillatory differential equations, let us apply Duhamel’s formula to equation (1.1)) and write

it in the following integral form
h
uw(t+h) = ult) + / DLt 4 Pt + 7)dr, (1.4)
0

where up and f(s), u(s) for fixed s are elements of appropriate Banach spaces and {e'*};> is a
semigroup operator. Let us note that f)(t) = O(w"), and therefore the magnitudes of subsequent
time-derivatives of functions v and f grow drastically. This implies that approximating the integral
from equation using standard quadrature rules, as in basic numerical schemes, leads to a significant

error.

Example 1. Consider a simple ODE
(1.5)

with parameter w > 1. The analytical solution of s equal to

u(t) _ esin(wt)/w+t2/2.

To find an approzimate solution of equation , we employ the well-known fourth-order Runge—Kutta

scheme

kl = f(unatn)v

kih h
ko = f(un‘f'Latn‘i‘*)y

2 2
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Figure 1.1: Error of approximation in the L2-norm of the solution to equation (1.5)) by the fourth-order
Runge-Kutta scheme, for different values of parameter w.

koh h
k3 = f(un+%7tn+§)a

ky = f(un + hks,t, + h),
h
Up+1 = Up + g(kl + 2]€2 + 2k3 + k4),

where h is a sufficiently small time step, function f is given by f(u,t) = tu+cos(wt)u and uy = u(0) =
1. In the above scheme uy =~ u(l), N = 1/h. Figure presents the error of approximation the
solution to equation by the Runge—Kutta fourth-order method, for a few values of parameter w.
While for w = 1 the numerical scheme provides the expected fourth-order accuracy, larger oscillatory
parameters such as w = 103 or w = 10* spoil the convergence rate and significantly increase the error
constant. The reason for this is the dependence of the method’s error on higher-order time derivatives
of the solution. This is unfavourable in highly oscillatory problems because the magnitude of the error
1s directly proportional to the magnitude of W™ for certain m > 1. For that reason, there is a need to
look for alternative, more efficient methods for highly oscillatory problems. As we will see, counter-
intuitively, high oscillations facilitate finding approxzimate solutions of differential equations, as long
as we consider the problem more carefully and use appropriate methods dedicated to highly oscillatory

phenomena.

It should also be mentioned that modern computational mathematics focuses not only on providing
fast and accurate numerical method but also that the method should preserve some relevant invariants
and geometric properties of the equations. The examples of the typical invariants important in differ-
ential equations derived from physics are the conservation of energy and the preservation of unitarity.

A branch of computational mathematics that focuses on the study of qualitative features of differential



equations is Geometric Numerical Integration |5} |17]. This approach provides that numerical methods

can be effective over a long time interval.

This dissertation is written based on two papers |28 and [29], in which we propose two methods
to approximate the solution to equation ([1.1). The paper |28| is a generalisation of the results first

obtained in the article [23]. The research presented in articles |23, |28| was motivated by the paper [12].

1.2 Asymptotic expansion of a highly oscillatory solution

Suppose that u(z,t) is the solution of the equation (1.1). In paper [28], we aim to present the solution

u(z,t) as the following partial sum of the asymptotic expansion

R

s
1 1
u(z,t) = poo(e,t) + ; o S_Z_:Spr,s(xat)em t g brs(@t), w>1, (1.6)

-~

=t (1)

for any time variable ¢ > 0, where coefficients p, s(z,t) and magnitude of error constant Er g(x,t)
are independent of w. The asymptotic expansion 6[1{:”] (t) of type is also known as a Modulated
Fourier expansion (MFE) or frequency expansion. Approximating the highly oscillatory solution by
the sum Uc[fj] (t) has several advantages. If parameter w is large, then it seems that only the first few
terms of sum are necessary to provide a good approximation, and the remaining terms become
less relevant. Furthermore, increasing the parameter w should improve the accuracy of approximating
u(x,t) by sum . On the other hand, as we have already seen, the larger value of w, the more
inefficient the Runge-Kutta scheme becomes, see Figure

The Modulated Fourier expansion is an important technique in computational mathematics
used, inter alia, for analysing highly oscillatory ODEs or PDEs over long times |7 (15 |16, [24] |31}
34]. A detailed description of the Modulated Fourier expansion can be found in [17]. Furthermore,
MFE can be utilized in numerical-asymptotic approaches as an ansatz for solving numerically linear or
nonlinear highly oscillatory differential equations [9, |10, [12]. In short, this ansatz is inserted into the
equation, and subsequently, the coefficients p, s in the sum are determined either recursively or
numerically by solving non-oscillatory differential equations. This approach allows us to approximate
highly oscillatory equations with great accuracy.

In our approach, we do not assume that the ansatz solves equation . Instead, we demon-
strate that the solution of equation can be expressed as a sum of type , and we derive the
coeflicients of expansions purely analytically. In addition, so far it is known that the sum chf] (t)
approximates the solution with an error of form Cw =1 but the constant C' is unknown. Our ap-
proach enables us to derive a formula for this constant. This may be important in practise, as this
constant can be large, especially when the number R in sum U,gg] (t) is big.

To express the solution of equation as a partial sum of the asymptotic expansion of type
, we show that the Neumann series converges to the solution in H?P(£) Sobolev norm for any
time variable ¢ > 0, where 2p is the order of a differential operator £. Any term of the Neumann

series is expressed by a sum of multivariate integrals. By using integration by parts and the theory



of semigroups, we expand asymptotically each of highly oscillatory integrals from the Neumann series
into a sum of known coefficients. By organizing terms appropriately with respect to magnitudes w™"
and frequencies e*“, we obtain sum . We also consider the occurrence of the resonance points
in highly oscillatory integrals from the Neumann series. This issue will be discussed more precisely in

Chapter |3l The paper |28| describes this result and will be discussed in Chapter

1.3 Numerical integrator for highly oscillatory equation based on the

Neumann series

The method based on the asymptotic expansion of the solution briefly described in Section [1.2] is
low-cost, effective, and provides a small error for highly oscillatory equations. However, although the
sum UC[L}S%} (t) yields an excellent numerical approximation, for fixed parameter w in general it does not
converge to the solution of the equation as R — oo. To overcome this limitation, using the results
presented in [28], in paper [29], instead of approximating the integrals which appearing in the Neumann
series by the partial sum of the asymptotic expansion, we approximate them by the Filon method.
The Filon method is a quadrature rule designed for highly oscillatory integrals. Using this approach,
we obtain a third-order numerical scheme that converges to the solution as the step size h — 0 and/or
as w — 00. The local error of the proposed method is bounded by C min {h4, h2w™2, w_g}, where the
constant C' is independent of both h and w. Therefore, the numerical integrator can also be applied
to equations with small or moderate oscillation; however, large oscillations significantly enhance the
accuracy of the scheme. The proposed approach based on the Neumann series enables improvement
of the method’s accuracy and straightforward estimation of its error. Moreover, by representing the
solution as the Neumann series, the time derivatives of the solution, which can be large for highly
oscillating equations, do not appear in the error formula of the numerical scheme. The paper [29]
describes this numerical method and will be presented in Chapter

Due to the generality of equation , both methods can also be applied to differential equations

with a second-time derivative, such as the wave equation or the Klein-Gordon equation.

The proposed numerical methods are illustrated by numerous examples. We know the analytical
solution for each equation in the numerical examples of this dissertation. This facilitates an accurate

and precise comparison of the solution with the numerical approximation using the proposed methods.

Let us also note that long and technical proofs of the theorems in this dissertation are provided in

the Appendix.



Chapter 2

Basic tools

In this chapter, we introduce important concepts, definitions, and present some theory that will be
used in Chapter [3|and Chapter @] For more details about the applications of the semigroup theory to
partial differential equations, we refer to |14} 27]. Quadrature methods for highly oscillatory integrals
are presented in [13], while details about the spectral and the splitting methods can be found in [32,
33|, [25].

2.1 Application of the semigroup theory to PDEs

The theory of semigroup is widely utilized in computational mathematics as a useful and practical
tool for investigating partial differential equations. This chapter discusses the basic properties of the
semigroup operator and application of semigroup theory to PDEs.

For certain type of differential operator £, and suitable initial-boundary conditions, the abstract

Cauchy problem

ou(z,t) = Lu(z,t), z€Q, t>0, (2.1)
u(w,0) = o (), '

has a solution that can be written as u(x,t) = [u(t)](z) = S(t)uo, for some bounded linear operator
S(t) = e : H — H, where H is an appropriate Hilbert space. This leads to the following definitions.
Let X be a Banach space.

Definition 1. A family {S(t)}+>0 of bounded linear operators S(t) : X — X is called a Cy-semigroup,

or strongly continuous semigroup, if
1. SOu=u, YuelX,
2. S(t+ s)u=S(t)S(s)u, Vt,s>0, Vue X,
3. Yu € X the mapping [0,00) 3t — S(t)u is continuous.

Definition 2. Let D(L) be a set defined by

D(L)={ue X : lim S<t>7:_u exist in X}. (2.2)

t—0t



Then operator L : D(L) — X such that

Lu:= lim M
t—0+ t

for we D(L), (2.3)
is called the infinitesimal generator of the semigroup {S(t)}+>0.
To refer to the semigroup operator {S(t)}s>0 we will also write e** := S(t) for all ¢ > 0.

Theorem 1. Let w € D(L). Then, for the strongly continuous semigroup operator {S(t)}i>0 the
following properties hold

1. S(t)u € D(L) for each t >0,

2. %S(t)u = LS(t)u = S(t)Lu for each t > 0.
Proposition 1. For strongly continuous semigroup operator {S(t)}i>0, there exist constants w € R
and M > 1 such that

ISl xex < Me,

for allt > 0.

Definition 3. A linear operator L : D(L) — X is called closed if for any sequence uy, € D(L), such
that u, — u and Lup — v as k — oo, then u € D(L) and v = Lu.

Theorem 2. If L is the infinitesimal generator of strongly continuous semigroup {S(t)}+>o0, then D(L)

is dense in X and L is a closed operator.

Theorem 3. Suppose that L is a closed linear operator, {S(t)}+>0 is a semigroup generated by L and
function f € C([0,t*],D(L)). Then

E/Ot St —7)f(r)dr = /Dt S(t—T7)Lf(r)dr, (2.4)

for any t < t*.

Proofs of the above theorems can be found in almost every book dedicated to semigroup theory
(for example, in |14, 27} 30]).

We are mainly interested in the application of the semigroup theory to partial differential equations.
Let © be an open and bounded in R™ set with smooth boundary 0€2. We assume that L is a differential
operator of order 2p

orr op? gpm
- o br= e ) Q CcR™, 2.5
|P|z§:2p o) ozt Oxb? D reNC (2.5)

where multi-index p = (p1, ..., pm) is an m-tuple of non-negative integers and a, are smooth, complex-
valued functions on Q. Domain of £ is the set D(£) = H?*(Q) N H{ (), where H?P(Q) is the standard
Sobolev space. The space H{ () is the closure of C2°(2) in HP(£2), where C2°(£2) consists of smooth



functions with compact support. The space D(L£) = H?**(Q) N HY () is also Banach space with norm
I by = I Naze(e)-

Theorem 4. Let u,v € HP(Q) and let Q be a domain in R™ with smooth boundary 0. If 2p > m,
then product uv € HP(Q2). Moreover, there exist a constant C' > 0 depending on p, m and Q such that

lwvll ey < Cllullge@)llvll e @)- (2.6)
Proof of the above theorem can be found in [1].

Theorem 5. Let Q C R™, 4p > m and let functions u € D(L) = H**(Q)NHY (), f € H**(Q). Then
uf € D(L).

Definition 4. Let A be the differential operator of form . We say that the operator A is strongly
elliptic if there exist a constant 8 > 0 such that

Re(=1)" ) ap(2)P > 9J¢[* (2.7)

|p|=2p
for all x € Q and & € R™, where &P = &1 ¢b? .. & €] = > &

We state two important theorems that are central to the considerations presented in Chapters [3]
and (4] (for more details we refer to [27]).

Theorem 6. Let —L be a strongly elliptic operator of order 2p on a bounded domain @ C R™ with

smooth boundary 0$2. Then L is the infinitesimal generator of a strongly continuous semigroup on
L2(9).

Theorem 7. Let Q C R™ be a bounded domain with smooth boundary 0. Assume that —L is a
strongly elliptic operator in Q of order 2p with smooth coefficients ap(x) of Q. If u € H*(Q) N HY(Q)

then the following a-priori estimate holds

ull 2o () < C (1 Lull 20y + lull L2(e)) (2.8)
where constant C' is independent of u.

Note that we do not need to restrict ourselves to the differential operator £ of even degree or
defined on a bounded domain 2. It is sufficient for £ to be an infinitesimal generator of a strongly
continuous semigroup on an appropriate Banach space. The following question arises: what type of
differential operators are generators of a strongly continuous semigroup? Well-known theorems, such as
the Hille-Yosida theorem, the Lumer-Phillips theorem and Stone’s theorem, characterize the generators

of strongly continuous semigroups of linear differential operators on Banach space.



2.2 Computational methods for the Cauchy problem

A natural question arises how to effectively approximate expressions of the form €', where £ is a
differential operator |) Recall that e*“uq is the solution of the Cauchy problem

ou(z,t) = Lu(z,t), z€, t>0,
u(z,0) = ug(x), (2.9)
u(z,t) =0, z €.

With luck, we can find an analytical solution, but usually it is difficult, or even impossible to find a
formula that satisfies the above problem. To compute e*“ug, we will take advantage of spectral and

splitting methods, important tools in numerical analysis.

2.2.1 Spectral methods

This section describes basic facts concerning spectral methods. Suppose that N € N is an even number.
A periodic function can be expanded into a Fourier series, provided it is sufficiently regular. Therefore,
one can approximate the 2m-periodic function v in [0,27] by a trigonometrical polynomial, which

results from the truncation of the Fourier series

N/2

v(z) ~ Z el

k=—N/2+1

where
1 27

Ck v(s)e *sds.

If function v(x) is smooth and periodic, coefficient ¢, can be approximated by the trapezoidal rule

with excellent accuracy

N .
1 [ . 1 2 o
Cr = % ; U(S)e—lk‘sds ~ N ]'_Z]-U <]7\T[J> e_leﬂ']/N = ’[)k,
Let now introduce the N-equispaced grids {z1,...,zx} on the interval [0, 27|
2 27
i=jh=7—, 1<j<N, h=— 2.10
rj=jh=j5 1<js<N, N (2.10)
and the set of the corresponding values {vi,...,vn}, where v; = v(z;), 7 =1,...,N. A discrete
N
Fourier transform is a sequence {o5} 2 Ny such that
=3
N
- 1 —ikx; N N
vk:NZe  k=—g Lo (2.11)

=1
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The inverse discrete Fourier transform is given by

N/2

vi= > &g, j=1,.. N (2.12)
k=—N/2+1

Based on (2.12)) we define interpolating function p (interpolating polynomial) such that
N/2
p(x) _ Z elkx’[)k,

k=—N/2+1

with 9 given by (2.11). Since {0y} is N-periodic, for even N we have 9_y/y = Oy/. Straightforward
calculations show that function p(z) is equal to [32]
N
plz) = v(z;)h;(x), (2.13)

Jj=1

1 oy —
hj(x) = 7 sin (Nx 2%) cot (”:2%> .

In addition, one can show that function p satisfies

where

p(zj) =v(zj), j=1,...,N,

therefore trigonometric polynomial p is the interpolant of function v. By w; we denote the approxima-

tion of the derivative of the function v at the point x;
wj ~ v (zj).

Having the interpolating polynomial p we set

N
wi = p(zr) = Y v(w;)h () (2.14)
j=1

The formula (2.14) can be written in a matrix form
w = Ko,
where

w = (w,ws,...,wN) ,

v = (v(z1),v(r2),...,v(zN))",
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and K1 € Myxn(R) is the first order differentiation matrix. The entries (K1), k,j =1,...,N of

matrix [C; can be derived explicitly by computing the derivative of function p at point zp, k=1,..., N
0 if j =k,
’Cl kg — k47 :
Kk {(‘1; = ot B i j £k,

Similarly, one can compute the entries (K2)pj, k,7 = 1,..., N of the second order differentiation
matrix Cq € MNXN(R)

il

hZ

if j = k,

w
[N

(Ko)k,; = " '
- w2 (W) ir

Both matrices K; and Ko are circulant and symmetric, for example ICs is of the following form

2
s
s — g -

(where function csc(x) = ). Circulant matrix can be diagonalized using the fast Fourier transform

1
sin(z)
to compute the exponential matrix exp(tKq) with a low computational cost.

Example 2. Let v1 and vy be functions such that

cos?(x)

vi(z) =e , x€][0,2n],

and

no(a) = {ellax2 if o € (~1,1),

0 otherwise.

