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Abstract

The dynamics of a quantum system that is not isolated are generally hard to obtain,
either numerically or analytically. Usually, many approximations need to be em-
ployed. The most popular set of approximations leads to what is known as the Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) equation, a Markovian master equation
that is the cornerstone of open quantum systems theory. It is the most popular
method despite of its known limitations, it is not a good approximation of transient
dynamics, and if the coupling is not weak enough, it does not describe the steady
state correctly either. Other popular methods are numerically exact, however, they
rely on enlarging the Hilbert space of the system, which makes the simulation un-
feasible for many-body systems.

In this thesis, we provide an overview of the most common techniques to simu-
late open systems beyond the Markovian regime, with special emphasis on Non-
Markovian master equations such as the cumulant equation and the time-convolutionless
equation. We provide a novel way to simulate them faster by approximating the en-
vironment in a way analogous to that used in numerically exact techniques. We
show the potential of these equations and their superiority to the GKLS equation

in several examples, showing that Non-Markovian equations are needed for a good
description of finite-time thermodynamics.

Keywords: Open Quantum systems, Non-Markovianity, HEOM, Pseudomodes, Heat
Transport



Abstrakt

Dynamika uktadu kwantowego, ktory nie jest izolowany, jest zwykle trudna do
uzyskania, zar6wno numerycznie, jak i analitycznie. Zazwyczaj wymaga zastosowa-
nia wielu przyblizen. Najpopularniejszy zestaw przyblizen prowadzi do tak zwanego
réwnania Goriniego-Kossakowskiego-Lindblada-Sudarshana (GKLS), markowskiego
rOwnania mistrza, ktore jest kamieniem wegielnym teorii otwartych uktadéw kwan-
towych. Ograniczenia tej popularnej metody sa znane: nie przybliza dobrze dynamiki
przejsciowej, a jesli sprzezenie nie jest wystarczajaco stabe, nie opisuje prawidtowo
rowniez stanu stacjonarnego. Inne popularne metody sa numerycznie doktadne, jed-
nak opierajg si¢ na powigkszaniu przestrzeni Hilberta uktadu, co czyni symulacje
niewykonalng dla uktadéw wielociatowych.

W niniejszej pracy przedstawiamy przeglad najczesciej stosowanych technik symu-
lacji uktadéw otwartych poza rezimem markowskim, ze szczegdlnym naciskiem na
niemarkowskie rownania mistrza, takie jak réwnanie kumulantowe i réwnanie bez
konwolucji czasowej. Przedstawiamy nowa metode ich szybszej symulacji poprzez
przyblizenie otoczenia w sposéb analogiczny do tego stosowanego w technikach
numerycznie doktadnych. Pokazujemy potencjal tych réwnan i ich wyzszos¢ nad
rownaniem GKLS na kilku przyktadach, dowodzac, ze niemarkowskie réwnania sg
niezbedne do dobrego opisu termodynamiki w skoriczonym czasie.

Stowa kluczowe: Otwarte uktady kwantowe, Niemarkowskos¢, HEOM, Pseudo-
mody, Transport ciepta
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Introduction

This thesis consists of two parts, the first part is an overview of methods to model
open quantum systems beyond the Markovian regime. While the material there is
not an original contribution, the way it is presented is, since these methods are rarely
in the same notation, much less in the same document, different conventions differ
by the definition of spectral densities and Fourier transform normalization. This
makes comparison among different methods complicated, as the final formulas do not
usually indicate what convention is used, and a coupling constant that corresponds
to the weak coupling limit in one convention may be moderate or strong in another.
This part is basically a review on recent developments in the field, clarifying a few
key points that make some methods that are closely related (pseudomodes, dampf,
pseudolindblad, mesoscopic leads) appear different. It provides the reader with a
clear picture of how they differ, their limitations, and when to use one or another.
Part of this review is based on work done for QuTiP.

Neill Lambert, Eric Giguere, Paul Menczel, Boxi Li, Patrick Hopf, Gerardo Suarez,
Marc Gali, Jake Lishman, Rushiraj Gadhvi, Rochisha Agarwal, Asier Galicia, Nathan
Shammah, Paul Nation, J.R. Johansson, Shahnawaz Ahmed, Simon Cross, Alexan-
der Pitchford, and Franco Nori. “QuTiP 5: The Quantum Toolbox in Python”. In:
Physics Reports 1153 (2026), pp. 1-62. 1SsN: 0370-1573. DOIL: https://doi.org/10.
1016/ j .physrep.2025.10.001

The second part of the thesis consists of original contributions by the author and
collaborators. These contributions can be subdivided into two. The first subpart
addresses the steady state of open quantum systems beyond the weak coupling
regime. It builds on the work published as

Marcin f.obejko, Marek Winczewski, Suarez, Gerardo, Robert Alicki, and Michat
Horodecki. “Corrections to the Hamiltonian induced by finite-strength coupling to
the environment”. In: Phys. Rev. £ 110 (1 2024), p. 014144. DO1: 10.1103/PhysRevE.
110.014144

We explain how the perturbative approach in that work can be misleading, as well
as how to deal with the deviations from the steady state in practice and we’ll deviate
a little from the content in that paper to include a discussion as to whether or not
these deviations are relevant in heat transport scenarios, and their connection to the
ongoing local vs global debate in open quantum systems.

The second subpart consists of comparisons of the different methods to model open
quantum systems, focusing on their advantages and disadvantages. This section also
includes our recently proposed approach to accelerate Non-Markoviann descriptions
in a way that makes them more similar to GKLS equations. We hope this makes
their usage widespread as it allows for significantly faster simulations, especially
when the number of jump operators is not too high, or a GPU is used. The theory
was included in part one to keep the narrative. In this part, we show its usefulness
by studying original examples, using Redfield, HEOM, Cumulant, and the other
descriptions beyond GKLS descriptions, emphasizing how they differ from the typ-
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https://doi.org/10.1103/PhysRevE.110.014144
https://doi.org/10.1103/PhysRevE.110.014144

4 CONTENTS

ical description, and whether going beyond the standard open quantum systems
description is relevant in these examples. Here we will also argue for the inclusion of
Lamb-shift and the necessity of using Non-Markovian equations when dealing with
properties that depend on the dynamics generator such as heat and work. This part
is based on

Suarez, Gerardo, Marcin L.obejko, and Michat Horodecki. “Dynamics of the nonequi-
librium spin-boson model: A benchmark of master equations and their validity”. In:
Phys. Rev. A 110 (4 2024), p. 042428. pOI: 10.1103/PhysRevA.110.042428

Marek Winczewski, Antonio Mandarino, Suarez, Gerardo, Robert Alicki, and
Michat Horodecki. “Intermediate-times dilemma for open quantum system: Filtered
approximation to the refined weak-coupling limit”. In: Phys. Rev. E 110 (2 2024),
p. 024110. po1: 10.1103/PhysRevE.110.024110

Suarez, Gerardo and Michal Horodecki. Making Non-Markovian master equations
accessible with approximate environments. 2025. arXiv: 2606.22346 [quant-ph]

and works in preparation.
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Part 1

Preliminaries



Chapter 1

The Free Correlation Function

The free correlation function or two time correlation function is the most important
quantity in open quantum systems. The interaction with the environment is com-
pletely determined by the two time free correlation function of the environment and
its temperature for Gaussian environments with linear coupling (instead of the free
correlation function, one may equivalently use the power spectrum or spectral den-
sity). Typically, dealing with the full dynamics of the open system is too complex,
so often approximations are employed to facilitate it. In this thesis, we will often
approximate the free correlation function with damped sinusoidals in a Fourier-like
expansion !, which makes the dynamics tractable.

In this section, we will review the definitions of correlation function and power
spectrum for both Bosonic and Fermionic systems. Then we will discuss how to
approximate them as a sum of damped sinusoids. We will give a brief overview of
some of the modern techniques to do so, and finally, we will compare the different
approximation techniques and provide brief advice about when to use them.

1.1 The Bath's two time Free Correlation Function

A key quantity in characterizing the environment in an open quantum system setup
is the free evolution of the two time correlation function, which we will call C(¢).
Here we will only discuss the correlation function of environments in a thermal state,
meaning that the environment is in the canonical equilibrium state (usually called
Gibbs’ state)
e~ PHB
PB = 7 ) (11)

where Z is the partition function, which is just the normalization factor of the state
and g = % is the inverse temperature. We have set the Boltzmann constant kg = 1.
Notice that this state does not evolve due to the free evolution of the environment
Up = 15! because [Ug, pp] =0

e—BHzB e~ PHB
pB_ Z _UB<t) Z

UlL(t). (1.2)
The two time correlation of operators in this state are given by

C(t,t') = Tr [A(t)B(t/)pB} : (1.3)

!Though other expansions are possible, for example in terms of Bessel functions [2, 3]
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where A and B are just two operators. Notice that this can be rewritten as

O(t,t) = Tr | UL () AU(OUL(E) BUR( o).

—Tr [UB(t')U;(t)AUB@)U;@')B/)B], (1.4)

where we used the fact that Up(t) commutes with pp and the cyclic property of the
trace. Notice that

Ug(t\UL(t) = e7H et — ULt — 1), (1.5)

so that we can write Eq. (1.4)

Ct,t)=Ct—1t)=Tr [U;(t — ") AUR(t — t')BpB} :

—Tr [A(t - t/)BpB} , (1.6)

the two time correlation function depends only on the difference of times rather than
each time individually.

1.2 The free correlation function for Bosonic Baths

In this thesis, our primary focus is on Bosonic environments. Such environments
are often represented as an infinite collection of harmonic oscillators. These oscilla-
tors tend to couple to the system of interest via their position and do not interact
with each other. This setup involving such environments are usually referred to
as Caldeira-Leggett models [4-6]. The Hamiltonian considered in our analysis will
typically take the form

k k

Here Hg is the Hamiltonian of our system of interest, S is an arbitrary system
operator, g, is a coupling constant, while w; is the energy of the k'* harmonic
oscillator, ay, is the annihilation operator of the k' oscillator, and Xj, is the position
of the k** harmonic oscillator from the environment. Since this is the usual setup
we will be interested in, a two time correlation function of interest is that of the
position of the harmonic oscillators at different times, in a thermal reservoir:

C(t) = Tr [X(t . t’)XpB], (1.8)

where

X =3 aXe=3] F=(al +a), (1.9)

As mentioned before, the environment is made up of non interacting harmonic os-
cillators, as such, their Hamiltonian is given by

HB = Zwka,tak. (110)
k
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When we consider this Hamiltonian the free evolution of position is given by

X(t) = Ug(t) XUL(t ertal 4 ape Rty (1.11)

Zm

Notice that for a thermal state

{arar) =0, (1.12)
(aal,) =0, (1.13)
(afar) = Srpn(wr, B), (1.14)
(aral,) = Srp (nwr, B) +1). (1.15)

Where n(wy, 3) is the Bose-Einstein distribution of the k™ mode

1
efor —1°

n(wg, B) = (1.16)
So in the product X (¢)X we only need to keep the terms that contain one creation

and one annihilation operator

Ik gr’ u,ukt lwit
cmzwxmxbzggzﬁﬁiﬂk al + ape” mz+%m4 (1.17)

¥ (o] e T a]), a3

_ Z 29_( ktp (wp, B) + €~ (n(wp, B) + 1))7 (1.19)

= Z 29_]%((:08 Wkt) (Zn(wk, ﬂ) + 1)1—2' sin(wkt)>. (1'20)
k coth(%)

Usually, we express the coupling coefficients in terms of the spectral density, unfor-
tunately the community has equivalent different ways of expressing this quantity
[B1, B2, 7, 8] which sometimes make comparison between different approaches cum-
bersome. In this thesis we will adapt the notation from [A1], however we would like
to remark that often the literature uses other conventions that differ by a factor of
7 or 2. We will use the following convention for the spectral density [B1, 9],

J@g:w§:§i&w—ww, (1.21)

o(w) = =, (1.22)

While the difference is a simple multiplicative factor, it can make comparison be-
tween different approaches hard, specially when they are close to the limits their
validity. QuTiP’s enviroment class aims at setting a standard for this convention
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[A1] and it has been one of the contributions of the author to the QuTiP library,
while in some papers we used the o(w) convention, in this thesis, we will follow the
J(w) . If we then go into the continuous limit, we obtain

C(t) = % /0 h ()  cos(er) coth<%‘”> ~isin(wr)). (1.23)

which is the correlation function we will use for the remainder of the thesis. For later
convenience, let us remark an important property of the correlation function

C(—t) = O([t). (1.24)

While this function is sometimes defined for positive times only, a complete de-
scription requires considering the negative case. To make this explicit, the non-
equilibrium Green’s function community typically incorporates step functions and
splits positive and negative times into two different functions [8]

C(t) = 0(t)CA% (1) + (=) C* (1), (1.25)

where

CAM (1) = 1 /000 dwJ (w) (cos(wt) coth (%) — isin(wt)), (1.26)

™

1

CRet(t) = = /0 N de(w)(cos(wt) coth (%“) + isin(wt)). (1.27)

™

and consider them to be separate, individual objects. In this thesis, we will use the
former, less explicit notation, and simply be aware of Eq. (1.24).

