Abstract in English

In this dissertation, we present algorithms and theorems relevant to the enumeration of various classes of monotone Boolean functions. This work consists of four papers, three published in peer-reviewed journals and one under review.

We denote the number of monotone Boolean functions of n variables as d_n . Two monotone Boolean functions are said to be equivalent if one can be obtained from the other function through any permutation of input variables. Let r_n denote the number of inequivalent monotone Boolean functions of n variables. By λ_n we denote the number of self-dual monotone Boolean functions of n variables, and by q_n we denote the number of inequivalent self-dual monotone Boolean functions of n variables.

In Paper A we calculate the value:

 $r_8 = 1392195548889993358.$

In Paper B we prove the congruence:

$$d_9 \equiv 6 \pmod{210}.$$

In Paper C, we calculate the value:

 $r_9 = 789204635842035040527740846300252680.$

In Paper D, we confirm the previously known result:

$$\lambda_9 = 423295099074735261880,$$

and we calculate:

$$q_8 = 6001501$$