Function vo may be regarded as periodic. By using spectral methods, we approximate second derivative
of function vj, 92,v; ~ Kavj, v; = (vj(x1),...,vj(zy))T, j = 1,2. Figure presents the error of
such the approximation for different value of N. It is vivid that Fourier spectral methods are particularly

effective for smooth and periodic functions [33)].

Non-periodic functions can be approximated on a bounded interval by the Chebyshev spectral
methods. Suppose we wish to approximate function f on interval [—1,1] (functions defined on a
different bounded domain can be rescaled to [—1, 1]). For such functions, equispaced grids cause a big

error of approximation, therefore to minimise the error, we use Chebyshev points (roots of Chebyshev
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Figure 2.1: Spectral approximation of the second derivative of functions v (z) = ecos’(@) (left graph)
and va(z) = e /=" if 1 € (=1,1), va(z) = 0 otherwise (right graph). The error is evaluated in

maximum norm || |-

polynomial) instead
xj = cos(jm/N), j=0,1,..., N, l=xy<z1 < - <ay=-1, N e N. (2.15)

For values f(z;) = fj, j =0,1,..., N there exist unique polynomial of degree < N such that p(z;) =
fj» 0 <j < N. As in the case for periodic functions we denote w; ~ f’(z;) and set w; = p/(z;). To
find vector w = (wp, w1, ...,wy) that approximates the derivative of function f on interval [—1,1] it
is sufficient to multiply vector f = (fo, f1,..., fn)? by the Chebyshev differentiation matrix Dy €
Mn1)x(v4+1)(R)

w=Dnf,

where )
WAL if k=j=0,

SN if =5 =N

(Dn)ij =

2(17;:?), if k=5=1,...,N—1,

e (U k£ dj=1...,N—1,

¢j (zi—z5)’
and coefficients co =cy =2,¢;j=1for 1 <j< N -1

In the multivariate case Q@ C R™, m > 1, differential operator £ (e.g., when £ = A) can also be
approximated by the spectral methods, see [33].

Spectral methods in an unbounded domain are currently an intensive object of research.

2.2.2 Splitting methods

Splitting methods are widely used in computational mathematics to solve differential equations numer-
ically. An interesting application of such methods is presented in the article [19], in which the authors

use splitting methods to numerically approximate the Korteweg-de Vries equation.
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Suppose that the differential operator £ for the Cauchy problem is of the form £ = A + h,
where h(z) is a space dependent function. Let h = (hy,...,hx) € RY be a vector such that hj = h(z;),
j=1,...,N, {z;} is the space grid and let Iy € Mpyxn(R) be the identity matrix. In general,
we cannot diagonalize matrix Ky 4+ Ixh similarly as before to compute effectively exp(t(KCa 4 Inh)).
Certainly one can find the value of exp(t(2+Inh)) by computer program expm, but the computational
cost will be large — especially in a higher space dimension. Therefore, to approximate expression

exp(t(KCy + Ixh)), we may use the splitting methods. The simplest splitting is the Lie-Trotter method
ATB) Yy = ehAehBuy + O(h?), (2.16)

where A and B are some matrices that do not need to commute and h = T'/n is a small time step. On

the whole time interval [0, 7] we have
TATB) ) = (ehAehB)n up + O(h).
In other words, instead of considering the equation
u'(t) = (A+ B)u(t), u(0) = up, (2.17)
which may be difficult in numerical approximation, we are dealing with the simpler equations ()
u'(t) = Au(t), u(0) =y and u'(t) = Bu(t), u(0) = us. (2.18)

Then the combination of the solutions (2.18]) is the approximation of the solution (2.17)). More accurate
scheme is the Strang splitting

MA+B) 0 oAR/26Bh AN 2y 4 O(p3), (2.19)

It is possible to construct schemes which converge faster than the Lie-Trotter and Strang splitting, but

it involves larger error constant and higher computational costs.

Example 3. Consider the equation

u(w,t) = 02, u(w,t) — 2%u(z,t), =z € (-10,10), te[0,1],

x

u(z,0) =ug(r) =€ 2.

[V

(2.20)

»

11)2 x
Function u satisfying problem (2.20) is u(x,t) = e~ 2 e~t. Initial condition ug(x) = e~ 2 is not peri-

odic, but it is close to zero on the boundary, so it may be regarded as periodic in practical computations.

Figure[2.3 presents the error of the Strang splitting method
eh(icz—INx2) ~ e—hINx2/2ehIC2e—hINx2/2uO

evaluated in supremum norm, for N = 256 grid points.
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Figure 2.2: Numerical approximation of the Strang splitting method applied to the equation (2.20)).
The error is evaluated in supremum norm || |-

2.3 The Neumann series

Let us consider the following ordinary differential equation
Yi(t) =AY (1),  Y(0) =Yy, (2.21)

where Y : R — C™ and A(t) is an n X n time-dependent matrix. Equation (2.21)) can be written in the

following form
¢
Y(t) =Y —l—/ A(T)Y (1)dr. (2.22)
0

By iterating equation ([2.22)), one can show that the solution of the problem ([2.22)) is given by the series
o

Y(t) =) T, (2.23)
d=0

where

t T1 Td—1
Ty, = / A(m) / Alr)- - / A(r)Yodr. .. dry.
0 0 0

The series ([2.23) is known as the Neumann series and the Dyson series [20|, and it converges to the
solution of equation (2.22) for all values of ¢ provided that the matrix A(t) is bounded [6].
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2.4 Quadrature methods for highly oscillatory integrals

As mentioned, the solution u of equation (1.1)) can be expressed as a convergent Neumann series. For
function f of the form (1.2)), the Neumann series is an infinite sum of multivariate highly oscillatory
integrals. Hence, to approximate the solution of (1.1)), we need to be able to approximate such integrals.

In general, oscillatory integrals is of the following form
ITh, o] = / h(s)e“9() ds, (2.24)

where ¢ € R? is a domain of the integral and h,g : R¢ — R. We assume that functions h and g
are sufficiently smooth and w > 1. For such integrals, standard quadrature rules based on Taylor
expansion are inadequate in numerical approximation due to the large error constant. There are
some quadrature rules dedicated to integrals of the form , such as: the asymptotic expansion,
the Filon-type method and the Levin collocation method. In this dissertation, we consider integral
(2.24) with oscillator g(s) = n”'s, where n,s € R%, and o = o(t) being a d-dimensional simplex with
vertices (0,...,0,0),(0,...,0,¢),(0,...,0,¢t,¢),...,(t,...,t,t). In this chapter, we briefly describe the
asymptotic method, which will be used in Chapter [3] and the Filon method, which will be utilized in
Chapter

Asymptotic expansion

Applying integration by parts repeatedly, we obtain the following formula

. e I
/o e“Th(r)dr = g:() (Ew)l")hLl [elwta;nh(ﬂ |T=t — 07" h(7) |T=0}

=:5r() (2.25)
t
/ T h(T)dT .
0

=:E.(t)

LU

(iw)"

Sum S, (t) approximates the integral with error |E,(t)] < Cw™", where constant C' is independent of
w, but depends on ¢, function h and its successive derivatives. We say that S,(t) is the r-partial sum
of the asymptotic expansion of integral I[h, (0,¢)]. In general, for w > 1 the sum S,(t) provides a
significant approximation of a highly oscillatory integral. However, the series Sy (t) it is not always

convergent. Instead, we write

/0 () dr ~ Sul(t) = i A7 [tornm)| _, —arn)] ). w— oo, (226

(iw)

m=0

where the expression on the right hand side is a formal series. Symbol ~ means that for each N =

1,2,... we have

N-1

/0 () - Y (E;)lii [torn(n)| _, - ora(r)

m=0

= 0w Nh).

-
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In other words, series Sy (t) may diverge, but partial sum S, (¢) provides excellent approximation of
integral I[h, (0,t)] for large parameter w.

Throughout the dissertation, we will use the standard notation deriving from the asymptotic anal-
ysis. By g ~ O(w™?) we understand that function g has the asymptotic expansion whose first term
decays like O(w™9). In we have S,(t) ~ O(w™1) and E,(t) = O(w™""1).

To analyze multivariate integrals over a domain o C R¢ we need the following

Definition 5. Point s € Oo is called a resonance point if gradient Vg(s) of oscillator g is orthogonal
to the boundary of 0. We say that the nonresonance condition is satisfied if for every s € o gradient

Vyg(s) is not orthogonal to the boundary of o.

If oscillator g(s) = n”s and o(t) is a d-dimensional simplex, then the nonresonance condition

means that vector n is not orthogonal to the faces of simplex o(t).

Theorem 8. Suppose that o(t) C R? is a d-dimensional simplex and that the nonresonance condition
is satisfied. Let h be a real valued function. Then [22]

I[h,o(t)] = /(t) h(s)eiw”Tsds ~ O(w™).

Filon method

The Filon method is a quadrature rule designed for highly oscillating integrals. We restrict ourselves
to describing only the simplest version of the Filon method. Suppose that Hermite interpolation

polynomial p approximate function h, p(s) ~ h(s). Let p satisfies the following conditions
p®M(©0) =r®0), pP () =r®P (1), k=01,...N.

Then the Filon method reads

t t
/ h(s)e**ds ~ / p(s)e“sds,
0 0

and the integral fg p(s)e“*ds is computed explicitly. One can show that the error of the above ap-

t t
/ h(s)e'“?ds — / p(s)e“?ds
0 0

where constant C' is independent of w [13]. This means that the Filon method is as efficient as the

proximation satisfies

1
< CovFr

asymptotic method for highly oscillatory integrals. In addition, for small values of w it behaves similarly
to standard quadrature rules.

In the same way, we approximate a multivariate highly oscillatory integral. Function h : R? — R
is interpolated by the corresponding polynomial p, and then integral fa(t) p(s)ei“"Tsds is computed
explicitly. We have

/ h(s)ei“"Tsds%/ p(s)eiwnTSds.
o(t) o(t)
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In order to approximate the solution of a partial differential equation of type , we need to
approximate the integrals appearing in the Neumann series in which the non-oscillatory functions are
vector values. This greatly complicates the calculations. In our approach, to expand asymptotically a
multivariate highly oscillatory integral of vector-valued function over a d-dimensional simplex, we will
repeatedly exploit Fubini’s theorem, properties of the semigroup operator, and integration by parts. In
this section, we provide an example of the asymptotic expansion for univariate and bivariate integrals
appearing in the Neumann series. The general results involving integrals over a d-dimensional simplex
will be presented in Chapter [3] and in Appendix We need the following

Lemma 1. Let o € D(LF), where D(LF) = {u € D(L¥) : £F"'u € D(L)} and let L be the infinites-
imal generator of a strongly continuous semigroup {em}tzo. The k-th time derivative of expression
e(t—'r)ﬁae'rﬁ is [4/

o (e(t_T)ﬁozeTﬁ) = =7 [ s £, L] ] eF = (=1)kelt=TE gk, (oz)eTE, (2.27)

-~

L appears k times

where adOL (a) = a, ad’Z (a) = [[,, adlz_1 (a)] and [X,Y] = XY — Y X is the commutator of X and Y.

Theorem 9. For the infinitesimal generator L of strongly continuous semigroup and function « €
D(L"), r € N, the following identity holds

r—1

t
. 1 .
/ e“Tet=L e ™Edr = E Gyt [eIWtadTgn (Oz)etﬁ —efady (oz)}
0 m=0 (2.28)
t
iwr (t—T)L d". 7L
- e“Te ady(a)e™dr.
(iw)” /0

Proof. The assertion follows immediately by using Lemma [1| and formula (2.25)) applied to function
h(r) = et Lqe™~, O

Consider now the following bivariate integral
t . T2 .
/ e(t_TQ)LOmZeM”?T2 / e(TQ_Tl)LozmeTlLe“‘mlT1 drdms. (2.29)
0 0

We assume that each appearing expressions Ekanj, j = 1,2 are well defined, and numbers ny, no

satisfy ny > 0, no > 0. The domain of the integral is a two dimensional simplex
oo(t) = {1 := (11, 72) ER*: t > 15 > 1 > 0}.

By employing Fubini’s theorem, Theorem@ and Lemma we expand the integral (2.29)) with accuracy
O(w™") in the spirit of the expansion ([2.28)).

t . T2 .
/ e(t—Tz)Can2 plwnats / e(TQ—ﬁ)Lanl eﬁﬁelwnlﬁ drdr =
0 0

r—1

1 L : .
t—Tg)ﬁ iwnoTo iwni e k1 L 1oL k1
E (iwnl)k1+1/0 e Q€ [e ad (o, e e™~ad/ (o, )| dro +
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1 t ) T2
t—12)L —71)L L
- o(t=72) Oy, €127 elwni 71 o(T2—71) adl(an, e Edrdry =
0 0

(iwng)"
r—1 1 t
iwre(n1+n t—12)L k1 To L iwnaTs (t—12)L oL k1
Z —aT | © 2(mitn2)(t=72) anyady (o, )e™ — '™ 2=l e ad;! (o, )dm +
Py (iwnq) 0

t ) T2
. 1 e(t—Tg)LanQ elwnam elwanle(Tg—Tl)ﬁadz(anl )eTlEdT]_ dTQ.
(iwn1)™ Jo 0

Now for each index ki, we integrate by parts r — 1 — ki times the two integrals, which appear in the

penultimate line.

r—1
kz:o W /Ot eiw7'2(n1+n2)e(t77'2)£an2adlzl (anl)eT2£dT2 _

=

Tiz ;T_ikl 1 [eiwt(n1+n2)adkz (a ad® (a )> ol _ ot gk (a ad (o ))} N
= (iwnq )k +1 = (iw(ny + ng))F2+1  \an,ady (ap, k2 (o, adi (o,

rz_:l 1 1 /t i@ (n1tns) o (t=72) L gr—1—F1 (a adkl(a )) Ly = (%)

= (iwn1 )P+ (iw(ng + ng)) 1=k J, - 2 @d et (Cny . .

. . r r—ki _ r r _
Due to simple relations D 3 > 0 50 @k bky = Dk 1 kym0 1 Okas D py—0 krr—ky = Dkt kymr @k ko
and by simplifying expressions where necessary, we obtain

(%) =

r—2 1 1

elwt(nit+na)  gka (an ad™ (am )) JRT T (an ad" (, ))} N
(iw)kitha 2 gt T 4 g, kot [ v Lad (o, h Lad® (an,

k1+k2=0 1

1 r—1 1 1 t ) )
(iw)r Z nk1+1 (nl n n2)k2 /0 elWTZ(nl+n2)e(t_7—2)£a/d£2 (angadgl (anl)) eTQEdT2.

k1+ko=0 "1

In a similar way, we expand asymptotically the remaining integrals

r—1 t
1 .
t—72)L L gk
Z (iwng )k t1 ol2mze(t) am,e™ ad ! (an, )dry =
k1=0 1 0
= 1 1
iwtng ko tL k1 - tL ko k1
Z (o)t 2 o T {e ad (o, )e~adp (o) — €7 adf (o, )ad ! (an, )| +
k1+ko=0 1 2
1 = 11 Lk .k c
. .
(iw)" Z kitl ko clmnze(t) ad g (omy)e™~ad (om, Je™drs.
Ky +ko=0 V1 ny™ JO

To sum up the above calculation, the approximation of integral (2.29) by the partial sum of the

asymptotic expansion is as follows

¢ . 2 .
/ e(t_”)[’ozmeW"QT2 / e(m_n)ﬁameTlEe“‘m”1 dridm = Sf(t) + Ef(t),
0 0

where sum S?(t) and error of the expansion E2(t) are equal to
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SHt) =

r—2 1 1

iwt(n1+n2) , k2 k1 tL _ tL ko k1
kzéj , (w)kithet2 <nfrH(n14—n2V&+1{e Cadg (anzadﬁ(anl))(3 e ady (anzadﬁ(anJ)}
1+k2=
1 .
+W [elwtnzad% (Ozm)etcad? (Olnl) — ewad% (Olnz)adlzl (O[nl ):| >,
1 2
EXt) =
1 Y e ” ( ) c
—T: 1 1wWn —T T

(iwnl)r/o e anzewnm/o Mt R ady (o, Je™ Hdrydry +

1 S 1 t
(iw)” Z nFrtl (ng + no)k2 /0 Mol b ady? <a"2ad% (anl)) e Edrs +

k1+ko=0 1

r—1 ¢
+ (io.l))’“ ,ﬂ%:o n];Hle]”/o eimywe(t_m)ﬁad%(oznz)emﬂadlz1 (aun, e drs.

It can be observed that the calculation becomes tedious and complicated even for a bivariate inte-
gral. For obvious reasons, the computations involving the asymptotic expansions of higher-dimensional
integrals tend to be even more complex. Fortunately, as our numerical experiments demonstrate, a
few initial terms of the Neumann series allow us to approximate the solution of the highly oscillatory
differential equation with high accuracy.