1.3 The free power spectrum for Bosonic Baths

While the correlation function provides a picture of the environment’s effects in the
time domain, the power spectrum offers a complementary and often more intuitive
view in the frequency domain. Obtained by taking the Fourier transform of the cor-
relation function, the power spectrum decomposes the complex system-environment
interaction into the fundamental frequencies that drive it.

In the power spectrum, peaks correspond to the characteristic frequencies of the
system, such as the transition energies between quantum states. The shape of these
peaks is associated with the timescales of those transitions. Therefore, the power
spectrum serves as a direct bridge between theoretical models and experimental
measurements, such as optical absorption and emission spectra [11, B4], making
it an indispensable tool for characterizing the behavior of open quantum systems.
To evaluate the physicality of an approximation to the correlation function, one
can compute its power spectrum [4, 12-16] and see that it satisfies the expected
properties.

The power spectrum is defined as the Fourier transform of the correlation function,
namely

S(w) = / T o) (1.28)

—00
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By inserting Eq. (1.23) one can write

S(w) =+ / "t /0 h 0 1) (cos(w't) coth(%w/) —isin('n). (129)

o0

Assuming that the integrand is an integrable function that is

/ |f (2, y)|d(z, y) < oc. (1.30)

Then we are free to exchange the order of integration since

/X(/Yf(x,y)dy> da:z/y(/}(f(x,y)dx) dy:/ f@y)dz,y).  (131)

Which is known as Fubini’s theorem [B5]. What this implies in terms of physical
quantities is that the spectral density must vanish as w — oo. In other words,
our system-environment interaction happens in a finite range of energy scales. This
allows us to write

= % /000 dw'’ /Z dte™' J (W) ( cos(w't) coth (5;,) — isin(w’t)). (1.32)

The only time dependent terms are sines and cosines, so it suffices to find their
Fourier transforms

F(cos(w't)) = /O:O dt cos(W't)e™ = 7 (§(w — ') + d(w + '), (1.33)
Flsin(w) = | disin(w/t)e = % (B(w+w) —d(w—w)).  (1.34)
By substituting Eq. (1.33 ) into Eq. (1 29) we obtain
Oood (6w — o) +5(w+w’))coth<6;u/)
— (0w +w) = 8w =) ). (1.35)

Notice coth(—z) = — coth(z) so that

S(w) = (J(w) — J(—w)) coth(%d) -7 (J(—w) — J(w)) (1.36)

= (J(w) — J(—w)) coth(ﬁ2 ) +1 (1.37)
2n(w)+1
=2(J(w) — J(—w)) (n(w) +1). (1.38)

We can further simplify this by using the spectral density definition in Eq. (1.21)
such that

Jw) = J(~w) =Y 2% (6(w — wp) — 8(—w — wp)) (1.39)
- %sign( )8 (|w| — wp) (1.40)
k

= sign(w)J(Jwl), (1.41)
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so we finally obtain
S(w) = 2sign(w)J(Jw|) (n(w, B) + 1), (1.42)

which is the expression often encountered in books and articles [B3, 15, B6]. Re-
gardless of the convention, this shows that these quantities (the correlation function
and power spectrum) contain information about both spectral density and tempera-
ture, but that neither can be recovered from them individually, as they are merged
together. However, they fully determine the dynamics of an open quantum system
when combined with the system Hamiltonian and the operator that describes the
coupling to the environment [B1, B2]. At last an important condition the power
spectrum must satisfy is the detailed balance condition, which reads

S(w) = ™S (—w), (1.43)

and can be obtained from Eq. 1.42 by direct substitution. Approximations often
struggle to satisfy Eq. (1.43) when [ is big with respect to w.

1.4 The free correlation function for Fermionic Baths

For Fermionic baths, the interaction to the bath is more akin to the rotating wave
approximation (RWA) in Bosonic systems [B1l, B7] . Their Hamiltonian can be
written as

H=Hgs+ Hp + Hj, (1.44)

where Hp =), wkchk and the interaction Hamiltonian is given by

Hy = gi(Scf + ST, (1.45)
k

where S is a Fermionic operator with odd parity with support on the system, This
is because we expect the physical system to have even parity (SC}L is even). Again
the bath is in thermal equilibrium. However, for Fermionic systems the equilibrium
state is different and given by

eZk 5(“’1@—#)0};%
g = (1.46)

€q

where p is the chemical potential. Usually we want to express the interaction as
H, = S'B+ SBf, (1.47)

where

B=> gk (1.48)
k
In the interaction picture we have

B(t) =) grexe™*". (1.49)
k

Due to the coupling form the correlation function relations are different from the
Bosonic case. Let us consider all the possible combinations of the bath operator B



12 THE FREE CORRELATION FUNCTION FOR FERMIONIC BATHS

« B(t)B(0),
f(t)B(0
(t)B'(0
Bf(t)B(0).

B ),
B )

Y

We use centralized Fermionic operators, namely

Pkl
(k) = Trlerpeg) = Z (il CkZ— li) = 0. (1.50)
i €q

And that due to their Fermionic nature

() =0. (1.51)
We then analyze the thermal average of each of the terms individually to obtain
(B(t)B(0)) =0, (1.52)
(BI(t)B(0)) = > ginp(Blw — p))e™*, (1.53)
(B(t)B'(0)) = > gi(1 — np(Bw — m)))e ™+, (1.54)
(BY(t)B'(0)) = 0? (1.55)

where p is the chemical potential and np is the Fermi-Dirac distribution
1

nr(Blw =)= Fom 1 (1.56)
Then going into the continuum limit, we may write the correlation functions
1 [ :
) = o [ Tnr(a - p)e o, (157)
™ —00
1 [ ,
COM) = 5 [ ) (1= np(Bw = ) e o (1.58)
T J—c0
where we used
J(w) =27 " gid(w — wy). (1.59)
k

Notice that a different convention with respect to the Bosonic case was used to
be consistent with the literature and the current definitions in [A1]. Unlike in the
Bosonic case Eq. (1.25), we have two different correlation functions due to B and
BT being coupled differently to the bath. It is often convenient to use the fact that

1 ePlw—n)
l—np(flw—p)=1- eBlo—m) 1 1 = eBlo—m) 11 (1.60)
1
= m = nF<_6<W - M)) (1-61)

to write (with o = =£)

C(t) = % /_00 J(w)np(oB(w — u))e dw. (1.62)
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1.5 The Power Spectrum for Fermionic Baths

Since Fermionic environments have two correlation functions, they have two power
spectrums as well, each correspoding to one of the correlation functions. Just as in
the previous case one can relate the spectral density to one of the power spectrums
via the fluctuation dissipation relation. If we follow the same steps as in section 1.3
we get

S (w) = / dtC) (t)e ot (1.63)
1 [ , > -
=5 dte_wm/ J(Wnp(of(w — p))e  dw' (1.64)
T J - —o0o
1 oo o0 . ,
=5 J(Wnp(of(w — ,u))dw’/ dte~ o=t (1.65)
T J_—co —o00

If we now use

/ dte™ @ = 27§ (w — W), (1.66)
we obtain
SO (w) = J(wnr(ofw - p). (1.67)
Notice from Eq. 1.60 that ng(z) + np(—2x) = 1 thus we have
SH (W) + ST (w) = J(w). (1.68)

And from Eq. 1.67 and 1.60 we can derive that the detailed balance condition for
the power spectrum which reads

SH (W) = e A=W ) (). (1.69)

1.6 Approximating the Correlation function

Whether we have Bosonic or Fermionic environments, obtaining analytical expres-
sions for the bath correlation function can be difficult, and even when achievable, it
might lead to complicated functions that will be part of the integrals required to ob-
tain the dynamics of the system [5, B1, 17-19]. Many numerical methods require the
correlation function to be decomposed in terms of simple functions whose integrals
can be easily computed [4, 16, 20-26]. Figure 1.1 illustrates this idea. In this thesis
we decompose the correlation function using a Fourier-like series, decomposing the
signal into damped sinusoidals. The main methods in this thesis do not require such
a decomposition but greatly benefit from it. There exists many methods to achieve
this decomposition. They can roughly be broken down into two categories

o Analytical decompositions
e Numerical decompositions

We will now give a brief overview of how they work and indicate their limitations. All
the numerical methods in this section were added by the author and collaborators to
QuTiP’s environment class, a QuTiP feature developed largely by the author, Paul
Menczel and Neill Lambert.
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Complicated Correlation Function Simple Functions

Figure 1.1: Illustration of the decomposition of the correlation function, the idea is to
take a complicated function and decompose it somehow as the sum of simple functions

1.6.1 Analytical Decompositions

In rare cases, we are able to obtain an expression for the correlation function in
terms of simple functions analytically. However, this only applies to a handful of
spectral densities. The way to obtain analytical expressions is to notice that in the
correlation function expression we have infinitely many poles which we can use to
perform contour integration. Specifically those poles come from coth(%w) and are
called Matsubara poles (or Matsubara frequencies) [22, 27, 28]. In the case of bosons,
the expansion can be achieved when using an underdamped or Drude-Lorentz (also
referred to as overdamped) spectral density. We will focus on the underdamped case
to illustrate the technique, as the Drude-Lorentz introduces slight physical issues
29

a’Tw
[(w?2 —w?)? +T2w?]

Ju(w) = (1.70)

Performing contour integration [12, 20] (see appendix D) one finds the correlation

function to be
x

C(r) = Z cpe VR (1.71)

k=0

where

(a? coth(B(Q +1i[/2)/2) +ia?) /4Q k=0
cp = { (@®coth(B(Q —il'/2)/2) —ia®) /4Q k=1 (1.72)

—4a2I'rk
B2((Q+4D'/2)2+(255)2)][(2—il'/2)2+(355)?) k=2,

—iQ+T/2 k=0
v, =<iQ+1/2 k=1 (1.73)
2rkT k> 2.

c ™ \32
subara expansion [21, 27, 28]) is largely due to three simple reasons.

Where we used €2 = {/w? — (5)2. The usefulness of this expansion (known as Mat-

1. The sum converges quickly when the 7" > ;;“j;b, where h is Planck’s reduced

constant and k;, is Boltzman’s contant, both are set to one throughout the
manuscript. Whenever this is satisfied, we can express the correlation function
as a sum of a small number of decaying exponents
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Figure 1.2: Real and imaginary part of the correlation function of an underdamped
spectral density, the convergence of the Matsubara expansion is shown, the parameters
used for the plot where "= 0.05 , w, = 1.2, « = 1, I' = 2. For an underdamped spectral
density only one exponent is needed for the imaginary part of the correlation, while the
real part converges slowly

2. The correlation function expressed this way, has simple derivatives that allows
for the derivation of useful dynamical equations such as HEOM

3. It is an analytical answer, so no matter what the parameters are it just re-
quires evaluation of the expression, and no other information to recover the
correlation function.

while its main drawbacks are

1. In the regime where 7" — 0, the expansion converges slowly, needing many
exponents to correctly describe the correlation function as figure 1.2 shows

2. Only a handful of spectral densities allow for such a nice, analytical expansion.

The typical methods for which this sort of decomposition is required, put an empha-
sis on approximating the environment with the least number of exponents possible,
while still maintaining the detailed balance condition Eq. (1.43) which can be chal-
lenging in practice. In approximate descriptions like master equations, we do not
need to concern ourselves with requiring the least number of exponents possible,
however, we do care about achieving detailed balance approximately. Another ana-
lytical decomposition that is worth mentioning is the Padé decomposition. It relies
on using the Padé approximation for the Bose-Einstein or Fermi-Dirac distributions
for the integration instead of the Matsubara poles. While the method has better
convergence, it suffers the same shortcomings as the Matsubara decomposition.