The above calculations demonstrate our approach to approximating highly oscillatory integrals over
a d-dimensional simplex. For each integral, we apply Fubini’s theorem, and then, by using integration
by parts, we expand asymptotically univariate integrals. The general result for an integral over a
d-dimensional simplex will be presented in Chapter [3| and proven in Appendix The sum S2(t)
satisfies S2(t) ~ O(w™2). In bivariate integral of the form we assumed that numbers ny > 0
and no > 0. If n; and no satisfy ny; + ng = 0, we cannot perform the integration by parts for the
outer integral, because the frequency exponent would vanish, i.e. elwt(mitn2) — 1 Tp this case, (n1,n2)
is orthogonal to the boundary of the simplex o5(t) and we only have S? ~ O(w™!). This makes the
asymptotic expansion of integrals even more complicated. In such a situation, (ni,n2) is called a

resonance point.

(0,1) (t,t)

(0,0)

Figure 2.3: Simplex o9(t) and two vectors 7i; = (n, —n) and 112 = (—n,n) orthogonal to the boundary
of g9 (t)
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Chapter 3

Asymptotic expansions for the solution of
a linear PDE with a multifrequency

highly oscillatory potential

This chapter is written based on the article [28]. Let us recall the problem under consideration — we

study the following highly oscillatory partial differential equation

Ou(z,t) = Lu(z,t) + f(z,t)u(x,t), tel[0,t*], zeQCR™,

3.1
u(z,0) = ug(z), (3.1)

with zero boundary conditions, where 2 is an open and bounded subset of R” with smooth boundary

09, t* > 0 and L is a linear differential operator of degree 2p, p € N, defined by the formula

apl aPZ apm

L= ap(x)DP, DP = , r€QCR™ 3.2

Z P( ) am;lln ax§2 al,glm ( )
lpI<2p

Multi-index p is an m-tuple of nonnegative integers p = (p1,p2,...,pm) and ap(x) are smooth,

complex-valued functions of z € . We assume that function f(z,t) in equation (3.1 is a highly
oscillatory of type

N
fla,t) = an(@)e™!, w>1, NEeN, (3.3)
n=1

where v, are complex-valued, sufficiently smooth functions. The proposed method can be efficiently
applied also in the case of functions ., depending on the time variable ¢t. This will be demonstrated
in numerical experiments. We aim to express the solution of (3.1)) as the following partial sum of the

asymptotic expansion

R S
1 st 1
u(z,t) = poo(z,t) + TE:1 o SE: prs(x,t)e” " + R Ers(z,t), tel0,t*], ze€QCR™, (34)

where coefficients p, ; and the magnitude of error Ep g are independent of parameter w.

Needless to say, the general form of equation (3.1)) encompasses many important equations from
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both classical and quantum physics. The most important examples include the heat equation and
the Schrédinger equation. We demonstrate that our methodology is also applicable to equations with
second-order time derivatives, such as the wave equation and the Klein-Gordon equation. Highly
oscillatory differential equations of type arise in various fields, including electronic engineering
[8, 110], when computing scattering frequencies |11, and in quantum mechanics |12, 21].

The research presented in this chapter is inspired by the article [12], in which the authors use a series
of type as ansatz to approximate the solution of the Klein—Gordon equation. After incorporating
such ansatz to the equation, coefficients p, s are determined either recursively or numerically by solving
the non-oscillatory differential equations. The method turned out to be particularly effective for large
oscillatory parameter w, for which the standard numerical schemes were very expensive and inaccurate.
This motivated us to take a closer look at the issue of asymptotic expansion of solution to a highly

oscillatory equation. However, it is important to answer the following questions:

1. How to prove, that the solution of equation (3.1)) indeed can be presented as the asymptotic

series of type (3.4))7

2. Is it possible to obtain coefficients p,,, purely analytically (not by solving numerically differential

equations)?
3. How to derive the error bound of the method?
4. Is the series (3.4) convergent?

5. Our numerical experiments regarding the paper [12| show that for small parameter w, adding

subsequent terms of series (3.4) make the approximation worse. Why is this happening?

This chapter partially answers the above questions.

In our approach, instead of employing an ansatz, we derive the partial sum of the asymptotic
expansion purely analytically. This approach enables us to obtain formulas for the coefficients
Pr,n of sum , eliminating the need to determine them by solving a system of differential equations.
Furthermore, this approach allows us to derive a formula for the error in the approximation by the
asymptotic sum .

To express the solution of equation as the asymptotic series, we take advantage of the method-
ology proposed for computing highly oscillatory integrals. To find the approximate solution, firstly,
we show that the Neumann series — in other words, a series of multivariate integrals — converges to
the solution of equation in the Sobolev space H?P({2), where 2p is the order of the differential
operator £ defined in . Then, by using integration by parts and the theory of semigroups, we
expand asymptotically each of these integrals into a sum of known coefficients. This is the most com-
plicated and technical part at this stage, since the domain of each integral is a d-dimensional simplex,
d=1,2,... and, as a result, the number of terms in the asymptotic expansion grows exponentially
when d increases. Fortunately, our numerical experiments show that one can achieve a small enough
error even for not large values of d. By organizing terms appropriately with respect to magnitudes
w™" and frequencies €*“*, we obtain sum . Given that the Neumann series converges for any time

variable ¢, we attain a long-time behavior of the highly oscillatory solution of equation.
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The solution to equation , after spatial discretization, can also be expressed as the Magnus
series [4]. The Magnus expansion is particularly important in approximating the solution of the
Schrédinger equation, since any truncation of the Magnus series preserves unitarity. However, to
the best of the author’s knowledge, the convergence of the Magnus series has been proven only for
sufficiently small time variables ¢ > 0 and only for bounded operators [18, 26]. Representing the
solution of equation as the Neumann series allows its approximation for any large time variable
t.

By considering the potential function f in the form , we avoid the occurrence of resonance
points in the highly oscillatory integrals comprising the Neumann series. In the paper [23], the authors
present the asymptotic expansion of the solution of , in which function f has a single frequency
f(z,t) = a(z)e“!. Paper [28] is the next step towards approximating the solution of equation

with a more general potential of the following form

N
flat)= Y an(z,t)e™!, w>1, NeN (3.5)
n=—N
n#0
For such a function, resonance points will appear repeatedly in the integrals which constitute the
Neumann series. In this context, resonance occurs when the vector n € Z¢ in the frequency term
¢’ 7 where T € R?, is orthogonal to the boundary of the integral fad(t) f(r)e™ Tdr, with oy(t)
representing a d-dimensional simplex. In this manuscript, we consider a special case of such a situation
and demonstrate that if the vector n is orthogonal to one edge of the simplex o4(t), then resonance
points vanish in the sum of these integrals.

The results presented in paper [28], described in this chapter, extend those previously introduced in
[23]. Specifically, we consider a potential function f with multifrequencies , rather than one with
a single frequency. Furthermore, we establish the convergence of the Neumann series in the Sobolev
norm, instead of the L? norm, namely we provide the convergence in the norm of Sobolev space
H?P(Q). Additionally, we demonstrate the applicability of the proposed methodology to equations
featuring second-order time derivatives. The resonance case is also considered.

The chapter is organized as follows: in Section we show that the solution of can be
expressed as the Neumann series. In Section [3.2] we convert each term of the Neumann series into a
sum of multivariate highly oscillatory integrals. Then we introduce necessary definitions which will be
needed in Section for the asymptotic expansion of each highly oscillatory integral. Section [3.4] is
devoted to the error analysis of the proposed approximation. Section [3.5] concerns highly oscillatory
integrals with resonance points which form the Neumann series. In Section|3.6] we show the application

of the asymptotic method to the wave equation. Numerical simulations are presented in Section [3.7]

3.1 Representation of the solution as the Neumann series

In this section, we show that the solution of (3.1) can be presented as the Neumann series for any

t > 0. For convenience, we introduce necessary notations and making a general assumption

Notations 1. By H?*(Q) = W?P2(Q), where p is a nonnegative integer, we understand the Sobolev
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space equipped with standard norm || || g2e(qy, and HE(Q) is the closure of C§°(Q) in the space HP ().
In this chapter, for convenience, the norm in the space D(L) := HE(Q) N H?P(Q) is denoted by || | =
| [lf2e(q2)- Additionally, we slightly abuse the notation and also denote u(t) := u(-,t) as an element

of an appropriate Banach space.
The following assumption will apply in this chapter.
Assumption 1. Suppose that
1. Q is an open and bounded set in R™ with smooth boundary OS).

2. Operator —L : D(L) := HY(Q)NH?*(Q) — L*(Y), where L is of form , is a strongly elliptic

of order 2p and has smooth, complez-valued coefficients ap(z) on Q.
3. up € D(L) and f € C ([0,t*]; H*()).

We emphasize that the space D(L) is the Banach space since it is a closed subspace of the Banach
space H?P(Q).

Expressing the solution u(t) of equation with the highly oscillatory potential as the
Neumann series facilitates its numerical approximation. Namely, having expressed u(t) as the following

series

o0
u(t) = ZTdewuo,
d=0

for certain linear operator T, each term T%'“uy is actually a sum of multivariate highly oscillatory
integrals. In the following, we will show that if such an integral satisfies the nonresonance condition,
then T uy ~ O(w™?). Intuitively, for a large parameter w > 1, further terms of the Neumann series
become less relevant in numerical approximation.

We start by applying Duhamel’s formula, and we write equation (3.1)) in the integral form

u(t) = etCuq + /0 =L F(Fyu(r)dr, (3.6)

where ug and f(7), u(r) for fixed 7 are elements of the appropriate Banach spaces. Assumption
guarantees that differential operator £ is the infinitesimal generator of a strongly continuous semigroup
{e**}>0 on L?(Q) and therefore maxe(o,+] ”et‘CHLQ(Q)FIP(Q) < C(t*), where C(t*) is some constant

independent of ¢ |14, [27]. Moreover, since the following a priori estimate holds

ull 2oy < C (1Lull 12 + lull L20)) » (3.7)

L

for any u € D(L), where C' > 0 is a constant |27], operator e~ is also bounded in norm || || of space

D(L) for any t € [0,t*]. Indeed, by using (3.7) we have

e\ peeyepicy = ”s1”1<p1 le“ul| < C ”81”11<)1 (I1£e™“ull 2y + lle™“ull 12(q))
ul|< KIS

= 0”81”151 (le* Lull 2 (@) + le™ull r2(0)
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< Clle" 2 (yer2(0) HSlHlp (1wl 20y + llullp2)
< CHetﬁHL?(Q)eLQ(Q) “51“151 (Crllull + llull 20))
< o)

and again constant C(t*) depends on coefficients ap(x) of £, but is independent of time variable ¢.
By variation of constant representation , operator {ew}tzo is bounded, although the subject of
consideration is equation , which features unbounded operator £ on space L%().

We introduce sequence {u/" }ZO:O cC([0,t]; D(L)) =V

"l(t) = ZTdewuo, u%(t) = ey, t €[0,t%]. (3.8)

Linear operator T : V — V is determined by

Tu(t) = /0 L f(Fyu(rydr,  te 0,7, (3.9)

where L is the infinitesimal generator of a strongly continuous semigroup, and function f € C ([O, t*; H 21“’((2)).
We show that sequence (3.8)) is convergent to the solution u € C*([0,#*]; L2(Q2)) N C([0, t*]; D(L)) of

equation (3.1)). We use the estimation of a product of two functions in a Sobolev norm
179l 2o @) < MRl g2e@)llgll vy, R CR™,  2p>m/2, (3.10)

for h,g € H?*"(Q), where M depends only on p and m. In the beginning, we show that expression
Tu(t)

t T1 Td—1
Tu(t) = / =TIE (7)) / ML (7). / elTa 1=l £ Vu(rg)dry . .. dm,
0 0 0

for fixed ¢, is uniformly bounded in norm || || of space D(L) by a constant independent of t.
Lemma 2. Suppose that Assumption is satisfied. Let w € V' (V is the domain of operator T defined
n (@), and 2p > m/2. Then there exist a constant M (depending only on p and m), such that

t* d
() < arfotcses S e o, (3.11)

where C1 = maxe[g ] ||etE||D(£)<_D(£), Oy := maxe(o i+ | f(t)]| and C3 := maxgjg 1+ [[u(t)]].

Proof. By applying inequality (3.10)), and using basic properties of the operator norm, we can easily
estimate || T%u(t)| for a fixed time t.

t T1 Td—1
IT%u(t)]| = < ‘f< 1) / oM=L f(y). - / e(Ta-1=TL £ (1 Yu(r)dry . .. d7y
0

olt=1 Ef (11)e (r1— TQ)Cf(TQ) o e(Tdfl_Td)ﬁf(Td)u(Td)de co.dm




25

< /t /Tl- .. /onl e(t_n)ﬁf(ﬁ)e(Tl_TQ)Ef(Tg) .. e(Tdfl_Td)ﬁf(Td)u(Td)H dry...dn
< / / / ||| £y () e f(ryu(r)|
< Clch/ / /Td ‘ (T1—72 Lf (2) o(Ta- 1—Td)£f(7_d)u(7d)H drg...dm =: (%)

Constant M comes from inequality (3.10). Proceeding analogously and repeatedly we obtain

t T1 Td—1 ( )d
(x) < Micicdcs / / dry...dr < MAC{CdCs~—— 5 vteo ],
o Jo 0
and the right hand side of the above inequality is independent of ¢, which completes the proof. ]
Theorem 10. Suppose that Assumption|l| is satisfied, 2p > m/2 and t € [0,t*]. Then series

[e.e]

Z:T“lewuo7 t € [0,t"],
d=0

converges absolutely and uniformly to the solution u* of equation , and w* € C([0,t*]; L2(Q)) N

C([0,#]; D(£)).

Proof. Let us denote C := maxyeg ] Het‘c”D(‘C)eD([’), Cy := maxye)o 4 || f(£)]|. By (3.11)), we estimate
(t *)d

max IT% uo|| < MACTTCY[|uol|~=—, V¥ deN,
te|0,t*

=:Ay

Since > 57 Aq = Cillug|| exp(t*MC1Cs) and space D(L) is the Banach space, the Weierstrass M-
test provides that sequence {u["]}zozo is convergent absolutely and uniformly to some function u* €
C([0,¢*], D(L)). Thus, for each t € [0, t*] we have

[e.e]

w*(t) == lim ull() =) Ty, (3.12)

n—00
d=0

where u[ is defined by 1' The operator I — T is a bijection and function u* is the solution of l)

Indeed, it is easy to observe that

(I—T)zn:Td: i:Td(I—T) =1 -7

d=0 d=0

Since || T — 0 as n — oo, for each t € [0, #*] we obtain
(I —T)u*(t) = e“up,

which is the equivalent form of equation (3.6). Moreover, one can observe that the mapping ¢ — u*(t)
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is differentiable for each t > 0, when ug € D(£) and f € C([0,t*], H?"(2)). Indeed, by considering the
mild formulation of (3.1)), namely

t
u*(t) = e“ug + / =L f(r)u*(1)d, (3.13)

0
of course the first part e*“ug is continuously differentiable, %etﬁuo = LetPug, Vt > 0, and since u* (1) is
continuous, function ¢(t), defined as g(t) := fg e(="L f(r)u*(7)dr, is also continuously differentiable.

Since L is a closed operator, in addition holds

d t
S (t) = e“Lug + f(H)u*(t) + / DEL F(r)u*(7)dT.
0
Each expressions on the right-hand side are well-defined as wg, f(t)u*(t) € D(L) for any ¢t € [0,t*].

Thus, we showed that solution u* of (3.13)) belongs to space C*([0,t*]; L2(Q)) N C([0,#*]; D(L)). O

The above convergence proof of sequence is similar to that presented in [23|. However, to
show the convergence of to the solution of equation , one needs to provide convergence of
sequence in the appropriate Sobolev norm.

Needless to say, the existence and uniqueness of linear evolution equations is a well-known and
well-established theory in mathematics. Theorem is only needed to show that solution to the
equation can be presented as a series of multivariate integrals. This fact we utilize in the numerical
approximation a highly oscillatory solution. It is easy to notice that in the proof of Theorem [I0]
operator T need not be a contraction mapping, but the Neumann series is still convergent. It can be
shown that for arbitrarily time variable ¢ > 0, there exists number s, such that for any d > s, operator

T4 is a contraction mapping |79 < 1.

Remark 1. The mild formulation of equation allows us to relax the assumptions on the initial
condition ug. Instead of requiring ug € D(L), let us assume for a moment that ug € L*(Q) and
additionally that f is a bounded function || f||cc < 00. By following a similar approach to the proof
of Theorem one can also establish the convergence of the sequence (@ in the norm of the space
C([0,t*]; L*()) to the mild solution u* of equation . In this case, the additional assumption

2p > m/2 becomes redundant.

Series is called the Neumann series. Equation can be expressed symbolically as
u(t) = e“ug + Tu(t).
It can be easy verified that for each n, the term ul™(t) satisfies the relation
ul (1) = ePug + TulP (), wl(t) = .