1.6.2 Numerical Decompositions

Numerical decompositions of the correlation function have recently attracted signifi-
cant interest in the HEOM community [12, 15, 16, 20, 30, 31]. In this section, we will
briefly overview different ways to numerically obtain a decaying exponential decom-
position for the correlation function. Building on the discussion in [16], we broaden
the comparison by including a few extra methods. All the methods described here
are now available in QuTiP for Bosonic environments as part of the contributions
of the author to QuTiP [A1], while Fermionic environments are a work in progress.
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1.6.3 Approximation via Non-Linear Least squares

Nonlinear least squares fitting (NLSQ) is a mathematical optimization technique
used to model data by finding the best-fit parameters of a nonlinear function. This
approach minimizes the sum of the squared differences (residuals) between the ob-
served data points and the corresponding values predicted by the model. It is a
powerful tool for analyzing experimental data and is widely applied in fields such
as physics, chemistry, biology, engineering, and finance.

The goal is to find the set of parameters # that minimizes the residual sum of squares
(RSS):

RSS = Z fx:,0))?, (1.74)

where y; is the data to be fitted, x; the independent variable in our case time, f(x;,0)
the function we wish to use to explain the data, and N is the number of data points.
We express our correlation function as

O(t) = Cr(t) +iCi(t), (1.75)

where we have separated the real and imaginary part, and perform a different fit for
each one as outlined in [20]. The real and imaginary parts are given by

Cr(t,c? i cos (vi), (1.76)

SMS
??‘

Cr(t, v ! Zcie Y sin (vh), (1.77)

where the superscript R, [ refers to real and imaginary parts respectively and no
subscript refers to a vector of the m parameters. The main advantange of this
approach with respect to the others is that it allows to constraint ¢, and v, which can
often help make numerically exact solutions more stable, but the fitting is less robust
than the other methods. We observe no relevant advantage for master equations,
where we are not limited by the number of exponents used. Nevertheless, for a small
number of exponents, it’s often the best approximation. We use the implementation
in scipy [32]. NLSQ is flexible, we can also fit our spectral density to be a combination
of underdamped spectral densities for which we know the Matsubara decomposition
[33], in this sense the model we fit our spectral density to is [A1, 20]

m

2a;b;w
L e e - 05 ] 1.78
pproz(W; @, b, €) Zzl (w4 )2 4+ 07)(w — ¢;)? + b7) ( |

We then generate the set of exponents for each of the m spectral densities using
the Matsubara expansion. Unfortunately, we need to set the number of Matsubara
exponents to appropriately describe the correlation function. Inspired by this method
and the AAA method, the author instead proposes fitting the power spectrum using
the model function

i 2(agcr + br(dy — w))

(w — dy)? —i—ck

(1.79)

=1
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This allows for using NLSQ in the frequency domain without relying on the Mat-
subara expansion unlike previous methods based on the spectral density [20, 33, 34].
It is a massive improvement on the spectral density fitting method [33, 34] as this
is not limited by Matsubara exponents in the zero temperature limit. One recov-
ers the correlation function by realizing that the inverse Fourier transform of each
individual k£ component is given by

Cr(t) = (ay + iby)e” @) for ¢t > 0. (1.80)

1.6.4 The AAA method

The Adaptive Antoulas Anderson algorithm (AAA) is a method for the approxima-
tion of a function in terms of a rational function [15, 16, 35]

m Weightjfj m .
- q(z) ijl Z—z; residues

)
‘—~ ~ — poles
J=1 z—z; Jj=1 p

where the z; are called support points and the f; are the values of the function
at support points. These sort of expressions are called rational barycentric approx-
imations [35]. One does not use this method on the correlation function directly,
but on the power spectrum which we obtain via Eq. (1.42) [15, 36]. After obtaining
this rational polynomial form of the power spectrum one can recover the correlation
function by noticing that

S(w) = /_ h dte™'C(t) = 2Re (Z ” iﬂzw) . (1.82)

[e.e]

Which allows us to identify

v =1 X poles, (1.83
cr = —1 X residues. (1.84)
For a detailed discussion of how this method works see [35], while for its application

on open quantum systems see [15, 16, 36]. Here we provide a brief overview of the
main steps

1. Supply the sample set Z = (Z1, ..., Zy)

2. Start the Loop and repeat until |F(Z) — r(z)| < tol where F is the original
function, r its rational approximation and tol the numerical tolerance to use.

3. Initialize the rational approximation r, support points z, and a vector f to be
vectors of zeros.

4. Find the k for which |F(Zy) — r(Z)| is maximum and add Zj to the support
points z, add the value of the function at the support point to the vector f.

5. Compute the Cauchy and matrices for Z and z (substraction via outer prod-
uct)

(1.85)



18 APPROXIMATING THE CORRELATION FUNCTION
6. Compute the Loewner Matrix
F—f
L= : 1.86
7, (1.86)
7. Perform SVD on the Loewner matrix L = UDW and keep the matrix w which
denotes the weights of the approximation.
8. We get the rational approximation of the function r(z) = % by computing
the numerator and denominator as
q(z) = C(wF), p(z) = Cw. (1.87)
9. We check if our rational approximation satisfies our required tolerance, it does
we break the Loop |f(Z) —r(Z)| < tol.
10. The Loop ran 2N + 1 times before breaking, compute the 2N, poles and
residues. residues are obtained via the simple quotient rule on r
. Clwf)
d = _ 1.88
residues Ty (1.88)
while poles correspond to the eigenvalues of the generalized eigenvalue problem
0 wy wy -+ Wy 0
1 21 1
1 29 =A 1 . (1.89)
1 Zm 1
11. From Eq. 1.82 we see that ¢, and v, — tw come in complex conjugate pairs.

to find them. We filter the poles in the lower half on the complex plane, and
identify the ¢, and v, with Eq. 1.83.

1.6.5 Prony Polynomial based methods

The Prony polynomial forms the mathematical foundation for many spectral analysis
techniques that estimate frequencies, damping factors, and amplitudes of signals.
These methods work by interpreting a given signal as a sum of complex exponents
and deriving a polynomial whose roots correspond to the frequencies or poles of the
system.

The methods consider M samples a linearly spaced signal

(f(to), f(to+6t),... f(to + (M — 1)6t), (1.90)

and assume that this signal comes from a sum of complex exponents

N-1 N-1
f(t) = Z cpe = Z Crz. (1.91)
k=0 k=0
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The Prony polynomial based methods estimate the phases z! from which we can
obtain the v, and the amplitudes c;. The 2, can be seen as the generalized eigenvalues
of the matrix pencil ?[37]

2 Harnx(0) — Hy_yn(1) = VM_N,N@)diag( (2 — 2, )VN,N@)T, (1.92)

where H denotes a Hankel matrix built from the signal, the subscripts indicating
the sampling points in the first column and last row respectively, the argument of
the Hankel matrix denotes how many shifts to apply to the signal. For example

H, ,(0) — f(to)  flto+0t) f(t0+25t). (1.93)

f(to+0dt) f(to+20t) f(to+ 36t)

The amplitudes (¢;) can later be obtained by solving the least-squares Vandermonde
system given by

VNyM(Z)CI f, (194)

where Vv ar(#) is the Vandermonde matrix given by

1 1 1
21 Z9 ZN

Vun(z) = zf z% Z]2V ) (1.95)
al o ml A

M is the length of the signal, N the number of exponents, and f = f(fsamypic) is the
signal evaluated in the sampling points, while ¢ = (¢4, ..., ¢y) is a vector containing
the amplitudes. The main difference between the Prony and the Estimation of Signal
Parameters via Rotational Invariance Techniques (ESPRIT) methods is the way one
obtains the roots of the polynomial, typically whether this system is solved or a low
rank approximation is found for the polynomial [37].

For the Prony method we obtain those eigenvalues directly (typically by using the
least squares solution of the left hand side of Eq. (1.92) ), while for ESPRIT we
perform the singular value decomposition on H(0) then

Hy—nvn(0) =Un—nm—NDy—nNWn N, (1.96)

where U is a unitary matrix, D is diagonal and W is a square matrix. The phases
21, can be obtained from the eigenvalues of the matrix [16, 37]

A= WO)H)Tw(), (1.97)

where T denotes the Penrose pseudoinverse. The ¢;, are obtained by least squares on
the Vandermonde system

2Typically there is another dimension involved in the matrix pencil an upper bound on the
number of exponents, and the number of exponents is treated as an unknown, we omitted this for
simplicity
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1.6.6 Estimation of Signal Parameters by lterative Rational

Approximation (ESPIRA)

ESPIRA exploits the connection between parameter estimation (Prony like methods
estimate amplitude and phase) and the rational approximation of functions. In our
context it exploits the fact that the correlation function and power spectrum are
fourier transforms of each other

C(r) = Y exe! «— S(w) = 2Re (Z ” C_’“M> . (1.98)
k

k

Intuitively, though not strictly true, one can think of it as ESPRIT on the correlation
function and AAA on the power spectrum merged together. As such it provides the
best of both worlds providing good fits on both quantities as Figure 1.3 shows.
For further information about how the methods works see [37]. We recommend
it when using master equations as it is the method we find most flexible, and it is
relatively straightforward to obtain a desired accuracy, whereas other methods might
not improve with more exponents. The method steps are (taken from Algorithm 3

[37]):

1. Supply f= ( fk)zjl 0 ! equidistant samples of the signal, and the required toler-
ance for the rational approximation.
2. Compute the Discrete Fourier transform vector f= ( fk)iﬁ 0 ! with fk = Z?fg ! ng\,

of f (with wyy := e 2m/2N),

3. Use AAA to compute a rational function r/(z) of (smallest possible) type
(M —1,M) (M < N), such that
rar(wWik) — Wik fr] <tol, k=0,...,2N —1.
4. Compute the rational function representation of ry(z),
M

ryv(z) =

ag

2z — 2

5. Obtain the amplitudes by ¢ := lf—’;z, k=1,...,M.

The main advantage of this method over the AAA method is its reduced sensitiv-
ity to the support points selected. The AAA scheme relies heavily on the chosen
sampling points, although this usually isn’t an issue when using logarithmically
distributed rather than linearly spaced points [15, 36]. Achieving a good fit often re-
quires significantly more sampling points with AAA than with ESPIRA. Increasing
the number of sampling points can be both memory- and time-intensive.

1.7  Which method should | use to approximate my
correlation function?

Which method to use depends largely on the spectral density considered and the
temperature of the environment (or alternatively its power spectrum or correlation
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Figure 1.3: a) An underdamped spectral density with parameters 7' = 0.05 , wg = 1.2,
a =1, v = 2. b)An Ohmic spectral density with parameters T' = 0.5,a = 1, s = 1,
we = b. The figure shows the number of exponents needed to achieve a certain root mean
squared error (RMSE). We show the error for several methods to obtain the exponents.
The top image shows the RMSE on the correlation function, the middle one the RMSE
on the power spectrum and the bottom one the time it takes each method to obtain the
exponents. Where PS stands for Power spectrum, SD for spectral density and CF for
correlation function.

function). In this section, we provide a comparison of the different methods, sum-
marizing their main advantages and disadvantages in table 1.1.

In Figure 1.3 a), we can see the accuracy of each method for a fixed number of expo-
nents. We chose an underdamped spectral density because we know a lot about the
structure of its exponents [12]. Thus NLSQ methods shine here as they dot not get
stuck in local minima (we have good guesses and bounds), even though, we see that
after a certain number of exponents they are outperformed by ESPIRA and AAA.
In this figure we neglected the spectral density fitting because the underdamped
spectral density is our fitting function and therefore it would just coincide with
Matsubara.

The reason Matsubara does so poorly compared to other methods is the low tem-
perature considered in this example. One can then realize how the other methods
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enable low temperature simulations with numerically exact methods where reducing
the number of exponents is extremely important [A1, 15, 20]. In figure 1.3 b) we
used the spectral density

e~ w/we, (1.99)

its behaviour depends on the “Ohmicity” parameter s, when s = 1 its behaviour
is Ohmic, while for s > 1 and s < 1 it is super-Ohmic or sub-Ohmic respectively.