Therefore, in the remaining text, we will use the terms ‘n-th partial sum of the Neumann series’ and

‘n-th iteration of the equation’ interchangeably to refer to the expression u[" (t).
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3.2 Presenting terms of the Neumann series as a sum of multivariate

integrals

By Theorem the solution to equation can be expressed as the Neumann series u(t) =
Yo T detLyy. In this section, we show that for function f, defined in , each term T%C, d =
1,2,... of the Neumann series is a sum of multivariate highly oscillatory integrals. Subsequently, we
will prove that each T%* can be approximated by a partial sum of the asymptotic expansion. By
linearity of semigroup operator {etﬁ}tzo, we convert expression 7%~ into a more convenient form, for

function f defined in ((3.3)

t Td T2
Tdetl — / / / U=T0L F(rNe(a=Ta)E f(r) 1) (=L f(r )™ Edry . dry =
0 0 0

t Td To
E / / e / e(t_”)Loznde(ﬂi_”*)Loznd_1 .. .e(TQ_Tl)LanleTlLeiw(ﬁ"l+"'+”"L‘)dﬁ coodrg =
0 Jo 0

1<ny,..ng<N

3 / (t)Fn(t,T)ei”"T"'de S 1[F0alt).

ne{l,...,N}4 ne{l,...,N}4

where

T = (11,72,...,74),
F.(t,7) = e(t*Td)ﬁande(Td*Td*1)£oznd_1...e(TTTl)ﬁameTlﬁ, (3.14)
I[Fr,0q(t)] = / E,(t,7)e“™ Tdr (3.15)
oa(t)

and o4(t) denotes a d-dimensional simplex
oa(t) ={r = (11, 72,...,74) ERY >y >y > > > 0}.

Using the above notation, solution u(t) of (3.6 can be written as

ut) =eFug+> Y I[Fn,04(t)]uo.

d=1ne{l,..,N}d

Each F,(t,T) is a linear operator, Fy,(t,7) : D(L) — D(L) and m € N is a vector corresponding to
F,, in the sense that n appears in the frequency exponent of integral .

In our approach, to expand asymptotically multivariate highly oscillatory integral of type ,
we will exploit repeatedly Fubini’s theorem, properties of the semigroup operator and integration by

parts. Therefore one should be able to compute successive partial derivatives of the expression of type

(3.14). We use the identity (2.27) from Lemma

o (e(t_T)LaeTﬁ) = elt=m)L { . [[a,ﬁ],ﬁ],...] et = (—1)kelt=Eq k. (a)ew,

L appears k times

where recall adoﬁ (a) = q, adlz (a) = [/J, aallz_1 (a)] and [X,Y] = XY — Y X is the commutator of X
and Y.
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Unless otherwise stated, we assume that each appearing expression of type £*a,, is well defined for
any functions ap,n=1,...,N.

In the asymptotic expansion of integral of type , the number of terms in a partial sum of
the asymptotic series grows exponentially as the dimension d of the domain increases, therefore to
facilitate the notation and keep the whole terms of the sum under control, we introduce the following

definitions.

Definition 6. By vgl € {0,1}4, £ =0,1,...d we denote the vertices of simplex oq(1)

vl = (1,1,1,...,1,1);

vl = (0,1,1,...,1,1);

v} = (0,...,0,1,...,1

¢ ( )
{ zeros

Definition 7. Let @g, £=0,1,...,d, be a family of points such that

(I)? = {¢€ {Oal}d : ¢: (¢lv¢27"'a¢d)7 ¢£ :Oa ¢] = 1> fOT'j > f}
In other words, ¢ € @? if the last zero is at £-th coordinate of ¢, next coordinates are ones only.

Definition 8. For ¢ = (¢1,¢2,...,0q4) € {0,1}¢ and multi-index k = (ki,...,kq), we define the

sequence of partial derivatives of F(t, 11,72, ..., Tq)

T1:¢1T2> To=¢a73 * "’ ) Ta=¢at

FRg)() = 0k (.0 (OB F(tma, 7o)

Definition [§] we understand as follows: first, we compute the ki-th partial derivative for variable
71. Then we substitute in place of 7 variable 7 or 0. Subsequently, we compute the ko-th partial
derivative with respect to variable 7o and then again we substitute 70 = 73 or 79 = 0 and so on. We
proceed in this manner until we compute the kgz-th partial derivative with respect to 74 and substitute
Tq = @gqt, where ¢4 = 0 or ¢4 = 1. We introduce the above definition as the order of partial derivatives
at points is significant for operator defined in .

Example 4. To present how Deﬁm’tion@ operates for F, definied in , we compute the first few
eapressions F¥[@)(t) for d =1,2. We assume that oy, n=1,...,N are sufficiently smooth functions.

Fhje) = ob (e(t*ﬁ)ﬁameﬁc) et = (—1)}“1(16[’21 (anl)ew,

Ebojt) = ob = (-1)ke“ad! (an, ),

1 =T2)
1 :7'2)
1 :0)

71=0

— (—1)‘k|ad% (amad?(am)) et’c7
— (—1)|k|et£ad22 (amad? (anl)) ,
—1)"“‘aallz2 (anz)etﬁad? (o),

To=t

FR0L00(0) = 052 (9f (el an, el 0ay 00 C)

[( )] t) — 814:2 akl (e(t—’rg)ﬁan2e(7'2—7'1)£an1 eT1£>

To=0

To=t = (

(
( (

FE DI = 0l (0 (e  apye™ ™ ay, e f)
( (
( (
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FE(0,0)](t) = 0k (5511 (e(t—Tz)ﬁanze(Tz—n)Camenﬁ) n:o) |72:0 = (—1)kletqdh? (am)adizl (ctny ).
It can be shown that expression F¥[¢], for operator Fy, defined in ([3.14), takes the following form

k
Fff[@”] (t) = Z < > (_1)|m|+|k:\£m+1andﬁrdand_l o ,CNHOéWHew[,NOéW L0 LT

m

m<k
for certain vector ¢ € ®¢, sufficiently smooth functions oy, n = 1,..., N and multi-indexes k =
(k1,....kq), m = (my,...,mg). Numbers r1,...7441 satisfy 7 + -+ + 7441 = |k| and m < k means

m; < k; fori=1,2,...,d.

3.3 Asymptotic expansion of a highly oscillatory integral subject to

nonresonance condition

Let n = (n1,...,nq) € N? be a vector. In this section, we assume that the coordinates of m satisfy the

nonresonance condition:
nj+nj71+"'+nr+1+n1" #07 (316)

for each 1 < j < r < d. This condition implies that n is not orthogonal to the faces of the simplex
o4(t). This case encompasses situations where the highly oscillatory potential f takes the form .
In this section, we shows that the integral I[F,,o4(t)] defined in (3.15]) can be expressed as a partial
sum of the asymptotic series. Let us start with the first term of the Neumann series. By applying

integration by parts, the integral [F),,, (0,t)] can be presented as the following sum:

t r—1
. 1 .
/ ewrme(t=mL, eTEypdr = E W[emmadlz (am)ew —etcadﬁ(anl)}uo (3.17)
0 k=0

t
i —7)L L

~=1). The general formula for the

and the above expansion approximates the integral with error O(w
integral I[Fy,,04(t)] over a d-dimensional simplex is unfortunately much more complicated. However,
equation (3.17]) shows the main idea of our considerations. In the later derivation, we will use simple
tools, including induction, Fubini’s theorem and identity .

The following definition determines coefficients that will appear as a result of integrating by parts

in highly oscillatory integrals.

Definition 9. For vector ¢ € @g, vertex 'vg of simplex o4(1), £ = 0,1,...,d, multi-indezes k =
(k1,. - kay1), k = (ki,...,kq) and vector n = (ni,...,nq) € N satisfying condition , we
wntroduce the following rational numbers

—1)$1t+1
Apy [f1](m1) = %
ny
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(_1)¢d+1+1

KU?’ 1) (n, nd+1)]kd+1+1 :

Akl(@, dar1)]((n, n411)) = Agl@l(n)

One can express terms Ag[p]|(n) explicitly, namely for ¢ = (¢1, d2, ... dq) € <I>zl we have

Agl@](n) = (3.18)
(_1)¢1+1 (_1)¢2+1 (_1)¢73+1 (_1)¢d+1

np (nadr 4 )t (nygy +ma)de +ns) T (L ((nagn + na)da +n3) d3 + -+ + ng) T

yet recursive definition will be needed later in the proof of Theorem . Due to assumption , we

never divide by zero in the above expressions.

Example 5. For d = 3 we compute coefficients Ag|p](n) for different ¢ € 3, £=0,1,2,3.

=0, Ag[(1,1,D)](n) = n’f1+1(n1 + nz)k2+11(n1 +ng + n3)k3+17
£=1 Al0.1,1)](n) = n]f1+1(n2)k2+_1(1n2 + ng)katl’
=2, Ag[(0,0,1)](n) = n/1f1+1nl;+1n§3+1’
=2 A0 D)) =
=3, Ax[(0,0,0)](n) = n/1f1+1n12c_2}rln1§3+1’
=3, Ag[(1,1,0)](n) = nﬁ““(m + n2)k2+—1(1n1 +ng + Tl?))kﬁl7
=3, A[(0,1,0)](n) = n/1g1+1n12cz+1(;2 t g)katl
1

=3, Ag[(1,0,0)](n) =

ki+1 ks+1°
n11 (7’L1 + ng)k2+1n33

Coefficients Ag[¢](n) appear is the asymptotic expansion of integral (3.15). They play a funda-

mental role in our research in the asymptotic analysis of highly oscillatory integrals with resonance

points.
Remark 2. In the subsequent part of the paper, we employ the following notation: If n = (ny,...,ny) €
Z™ is an m-dimensional vector, then 7 = (n1,na, ..., Nm_1) € Z™ ! represents a (m — 1)-dimensional

vector obtained by excluding the last coordinate n,, from n.

To simplify complex notation in the proof Theorem we will also write F' := F,, for the operator
defined in (3.14]), if vector n corresponding to F' is clear from the context.

Theorem 11. Let F' be the operator defined in , and let n be the vector corresponding to F
that satisfies the nonresonance condition . Integral can be expressed as the r-partial sum
S (t) of the asymptotic series with error BY (t)

MR o) = [ FmienTar =500) + B0, (319)
O'd(t)
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where

Dkl &
Z (iw) d+|k| Z WIS Arll(n) FR(g)(1) (3.20)

: ¢€<I>d
and error Eﬁd) (t) of the expansion is in recursive form
-1t
g = U 7/ eTmr (¢, )dm, (3.21)
(iw)” ni Jo
(_1)r—d+l

BN = 2 Y S ARlSl@) / elerantvi gl (elt=mC,, FR[@](ry) ) dra

T
|k|=r—d+1 = 0¢€q>d 1 (’fl ’U

t
+ / e(thd)CandEﬁdfl)(Td)ei“’"d”de, ford > 2.
0

Proof of the Theorem [T1] can be found in Appendix [AT]

Let us note that we cannot consider an infinite expansion in because S,gd) (t) may not converge
to I[F,o04(t)] as r — oo, even if w > 1.

Theorem [11] states that the integral I[F,oq(t)] ~ O(w™%) can be approximated by the sum ,
with an error O(w™") as given by the form . A similar result was first obtained in |22, where the
authors provide the asymptotic expansion of a multivariate highly oscillatory integral over a regular
simplex. However, our result differs in that the integrand is a vector-valued function, instead of a real-
valued function, which makes the formulas for the asymptotic expansion of highly oscillatory integrals
more complicated. In addition, for our further considerations, the coefficients Ag[¢](n) and the error

E,Ed) (t) of the expansion must be explicitly derived.

3.4  Error analysis. First four terms of the Modulated Fourier ex-

pansion

In this section, we provide the error analysis of the approximation of the solution to equation
using the sum . Additionally, we furnish ready-to-use formulas for the first four terms of the
partial sum of the asymptotic expansion.

By Theorem each integral I[Fy,,04(t)], for vector n satisfying the nonresonance condition
, and for sufficiently smooth functions «,,, n = 1,..., N, can be expressed as a partial sum of
the asymptotic expansion

I[Fr, 04(t)] = S0 (t) + Eia(t),

where Sr(ffn)t( t) is the sum corresponding to operator F),, and Sﬁ )( t) ~ O(w™?%). Moreover, for the r-th

partial sum of the Neumann series holds

ZTdewuo = euy + Z Z I[Fy, 04(t)]up.

d=1ne{l,..,N}4

Therefore, it is possible to approximate the solution wu(t) of equation (3.1) by a sum of type (3.4)).

Furthermore, since the Neumann series converges for any time ¢, the asymptotic expansion is well-
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defined without the need for time steps.
We prove that the sum consists of terms of Sﬁ%(t)uo, d=1,2,...,r

UM = efuy + Z Z 8,£%(t)u0.

d=1ne{l,.. ,N}4
. . . _7»_1
approximates the solution of (3.1)) with error O(w ).

Theorem 12. Let u(t) be the solution of and ull(t) = S0 _, T4 ug be the r—th partial sum of
the Neumann series. We denote || [l2:== | |lz2) and || llg2 =1 [[g2ee+1) (), where g :=2p(r +1).
By T we mean the operator T =", Te. Fort >0, the following error estimations hold

1) Ju) —ul @)z < H (S;1||p<1 ITo()]|2l| T+ e “uglls = O™ 1),
v(t)]l2

@) Ju) ULl < swp (Tl el + S S 1ED ol = 0w )

lv(®)ll2<1 d=1ne{l,.. N}d

Proof. Let t > 0. According to Theorem solution u(t) of (3.1)) can be expressed as the Neumann

series u(t) = > 5, T%*ug. Therefore we have

Z Tete U

d=r+1

< sup [ To(t)l|2| T e uol2.
lo(@®)l2<1

o0
lu() — u"(@)]]2 = Z TAT ™16ty

d=0

2 2

By Theorem|L1} we have |77+ e uplls < Spey,., wpe (1855 mOuollo + BT Buollz) = 0w,

To show (2) we use the triangle inequality

lu(t) = U Ol < Hlu(t) = ol (@)l + [l (t) = UL D))z

!
d
< sup To@) 2T e ugla+ > ST EQ (uole
lo(®)ll2<1 d=1mne{l,..., N}d

and for each » € {1,...,N}% in fact we have ||E’7€f2(t)u0||2 = O(w™""1). Indeed, each integral that
(d)

forms error Erp(t)ug is, of course, highly oscillatory, and integrating by parts each of them results in
(3). O

Expression T'v(t), where |[v(t)||2 < 1 is the solution of the integral equation

U(t) = v(t) + /0 UL F(r)y(7)dr. (3.22)

Suppose that f is a bounded function on [0, #*], || f[|cc < 00, and let C7 := maxc[g 4+] "etﬁy‘LQ(Q)HLQ(Q).

By Gronwall’s inequality, solution of (3.22)) can be estimated in L? norm

ITv(®)ll2 = llv@)]l2 < exp(ECL| floo)- (3.23)

Remark 3. The upper bound of constant ||Tv(t)||2 may be large, especially for a big magnitude
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of || flleo- Therefore, let us also consider a different approach to this issue. In the proof of inequality
(1) of Theorem we estimate the truncation of the Neumann series

oo
Z TdTT'-FletﬁuO
d=0

lut) — ul (2|2 = (3.24)

2
Let now v(t) = T e“uq. It is straightforward to verify that ¥(t) = .50, T%(t) is the solution of

the following non-homogeneous equation

U(t) = Ly(t) + fR)0(E) + () — Lo(t), (3.25)
$(0) = v(0).

From the form of function v(t) we have

V' (t) — Lo(t) = F()T eFug + LT H e ug — LT eFug = f(1)TTeFug
and v(0) = 0. Therefore, equation reads
W) = (L + FO)(t) + ()T uo, (3.26)
$(0) =0,

and f()T"et*ug = O(w™). Moreover, for a sufficiently small time variable t, the solution of

can be written as

z/J(t):/o @(t,s)f(s)TreS[’uods,

where ®(t, s) is the solution of the homogeneous problem
(t,s) = (L+ f(s)2(t,s),  O(s,5) =1,

and ®(t,s) = exp(Ut,s)), where Q(t,s) is the Magnus expansion. If, for example, is the
Schrodinger equation with a time dependent potential, then ||®(t,s)||2 = 1 and therefore the truncation

can be estimated in a different manner

o0
Z TdTT-‘rl etﬁuo

= [z < tl|flloo max | T"e* ull2.
=0 s€[0,t]

2

This provides a different estimate of the error constant | Tv(t)||2.

Now we provide a ready-made formula for the sum (3.4)) for R = 3, which approximates the solution

u(t) of problem (3.1)) with error O(w™%). Solution u(t) can be written as
u(t) = ey + Trefug + T2 ug + T3e“ug + TT e uy,

where T = Y% 79, and the magnitude of the truncation of the Neumann series ||TT*e*ugl2 =
O(w™).
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Each term TV e*“ug, T?et“ug and T3et“uy we expand as follows to obtain the error of the approxi-

mation O(w™?)