For lack of a better name we will refer the spectral density dependent on s is called
Ohmic [A1].

Unfortunately, in this case, we do not have good knowledge about the structure of the
exponents. Results show that NLSQ methods perform slightly worse overall. In both
figures, for a low number of exponents, NLS(Q typically outperforms other methods.
Therefore, we recommend NLSQ for applications like HEOM and Pseudomodes
where the simulation is limited by the number of exponents. If NLSQ gives divergent
solutions or fails to approximately satisfy detailed balance (or results in a poor
correlation fit when using NLSQ-PS), consider using ESPIRA for transient dynamics
or AAA for steady-state analysis.

For Non-Markovian master equations, reducing the number of exponents is less
important than ensuring a fit that satisfies the detailed balance condition. This
is why, for such simulations, we recommend using ESPIRA and AAA, as these
methods are more reliable in upholding this condition. In some examples presented
in the Thesis, we use NLS(Q to match the effective environment with Pseudomodes
or HEOM simulations. The rationale here is to enable direct comparisons across
different simulation approaches. A short summary of all methods is provided in
table 1.2.

It is also noted that, while the discussion here is aimed at Bosonic environments,
these techniques are applicable to Fermionic environments as well. They are being
added to the QuTiP Fermionic environments developed by the author and collabo-
rators.
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Table 1.1: Comparison of Methods to approximate the correlation function

Method Advantages Disadvantages

ESPIRA Generally provides a good Sensitive to the support
fit on both the correlation points used for the
function and the power approximation.
spectrum. Not widely available.
Works well on noisy data. Obtaining the exponents
Reasonably fast. can require relatively high
One can fit the real and computer memory.
imaginary parts of the Obtaining the exponents
correlation function jointly for the real and imaginary
or separately. part separately, often leads
Works on arbitrary spectral to nondesirable errors on
densities. the imaginary part.

ESPRIT Works well on noisy data. Sensitive to the support
Reasonably fast. points used for the
One can fit the real and approximation.
imaginary parts of the Not widely available.
correlation function jointly If the support points are
or separately. too dense it can lose
Works on arbitrary spectral accuracy due to numerical
densities. overflow or underflow.
Its implementation is
simple.

9
;II:trllz)(si Reasonably fast. Sensitive to the support

One can fit the real and
imaginary parts of the
correlation function jointly
or separately.

Works on arbitrary spectral
densities.

Its implementation is
simple.

points used for the
approximation.

If the support points are
too dense it can lose
accuracy due to numerical
overflow or underflow.

« Too sensitive to noisy data.

Continued on next page
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Table 1.1 — continued from previous page
Method Advantages Disadvantages
NLSQ o Often leads to good fits Sensitive to the support
with a low number of points.
exponents. Can get stuck in local
Works on arbitrary spectral minima providing
densities. suboptimal fits.
It’s widely available. Too sensitive to noisy data.
Requires knowledge about
the function.
Often leads to problems
with the detailed balance
condition.
AAA Best for calculations of the Sensitive to the support
steady state. points.
Widely available. Can get stuck in local
Allows flexibility to find minima.
thermal and spectral Too sensitive to noisy data.
contributions separately or Requires knowledge about
jointly. the function.
Often leads to problems
with the detailed balance
condition.
Matsubara

Analytical, optimal for high
temperature.

Clear interpretation.
Insensitive to support
points.

Only available for specific
spectral densities.
Does not converge well for
low temperatures.
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Table 1.2: Visual Comparison of the methods

Functions
Extra input
Does not require
optimization
Not Sensitive to
sampling points
Temperatures

>
=
©
3
=
Q
~
<
<
©}
W
=
—
=

Allows for constraints
Does not Require
Works at arbitrary

Works on Noisy data

Recommended when...

NLSQ v v X X X v v/ You have an idea about which
exponents should be included
[12]

AAA v X v v X v v The steady-state is most

important and spectral density
is not too structured

Prony v X v v X v X The correlation function is
noiseless and long lived.

Matsubara X X 4 v v X X Doing high temperature
simulations using the specific
spectral densities it is available
for.

ESPIRA v X v v X v v A general-purpose method is
required. It is the main method
we recommend.

ESPRIT v X v v X 4 v The correlation function is long
lived.



Chapter 2

Dynamics of closed quantum systems

Before starting with the basics of the evolution of open quantum systems, a review
of the dynamics of closed quantum systems might be helpful. Throughout all of
this manuscript we set h = 1. The reason for this review, is that eventhough this is
standard, the steps taken to obtain time ordered products and the associated change
of integration limits, are used multiple times in multiple derivations in the rest of
the thesis, so we want to remind the reader about these steps and introduce the
notation used.

2.1 The Time evolution operator

According to the basic formulation of quantum mechanics, the evolution of the wave
function is governed by the Schrodinger equation

Dt
i = H) (). (2.1)

As it is a first order linear differential equation, given the initial conditions [¢(0)),
we can express the solution by means of the operator U(t, to) such that

[U(t)) = Ult, to) [¥(to)) - (2.2)

From this point on we will call U the time evolution operator. If we now substitute
equation Eq. (2.2) into Eq. (2.1), we obtain

ia(U(t7t0) |¢(t0)>) _ H(t)U(t tg) 1/1(t0)> N Must be valid for (2‘3)
ot ’ any initial state.

Since the equation must be valid for any initial state we have:

OU(t,t Subjected to the
' (825 : = H@®)U(t, ). = | initial  condition (2.4)
Ulto,to) =L

From here we can find that the adjoint is given by

_Z,aU(t,to)T

Fram Ul(t, to) H(t). (2.5)
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Now let us consider the product UT(t,t,)U(t,t9) = I. Then it’s derivative obeys:

QU (t, 1)U (t,t) _ 8Uf(t,to)U(t o) + Uttt )0U(t,to) (2.6)
ot ot 0 Y '
_OU(t,to) U (t, o)
= Ut o) + Ul(t,to) (2.7
iU (t, t0) (H(t) — H(t))U(t, ty) = 0. (2.8)

So the operator U is always unitary. If the Hamiltonian is time independent then
we can easily integrate Eq. (2.4). To obtain

Ultte) =T —i / CHIOU 1) (2.9)

As U(t, ty) appears on both sides of the equation, it can be solved iteratively, we use
a subindex 7 to denote the number of iterations. The way it works is that we make
increasingly good approximations on the right hand side, As a first step we make
U(t,ty) = I on the right hand side:

t
Us(tte) =T — i / HEdt, (2.10)
to

in the next iteration we approximate U(t,ty) = Ui (t, o)

t t t!
Un(t,te) = T — i / H#)dt — / H(# )t / Hdt". (2.11)
to to to

If we follow the same procedure N times we well finally obtain

N t t1 to tn—1
UN(t,to):]I+Z(i)”/ dtl/ dtQ/ dtg---/ dt, H(t)H(ts) ... H(ty).
n=1 to to to to
(2.12)

In the limit of N — oo, this would represent the exact solution for the evolution
operator. Eq. (2.12) is known as the Dyson series. If the Hamiltonian commutes at
different times ([H (¢;), H(¢;)]) then the series reduces to

Ult, ty) = e i 10 (2.13)

To rewrite Eq. (2.12) in a similar way to Eq. (2.13), we introduce the time ordering
operator

TIH(t1)H(ts) ... H(t,)] = H(tj1)H(tj2) ... H(tjn), (2.14)
where tj1 >t > > Ly, (2.15)

The time ordering is simply an instruction to reorder the Hamiltonians in such a
way that the time arguments of the corresponding Hamiltonians decrease as one goes
from left to right. The largest time appears in the argument of the first operator
while the smallest one in the last. In order to provide a clear picture on how to use
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Figure 2.1: Integration region for Eq. (2.16) and the same integration region when the
order of integration is exchanged,

time ordering to take Eq. (2.12) into Eq. (2.13) using the time ordering operator,
let us illustrate the procedure with

J= /t ity /t " H (1) H (1) = /t o /t " T () H (1)), (2.16)

The integration region of interest is given by the region, which we can visualize in
Figure 2.1
to<t1 <t, to<ty<t, ty<t. (2.17)

As t; is always greater we can write

J= /t L, /t " o H (1) H (1) = /t i, /t " T () H (L)), (2.18)

Notice that if we exchange the integration order in Eq. (2.16), the value of the
integral does not change, to find the new integration limits it suffices to look at Fig.
2.1, so that now we obtain

J= /t ity /t it H (4 H (1) (2.19)
_ /t m /t " () H (1) = /t o /t " T (H () H (1), (2.20)

We are allowed to use the time ordering operator because the integration area is the
triangle above the diagonal ¢, > ¢;. Thus

J— / i, / T (1) H () = / i / N THHL).  (2.21)

As time ordering will take care of the ordering for us, given the integration region.
Remarkably this can be rewritten as

J= % /t: dt, /t: dtsT(H(t) H(8)), (2.22)
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so that the integration limits are now decoupled. The same procedure can be general-

ized to all higher orders using a hypervolume (a high dimensional cube) bounded by

0 <ty,to,ts, ..., t, < tsuch that t; >ty >t3 > --- > 1t,. Just as the region we just
1

studied is % = 5 of a square. The bounded region in our hypervolume will represent

% of the volume of the hypercube. using this we may finally rewrite Eq. (2.12) as

ey =17y ([l 229

= Tty iH®), (2.24)

2.2 The Evolution of Mixed states

In open quantum systems, a system of interest is coupled to an external environment.
This interaction leads to correlations between the system and the environment.

If we only describe the system itself, ignoring the state of the environment, our
knowledge of the system becomes “incomplete”. The system can no longer be de-
scribed by a single, well-defined quantum state (a “pure state”). Instead, it must be
represented as a statistical mixture of different possible pure states, which is known
as a mixed state. Mixed states are characterized by the density matrix

pto) =D Ao [talto)tba(to)| - (2.25)

We already know how kets evolve, they evolve according to the Schrodinger equation.
In the same way we can obtain the evolution of bras by taking the adjoint in the
same spirit as in the last subsection. Using the evolution operator one may write

pt) =D AUt to) [al(D))ta(t) UT(t t) = Ut to) p(to) U (1 to). (2.26)

If we now take the derivative of Eq. (2.26) one obtains:

T
9] _ 0010 711, 10) + U o) t) 2 )

= —iH(t)U(t, to)p(to)U'(t, t0) + iU (¢, to) p(to) U (¢, to) H (t) (2.28)
— i[H (), p(t)]. (2.29)

(2.27)

This equation is known as the Von-Neumann equation. Usually one might want to
define the superoperator L(t)[e] = —i[H(t), ] so that one may write this equation
as

Ip(t)

—= = L(t)p(t). (2.30)

ot

If we follow the same procedure we did to obtain Eq. (2.23) we obtain a formal
solution for this equation in terms of the time ordering operator

p(t) = Tedo 2% o4y, (2.31)



Chapter 3

Dynamical Pictures: Heisenberg and Interac-
tion

In the previous sections we were working in the Schrodinger picture, meaning that
states evolve in time while operators remain constant. In some situations, it may be
beneficial to consider other reference frames (usually called pictures), where opera-
tors are changing in time, while states may or may not. In open quantum systems
derivations are carried out almost exclusively in the Interaction or Heisenberg pic-
tures. To go from the Schrodinger picture to any other, one assumes that at some
fixed initial time (#y) observables in both pictures coincide, that is p(to) = p%(to)
where the superscript P denotes the other frame of reference and no superscript
denotes the Schrodinger picture. The expectation value of an observable is given by

(A(t)) = Tr | A(H)U(t, o) p(to) U (L, t0) |, (3.1)

We will use this, to derive the equations of motion in other pictures.

3.1 The Heisenberg Picture

The Heisenberg picture of quantum mechanics is the one where states remain con-
stant but operators evolve in time, kind of the opposite to the Schrodinger picture.
In this sense, using the cyclic property of the trace it is easy to see that

(A(1)) = Tr AU (L, to)p(to) U (8, to)

=Tr |U'(t,10) AU (¢, to)p(to) | (3.2)

= Tr | A" (1) p(to)] : (3.3)

So the operators in the Heisenberg and Schrodinger pictures are related by

Using this, it is easy to obtain the equation of motion for a given operator, we simply
take the derivative of Eq. (3.4)

DA(t)
ot

dAR ()  OUT(t,ty)
d ot

-+ UT(t> tO)A(t)

A U(t,to) + U'(t, to)

AU (¢, to)
or

Ul(t, o)
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We already determined the derivative of the evolution operator Eq. (2.4), substitut-
ing we obtain

dA;(t) =i (U (t, to) H(t) AU (t, to) — Ut (t, o) A(t) H(t)U(t, o))
OAx(t)
ot (3.6)
——

220171 (,10) 240 U (,10)

Notice that the product of operators in the Schrodinger picture becomes the product
of operators in the Heisenberg picture:

Heisenberg Picture
AB

Ut(t,to)ABU(t, to) (3.7)
= U'(t,t0)AU(t,t0)U' (¢, ) BU(t, to)

g

I
= A" BH, (3.9)

So we can write our equation of motion as

dAH(t) H I H H @AH(t)
— = ilH (AT () - AT E (1) + = (3.10)
_ i[HH(t),AH(t)] + %h;(t) (3.11)

3.2 The Interaction Picture

There is one more dynamical picture we will consider, namely, the interaction picture.
Let us begin by the interaction picture. Let us begin by splitting our Hamiltonian
into two terms namely

H = Hy+ Hy(t), (3.12)

where Hj is time independent. Let us introduce the operators

U()(t, to) = €7iH0(t7t0), (313)
and
Ur(t,to) = Ul (t, to)U(t, to). (3.14)
Then the expectation value of an observable may be rewritten as:
(A(t)) = Tr [ A(O)Us(t, to)Ur(t, to) plto) UL (¢, 1) U (t, 1) (3.15)
= Tr |UT(t, to) A(t)Uo(t, to) Uy (t, to) p(to) Ul (t, to) (3.16)

=Tr |[A(t)p'(t)]. (3.17)
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Here we have used

AL () = UT(t,t0) A(t) U (t, to), (3.18)
P! (t) = Ur(t, to) p(to) U} (1, to). (3.19)

Notice that when we substitute the Uy(t,t0)U;(t,t9) = U(t,to) into Eq. (2.4) we get

ié?lfo(t,to)le(t,to)

o = (H(t) + Ho)Us(t, to)Us(t, to). (3.20)
Then
ﬁ%@mm@m:wW%p%%m+p%gmw&m (3.21)

ot
oU;(t, o)

- ZUQ(t,t()) at

4 HoUp(t,t0)Us(t 1), (3.22)

and substituting this into Eq. (3.20) we may write

O, (t, o)

iUo(t, to) T Hr(t)Uo(t,t0)Ur(t, to) (3.23)
@g%?ﬁzm@mm@%@mm@m (3.24)
i% = HI(t)U(t, to), (3.25)

subjected to the initial condition Uy(tg,to) = I. Then following the same procedure
we used to derive Eq. (2.27) we obtain the evolution in the interaction picture as

ap' (1)
ot

= —i[H'(1), p' (1)]. (3.26)

Most of our derivations will be done in this picture. As a consequence most of the
dynamics in this thesis are obtained in this picture. At times, we need to interpret
results in the Schrodinger picture, in those cases we simply perform the appro-
priate rotation on the density matrices. Figures throughout the thesis are in the
Schrodinger picture.



Part 11

Dynamics of open quantum
systems



Chapter 4

The general Coarse-Graining ldea

In general terms, an open quantum system is simply a system we are interested in
(system S). There is also a larger quantum system, which we call B, that acts as an
effective environment to our system S. Each system represents a subsystem in the
larger S 4+ B space. The dynamics of system .S will be a mixture of its own internal
dynamics and the effect the system B has on it. If we are not willing to keep all
relevant degrees of freedom from system B, we will need to devise an effective way
to incorporate the effect of B into S. This is what coarse-graining is in a nutshell:
to come up with a simplified model of a complex system by smoothing out some of
the details, in this case, the environment’s degrees of freedom. In general, such an
effective description will no longer be represented by unitary Hamiltonian dynamics.
Instead, it is usually modeled by some effective reduced dynamics, which is typically
dissipative. Figure 4.1, illustrates this concept

Open System
(S+B7H5®%va>

Environment

(BaHB7pB)

Figure 4.1: An illustration of an open system: we basically partition everything into a
subsystem we care about —the system —and the rest —the environment. The idea of
coarse-graining is to model the interaction between the system and environment with as
little information about the environment as possible.
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We may write our Hamiltonian as:
H(t)=Hs+ Hp + Hgp(t). (4.1)

Typically, our system B is what we call a bath, reservoir, or environment. A reservoir
is a system with an infinite number of degrees of freedom such that one might
consider that its frequencies (basically its energy) form a continuum [B1, B2, B7],
which is important from the point of view of irreversibility because otherwise we
would have Poincare recurrences [B1, 38, 39]. Since we are only interested in the
behavior of the system and not the bath, we will trace out the information of the
bath to obtain our system observables, that is, we will define our system observables
by

(A) = Tr[Aps 1)), (4.2)

where
ps(t) = Trp |p(t)] (4.3)

The dynamics of our system of interest lost unitarity as we took a partial trace. Our
p(t) evolves unitarily according to Eq. (2.27) by taking the partial trace, we obtain:

dps(t ,

s _ ey 1m0, 0] (1.4)
Even though it looks like a simple equation, finding an adequate approximation of
this equation, in a way that it can be solved with efficient computer methods, is the

main task when working in open quantum systems theory.



Chapter 5

Feynman Vernon Influence Functional

5.1 Introduction

In this section, we will examine the exact evolution of open quantum systems using
the Feynman Vernon influence functional. Our derivation is based on [4, 14, 24].
While we won’t use this technique for simulation directly, we will derive most other
methods from it, providing a new way to derive them that makes the connection
between the Redfield and cumulant equations easy to understand. The derivation in
this manuscript is done for Bosonic environments, for a derivation in the Fermionic
case see [14]. We start with the total Hamiltonian, of the system and environment
given by

H = Hg(t)+ Hg + Hgp. (5.1)

When going into the interaction picture (see chapter 3.2), the dynamics is described
in terms of

Hgp(t) = Texp% Jo Hs(1)+Hpdr HSBTeXp% Jo Hs(r)+Hpdr (5.2)
while the density matrix of the system reads
p](t) _ Texp—%’fg Hg()+Hpdr pTGXp% Jo Hs(T)+Hpdr (5.3)
The density matrix evolves according to the Von-Neumann equation

20 L ten(0), ()] (5.4

The Von-Neumann equation has the formal solution Eq. (2.31)

pl(t) = Telo —illon(): elr 1 ), (5.5)
where e denotes the operator it acts on, so that
[Hsp (), o]p=[Hsp(T), pl. (5.6)

In this section, we will derive the Feynman-Vernon Influence Functional formulation
for Gaussian Bosonic environments. We will make the following assumptions

1. The system is initially in a product state

p(0) = ps(0) ® pp(0).

2. The system is linearly coupled to the environment®; the interaction Hamilto-
nian can be written as

Hsp(t) = A(t) ® B(t). (5.7)

!Meaning the coupling is linear in creation and annihilation operators of the environment
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3. The bath is Gaussian, meaning we can get a full description of the bath using
its first and second moments.

4. The derivations in this and subsequent chapters holds for arbitrary Gaussian
Bosonic environments, but whenever we explicitly calculate the coefficients
(I, S, &) we assumed the bath to be in thermal equilibrium

s e—BHB
pp(0) = TricPs]" (5.8)
5. The coupling operators to the bath have been centralized
(B(0)) =0, (5.9)

so that we may describe the bath in terms of its second moment (the free
correlation function only)

6. Throughout the rest of this thesis we will assume the environment is Bosonic.

Box 5.1.1: Is centralization a viable assumption?

For an arbitrary initial state, this must always be satisfied which means
Trp [HSB(t)pIB} ) (5.10)

Notice this doesn’t seem very general, as one might guess most Hamiltonians
won’t satisfy this. However, one can always shift the interaction hamiltonian
such that this is fullfilled by making the change

H:S‘B = HSB - TI"B [HSBPB] X ]IB (511)
Hy = Hg + Trp [HSBpB} ® I (5.12)

which follow the same dynamics, since we only substracted and added a con-
stant. Even when this can be an issue (for example time dependent Hamilto-
nians), thermal environments fulfill Eq. (5.10).

5.2 First steps in the Derivation of the influence
functional

Without loss of generality (apart from the constraints by the above assumptions),
one may write

B(t) = Y (&l (0) + Genlt)) (5.13)

where the ¢, are ladder operators either Fermionic or Bosonic, depending on the
nature of the bath. Now if substitute the first assumption into Eq. (2.31) and take

2Gaussian systems are fully described by their covariance matrix, and the free evolution of the
environment preserves Gaussianity [7]
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a partial trace with respect to the bath we obtain
ph(t) = Tr [ Teli ~#Hsm 307 (51(0) @ py(0))] (5.14)

If we now Taylor expand the exponential we obtain

=St [ ([ st i) (O 2 h0)] . 5

By conveniently defining

o0 = 501 [T [ ~Httsu(r), o) (b0 = b)) 516)

We may express the evolution of the system as

A (5.17)
n=0
Since we assumed that the bath operators are centralized, then we have

(cx) = Tralerpp(0)] = 0, (5.18)

using this, immediately we find that

pL= Py =0. (5.19)

This means that in order to obtain the evolution, we only need to be concerned with
the even powers.

5.3 The second order term

We can obtain all correlators from the second order correlator by using Wick’s theo-
rem [B8]. We begin by exploring the first non-zero term of our evolution Eq. (5.17)

1

ph(t) = _WTTB [T/o dtg/o dty [Hsp(ty), ] [Hsp(t1), ] p5(0) ®pIB} . (5.20)

This can be rewritten as

p(t) = —QLEQTTB {T/Ot dts /Ot dty [HSB(tQ)a [HSB(tl)vp{S”(O) ® :053”] . (5.21)

Let us substitute Hgp explicitly and take a closer look at the double commutator

C = [HSB(tg) [HSB(tl) (0)®pBH (5.22)
[B(t2)®At2), B(t) ® A(t), p(0) ® prH (5.23)
= A(t1)A(t2)p5(0) @ B(t1)B(t2)p5(0)
— A(t1)p5(0)A(t2) @ B(ty)pp(0)B(ts)
+ p5(0)A(t1) A(t2) ® pi(0)B(t1)B(ts)
— A(t2)p$(0)A(t) ® B(t2)p5(0)B(ty). (5.24)
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From this point on we will no longer write the tensor product explicitly, but it
is always there between operators that belong to the Hilbert space of the system
Hs and operators belonging to the Hilbert space of the bath Hg. If we now trace
out the bath from Eq. (5.22), and introduce the short hand notations A; = A(t;)
(A) = Tr[ApL(0)] and C(t1,t2) = (B(t1)B(t2)), then we may rewrite the double
commutator as

O(tl, tg) = TTB[C] = AQAlpé(O)C(tQ, t1> — A1p§<O)AQC(t2, t1>
+ pL(0)AL AL C (t, ts) — Agph(0)ALC(ty,t5). (5.25)

Notice the time ordering operator from Eq. (5.21) only acts on Eq. (5.25). By ap-
plying it explicitly, one may write

pé(t) = 2h2 / dtg/ dtl 2 — t1>0(t1,t2> + 6(1/'1 - t2)0<t2, tl)) (526)

where 6 is the Heaviside-theta function given by:

1, forxz >0
O(x) = (5.27)

0, forx <0

Now if we exchange the times in the second part of the integral and apply the
Heaviside-theta function to simplify the integral we obtain

=5 | ity / it (02 — )O(t,12) + (11 — )0t 1)) (5.28)
/ dtg/ dty (0(ts — 1)O(t1, t2) + Ot — 1)O(t1,t2))  (5.29)

1 t t
== —?/0 dtg/o d tg—tl (tl,tg) (530)

1
- ——2/ dtZ/ dt,0(t1, ). (5.31)
0 0

Notice that

C(t,t2) = (B(t1) B(t2)) = ((B(t1) B(t2))') = C(t1, 1), (5.32)

where we used the cyclic property of the trace and Tr[A] = Tr[Al] for a matrix A.
We may split the correlators C(t;, ;) into its real and imaginary parts and using the
fact that C'(¢;,t;) = C(t;,t;), we also adopt the notation
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Using all of the above one may write Eq. (5.21) as