Tleuy = S (SEh (1) + B (1) o,
ni1€{1,...,N}

Tuy = > (SO0 + ESL) o,
ne{l,...,N}2

Toeuy = > (S0 + ESLD) o,
ne{l,...,N}3

The partial sum of the asymptotic expansion that approximates solution u(t) is equal to

UB) =eCug+ Y S (wo+ Y. SOMuet+ Y. SE(tuo,

n1€{1,...,N} ne{l,...,N}? ne{l,...,N}3

where SV (t)uo, Sé?b(t)uo and SS°) (t)ug, by identity (3.20)), are of the following form

3,m1 3,n

1 1 i i 1 1
S0 = o (" o — ) g s (M ad (an, ) — e adb(ny) uo
1 i 2 2
+ 7@”1@3 (emlwtadﬁ(oznl)ew - etﬁadﬁ(am)) ug,
(2) I S v 1 L 1 c 1 c
S0 = g (1 o, 0 e o, e a0, )
1 iwt(n1+mns2) 1 1 tL 1 tL
; T~ d 4+ ——ad
i (iw)? (e w3 (g +ny) "2 elam Je (g +ng)2 " (0 n, Je
. —1 1
+ ewtne [~ o otCadl(ay,, ) — —ad;(anp,)e Lo +— = e, adi(a
n%ng n2 ,C( nl) 1’17,2 ,C( nz) ni n1n2(n1 + n2) N2 L( TLl)
-1 1
+ PRCTETAE eCadk (amyam, ) + o etﬁadlc(anz)am)uo,
2
1 eiwt(n1+n2+n3) eiwt(n2+n3)
S(?’) t — ) etC - ] etﬁ
3 ()00 (iw)3 \ n1(n1 + na)(ny + na + n3) g OngOng ning(ng + n3) AngQna @Ay

eiwtng 1

tL tL
Qpz € QpyQipy — € QpyOp,Qp Uo-
3 2 1 (nl +ng + 713)(712 + ng)ng 3 2 1

nanz(ni + na)

Expressions of type e*“uy, etﬁanjuo, etﬁadk(anj)uo, etc. can be computed either explicitly, or very
efficiently and accurately by using the spectral methods 33| and/or the splitting methods |25].
To summarize, each terms of the Neumann series T%*“uy can be written as the following sum

together with the error

dN

1 : 1
d tL iws iws iws pd d
T~ ug = dg Pds d+1 E e Pd+1s ---—l——wr E e Pr,s+ r+1E
s=0 s=0
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P]d’s consists of terms of Sgn(t)uo, independent of w, which stand next to frequency e**

1

wl*

asymptotic series.

and magnitude

Ef is the whole error associated with the approximation of T%' ug by the partial sum of the

It is very convenient to present the idea of the asymptotic expansion in the following table

168, — 1N iwspl 1 N iws pl 1 N iws pl 1 N iws pl 1 1
Trefug = > o€ Py +ozd 0@ Py oz )o@ Pyt . +rd gl B,
2 tL _ iws iws 1 2N jws p2 1 2
T<e U = 225 Oe P25 +w3 Zs Oe P35 +FZS:OG Pr,s +wr+1Er
3L, 1 3N iws p3 1 3N iws p3 1 3
T7eug = i) DN o 0 SRR i) SN il U s o
Tretﬁu _ 1 rN eiwsPr + 1 ET
0= wr Lus=0 T,s wr T

The error of the method consists of truncating the Neumann series and truncating the asymptotic

expansion each term T%*vg, d=1,...r.

3.5 Asymptotic expansion — integrals with resonance points

Theorem allows for the asymptotic expansion of integral I[Fy,, 04(t)] provided that vector n satisfies
the nonresonance condition (3.16)). However, given the potential function of a more general form ([3.5))
with negative frequencies, solution of problem (3.1)) can be presented as

u(t) = e’ uﬁ—ZZ [Fn, oa(t)]uo,

d=1neNd

where N is a set of all possible vectors n
N®.={-N,...,-2,-1,1,2,...,N}%. (3.27)

Set N¢ comprises vectors n which are orthogonal to the simplex o4(t) or its boundary. Coordinates
of such n satisfy
nj+nj,1+-'-+n7+1—|—nr :O,

for certain 1 < j < r < d. For those vectors we cannot apply Theorem since otherwise we would
divide by zero in expressions (3.18). Our advantage is, however, that instead of one integral with
resonance points, we are to deal with a sum of such integrals. In Theorem an increase in the
dimension of integral results in an increase in the rate of decay — while I[F,oq_1(t)] ~ O(w™%1),
I[F,04(t)] ~ O(w™9). This is because at any step of the proof we could integrate by parts each
integral since, due to non-resonance assumption, the argument of frequency exponent nTv? # 0 and
then ™ ¥ never vanish.

At this stage we consider integral I[F,,04(t)] with vector n = (n1,ng,ns,...,nq) € N¢ whose
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coordinates satisfy
ni+--+ng=0 and nj+nj+---+nj#0 for j=1,....d, 1<j+r<d (3.28)

In other words, n is orthogonal only to the edge of simplex o4(t) contained in line {(z1,x2,...,24) €
Re:qpy=g9="---= xq}. In such a situation, we have nTvg =n1 +---+ng =0 and therefore in the
proof of Theorem [11{ we cannot integrate by parts the last, outer integral with elwran®vg
case involving the whole set is a matter of further research.

Let n; € N®, j =1,...,d be vectors satisfying (3.28)), such that
J

The general

ny = (n1,n2,ns,...,Ng—1,M4q),

ny = (ng,n3,n4,...,ng,n1),

nj = (nj,nj+1,...,nd,nl,.,,,njfl)’
ng = (ng,ni,na,...,Ng_2,Ng—1)-

If ny € N?, then vectors n;, jJ = 2,...d belong to set N% as well. Because of assumption 1)
for each j =1,...,d we have Z?Zl n; = 0. From the coordinates of vectors n; we form the following

fractional numbers

Alna] !
n = s
! ni(ny +n2)(n1 +n2 +n3)...(n1+n2 +n3+ - +ng_1)
Alns] !
n = y
2 na(ng +ng)(n2 +ng +n4) ... (N2 +ng +ng+ -+ +ng)
Alfug41] !
g — )
i N1 (M1 + Nig2) oo (M1 + g2+ Fng+n1+ - +ng_1)
- 1
Alng] =

ng(ng+mn1)(ng+n1+n9)...(ng+mny+ng--+ng_3+ng_2)
(We use cyclic notation ng = ngyq for s € Z).

Lemma 3. Let nj, j =1,...,d be vectors which satisfy condition . Then

Proof. 1t is sufficient to apply the partial fraction decomposition to A[n], by treating n; as a variable
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and other numbers n,, r # 1 as constants. We aim to express A[n1] as
Al =3 (3.20)

for certain numbers Nj, j = 1,...d — 1. Let us fix index j. To determine coefficient N;, we use
Heaviside’s Cover-up Method. Substituting ny = —(n2 + --- 4+ n;) we have

1
N; =
nl(nl + ’rlg) e (n1 —+ 4 nj_l)(m + -+ nj+1) RN (nl + -+ nd—l) ni=—(na+--+n;)
_ (1y!
(g +---+mnj)...nnjp1(njr1 +njg2) ... (Njp1 + -+ ng_1)

1
(njpr+ - Fm) . (e o+ n-0)na (e +ngge) - (4 + -0 nd-1)
nj+1t+ -+ na
nj+1(nj+1 + TL]'+2) e (TL]'+1 + -4 nd,l)(anrl + -4+ nd)(njH + -4 711) N (’nj+1 + -+ ’I’Ljfl)

(in the penultimate equality we used assumption (3.28)). Now since nj41+---+nqg = —(n1+---+n;),
substituting N; into (3.29)) we obtain

1 d—1
A['Fll] = Z ) = - ZA[ﬁ]+l])
j=1

=gy ) (g

which completes the proof. O

Now let us notice, that if multi-index k = (ki,. .., kq_1) satisfy |k| =0 and ¢ = (1,...,1) € s
then Az[@](nj) = A[n;], where Ag[¢](n;) are the coefficients from Definition |§| In other words,

numbers A[n;], j =1,...,d appear with the first term —L__ of the asymptotic expansion of integral

(iw)dfl
I[Fﬁj, O’dfl(t)].

Theorem 13. Let n; € N be vector which satisfies and let Fyn; be the operator defined in
with corresponding vector n;, j=1,...,d. Then

d

> / Fp, (t,7)e“™ Tdr ~ O(w™9).
j=1 Gd(t)

In other words, the sum of these integrals with resonance points over a simplex o4(t) decays in the

same manner as an integral over the same domain without resonance points.

Proof. Let F, (t,7) = e(t_”fl)ﬁozndde(T‘fl_T‘l—l)LCJzan1 L .e(TQ_Tl)LanLjeﬁL be the operator with corre-

sponding vector n; = (n1;,n2j,...,M4,;) , and let Sﬁi{jl), Eﬁ{jl) be the partial sum of the asymptotic

series and the error of approximation of integral I[Fz,,04-1(t)]. We use Fubini’s theorem and then

we apply Theorem (11| to expand asymptotically I[Fy;,04-1(t)]. It is possible since the nonresonance
d

condition is violated only for the vectors n; € Nt j=1,...,d.

d
Z/ F, (t,T)eiwn;"FTdT =
j=1 aq(t)
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t
> / Ty, T[Fr,, 04 1(7a)]e ™ i drg =
1 0

t
Z/O e(t—'rd) Oy s (S(d 1)( d) +E7E:i7':b_Jl)(Td)> elWTand.j qr, =

j=1
d r—d+1 i d—1
(—1)|k| _ t (e : T
Z T—HE\Z Z A,‘é[@b](n])/e ¢ and’jFﬁj[qf)](Td)e i dry +
I=1 |k|=0 (iw) =1 gegd-1 0

—iPi ()

k ~ t —T k iwrgnT vd
>y WA,;[(L...,U](nj)/O =T FE (1, 1)](ra)e ™™ ¥ dry +

J=1 k=0 (i)
o)

d  pt

S [t o,

—1 /0 ’
Now since vectors nj, j = 1,...,d satisfy (3.28), we have n;'-F'vg = 0, so T — 1 and there-
fore we cannot expand asymptotically expression Py(t). However, if |k| = 0 then for each j holds
e(t_m)ﬁand’j Fi’;j [(1,...,D)](rq) = e ... age™F since functions a; commute with each other.

As a consequence, in expression P> , by Lemma [3] terms with ]I::] = 0 vanish, so P; is equal to

d n—d+1 ‘k| ) ‘ e ;
Z Z 1wd 1+|k| l;[(1771)](nj)/0 e d and]Fn][(l 1)](Td)d7—d

I=0 |k|=1

and thus Py(t) ~ O(w™9). Expression Pj(t) we integrate by parts according to Theorem [11|since each
integrals of expressions Pi(t) has no resonance points, therefore Pi(t) ~ O(w™?) and consequently
P+ P~ (’)(w_d). L]

In the asymptotic series of Z;-l:o IFy;,04(t)], in expressions which were denoted by P in the proof
of Theorem [13], appear terms with integral

t
/0 =T 0 FE (1, 1)](ra)dra

yet they are not highly oscillatory, so we expect we can approximate them effortlessly and effectively,

for example by Gauss-Legendre quadrature.
Example 6. Consider set N? = {n; = (—1,1),ny = (1,—1)} and two integrals
I[Fy,,02(t)] and I[Fy,,o02(t)].

Then I[Fy,, 02(t)]+1[Fn,, 02(t)] ~ O(w™2) and the first term of the asymptotic expansion of I[Fp,, o2(t)]+



39

I[Fy,,02(t)] is equal to

L
(iw)?

t t
tC iwt L —iwt L t—ro)L 1 c t—r3)L 1 c
<a1e 1€ + a6 are " — 2e a1a_1+/ "0 adk(ay)e™ dTQ"’/ " ad ()€™ dTQ).
0 0

Occurring integrals are not highly oscillatory and can be computed, for example, by Gauss-Legendre

quadrature with high accuracy.

To summarise this section, it is much more difficult to provide formulas for coefficients of the
asymptotic expansion for integrals with resonance points. However, Theorem [I3] describes the asymp-
totic behaviour of terms from the Neumann series, and it seems possible to use this fact to construct

quadrature rules based on the Filon method.

3.6 Application of the method to the wave equation

As an example of the application of the asymptotic method, we consider the following second-order
PDE

Oiu = Lu(x,t) + f(x, t)u(z,t), te[0,t*], x € Q CR™, (3.30)
u(z,0) = ui(z), Ow(x,0)=u(z),
u =0 on 9N x [0,t"],

with function f given in (3.3). We write (3.30) as a first-order system

U 0 7 u 00 U
at = + f ’
v L 0 v 0 v
where v = Jyu. Thus
u 0Z||u N o 0 0| w
8t — + Z emwt
v L 0 v n=1 on 0 %
® 1

and therefore
Orp = Ao+ ho,  o(z,0) = [u(z), ua(z)], Alu,v]’ = [v, Lu]?, Bulu,v] =[0,anu]’, (3.31)

where h(z,t) = Zivzl e™!3 (z) is a highly oscillatory function and ¢ is a vector valued function.

Suppose that £ is a second-order differential operator which has symmetric form

Lu = Z Oz, (aijOz,u) — cu,

1,j=0
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where a;; = aj;, 1,7 =1,...,m and ¢ > 0. For simplicity, assume that ||y, |jcc < 00, Y =1,..., N.
By applying Duhamel’s formula, we write (3.31) as

o(t) = ey + /0 e(t*T)Ah(T)np(T)dT. (3.32)

Operator A : D(A) := [H*(Q) N Hg(Q)] x H}(Q) — H(Q) x L*(Q) is the infinitesimal generator of
a Co-semigroup {e*4} on H} () x L?(Q) [14]. Using the same arguments as in the proof of Theorem
one can show that the Neumann series converges absolutely and uniformly in the norm of space
H}(Q) x L*(Q) to the solution of equation (3.32).

It is worth mentioning that the structure of the terms (3, causes certain terms in the asymptotic

—inwt and when

expansion to vanish. We obtain even more zeros when we allow negative frequencies e
the coeflicients ay, satisfy the condition o_,, = a,,. This facilitates the derivation of the coefficients
in the asymptotic expansion, reduces the computational time, and enhances more the accuracy of the
method. This suggests that the asymptotic expansion works particularly well for equations with the

second time derivative in the form of (3.30)).

3.7 Numerical examples

In this section, we present the application of the method to various equations of type (3.1) with
parameter w > 1. For each of the equations, it is possible to find an analytical solution to compare
them accurately with a numerical approximation. The L? norm of the error is considered in any
presented example. For each equation, the solution is approximated by partial sum of the asymptotic

expansion
R 1 S
~ jswt
u(z,t) = poo(x,t)+ Z; o z;)pr,s(fv, t)e ™", (3.33)
r= s=

for different R and w.

Ezxample 1.

We first consider the following equation

ou = (1 — 22202 u + fx, t)u(z, ), te|0,3], z € (—1,1),
u(z,0) = up(z), (3.34)
u(—1,t) =0 =u(l,1),

where initial condition ug and highly oscillatory potential f take the forms

1

() e =22 ifxe(—1,1),
ugl\r) =
0 otherwise,
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error

5 25 50 75 100 125 150 175 200
w

Figure 3.1: L? norm of the error of the method for the equation (3.34) for ¢ = 3. We use a base-10
log scale.

1 . 1 .
f(z,t) = — (1 —2*)* + diwz (1 — 2%)® + 2w?(1 — 32)) +e'* = (=2(1 — 2*)* — dizw(1 — 2%)% + 2w?)
ag(z) aq(z)
2wt 1 1 — 22)4
+ e E< —z7)*.
~——
az(x)
The solution of (3.34)) is

ielwtJc iz

u(z,t) =e o Twug(z)

and differential operator L is of the form
L=(1-2%)%?2, + ap.
To approximate the solution we take the first four terms of the Neumann series (the third iteration)
uBl(t) = eCug(x) + T e ug + T?eFug + T3 .

Subsequently, we expand asymptotically T e ug, T?e*“ug and T3e*“uy with error (’)(w*‘l). In other
words, we approximate the solution of (3.34)) by the partial sum of asymptotic expansion (3.4 with
the first four terms. Figure and Table present the approximation error of the solution u(x,3)

for different values of w and different lengths R of the partial sum of the Neumann series.

Example 2.