= [ [ ((Aa00k00) — Ah(0)42) CTo )
+( 0)A1 Az — Asp§(0)Ar) Oty t2)) (5.35)

- dt/ dt
h2/0 20 1

+iS1,2 (A1pg(0) A2 — A2 A1 p5(0) + p5(0) A As — Aapg(0)Ay) |- (5.36)

D12 (A24195(0) — A1pg(0) Az + pg(0) A1 Az — Asps(0)Ar)

Then notice that

[As, [A1, ps(0)]] = A2A1p5(0) — A1pg(0)As + p§(0) A1 Az — Agpg(0) A1, (5.37)
[As, {A1, p5(0)}] = A1pg(0) Az — AxA1pg(0) + ps(0) A1 As — Aspg(0)Ar. (5.38

Thus finally, one may write Eq. (5.21) as

py(t) = —% /Ot dty /0t2 dty (Fl,Q[A27 [A1, p5(0)]] + S12[As, {Al’pém)}]) (5.39)

1 [t ts . .
_ _?/0 dt2/0 dt, (FLQ[AQ, [Ay, o]] + 1S 2[As, {As, o}])pS(O). (5.40)

5.4 The Fourth Order term

Even though it is not necessary, deriving the fourth order term gives intuition on
how to derive the higher order 2nth order terms, for that reason let us derive it here
for completeness

- [ / s / dta [t Tr| T (Han(t0). o] Hn(ta). o
0 0 0 0

[Hsp(t2), o] [Hsi(11), o] p5(0) @ p]. (5.41)

Before splitting into system and bath operators, let us state Wick’s Theorem
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Box 5.4.1: Wick’s Theorem for Bosonic environments

Wick’s Theorem [BS8] states that the product of creation and annihilation
operators ABCDEF ... can be expressed as

ABCDEF ...=: ABCDEF ---: + Z - A*B*CDEF ---:
singles
+ Y :AB"C"D°EF---:+... (5.42)
doubles

Where :: denotes normal ordering and e denotes contractions which are given
by

A*B* = AB—: AB: (5.43)

ee just denotes a second different contraction and so on. In other words, a
string of creation and annihilation operators can be rewritten as the normal-
ordered product of the string, plus the normal-ordered product after all single
contractions among operator pairs, plus all double contractions, etc., plus all
full contractions.

In terms of fields what this means is that®

(Gombon—16mm—2... 1) = > [[(dr) (5.44)

a.p.p k,l

Where a.p.p means all possible ways of picking pairs. Which allows us to
obtain all 2n correlators from the second order correlator.

2QOur B operators are similar to the free fields in QFT but discrete

\. J

Now for higher orders, it is convenient to use the notation

LV =Ae P =eA. (5.45)
Then we can write commutators as
[A® B, ps ® pp] = ApsBpp — psAppB (5.46)
= L ps L ply + LY 05 L ply (5.47)
2
=> Lk & LY ol (5.48)

This allows us to rewrite Eq. (5.41) as

ph( 4'h4/ dt4/ dtg/ dtQ/ dt, ZTL LYY ol (0)

1,5,k,1
® Tra [TL Lo L® L pIB} (5.49)

Where we used

TZ LYk ® L pfy = Z TLY ok ® TLY pl. (5.50)
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If we now focus on the term that depends only on bath operators and apply Wick’s
Theorem we may write

01 02
(TLYLDLG LYY = (TLG LYW TLE LGy +(TLS) L)W TLYLY))
+ L§_§4L§§1><TLBSL<’“)Z (5.51)

03

Let us now add the part containing system operators to each of the three individual
terms

2 2
) j k !
(TS 1L)o,. (5.52)
i, k.l

where the sum was split this way for future convenience, then evaluating each of the
terms individually we find

2 2
-7 Z TLOLD S LYLY )0 (5.53)
i k]
2
_ ( Z LT LS WL (T Lg)) . (5.54)
k)l
Then
2 ‘ ‘ 2
_ T(ZTLQL‘;Q S LPrh )02 (5.55)
0 ol
2 2
— T(Z L LT LE LS LWL (LY LY )) (5.56)
i ol

(@

Since time ordering will be applied on the system operators, we may switch L, and

L(/g, as they will be arranged accordingly after the time ordering operation, we also
rearrange the splitting of the sums to obtain

2
2 =T (3 LT LG LE) ZL DTLELY)). (5.57)
ik
Similarly we may write

2 2
i l i l j k j k
= T( X LR LOATLELE) S LRLENTLGLE)).  (559)
il Jk

Now notice that they all differ only by the dummy variables for integration, exchang-
ing the t; accordingly in each Z,, one finds that

Zy = Zy = Zj, (5.59)
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so then one may write Eq. (5.41) as

3 t t t t 2
I - z)
o) = / dts / it / ity / dtlfr(; LOTLYLY)
2
< O LWLO(TLEILE)). (5.60)
k,l

Before continuing, notice

2
= T(ZL QTLLO S ETIOL) G
k,l
= <ZLA4 DL LT LY LINT LY LY, )) (5.62)
i,7,k,l
Z (TL LENT LG LT (LG LDLE L ). (5.63)
J,k,l

Now let us do the time ordering on the bath operators by making use of Eq. (5.50)

Z = Z(e D)+ 0t — t)(LELE))
,7,k,l
x (00t = t)(LELE) + ot — L)LY LEN) T(LHLDLYLY)  (5.64)
2

-y (0(154 — t5)0(ts — t1) (L LWL LY

1,7,k,l
Oty — t3)0(t — t2) (L) LWL L)

4

+0(ts — t4)0(t2 — t1)<L§§§L§§i><L§§)Lg>

2

3 3 2

B~ )0t — tz><L§§.)LS§1><L§é3LS§3>> TEIIEIY). 66

Directly substituting into Eq. (5.60) and directly applying the theta Heaviside func-
tions on the integration limits we obtain

i k) () (k
Pl 8h4 Z < / dts / dts / dt / at (LG LENLE LN T (LD LIS
/ dt, / dts / dt, / dts ;gBS WL LT (L9 LY L)L)

n / it / it / dt / A (LG L) (L L) T (1919 1LY

" / dt /m / dt/ dm(LféiL%D(Lgl)Lg?)T(Li{iLi{iL%Lfo))), (5.66)
0 0 0 0
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and we used the fact that we can freely swap the ordering of the operators inside
the time ordering as

T (L) =7 (L), (5.67)

Using this one may notice that all the integrals are the same, since their only dif-
ferences are their mute indices ¢;. The four integrals or 2" for our n = 2 are all the
same. So that one may finally write

ph(t) = h4z /dtJ 3/(%2/ AL L)L LT (L9 LPLELY) (5.68)

,7,k,l
B ) ) 1@ O e [ N ) 1) () 7 O
:ﬁ/odt% dtgzLA4Lgs<LB4ng>/odz2/o dtyy Ly LY (L)L), (5.69)
7,7 k,l

Now using Eq. (5.22), Eq. (5.25), and Eq. (5.46), gives us by direct substitution that

ZLAQ A Bg Bl> O(t1, t2). (5.70)

Then using the results from the previous section we obtain

T

I
t
,04< ) 2h4

dt4 / dt3<F34[A4, s, ]]+z'53,4[A4,{A3,.}]>
« /0 'ty /0 " ity (FLQ[AQ,[Al,o]]+iSl,2[A2,{A1,o}]> pLO).  (5.71)

Again, the only difference are the mute indices in integration, so by renaming them
we may finally write

ol(t) = 2—;< /0 dts /0 Sty <r1,2[A2,[A1,.]]+¢51,2[A2,{A1,.}])> PL(0). (5.72)

5.5 The 2n!" order terms

We follow the exact same procedure as in the previous section, only this time we do
so in general. We can write the 2n'* order contribution as

(=)™ k) 7 (1
pho(t) = dtzn dt Z TLY LY LY LY pk(0)

1720
2n!h vl

@ Trp [TL NN ..L;;Lg{pg], (5.73)

and just like we did before we now want simplify this by rewriting the pair-wise
partitions of the bath operators,for the 4* we had three partitions, however for the
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2nt" order we have M terms, which correspond to the unique pair combinations of
2n elements.[14, 24, B§]

2n!
2npl’

M= (2n— 1)l = (5.74)

Just like before we can make up something analogous to the Z; for each of the M
terms, and just like in the previous case the M terms will be equal to each other so
that one then has

nMT

1 _

pan(t) = 2n'h2" (/ dth/ dton 1/ dlon— 2/ dton—3Z9n—3 X .
t t t t
0 0 0 0

If we now apply the time ordering explicitly on the correlators we will obtain n
multiplications by two just like in the last subsection

non N ton
pgn@) - ( 2)n|h2n dt2n/ dt2n IO t2n 17t2n /dtQ/ dtl tl,tg (576)

Now finally by substituting M explicitly and renaming the mute indices we obtain

pén(t = 'hQn (/dtg/dtl (Flg A27 Al, H +/LSL2[A2,{A1,.}]>>p§(O) (577)

5.6 Exact time evolution as a Time ordered expo-
nential

Using the results of the previous sections, we can now substitute them into Eq. (2.31)
and under the assumptions considered, obtain exact evolution of the system by

?21 fg dto fot2 dtq <F172[AQ,[Al7.]]+’L'3172[A2,{A1,.}})
ps(0).  (5.78)

= ph(t) =
n=0
This is usually rewritten in terms of the second order Cumulant [40-42]
1 [*
W(tQ) = —? / dtl F1,2 [AQ, [Ala .]] + Z-SLQ [AQ, {Ah .}] y (579)
0

so that the exact evolution can be written as
ph(t) = Tel =Wl (), (5.80)

It will be convenient to denote

KCo(t) = /0 W (1), (5.81)
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so finally we have
ph(t) = Te 0 pL(0). (5.82)

Let us remark that

DKCa (t)
at

— W (). (5.83)

While seemingly trivial it will make the connection between the cumulant and Red-
field generators, first mentioned in [A2], easier to understand as we obtain that result
from a deeper connection. Note that while this chapter contains h explicitly, in all
other sections we work in natural units so h = 1.



Chapter 6

The Redfield Equation

The Redfield equation is a quantum master equation that describes the dynamics
of a system’s reduced density matrix under the assumption of weak coupling to an
environment. Usually derived using a second-order Dyson expansion [B1], it provides
a fundamental description of the system’s evolution.

A defining feature of the Redfield equation is that it is time-local, meaning the
derivative of the density matrix at time ¢ depends only on the state at that same
time. However, the rates within the equation are time-dependent and incorporate
memory of the bath’s correlation functions, making the resulting dynamics generally
Non-Markovian. While powerful the Redfield equation is not completely positive and
may lead to unphysical solutions [A3, B1, 43|, however, in its range of validity this
is rarely a concern.