As mentioned, the method is also applicable to the potential with time-dependent functions «,(z,t).
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R=0 R=1 R=2 R=3 R=0 R=1 R=2
w=10 | 1.12e-01 | 3.17e-02 | 2.75e-02 | 7.38e-02 w=10 | 9.33e-03 | 5.28e-03 | 5.55e-05
w =100 | 1.23e-02 | 3.06e-04 | 2.68e-05 | 7.36e-06 w =100 | 5.33e-04 | 4.87e-05 | 4.94e-08

w = 1000 | 1.27e-03 | 3.15e-06 | 2.68e-08 | 1.76e-09 w = 1000 | 4.96e-05 | 7.64e-08 | 4.86e-11

Table 3.1: Error of the method — equa-

tion

Table 3.2: Error of the method — equa-

tion

Indeed, consider the following equation

O = 9% u+ e“sin(t)u(z, t), t €10,5], x € (0,2m),

u(x,0) = sin(x), (3.35)

u(0,t) =0 = u(2m,1).

The solution of (3.35) equals

—t—1/(w?—1)4el*? cos(t) /(w2 —1)—iel¥twsin(t)/(w?—1)

u(x,t) =e sin(z).

Operator £ = 92, and the potential f is f(x,t) = e“a(x,t), where a(z,t) = sin(t) is time-dependent

function. We approximate the solution by taking the first three terms of the Neumann series
ul? (t) = eug + Tre“uy + T?e“uy.

To expand asymptotically integrals T'et“ug and T2e* ug we utilize the following generalization of

Lemma [Tl

Lemma 4. Let a(t) € C*([0,t*], D(LF)). Then the k-th time derivative of expression et""Ea(1)e™*

18 equal to

6f (e(t*T)La(T)eTL> = zk:(—l)é <lz) e(t*T)Eadf; (a(k*@ (T))GTL.

=0

The proof of Lemma [f] can be found in Appendix Table [3.2] presents the error of the method up

to the second iteration.

R=0 R=1 R=2 R=0 R=1 R=2 R=3
w=10 | 3.17e-02 | 3.17e-02 | 1.71e-03 w=10 | 3.58e-00 | 3.47e-01 | 2.22e-02 | 1.07e-03
w =100 | 5.45e-04 | 5.45e-04 | 2.00e-07 w =100 | 1.00e-01 | 2.64e-04 | 4.62¢-07 | 6.07e-10

w = 1000 | 5.54e-06 | 5.54e-06 | 1.98e-11 w = 1000 | 1.80e-02 | 8.41e-06 | 2.62e-09 | 6.14e-13

Table 3.3: Error of the method — equation 1) Table 3.4: Error of the method — equation 1'
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Ezxample 3.

Consider now the wave equation with potential with negative frequencies

O = Ogzu + f(z, t)u(x,t), tel0,1], x € (-L,L), L =10,

u(z,0) = e~ W29 gay(z,0) =0, (3.36)
u(—L,t) = u(L,t),

Opu(—L,t) = dyu(L,t),

where function f takes the form

f(z,t) = (1 2 (2 + 2%w? — 42?) cos(wt) _ 422 cos?(wt) N xt sin2(wt)> ‘

2 ol 2
The solution of (3.36)) is equal to

’U,(CL' t) —e cos(wt)xQ/w2e—x2/2.

Due to the presence of the resonance points, we do not have a general formula for the asymptotic
expansion of the integrals that form the Neumann series in this case. Nevertheless, we can employ
Theorem and Theorem [13] to approximate only terms T'e*4 and T2e*4, where A is the linear op-
erator of form (3.31). Table presents the error of the method for a different oscillatory parameter w.

Example 4.

In the last example, we consider the equation with the biharmonic operator

Opu(z,t) = aimmu(x,t) + ei“’tu(x,t), x e (0,7), telo,1],

u(z,0) = up(z) = sin(x) exp (—;) , (3.37)
u(0,t) = u(w,t) =0,

with periodic boundary conditions. The solution is

u(x,t) = ot i fw sin(x).
Table presents the error of the method for different parameter w and different partial sums of the

asymptotic expansion.

Remark 4. One can notice that equations , and do not fully satisfy Assumption
. Indeed, linear operator L form equation does not satisfy strong ellipticity condition for x

near —1 or 1, and solutions u(x,t) of equations and does not satisfy the zero boundary
conditions. These are just examples to illustrate the proposed methodology and suggest that the method

can probably be applied to a broader class of differential equations.
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Chapter 4

Numerical integrator for highly oscillatory
differential equations based on the

Neumann series

This chapter is based on an article [29]. We consider the following PDE

Ou(z,t) = Lu(x,t) + f(z,t)u(x,t), tel[0,t*], zeQCR™,

4.1
u(z,0) = ug(z), “.1)

with zero boundary conditions, where 2 is an open and bounded subset of R” with smooth boundary
00, t* > 0 and L is a linear differential operator of degree 2p, p € N, defined in We assume that
function f(x,t) from the equation (4.1) is a highly oscillatory of type

N

flz,t) = Z an(z,t)e™  w>1, NEeN, (4.2)
n=—N

n#0
where a, are sufficiently smooth, complex-valued functions. This chapter aims to introduce a numerical
integrator designed for highly oscillatory equations of type . Given the generality of equations
, the proposed numerical scheme can be effectively applied to a range of linear partial differential

equations, including the heat equation and the wave equation.

The motivation for the research presented in this chapter is that the method for highly oscillatory
equations based on the Modulated Fourier expansion described in Chapter [3] may not converge to a
solution. This means that it is only effective for equations with large oscillatory parameter w. In
this chapter, we present a third-order method whose accuracy improves with increasing parameter w
and decreasing time step h. Furthermore, the proposed approach allows for easy improvement of the
convergence order of the proposed numerical integrator.

In paper [28|, discussed in Chapter , it was shown that the solution to equation can be
presented as the Neumann series. Subsequently, by expanding asymptotically each integral in the

Neumann series, it was demonstrated that the solution of the equation can be expressed as the Modu-
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lated Fourier expansion. In this chapter, instead of employing an asymptotic expansion for the integrals
from the Neumann series (which is effective only in cases of large oscillations), we approximate them
using quadrature rules designed for highly oscillatory integrals, such as Filon-type methods. By this
approach, we can provide that the local error of the presented numerical scheme can be estimated by
Ch*, where constant C is independent of time step h and parameter w. Furthermore, when consid-
ering a potential function f with only positive frequencies, i.e. when only numbers n > 0 appear in
formula , one can show that the local error is bounded by C min {h4, th_Q,w_?’}, where again
the constant C' is independent of both h and w.

The convergence rate of the method can be easily improved by approximating a greater number
of integrals from the Neumann series. However, this enhancement comes at the cost of requiring
better regularity for both the initial condition ug and the functions «,,, and also leads to increased
computational complexity.

Computational methods dedicated to equations of type are presented for example in |2} |3]
35]. In this chapter, we present a complementary approach as discussed in the aforementioned papers.

Our approach is distinguished by the following properties:

e the general form of the problem (4.1]) allows our method to be applied to a variety of equations,

including the heat equation, Schrodinger equation, and the wave equation;

e the presented approach allows easy improvement of the order of convergence of the proposed

numerical integrator;
e case of estimating the error of the method.

The chapter is organized as follows. Section provides the derivation of the proposed numerical
integrator. Section [£.2]is dedicated to the error analysis of the method, while Section [I.3] presents the

results of numerical experiments.

4.1 Derivation of the method

For the convenience of presenting the method, we introduce the necessary notation and make the

following general assumption, which will be used throughout this chapter.

Notations 2. By H?*(Q)) = W*2(Q), where p is a nonnegative integer, we understand the Sobolev
space equipped with standard norm || || g2y By ult](T) we understand function u such that ult](1) =
u(t+171). We slightly abuse the notation and also denote u(t) := u(-,t) as an element of an appropriate

Banach space. In this chapter, for convenience, by || || := || |r2@q) we denote the standard norm of
L?(Y) space.

Assumption 2. Suppose that
1. Q is an open and bounded set in R™ with smooth boundary OS).

2. Operator —L : D(L) := HY(Q)NH*(Q) — L?(Y), where L is of form , is a strongly elliptic

of order 2p and has smooth, complexz-valued coefficients ap(z). Moreover 2p > m/2.
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3. up € D(L*) and oy, € C* ([0,¢*], H¥ (), n=—N,...,—1,1,..., N, where
D(LF) ={ue DLV : Llue DL, k=2,...

The assumed regularity of functions ug and «,, is related to the accuracy of the method. Recall
that assumption [2] guaranties that differential operator £ is the infinitesimal generator of a strongly
continuous semigroup {e’“};>o on L?(2) and therefore maxe(o,+] ||etc||L2(Q)<_L2(Q) < C(t*), where
C(t*) is some constant independent of ¢.

We wish to build the method based on time steps. Therefore, based on the semigroup property,
we can modify equation and express it as follows

Osult)(z, s) = Lu[t](x,s) + f[t](z, s)u[t](z, s), se[0,h], xe€QCR™, (4.3)
ult](z,0) = u(x,t),

where t > 0 and A > 0 is a small time step. By ult](z,s) we understand u[t](z,s) = u(z,t + s). By
applying Duhamel formula to (4.3)), we obtain

ult](s) = e*“ult)(0) + / Se<S*T>ﬁf[t](T)u[t](T)dT. (4.4)

0

We could simply write u[t](s) = u(t + s), but the above notation helps avoid misunderstandings in
subsequent formulas.

Let V4 denotes the following space
Vi i=C ([t,t+h],L*()), t>0, h>0.

Define the linear operator T3 : V; — V;
Tult(s) = [ e L el multl(r)dr, s < 0.1
0

where function f is defined in (4.2). The Neumann series for equation (4.4) reads

(e 9]

ult](h) = ) T Fult](0). (4.5)

d=0

Expression Tfe"“u[t](0), d = 1,2,..., from (4.5)) is equal to

h Td T2
ToeM“ult)(0) = /0 eh=TL £t (1) /0 e(ma=Ta-1L f[t)(14_1)- - - /0 (2L £t (11 )e™ Fult](0)dry . . . d7g.

It can be shown that the series converges in the norms || |[z2(q) and || ||g2p(q) to the solution
of equation , where 2p > m/2, for arbitrary time variable h > 0 |28]. The idea for finding
an approximate solution to equation involves approximating the first r» terms of the Neumann
series using quadrature methods designated to highly oscillatory integrals. For convenience, we

introduce a set

N?.={-N,-N+1,...,-1,1,...,N —1,N} c N%, (4.6)
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where 2N is a number of terms in sum (4.2). Using definition of the function f and the linearity
of semigroup operator, we can write each term of the Neumann series Te"“u[t](0), d = 1,2,... in a

more convenient form for our considerations

Toeh“ult](0) = / n(hy 71, .. Tg)e@ A A natatt) g gy
ni,.. ,ndGNl aa(h
_ Z elwtn II[Fn,O'd(h)],
neNd
where
Fn(hy7,...10) = et mLq, [t](rg)ema =D 0, [t](ta_1)...e ™ q, [t](m)e™ult](0), (4.7)
I[Fp,0q(h)] = / E,(h, T)e“™ Tdr,
G'd(h)

T = (n,72,...,7q), 1=(1,1,...,1),
and o4(h) denotes a d-dimensional simplex
oa(h) = {1 = (r1,72,..., 7)) ER :h > 74> 791 > > >7 >0}

Using the above notation, solution u of (4.4)) can be written as

u(t + h) = ult](h) = )+ Ze‘“’m 1N I[F,04(h (4.8)

neNd

In the proposed numerical scheme, for each time step h we take the first four terms of the above series

that approximate the function u(t + h)

3
u(t+h) = e"Cult)(0)+ > D e [Fy, 4(h)).

d=1 neNd

Then, we approximate each integral I[F,,c4(h)] in the above sum by applying the Filon quadrature.
As a result, we derive a fourth-order local method. By employing Filon quadrature, the method’s
error converges to zero both as h — 0 and as w — oo. Our decision to consider only the first four
terms in the Neumann expansion is rather arbitrary. The method can be enhanced to achieve a higher
level of accuracy, albeit with increased computational costs and the requirement of better regularity
for functions ug and «,.

Consider function F(7) := Fy,, (h, 7) from the second term of the Neumann series and the following

univariate integral

h
/ F(r)e™“Tdr,
0

where ny = —N,—N +1,...,—1,1,...,N. Let p(7) be a cubic Hermite interpolating polynomial

F(r)=p(r) = F(0) + a117 + a1,27'2 + 01,37'37
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which satisfy the conditions: p(0) = F(0), p(h) = F(h), p'(0) = F'(0), p’(h) = F'(h). We have

h h
/ F(r)e™ T dr ~ / p(r)e™Tdr,
0 0

and the moments

h
/ helmerdqr £ =0,1,2,3,
0

can be calculated explicitly. Let now F(7i,7) := Fy(h,71,72), n € N?, and consider a bivariate

integral

h To )
/ / F(Tl,TQ)GIw(anl+n2T2)d’7'1dT2. (4.9)
0 0

We approximate function F'(71,72) in points (0,0), (0, k) and (h, h), the vertices of the simplex oa(h),

by linear function p(m,72),
F(r1,72) = p(11,72) = F(0,0) + az171 + az272.

The approximation of integral (4.9) by the Filon quadrature rule reads

h T2 . h T2 .
/ / F(Tl, 7_2)elw(n171+n27—2)d7_1d7_2 ~ / / p(Tl, Tz)elw(n1r1+n27'2)d7-1d7-2’
0 0 0 0

and the integral on the right-hand side can be computed explicitly. Similarly, we proceed with the
triple integral. Function F(1y,7e,73) := Fp(h, 1,72, 73), n € IN? is approximated by linear function
p at the vertices of the simplex o3(h): (0,0,0), (0,0,h), (0,h,h), (h,h,h),

F(ri,m9,13) = p(11,72,73) = F(0,0,0) + a3171 + az 2T + a3 373.

Then we have

/ / / (1,72, T3)e W("”—l+"2T2+"373)d7'1dT2d7'3 / / / p(T1, 72, 73)€ IW(mT1+n272+n373)d7-1d7-2d7-3

The precise formulas for determining the coefficients a; ; are presented in the Appendix [A.3]
The proposed algorithm for computing the successive approximation of the solution u can be
expressed in the following form:

h
ot = (ehﬁ + Z/ (al,o +ai117+ a1,27‘2 + a1,37’3) e iw(mHte) 4

+ Z / / az,0 +az2171 + az 27’2) lw(nl(‘rl-‘rtk)+n2(T2J'_tk))d7'1(4].7‘2 (4.10)

ni,ng

4 Z / / / as.0 4+ az1m + as 272 + as 37.3) ‘W(nl(71+tk)+n2(72+tk)+"3(73+tk))dTldT2dT3)u

ni,ng,n3

tky1 = tx+h, k=0,1,...,K—1,

where u® = ug, to = 0, tg = t*, ny,no,n3 € {—N,—~N +1,...,—1,1,..., N} and the coefficients ai j
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are chosen so that the corresponding polynomial satisfies the Hermite interpolation conditions. Each

hL and

of the integrals appearing in the scheme is computed explicitly. Furthermore, the expression e
the coefficients a; ; of the interpolating polynomials, after spatial discretization, can be computed very
efficiently and accurately using spectral method or splitting methods.

As we will see in the numerical examples, the proposed numerical scheme can be successfully applied
to partial differential equations with the second-time derivative. For details, we refer to Chapter 3,

Section

4.2 Local error analysis

The entire error of the method comes from two sources: the approximation of each integral from the
partial sum of the Neumann series, and the error associated with the truncation of the Neumann
expansion. In [28], the authors provide the asymptotic expansion of integral I[F,,c4(h)] from the
Neumann series , where F,, is the function of the form , for the special case when the

potential function f has positive frequencies, specifically when f takes the form
N
fla,t)=> an(z, )™, w>1, NeN (4.11)
n=1

In such a situation, each integral I[F,,c4(h)] satisfies the nonresonance condition and therefore can

be approximated by the partial sum ngd)(h) of the asymptotic expansion

I[Fn, 0a(h)] = / F(h, )™ mdr = SO (h) + BN (h), 1=,
oa(h)

where E,gd)(h) = O(w™" 1) is the error related to approximation of integral I[F,,c4(h)] by sum
Sﬁd)(h) ~ O(w™). A similar result was first obtained in [22], where the authors provided the asymp-
totic expansion of a multivariate highly oscillatory integral over a regular simplex. However, in our
analysis, the non-oscillatory function Fj, is vector-valued rather than real-valued. We begin the error
analysis of the proposed numerical method by considering function f from equation in the form
(4.11). Recall that || || denotes the standard norm of L?(Q) space. In the following estimations, C is a
constant that depends on functions ay,, initial condition u[t](0) of equation , their derivatives, solu-
tion u, differential operator £ and t*, but it is independent of the time step h and the oscillatory param-
eter w. Let us also note that since by Assumption the function f € C* ([O, t*], H SP(Q)), we can apply
the Sobolev embedding theorem to conclude that ||f(s)|e < oo for all s € [0,¢*]. Therefore, the norm
of product of two functions f and u can easily be estimated as || f(s)u(s)|| < || f(s)]loollu(s)]|, Vs € [0, t*].