6.1 Derivation from the Feynman Vernon Influence
Functional

This derivation is an original contribution, it is analogous to the derivation of the
“Redfield Plus” equation from HEOM [44, 45] . We would like to remark that “Red-
field Plus” is just the Nakajima-Zwanzig equation at second order (see B.27). We
start from Eq. (5.82) and use the fact that the derivative of the exponential map is
given by

d xu /1 1—sxm 94X 1) oxw
LX) = 9X() L2 aX (1), 1
pr ) e il (6.1)
Then we have
Ips(t) bk () e
= s ——¢f 0)d 6.2
SO ([ 2l0) o0 0)ds 62)

-~

I

1
=T /e(l_s)Kz(t)W(t)eS’Cz(t)Te_’CQ(tl)Te’CQ(“lpé(O)ds) (6.3)
0

1
=7 / 6(1_S)K2(t)W(t)eSK2(t)T€_K2(tl)pé(tl)ds> 7 (6.4)
0

where we used ¢; the dummy time label in Eq. (5.79) to keep everything inside
the parentheses “time-ordered” . Now in order to get the lowest non tirivial order

!Not strictly time ordered, but the expression after the approximation will be time ordered.
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we truncate the product of the operators in such a way that we only keep second
order in system enviroment coupling (remember all W (¢) and Cy(t) are second order
quantities in the coupling constant). Expanding the exponentials into their Taylor
series and keeping the lowest order in the coupling ? we obtain

8,05 _ (/W pL(ty)d >:W(t)p§(t1), (6.5)

where we used the fact that the product was already time ordered. Substituting
Eq. (5.79) we obtain

(‘)pégt(t) _ _% /O : dty <F1,2[A2, [A1, pL(t1)]] + iS1 2] As, {Al,pé(tl)}]>, (6.6)

which is the second order Nakajima-Zwanzig equation [A2, B1, B2]. This expres-
sion might be unfamiliar to the reader, so if we take a step back and use Egs.
Eq. (5.21),Eq. (5.28),Eq. (5.35),Eq. (5.39) and Eq. (5.79) we can see by direct sub-
stitution that

W(tg) = —% /0 : dtl (FLQ[AQ, [A17 .]] + Z.SLQ [AQ, {Al, .}]> (67)

1 to -
- _ﬁ/ dty <(A2A1 o —Aj e Ayt —t2)
0

+ (.A1A2 — AQ o A1> C(tl — tg)) (68)
e )
= _ﬁ/o dt\Trp HHSB(tz), [HSB(t1)7°®pBH} . (6.9)
Using this the second order Nakajima—Zwanzig equation reads (See Eq. (B.27))
dps(t 1
Pgt( ) = dt1T?”B [[HSB(t>7 [HSB(tl),pé(tl) ® pg”] : (6.10)

If we now perform the Markov approximation, that is we assume the evolution of
the system only depends on the current state, which means p%(s) ~ pL(t) we obtain
Ops5(t)

S8 - — [Ty [[115500). ks (t). o(0) @ 5] 6.11)

which is the Redfield equation[B1, B9]. For simplicity, let us make the change of
variable t; =t — s, then
Aps(t) '
S0 —— [ astea it ), 10 - 9. 5O @ )] (612)

0

Substituting the jump operator representation of the system operators (see appendix
A) into Eq. (6.7) we obtain

S Y [ dsCtsge e (41D - AIADA)

- Z/o dsC(s)e ™ te (=) (psMAN(W)A(W) — A(W)ps(t) AT (w)) . (6.13)

2Basically substituting all exponentials by Identity
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We define
t
MNw,t) = / dse™*(BT(t)B(t — s)) 3, (6.14)
0
and

t
[(w, o, t) = i@t / dse™ (B (O)B(t — 8))p = @M (w £).  (6.15)
0

One might finally write

il = S 1) (AIAOATE) — A AA0)

+ Z D(w,w',t) (A(W)ps(t) A (w) = ps() AT (W) A(W)) (6.16)

w,w’

or in a simpler way
8ps ZF w,w' ) (A(w)ps(HAT (W) — AN (W) A(w)ps(t)) + HC,  (6.17)

where H.C means Hermitian conjugate. It is convenient to split the integral of corre-
lation functions into its real and imaginary parts. This allows for the separation of
the coherent dynamics (Lamb-shift) and the dissipation induced by the environment
(Decay). In this spirit we define

/
t
[Nw,w't) = W +1S(w, W', 1), (6.18)
so that
Y(w, W' t) = T(w,w' t) + T(w, ', 1), (6.19)
[(w,w',t) — T(w,w',t
S(w,o ) = b ) ~Tw ') (6.20)

Now we can rewrite Eq. (6.16), in terms of v and S as

2l Z (M iS(w,w, t)) (A)Ps (DA — AT Aw)ob(1))

+Z( ot ~iS(e.11) ) (AW)SOATG) ~ AOATAW)) . (621

Notice that we are free to rename the mute indices in each of the independent terms
in the sum. Using this we rewrite Eq. (6.21) as

—apgf ) - Z (M T iS(w, ) t>) (Aw)ph(BAT(W) — AT(W)A(w)pk(D))

LUUJ

- Z % (AW A (@) — 1A @) AW — AW AW)(D)

+ZZSW W' t) (pE)AT(W)AW') — AT(W) A(w)pk(1)) (6.23)
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which we can finally write in a way similar to the Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) form®

o) _ > ) (A<w’>p§<t>A‘f<w> - {AT(‘”)A(;"'“@“)})
i3Sl 1) P5(1), AT (@) AW)]. (6.24)
Reverting to Eq. (6U.J1w5) and defining
F(w,t) = T(w,t) + T(w, t), (6.25)
§(w.1) = L@ ) —T(w.t), (6.26)

1
we may write it in the Schrodinger picture as

T(w W), pg
a%f@ =2 (A<w’>ps<t>A*<w> - A, <t>})
+i [ﬂs(t), Hg+ ) S(w, t)AT(w)A(w/)] . 62,

w,w’

6.2 Decay rates and Lamb-shift from decaying ex-
ponentials

At this point, if we wanted to simulate the Redfield equation, we would need to
perform numerical integration to compute both the Lamb-shift and the decay rates,
and we need to do that for each ¢, which makes the simulation of the Redfield equa-
tion relatively costly, when compared to the standard GKLS equation. Recently, we
proposed a method to compute these decay rates and the Lamb shift algebraically
[1]. As we will see in section 15, this greatly reduces the simulation time of the Red-
field equation without sacrificing accuracy. Typically one would substitute Eq. (1.23)
into Eq. (6.25) to obtain

[(w,t) = /Ot dse™*C(s) (6.28)
— %/Ot dse™* /OOO dw’J(w’)(COS(w’S) Coth(ﬁg)/) - isin(W'S)> (6.29)
= %/Ooo dw' J (W) (A(w,w') coth(ﬂgu,) — B(w,w’)), (6.30)
where
Aw,f) = (w+ eiwt((—ww_cf/()uéj)::/c;’ sinw't))) (6.31)
Blw.w) = i (W' + et (—w cos(w't) + iw sin(w’t))), (6.32)

(w—w)(w+w)

31t is not in GKLS form because the matrix v = (Y(4,,t))i—w, j—o’ is N0t necessarily positive
semidefinite for every ¢



DECAY RATES AND LAMB-SHIFT FROM DECAYING EXPONENTIALS o1

(a) (b)

PR LT e -
FP’-P**"""* 10t _,..4""‘f_f—...-:-:
100:::;;::::::::::::::: rrf‘f::::f“-
100 et T
1} 7
1071 b 4o
1071 ¢
102 P o —o —e =0 mo=0m—0=0
‘_,.0“"' 1072
1073 . 10-3 oo H e=0=8
0 100 200 300 400 500 0 200 400 600 800 1000
N(tr=200) t{N = 100)
GKe=10"2 ¢ GKe=10"* ¢ Mats N, =100
Original — N=2 GKe=1073 Fit Ny =20
% Ng=20 Ny =25
() (d) 104

=
2
o

||—, - rrea/l
|rr'| + |rreaI|

0 200 400 600 800 1000
t

=
i
©

Figure 6.1: The plots show how the approximation of the decay rates affects their compu-
tation time and precision, In these plots, “GK” stands for the Gauss-Kronrod method for
integration with 21 points, and € is the tolerance required during the numerical integration
procedure. These plots are aggregate from 50 randomly chosen w,w’. a) The time it takes
to compute the decay rate with a fixed final time ¢y = 200 using N time steps, measured
in seconds. We see for this particular example one gets a speed up of around 3 orders of
magnitude. b)Time taken to obtain decay rates as time increases with N = 100 points,
measured in seconds. ¢) Example of a decay rate computed with the decaying exponential
representation d) Average symmetric mean absolute percentage error of the approximation
of the decay rates. For these plots we used an underdamped spectral density Eq. (1.78)
with T'=0.05, w. = 1.2, a=1and I' = 2.

and perform numerical integration. However, we can avoid numerical integration by
using the decaying exponential representation of the environment. Using it, one has

1 — e—(l/k —iw)t

t
F(w,t) = Z ka/O dS@i(Vkiiw)s = Z Ckm. (633)
k

Those expressions allow us to obtain both the decay rate and the Lamb-Shift of the
Redfield equation easily.

In Fig. 6.1 a) and b) as they are around three orders of magnitude faster than
computing the integrals. We see how it becomes advantageous to use the decaying
exponential representation of the environment. This speed up is specially important
for high dimensional systems where the number of decay rates grows quickly with
the number of transitions. Furthermore, it helps us construct the Lamb-Shift easily
by directly avoiding the poles in integration that lead to principal value integrals
[A2, 46, 47]. In Fig. 6.1 d) we see the average symmetric mean absolute percentage
error of the approximation of the decay rates. We used this instead of relative error
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because as 6.1 ¢) shows, the decay rate can be zero at multiple moments in time
(when w # w’). How much precision we need in our decay rates is not straight-
forward to answer, but in practice when computing examples we find that errors
lower than 1073|w — ’| do not typically affect the dynamics.

The approximation also helps us to avoid numerical integration problems due to
the rapidly oscillating functions [48, 49], which often are computationally costly
and can induce large errors when using standard quadrature techniques, unlike in
most methods that use this sort of approximation [4, 12, 15, 21-23, 25, 30, 50]. The
simulation is not limited by the number of exponents; in fact the cost of estimating
either the decay rates of Lamb-shift is O(m), where m is the number of exponents
used in the approximation.

6.3 The Bloch-Redfield equation

The Redfield equation Eq. (6.24), while compact and time local is still a set of
non-autonomous differential equations, which is in general difficult to solve, and
is usually approximated to the Bloch-Redfield equation [A3, B1, 51, 52]. The first
step to do this is to assume that the bath correlation function decays fast and the
memory effects are short lived, in such a way that s > 7 where 75 is the time that
it takes the correlation function to decay. This approximation is valid provided that
the time scale of evolution of the system 75 (the time it takes the system to relax
to equilibrium) is much greater than 7, namely 7¢ > 75. What this achieves in
practice is to make out integrals independent of time (since we assumed all relevant
time scales to be much greater than 75 we may take ¢ — oo in Eq. (6.14)) such it
becomes “the one-sided Fourier Transform” *

[Nw,00) =T (w) = /000 dse™*(B'(t)BT(t — s))p (6.34)

— / - dse™*(BY(s)BT(0)) 5. (6.35)

The same notation will follow all other coefficients, so that now equation Eq. (6.24)
becomes

f(w)A(w'
apgt(t) _ ;;}/(w) <A(w/)ps(t)AT(w) _ {A ( )A(2 )a pS(t)})
+ilps(t), Hs + > Sis(w) Af(@) AW, (6.36)
where
F(w) = lim y(w,1), (6.37)
A(w) = tliglo S(w, ). (6.38)

4Though it is usually called this way in physics, it is just a particular case of a Laplace trans-
formation
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Notice that 4 is just the power spectrum of the environment Eq. (6.34);

F(w) = T'(w) +T'(w) (6.39)
:/0 dseiws(BT(s)B(0)>B+/0 dse ™*(B1(s)B(0)) 5 (6.40)
_ /0 " dses (B1(s) B(0)) 5 + / dse“ (BT (—s)B(0))s  (6.41)
= h dse™*(BY(s)B(0)) 5 (6.42)
= S(w), (6.43)

where we used Eq. (1.24). In the literature, usually this is written in terms of the
Redfield Tensor [53], however this is not relevant for the purposes of this thesis.

6.4 The GKLS Davies Equation

As mentioned before, when we passed from the Redfield to the Bloch-Redfield equa-
tion, we consider the regime where the correlation function of the bath must decay
fast over the time scale 75 of the evolution of the bath which is small compared to
the relaxation time of our system 7g. It is important to note that the decay of the
correlations can only be strictly valid for an environment with an extremely large
number of degrees of freedom such that it contains a continuum of frequencies. Let
77 be the time scale change of our system defined by the eigenvalues of the system,
specifically it roughly goes as |w — w'|™! where w # W'. If 7g is large with respect
to 77, one can neglect terms associated with w # W/, since they evolve very rapidly
compared to the relaxation time and will tend to be averaged out. This means that
terms with w’ # w are negligeable with respect to those where ' = w (They are fast
oscillating terms in comparison), and we may ignore them as an approximation.

This is usually called the secular approximation [B1]. If we neglect the terms with
different frequencies (the different frequencies present in Eq. (6.36)). We finally ob-
tain

L f w w S
apést(ﬂ _ ;S(w) (A(w)pg(t)AT(w) _ {A'( )A(2 ),p (t)})

+i [ps(t), Hy+ Y Sps(w) Al(w) Aw)]. (6.44)

This equation should be taken as a long time limit approximation [B1, B7]. It is
the one most used in the literature of quantum thermodynamics due to its ease of
simulation. The fact that we sum only over one Bohr frequency, greatly reduces the
number of matrix operations that need to be perform, furthermore the decay rates
can be obtained directly unlike in the case of Non-Markovian master equations.