4.2.1 Positive frequencies

Lemma 5. Let F(7) be a 4 times continuously differentiable, vector-valued function, and let p(T)
be a cubic Hermite interpolation polynomial such that p(0) = F(0), p(h) = F(h), p'(0) = F'(0),
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p'(h) = F'(h). Then the error of the Filon method satisfies

SC’min{hE’ ! h}.

37 2

h .
/ (F — p)(r)e™“Tdr
0

Proof. The estimation that the error is bounded by Cw™3 directly follows from well-known results
concerning Filon quadrature, as described in [22|. By using the Taylor series with the remainder in
integral form, one can show that ||F(7) — p(7)|| < Ch* and ||F" (1) — p"(7)|| < Ch?. Therefore, by

using integration by parts, we have

which completes the proof. O

h3
S Cﬁ)

h _ h .
| #@) = prnemenar - | @) - prepemrar
0 0

(n1w)?

Lemma 6. Let F(71,72) be a vector-valued function of class C* and p(t1,m2) be a linear function that
satisfies the conditions: p(0,0) = F(0,0), p(0,h) = F(0,h), p(h,h) = F(h,h). Let numbers ny > 0,
ng > 0. Then

(F — p) (71, mo)e(Mmtm2m2) 4y dry 3

2
<C’m1n{h4 h 1}

Proof. Since vector (nj,ng2) satisfies the nonresonance condition, the integral I[F,o2(h)] can be ex-
panded asymptotically I[F,o2(h)] ~ O(w™?), and therefore the Filon method provides that the error
satisfy I[(F — p),o2(h)] = O(w™3). As in the case in the proof of Lemma [5, by using the Taylor
series with the remainder in integral form, we have the estimations ||F(71,72) — p(71, 72)|| < Ch? and
”8;1 (F(11,72) — p(71,72)) || < Ch. For simplicity, let us assume that n; = ny = 1. Using integration
by parts, we get

. 1 h ) .
‘ (F = p)(11, 7)™ drdry | < — / (F — p)(12, 72)e*“™ — (F — p)(0, 72)e“™dry
w
+ F p 7_2’ 7_2) 2iwTy 371_1 (F o p) (0, Tg)eiWTszQ
+ / 02, (F — p)(m1, 7)) dr d | .

The second and third term on the right side of the above inequality are bounded by Ch?w=2, where C
is some constant independent of h and w. In the case of the first expression, we again apply integration

by parts and the definition of the polynomial p, and thus get the following

h

1 . )
(F p) (72, T2)e Zwry _ (F —p)(0,72)e“?dry

<

iwT h2
20.:2 L(F = p)(0,72)e™dr SCE’

/ (F — p)(12, 72)e® ™2 dmy || +

which concludes the proof. O
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In a similar vein, we estimate the error of the Filon method for the triple integral

Lemma 7. Let F(r,72,73) be a vector valued function of class C* and p(r1,72,73) be a linear func-
tion approximating F such that p(0,0,0) = F(0,0,0), p(0,0,h) = F(0,0,h), p(0,h,h) = F(0,h,h),
p(h,h,h) = F(h,h,h). Let numbers ni,na,n3 > 0. Then the error of the Filon method can be estimated

as follows
R 1
: 5
S len{h ,u)2,u)4} .

To complete the analysis of the local error, we need to estimate the truncation error of the Neumann
series. We write the solution of (4.4]) as

)eiw(m T1+n2T2 +n37—3)d7'1

dTQdTg

(F' —p)(71, 72,73

= ST+ Y T0) = w8 + RV,
d=0

d=r+1

=ul"l[t)(h) =RIU[t](h)

where, in our considerations, we take r = 3.

Lemma 8. Let the function f from equation be of the form . Then the remainder R4[t](h)
of the Neumann series satisfied the following estimate

[4] (.4 R* 1
|[R™[t](h)]| < Cmin | A 3 I
where constant C' depends on functions au,, u[t](0) their derivatives, solution u, operator L and t*, but

is independent of time step h and parameter w.

Proof. By using the basic properties of the operator norm and the fact that || f||e < oo we have

HR[4} [t](h)” = HiTtdehﬁu[ T4ZTd he,,
d=4

= |Tlult)(h)|| < Ch* sup ful](s)]]-
s€[0,h]

Let us now denote by T} the operator T, = Y ° T¢. On the other hand, we estimate

o] -

Z Td hE Z Tth4 hE

< sup [|Twt](h )Hlth4 thkehLU[t](O)ll-
[o[El(R)[I<1

- HTtTfehﬁum (O)H

Expression Te"“u[t](0) is a sum of highly oscillatory integrals over a 4-dimensional simplex which
satisfy the nonresonance condition and therefore ||T;'e"“u[t](0)|] = O(w™?). In addition, by using

basic properties of the operator norm and the simple inequality ||uv]|z2 < ||lul|r2]|v] 0, We have

h T4
IT " ult)(0)]| = ‘ /0 ehTE f[t] (74) /0 oL f[t)(r3) T%e™ ult] (0) dradry

/

IN

dmy

oL f[t] (72) /0 (ML f[t] (m3) T2e™ ult] (0)dry
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IN

d7y

h
01/
0

h p1a
af
0 JO

h T.
012/ /4 HTQemﬁu[t](O)H drsdry,
o Jo

/ " e fl1) (1) T2 E ) (0)dry
0

IN

6(7-477-3)£f[t] (Tg)TzeTSEU[t] (0) H drsdmy

IN

where the constant C; > 0 depends on the norm of the semigroup operator {etﬁ}te[oiq and the

supremum norm of the function f. Since term T2e™ u[t](0) satisfies || T%e™*u[t](0)|| = O(w™2), we
obtain the estimate )
h

Tre “ult](0)] < C—.

1Ty e ult](O)l < €5

Moreover, it can be observed that expression T;v[t](h), where ||v[t](h)||2 < 1 is the solution of the

integral equation

h
Pltl(h) = vt](h) + /0 MO LI ()] (r)dr.

By Grénwall’s inequality, expression ¢ = Tyv[t](h) is also bounded in L? norm for any function v[t](h)

such that ||v[t](h)|2 < 1. Using the boundedness of operator T;, we can estimate

4—k

<ch

L k=1,2,34,
wk ) )

S Tl 0)
d=4

which completes the proof. O

Let us emphasize that the time derivatives of the solution of the highly oscillatory equation do
not appear in the above estimates, which means that the constant C' is independent of the parameter
w.

By collecting the estimations of integrals presented in Lemmas [3] [6] [7, and estimation of the
remainder of the Neumann series in Lemma (8], one can provide the following local error bound of the

scheme.

Theorem 14. Let Assumptz'on@ be satisfied and let the potential function f be of the form .
Then the local error of the numerical scheme satisfies the following estimate in the L? norm

h? 1
to+h) —ul|| < Cmin<{ bt —, =
futta + 1) - < Conin {14, 22 .

where constant C' is independent of time step h and parameter w.

4.2.2 The case involving negative frequencies

The situation becomes more complicated when we perform the error analysis of the proposed numerical

integrator for potential function f in the general form (4.2). Let n = (ny,...,nq) € N9, where set



93

N7 is defined in (4.6). Coordinates of m may satisfy
nj+nj_1+---+nr+1+nr ZO,

for certain 1 < j < r < d, and therefore n is orthogonal to the boundary of simplex o4(h). Vector n
does not satisfy the nonresonance condition, and, as a result, simple integration by parts does not yield
error estimates similar to those presented in Lemmas[f [6] and[7] In this case, we still obtain the fourth-
order local error estimate of the numerical scheme |Ju(to+h) —u!| < Ch*, where C is independent of w
and h, but we wish to derive a numerical scheme whose accuracy improves significantly with increasing
w.

At this stage, we consider two bivariate integrals from the Neumann series, I[Fy,,02(h)] and
I[Fy,,02(h)], where m1 = (—n,n) and ny = (n,—n). Vectors ny,na € N? are orthogonal to the
boundary of simplex oo(h). By integration by parts one can show that I[F,,,02(h)] ~ O(w™1),
I[Fp,,09(h)] ~ O(w™1) but sum of the integrals satisfies (I[Fy,,02(h)] + [Fn,, 02(h)]) ~ O(w™2) [28].
We exploit this fact by imposing an additional interpolation condition to construct Filon’s quadrature
rule for the sum of two bivariate integrals that do not satisfy the nonresonance condition. We also

assume that coefficients of function f satisfy a_, = ay, Vn € N, therefore Fy,, = Fy,, =: Fp,.

Theorem 15. Let coefficients a_,, = o, Yn € N' and consider function Fy, of the form , i.e.
Fo(m,m2) = elh—m)Ly [t] (TQ)G(T2_T1)LOén[t] (71)e™ ult](0). Let polynomial p(1,T2) = bg + by 71 +baTo +

by satisfies the following interpolation conditions
p(0,0) :Fn(070)7 p(O,h) :Fn(ovh)a p(hah) :Fn(ha h)7

and

h h
/ 05, p(72,72)d7y =/ 0y, Fn (72, 72)d7s. (4.12)
0 0

Then

Proof. For simplicity, we can assume n = 1. It follows from the previous considerations that (Fy, —
p) = O(h?), 0} (Fn — p) = O(h) and 9., (F, — p) = O(h). Integration by parts and application of
interpolation conditions gives

h T2 ) ) h2 1
/ / (Fp — p) (11, 72)e“™ 7)) 4 (F, — p)(11, 72)e“" T2 A7 d7y || < Cmin {h“, } .
0 0

w?’ w3

h T2 . .
/ / (Fn — p) (1, Tz)ew(”_m) + (Fn — p)(Tl,Tz)elw(_71+72)d7'1d7'2
o Jo

<

<

: ' T " iwT:

;( / (Fn —p)(72,72) — (Fn — p)(0, 2)e 2dT2—/ (Fr — p)(72,72) — (Fn — p)(0, 72)e" 2drs )+
0 0

1 h 1 b .

o2 / Ory(Fn = p)(r2, m2))dma | + 2 / O, ((Fu = p)(0,72))e™ dra | +

L ' ; 1 " 1 iwT:

S| = p i mane| + | [0 (P = pO 7 4

w2 |1/o o2 ||/,

1

w?

h T2 .
/ / 872—1 (Fn _p)(ThT2)elw(_71+72)d7'1d7'2
0 0

h T2 . 1
/ / 831 (Fn — p)(n,Tz)ew(”_m)dndﬁ + ol
o Jo




o4

1 " —iwT
S| [ o - p) 0 e,
0

!
len{ﬁ,ﬁ},

which completes the proof. O

h .
aiz (Fr —p)(0,m2)e“2dr
0

1 R
+E +Cm1n{ﬁ,5}§

Since the function F}, is non-oscillatory, we can compute the integral (4.12) efficiently and effort-
lessly, using methods such as Gauss-Legendre quadrature.
In the case when function f is of the form (4.2), and the coefficients of f satisfy a_,, = ay,, ¥n € N1,

the improved scheme reads

h
bttt = (eM + Z/ (a1,0 + a117 + a127% + a1,37°) emiw(THte) 47
0
ni

+ / (az0 + ag1m1 + a2727—2)eiw(n1(Tl+tk)+n2(72+tk))d7—1d7—2
n1+n2#0 o2(h)
N

+ Z/ (bo + b1 + bamo + b37_17_2)(eiwn(7'177'2) + eiwn(771+7‘2))d7_1d7_2
o2(h)

n=1

+ Z /03(}1)(&3,0 +ag17m + asame + a3,373)eiw(n1(Tl+t’“)+"2(T2+t’“)+n3(73+tk))dﬁdT2dT3) u®,

ni,n2,n3

tk+1 - tk +h

4.3 Numerical examples

In this section, we employ the proposed numerical integrator to solve highly oscillatory heat equations
and wave equations. The L? norm of the error is considered in any presented example. In our numeri-
cal experiments, to find an approximate solution, we use the Fourier and Chebyshev spectral methods,
as described in |32, |33]. In Examples 1, 3 and 4 we used M = 100 spatial grid points. Example 2

concerns a two-dimensional case, in which we used M = 20 grid points.

Ezxample 1. The heat equation.

Consider the equation

O = 92, u+ f(x, t)u(z,t), t€[0,1], = € (0,2n),
u(z,0) = uo(z), (4.13)
u(0,t) =0 = u(2n,t),

with initial condition ug

up(z) = sin(z),

and function f
(—=i+ t(w — 3i)) cos(z) gt sin(x)2t? o2t
w w? .
N

(63] a2

flz,t)=1-—
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The potential function f involves time-dependent coefficients a; and e The solution to (4.13)) is
u(x,t) = ele" cos(@)t/w sin(z).

Figure displays the error of the method for equation (4.13]).

107t
10714 —— h=1
1o-2 102 —=— h=0.1
5 —— h=0.01
1072 4
1073 4 —— h=0.001
107
1074
10-5 1 1075 +
L 1076 . 10°°
g g
@ 10774 @ 1077 4
1078 10-8
10724 10794
1010 10-10
-11 ]
10 10-11]
1 -12
0 T T T 10_12
1073 1072 107!
time step h w

Figure 4.1: Numerical approximation of the solution to equation (4.13)). Error versus time step (left
graph) and error versus parameter w (right graph).

Example 2. Two-dimensional heat equation.

opu(z,y,t) = 0% u(z,y,t) + 8§yu(:v, y, t) + f(z,y, t)u(z,y,t), te|0,1], z € Q,
U((L‘,y,O) = UO(xay)a (414)
u(z,y,t) =0 on 09,
where domain Q = [—1,1] x [-1,1]. The initial condition wug is
cos(mz) cos(my)/w

uo(x,y) = sin(mwz) sin(mry)e ,

and function f

(672 + iw) cos(mx) cos(my)

N 0.572(—1 + cos(27x) cos(27Y)) o
et

f(xa Y, t) = 27T2 + eiwt 2
a1 a2

The solution to equation (4.14) reads
u(z,y,t) = sin(mz) sin(my) exp(exp(iwt) cos(mx) cos(my) /w).

Figure presents the error of the proposed method applied to equation (4.14]).
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Figure 4.2: Numerical approximation of the solution to equation (4.14). Error versus time step (left

graph) and error versus parameter w (right graph).

Ezxample 8. The wave equation with nonresonance points.

Oiu = 02, u+ f(z,t)u(x,t), tel0,1], x € (-L,L), L =10,
u(z,0) = up(z), Jwu(x,0)=1vo(x),

u(—=L,t) =u(L,t),

Ou(—L,t) = owu(L, 1),

where initial conditions )
o2 (1/241/w?) _

up(z) = , vo(z) = —Uuo(x),

and function f
o 2+ 2 (—4+ w2)eiwt I ACE $2W2)e2iwt

f(xa t) =1—-2z"+
The solution to (4.15) is

w? w?

—p2 _altw .2 2
u(x, t) = e /27T,

(4.15)

Figure illustrates the error associated with the approximation of the solution to equation (4.15).
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Figure 4.3: Numerical approximation of the solution to equation (4.15)). Error versus time step (left
graph) and error versus w (right graph).

Ezxample 4. The wave equation with resonance points.

In the last example, consider now the wave equation with potential function f with negative frequencies

Oiu = 02,u+ f(z,t)u(x,t), tel0,1], x € (-L,L), L =10,

u(z,0) = e e (1/2+1/w%) Oyu(z,0) =0, (4.16)
u(—=L,t) =u(L,t),

Ou(—L,t) = owu(L, 1),

where function f takes the form

flz,t)=1—22+ (2 4 22w? — ;m) cos(wt)  4a® COiQ(wt) ., ” Sinz (wt)
w w w

The solution of (4.16]) is equal to
) —e cos(wt)xQ/w267x2/2‘

u(z,t

Figure presents the error of the proposed method for equation (4.16)).
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Figure 4.5: The error of approximating the solutions of equations (4.13)), (4.14)), (4.15)), and (4.16)), for
w ranging from 5 to 1000, with step size h = 1.
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Figure 4.4: Numerical approximation of the solution to equation (4.16]). Error versus time step (left
figure) and error versus w (right figure) .

The Neumann series converges for all variables ¢, unlike the Magnus expansion, which converges only

locally. Therefore, in the proposed scheme, any time step can be taken to find an approximate solution.

In Figure [£.5] we illustrate the error of the method for all four examples with step size h = 1, where w

ranges from 5 to 1000. In each graph of error versus time step h, it can be observed that the proposed

method is effective for both small (w = 5) and large (w = 200) oscillatory parameter w.
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4.3.1 Comparison with other methods

In this section, we compare the proposed numerical method (denoted as N F'3) with selected existing
methods. For this purpose, we used schemes based on the Magnus expansion: the exponential fourth-
order method (denoted as M4) and the exponential midpoint method of order two (denoted as M2).
Both integrators are described in detail in . Each scheme was applied to equations , ,
and , where in each case the parameter w = 500. As is well known, the methods M4 and M2
are very effective for nonoscillatory equations. However, for a large parameter w which accounts for
the oscillation of the equation, their effectiveness is limited. The proposed NF'3 method performs
particularly well in a highly oscillatory regime. The results of the comparisons are shown in Figures

and (417

10% o Ma 10-1] —— ma
10-14 —=— M2 —e— M2
O NF3 1o-2] — NF3
10734
1073_
104
10754 1044
£ 107 g
[ E 1075 4
10774
1078 1076 4
10794
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10711 4 10-8
10*12
10-3 10-2 10— 10-2 10-2 10!
h h
(a) Example 1 (b) Exzample 2
10° —— M4 10-1 —— M4
1011 —— M2 —— M2
102 —— NF3 102 —— NF3
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. 10°3
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g 106 g
[9) @ 105
10774
1078 10-6
10724
10-10 10775
10711 4 10-8
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107! 10° 10t 102 10° 10t 102 103
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(¢c) Exzample 1

(d) Ezample 2

Figure 4.6: Comparison of the proposed method NF3 with the exponential 4th order method (M4)
and the exponential 2nd order midpoint method (M2). The numerical schemes have been applied to
the equations and , where w = 500. Top row presents accuracy of schemes and the bottom
row time of computation in seconds.



error

error

107104
10-11
10712
10-13

—— M4
—— M2
—— NF3

1073 1072 107t

h

(a) Example 3

100 4
107!
10724
1073
10744
10-°
1076 4
1077
1078 4
107°

10710 §
10-11
107124
10-13

/

107!

10° 10!

time [s]

(¢) Example 3

error

error

10° b M4
107 ] —=— M2
102 7™ NF3
10—3<
1074
1074
107
1077 4
108
107° 4
10—10
10714
10712

1073 1072 107!

(b) Example 4

10°
10714
1072
10734
1074
1075 4
107
10774
1078
1074
10—10
10—11 4
10—12

—— M4

—+— NF3

107t

10° 10t 102
time [s]

(d) Example 4
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Chapter 5

Conclusion — summary and plans for

future research

In this dissertation, we have proposed two computational methods for approximating the highly oscil-
latory solution of equation (L.1]). In the first method, we analytically derived the Modulated Fourier
expansion and then employed it to find an approximate solution (MFE). In the second method, we
approximated highly oscillatory integrals from the Neumann series by using quadrature rules for highly
oscillatory integrals. The second method converges to the solution as w — oo or time step h — 0.

There are several plans for extending the proposed approach.

1. The primary concern is to establish rigorous estimations for the error formulas that arise in the
asymptotic expansion of highly oscillatory integrals in . This task is particularly challeng-
ing, especially when we consider a general differential operator £ in the form . It should
be noted that the partial sum Sﬁd) (t), used to approximate the integral I[Fy,o4(t)], may be
divergent as r — oco. A significant advancement in the approximation of highly oscillatory PDEs
would involve determining the maximum value of r*, beyond which the method’s error begins to

increase.

2. The next step could involve deriving methods for equations with a more general strongly oscil-

latory potential f, as given by the formula
N .
flz,t) = Zan(x,t)e‘wg"(t), w>1, NEN,
n=1

where «,, and g, are sufficiently smooth real or complex valued functions. This requires the use

of appropriate modifications of the Filon methods.

3. As mentioned earlier, the MFE is a widely employed tool in computational mathematics for
analyzing highly oscillatory differential equations. To the best of the author’s knowledge, it has
so far been used as an ansatz, assuming that the solution to a highly oscillatory equation can be
represented as an asymptotic series of the form (1.6). In articles [23, [28] the MFE is analytically

derived for linear partial differential equations. An ambitious goal would be to derive analytically
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MFE for the nonlinear highly oscillatory equations, for example for the problem (|1.3)) described
in Chapter [1}

. There are possible modifications of the integrator proposed in Chapter For integrals which
appears in the Neumann series, different extensions of the Filon method can be applied. For
example, the nonoscillatory integrands can be approximated not only at points that are the ends
of the integration interval but also at the intermediate points. This should further improve the

accuracy of the method.
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Appendix A

Al

Theorem 16. Let F be the operator defined in (3.14), and let m be the vector corresponding to F that
satisfies the nonresonance condition (|3 Zd) Integral (|3 1) can be expressed as r-partial sum S(d)( t)

of the asymptotic series with error Eﬁ )( t)

MRea] = [ Pame7ar = S0 + 5O0) (A1)
aq(t)

where

1l
Z (i) d+|k| Z Wil N Aklgl(n) F¥[g)(1) (A.2)

[=0 pedy
and error B9 (t) of the expansion is in recursive form
r t
(1) (_1) i/ iwTing Qr
E’r (t) (iw)r ’I’L'i‘ o (§] 871F(t771)d71, (A3>
(d) (71)T7d+1 ~ ! iwranT vl gk (t—1q)L k
DY DS AGlgl(R) [ emmT ook (oL, FHg|(r) ) dry

T
|k|=r—d+1 £=0 pepi-1 " W

t
+ / e(t_”)ﬁan E(d 1)( 2)e“miTadry, for d > 2.
0

Proof. We show the statement by induction on d. For d = 1 we integrate by parts r times integral

I[F,(0,t)] and thus we obtain

t .
170,00 = [ Plenemnan
0

— (-pk iwny b ey ‘
- Z(iw)ukl € 1<:+1a Flt )|, + k+1a E(tm),,
k1=0
-1 [t
+ g J, e R
1
r—1 ( 1)k1 1
= > Gyt 2o 2 Al POl + BV ()
k1=0 =0 ¢€<I>1
= SW(t)+ ED ().
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Let o = (n1,...,nq_1), k= (ki,...,ka1) e NP and n = (n1,...,nq), k= (k1,...,kq) € N

Suppose now the formula (A.1)) is true for I[F,o4_1(t)] = fad_l(t) F(T)ei”ﬁT"'dT.

/ F(t, T)ei“mTTdT W
Sa(t)

0

r—d—+1 |k\ d—1 ~ o
—71q)L k i

Z 1w d 1+\k| Z Z A /0 e a”dF [d’](Td)eMdn Yedry +

|e|=0 =0 peay!

! - @
/ e(t—rd)ﬁand Eﬁd_l) (Td)elwrdndd,rd )
0

r—d+1 ( |k

‘ d—1 r—d—|k| 1
Z (iw)d- 1+\k| Z Z Al { Z (iw) kd“ nT'vg)de'

|k|=0 =0 peey™! k=0

. <eiwtnTvga7lf; [e(tffd)ﬁandFI::[(p](Td)}

— 08 [ o, R[] (1)

) n
Tq=0

r—d—|k|+1 t - - )
o5 i, o (e, PR ) e‘“d”“"fdm}+

Tq=t

( )7‘ d—|k|+1 (nTvg)r d—|k|+1

! c d ' ®)
elt=7a) andE,(, D (7g)ewTanadr, 2

(D < o1
> G 2, 2 A9 e

Hha [e(t—m)ﬁandFk[(b](Td)} | _ eiwtnTvgaf; [e(t—Td)ﬁandFk[qb](Td)} |

Tq=1-1

Tq=t-0 +

|k|=r—d+1 {= Dd)ECPd 1

! ; ©)
+ /0 e(t—Td)Eand E,,(,d_l) (Td)eledndde &2

—d(_q)lk 42

Z (i) d+|k| Zelwm vt Z Ar[¢](n)F*[9] () +

|=0 ¢eq>d
+Ak[<¢>1, ey a1, O)](R)FE[(¢1, .. da1,0)](t) + EXD(t) =
r—d |k\ d

Z i) d+|k| 2 wintol §7 Ax[g)(n) F¥[](t) + B (1)
|k|=0 pcdd

t t
/ =T q, T[F, 01 (14)]e™ amddry @ / et-Lq,, (Sr(d_l)(Td) + Eﬁd_l)(Td)) e T dry,
0

1 ! —T k iwrgnt v?
S Y 4l W) e [, O (¢ 0 P ) eme
l

®3)

(we assume that 21;:10 ar = 0). Throughout the above inductive proof we utilize properties of integral

I[F,04(t)], operator F, and simple summation identities. More precisely, where necessary, in the above

identities we have used:

(1) form (3.14) of function F' and Fubini’s theorem,
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(2) induction hypothesis,
(3) formula for asymptotic expansion of I[F,c4_1(t)] and identity il v d Lhng=n (vg_l, 1),
(4) integration by parts r — d — |k| + 1 times and the nonresonance condition (3.16)),

(5) summation identity Zaio sz | 0‘ Aoy vooog 1 g = Zrk:\:o Aky.... .k, and identity

r—d+1 B
Z“a:() a’kl,...,kdfl,de7|k:H>1 - Z|k\:r—d+1 ak’lv---vkd’

6) Definition [8, according to which 9,, [e(=™)Eq,, rk ?|(14 = F*[¢|(t), and Definition
d d

Ta=¢dt

We have proved that the integral I[F,o4(t)] ~ O(w™%) can indeed be approximated by the sum (A.2),
with an error O(w™") as given by the form (A.3). O

A.2

Lemma 9. The k-th time derivative of expression e~ a(7)e™ is

k
o (e(t_T)La(T)eT£> = Z(—l)Z (lz) =L qdl, (a(k_e) (T))eTE. (A.4)

Proof. We prove the statement by induction on k. Let k = 1.

oL (e(t_T)La(T)eTE) = o} (e(t_T)La(T)) et + e(t_T)ﬁa(T)EeTﬁ
_ (_1)Ee(t—7—)£ ( ) T£+et Tﬁa/(T)e (t L ( )Eerﬁ
_ (—1)e(t_7)ﬁad1£(oz( )) T£+e(t T)Ea/( )

1
— Z(_l)f <2> e(tff)ﬁadfﬁ (a(lfé) (T))GTE.
£=0

Suppose now the formula (A.4]) is valid for £ — 1, £k > 1. Then, by induction, we have

ok (e(t_T)'C - a(T)eTﬁ) -

o1 (81;—1 (e(t—T)Ea(T)eTC)> _

k—1 E—1
(_1)z( , )f{ﬁ (e(t—r)ﬁadéﬁ(a(k—l—ﬂ)(T))eTL> _
=0
k—1 E—1
(_1)6( , ) ((_1)e(t—7—)ﬁadﬁﬁ+l(a(k—l—Z)(T))eTﬁ _|_e(t—r)Ladﬁﬁ(a(k—ﬁ)(T))eTﬁ) —
(=0
= k-1
( 1)£+1< )e(t T) dé—i—l( (k—(€+1))( )) T£+( )k: (t T)£adk( ( ))erﬂ
=0
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k—1
k—1 -7 - T -7 T
S (y 7y ) a0 4 (1) adb(a ()t
/=1
— k—1

+ (1)Z< )e(t_T)Ladﬁ (a(k—f) (T))eTE + e(t—T)[,a(k) (T)GTE _

¢

k-1 k
(_1)€ ( >e(t_T)Lad2 (a(k—é) (T))eTﬁ

J4

=1

+eEQR) (1)e™E 4 (=1) ket Eadh (a(7))e™ =

k

k _r - T

Z(—l)‘(f)e“ adp(a®0(m)e~.

(=0

In the penultimate equality we used the identity (IE) = (kzl) + (];:11) :

A.3

We provide precise calculations for approximating by the Filon method highly oscillatory integrals:

univariate, bivariate, and trivariate, from the Neumann series. The calculations are used in Chapter []

Univariate integral

Consider the following integral
h .
/ e(h*T)Lan1 [t](T)eTcu[t](O)e”“de.
0

We denote F(7) := e"""%q,, [t](1)e ™ u[t](0). Function F is approximated by using Hermite inter-
polation F'(0) = p(0), F(h) = p(h), F'(0) = p'(0), F'(h) = p'(h). The polynomial p approximating

function F' is equal to

2

h2
+;z(hF'(h) — 2F(h) + 2F(0) + hF'(0)),

p(r) = F(0)+7F(0) + - (3F(h) — 3F(0) — 2hF'(0) — hF'(h))

= F0)+ a7+ (11,27‘2 + a1,37'3,

where

CL171 = F,(O),
ma = (BF() ~ 3F(0) ~ 2hF'(0) ~ hF'(h))
s — %(hF’(h) —9F(h) + 2F(0) + hF'(0)).

If function o, is dependent on time, then

F(0) = " an [0)ulf](0),  F'(0) = (—c"“adh(an, [1](0)) + ", [1](0)) ult](0),
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F(h) = an [((R)ult](0),  F'(h) = (—adk(am, [ (R)e" + a, [1] ()e"€) ult] 0),

where adj () = [£,a] and [X,Y] = XY — Y X is the commutator of X and Y. Approximation of

the univariate integral is as follows

h h
/ F(r)e™“dr ~ / (F(0) +a1,i7+ a1 ot + a1737'3) eMTdr,
0 0

Bivariate integral with nonresonnce points

We approximate the following bivariate integral

h T )
/ / F(Tl,TQ)eM(n1+n2)dT1dT2,
0 0

where F(71,7) := e"=2)2q, [t](r2)el™ "™ q,, [t](11)e™“u[t](0). Function F is interpolated in the
nodes (0,0), (h,h), (0,h), and F(0,0) = p(0,0), F(0,h) = p(0,h), F(h,h) = p(h, h), where p(r1,T2) is

a linear polynomial that approximate function F

F(Tl, 7'2) = F(O, 0) + a2717'1 + (12727'2 +O(h2),

p(71,72)

where
1 1
a1 =3 (F(hh) = FO.)), a2z = 1(F(0,h) = F(0,0)),
and

F(0,0) = e"an,[t)(0)an, [t](0)ult](0), F(0,h) = aun, [t](h)e" an, [t)(0)u[t](0),
F(h,h) = o, [t](h)om, [t](h)e"“ult] (0).

Approximation of the bivariate integral reads

h T2 . h T2 .
/ / F(Tl, 7_2)elw(n17'1+n27'2)d7_1d7_2 ~ / / (F(O, 0) + a7 + a2,27_2)elw(n17'1+n272)d7_1d7_2‘
0 0 0 0

Bivariate integrals with resonnce points

Consider the following sum of two integrals with resonnce points (n, —n) and (—n,n)

h T2 . h T2 R
/ / F(7'177'2)elwn(T1_T2)d7'1d7'2 +/ / F(ﬁ,Tg)elw"(_n"'m)dﬁdm,
0 0 0 0

where F(71,72) := e"=™)Lq, [t](12)e( =™  , [t] (1) “u[t](0). The bivariate integrals with resonance

points necessitate the imposition of an additional interpolating condition. Let p(7i,72) = F(0,0) 4+
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b1 + baTe + b3T172, be a polynomial with coefficients b; defined by the formulas

b= S (FO.R) = F0,0)),

by = %(2X+F(O,h)—F(hah))7
by — %(F(h,h)-p(o,h)—X%

where
h h
X = / O F(ry, 2)drs = / o) o ] (72) (—ad(nlt](12)) + alt](72)) €™ ult](0)drs.
0 0
Polynomial p satisfies the conditions

p(0,0) = F(0,0),
p(0,h) = F(0,h),
p(h,h) = F(h,h),

(h, h
h h
/0&1p(7'2,72)d72 = / O%F(Tg,rg)dm.
0 0

The Filon quadrature reads

h T2 ) ) h T2 ) )
/ / F(r,7) (elwn(Tl_Tz) + elwn(_71+72)) drdm ~ / / p(711,72) (e“‘m(n_TQ) + elw"(_71+72)> drdm.
0 0 0 0

Trivariate integral

The last integral to be approximated is

h p713 p) )
/ / / F(Tl,’7'2,Tg)elw(nnl+T2n2+73n3)d7’1d7’2d7’3,
0 0 0

where F(11,79,73) = e"=Lq, [t](13)el™ ™) a,, [t](12)e(™ "™ ay,, [t] (71)e™“u[t](0). Function F is
interpolated in the nodes (0,0,0), (0,0,h), (0,h,h), (h,h,h) and F(0,0,0) = p(0,0,0), F(0,0,h) =
p(07 O? h)’ F(07 h? h) = p(07 h7 h)? F(h7 h’ h) = p(h7 h7 h)'

F(ri,m9,13) = p(11,72,73) = F(0,0,0) + a3 171 + az 27 + a3 373,

where
1
ass = T(F(0,0,h) ~ F(0,0,0))
a3 — %(F(O,h,h)—F(0,0,h)),
as1 = S(F(hyh,h) — F(0,h, b)),

h
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Approximation of the trivariate integral is

h p73 T )
/ / / F (71,72, 73)e @Mt m2n2t7ns) gy drodrs &
o Jo Jo

h T3 T .
/ / / (F(0,0,0) + ag 171 + agam + az373)e M H72n2t7303) 4y drodr.
o Jo Jo
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