Chapter 7

A CPTP map for Non Markovian Dynamics

In this section, we will describe the main method studies during the PhD, namely
the cumulant equation (aka refined weak coupling limit), which was first proposed in
1989 by Alicki [54] and later rediscovered and developed by Rivas [55]. As pointed
out by Rivas it is closely related to the coarse grained master equation [51, 56—
58] due to having the form of the Schaller-Brandais exponent [59]. The cumulant
or refined weak coupling has no extra coarse grained time parameter though, and
generally performs better.

In this section we will derive it from the Feynman Vernon Influence functional, unlike
the published derivations out there [A2, A4, 54, 55]. This new derivation allows for
an easier interpretation of the equation as well as the relation between the Redfield
and Cumulant generators. It also provides a straightforward path to obtain higher
order approximations, and hopefully helps to clarify the misconception that the
cumulant equation should be exact for Gaussian systems .

7.1 Cumulant from Feynman-Vernon

Let us begin by considering Eq. (5.82) namely
pl(t) = Teh =W pL(0). (7.1)
By using the Magnus expansion [61] namely
Telo W (t2) — oKa(t) — QA1) (7.2)

Where (2 is expressed in terms of an infinite series
Q) =D u(t). (7.3)
k
The first few terms of the series are given by
t
(1) = [ de(es), (7.4)
10 t t
0u(0) = 57 [ s [ a6, ), (75)
+Jo 0

O(t) = 37 s it fits (W (12, IV (02). W (E]) + W (10, IV (1), W(e2)]) - (7.6

'The misconception is due to the fact that since the system is Gaussian, second order moments
are enough to describe it fully, so the second order Van Kampen expansion should fully contain it.
This is false [60, 61]
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The first order coincides with the case of scalar equations [62], it implies [W (t2), W (t3)] =
0 which is rarely the case, and from a practical point of view would be equivalent

to neglecting the time ordering operator. Even when this is rarely the case we see
that it can be a good approximation of open quantum system dynamics later in the
text. The cumulant equation corresponds to the first non trivial term in
the Magnus expansion of the Feynman Vernon generator. This result allows

us to justify the so called conundrum of exact solutions [63] later on as in the pure
dephasing case

Qs(t) = 0. (7.7)

Since the cumulant is the first order Magnus expansion we can now directly under-
stand the fact that the cumulant equation is the integral of the Redfield generator
Eq. (5.83)

Ok, (t)
ot

— W (), (5.83)

This relationship is useful when it comes to calculating heat currents in the weak
coupling limit (See Eq. (11.20)). Now let us derive the usual form of the cumulat
equation Eq. (6.7)

Ka(t) = — /t dto /t2 dty ((AQAl o —Ay 0 Ay)C(ty — 1)
+ (.AlAQ — A2 [ Al) C(tl — tg)) . (78)

Inspired by section 2.1 we know that we could have written this time ordering as two
double integrals from zero to t, we do something analogous here. First lets separate
the correlation function for positive and negative time differences. Let us rewrite
this as

t to
Kalt) = — / dts / diy (AyAy o — Ay o Ay) C(ls — 1)
0 0
t to
— / dtg/ dtl (.AlAQ — A2 o Al) C(tl — tz) (79)
0 0
We can change the limits of integration by using the theta heaviside function as
t t
Kg(t) = —/ dtz/ dtl (AQAl ® —Al ® Az) C(tz — t1)¢9(t1 — tg)
0 0
¢ ¢
— / dtg/ dtl (.AlAg — A2 L] Al) C(tl - t2)6’(t1 - tg) (710)
0 0
We can make a change of variables in the first term so that t; <> 5
¢ ¢
IC2<t) = —/ dtg/ dtl <A1A2 (] —A2 ® Al) C(tl — tg)e(tg - t1>
0 0

t t
— / dtz/ dtl (.A1A2 — A2 ® Al) C(tl — t2)9(t1 — tg). (711)
0 0
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Then we can substitute the Heaviside theta 6 by

0(z) 1+ sign(:l:).

5 (7.12)

So then we obtain
t t
’CQ(t) = —/ dtz/ dtl (A1A2 [ ] _A2 [ ] Al + .AlAQ - AQ [ ] A1> C(tl - tg) (713)
0 0

t t
— / dtz/ dtl (AlAQ ® —A2 ® Al — .A]_A2 + A2 ® Al) C(tl — tg) Sign(t1 — t2)
0 0

We can then rewrite this as

Ko(t) = /Ot dt, /Ot dty (A2 oA — W) C(ty —ty)

- / ity / t dt1[A1 Ay, |C(t1 — to) sign(ty — o), (7.14)
where ST
A=) AT (), (7.15)
Ay =) e AW, (7.16)
so that
KCo(t) = Z /O ity /0 ' gty i) (A(a/) o Af(w) — {AT(W)’Q(”/)’ '}> Clty — t»)

t t
— Z/ dtQ/ dtlei(wtl_wltz)[AT(CU)A(CUI), Q]O(tg — tl) sign(tg - t1> (717)
w0 0
Let us define

t t
F(w,w’,t):/ dtl/ dtye =R Ot — ty), (7.18)
0 0

t
dt , ,
E(w, W' t) = // 2—.1dt2 sign(t, — t,)e’ @Ot — ). (7.19)
0 20
Then, for a Gaussian environment, the equation can be written as

W AW), e
Ka(t) = T(w,w't) (A(w) o AT(W) — {AT(w)A(w), }>

2
+ i€ (w, ', 1) [AT(W) A(w), o]. (7.20)

The last step to have the cumulant equation as it is often presented in the literature
[A2-A4, 55, 64] is to write the Lamb-shift and decay rates in terms of the spectral
density. We start from Eq. (7.18) and substitute Eq. (1.23) but first let us rewrite
the latter as

o) = - /0 N dwj(w)(cos(wt)@n(@,w) +1)— isin(wt)) (7.21)
== /OOO dwJ(w) <6_M(n(ﬁ,w) +1)+ emn(ﬁ,w)>. (7.22)
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Substituting into Eq. (7.18) results in

1
T(w, o 1) = = / v (v / / ity ) (=0~ (8, ) + 1)
T

e (8, 1)). (7.23)

We then proceed to do the time integrals for I'(w,w’, t) using

pilwti—w'ta) jriv(ti—tz) _ pi(wtw)t Gi(w'+v)ts (7.24)

L t ‘x
/ e = tsinc (x—> et (7.25)
0 2
We obtain

D (w, o, 1) = geiwz“'t /0 ) [(n(y, 8) + 1) sinc (W;—”)t) sine (w)

I (AW (EET s

which is the expression often encountered in the literature [A3, A4, 64, 65]. However,
using Eq. (1.42) we may recast it as

2 . oo _
[Nw,w't) = zf—e"wgw t/ dv [S(V) sinc (w)
0

2

e (B 220) 4 Sy () e ()] e
- %ei“z“'t /_ " S () sinc (%) sinc (%) . (7.28)

[e.9]

Notice the factor % difference which comes from the spectral density convention
difference with Eq. (1.21)? [55, 64]. For the Lamb-shift, writing an expression in the
frequency domain is slightly more involved. Let us consider

sign(r)C/(r) = — /_ " dvsign(r)e="S(v), (7.29)

2r J_ o

where we express the correlation by means of an inverse Fourier transform on
Eq. (1.28)

/ dreT sign(r =5 / dT/ dvsign(1)e” =97 S(v). (7.30)
_ 7r

[e.9]

But the Fourier transform of a sign function is a Principal value [66, B10]

/ drsign(r)e V=97 = 2PV : (7.31)
—00 ¢ — VUV
so we have
00 ‘ ' . 0 S(V)
dre'’™ - 3P.V./ dv-2 7.32
/_OO Te'T sign(71)C (1) - - V¢ — (7.32)

2Equivalently a different convention for the correlation function without the % factor
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If we now take an inverse Fourier transform with respect to ¢ we have

/OO @e’iw /OO dr'e™ sign(7)C(1') = /00 @ei‘bTP.V/OO duM. (7.33)

oo 2T o0 oo 272 - -V
using
2#5@r——oﬁ«—l/wodu¥@_aﬁ. (7.34)
We finally obtain
sign(r)O(7) = 5oy /_ Z déei7 PV /_ Z du% (7.35)
:i%/i@@4mpvlww(jfl+§;?> (7.36)
:7%mempvlmmﬂm<M2?jl+ﬁi?).(ﬂm

Where again we have a % factor difference for the same reason. Substituting into
Eq. (7.18) we obtain

bty P ,
f(w,w',t) _ //0‘ 2_71-12dt2€z(wt17w t2)/ d¢671¢(t17t2)

xPVAwWNW(M2§}1+ﬁi?>, (7.38)

using Eq. (7.24) we obtain

Elw,w,t) = 225_;2 /°° d¢ sinc (@) sinc ((w’ ; d))t)

xPVAm@ﬂw<M2@jl+ﬁi?). (7.39)

Concluding the derivation of the cumulant equation, we would like to remark that
differences of m, 27 and other factors are too common in the literature making it
hard to compare different methods ® which typically differ in the convention used
for the derivation. The environment class in QuTiP aims at providing a standard
convention to avoid these issues [A1l], that convention is the one used throughout
this thesis.

7.2 The Filtered Approximation for the cumulant
equation

The cumulant equation from the previous sections has a structure that resembles the
GKLS equation, it’s completely positive and relaxes to the GKLS equation in the

3See the derivation for the Lamb-shift in [65] where while the results seem to agree another 27
factor needs to be taken into account due to different convention of the Fourier transform
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long time limit, all desirable features. However, due to the integrals in the decay rates
and Lamb-shift coefficient, it is not only unfriendly to analytical solutions, but also
costly to simulate compared to the GKLS equation. We proposed an approximation
of the decay rates [A4] that allow for a simpler description, while retaining, all these
desirable features.

The Filtered Approximation for the cumulant equation is a different attempt at
simplifying the decay rates of the cumulant equation to obtain an equation that is
easier to simulate. The main idea lies in the approximation of the sinc function. for

long times. In FA the decay rates of the cumulant equation are approximated by
[A4]:

Y(w, o' 1) &7 (w, W' 1)

’

w w—w

— 2te’ "7 tsinc < 5 t) 52 (w')S2 (W), (7.40)

One remarkable thing about FA is that it’s an approximation that keeps the cumu-
lant completely positive. It makes the cumulant easy to simulate, however, accuracy
is lost in populations [A4]. Nevertheless is an useful approximation akin to the
Bloch-Redfield equation.

7.3 Decay rates and Lambshift from decaying expo-
nentials

Inspired by FA, we developed an approximation that does not compromise in ac-
curacy and allows to calculate the decay rates from an algebraic expression. The
approximation is based on the decaying exponential approximation for the correla-
tion function described in section 1.1.

7.3.1 Approximation of the Decay rates

We start from Eq. (7.18) taking into account that the correlation function satisfies
C(—t) = C(t). (7.41)
It is convenient to split the integral into the regions with ¢; > t5,t5 > t1, as follows

t t1
D(w,w',t) = / dt, / by Ot — )
0 0

t to
+ / dt, / dty =R Ot — ty). (7.42)
0 0
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Then we make the change of labels in the second integral to incorporate Eq. (7.41)
t t1

N(w,w',t) = / dt, / dtye? W=V Ot — 1) (7.43)

0 ot1 | |
+ / dt1/ dtoe W2 Oty — 1) (7.44)

0 0 . | |
= / dtl / dt2€z(wt17w t2)C<t1 — t2> (745)

0 ot1 | |
+ / dt, / dtoe 2Ot — 1), (7.46)

0 0

By substituting the exponential representation of the correlation function Eq. (1.71)
and separating the terms in the sum one might write

t t1 ) ,
F<w7 W,7 t) = Z Fk (W, w’, t) = Z Cp / dtl / dt2ez(wt1—w t2)6_yk (tl —t2)

t t1
+) /O dt, /O dtyeltzm ) g PRli—ta), (7.47)
k

Thanks to the exponential representation of the correlation function the integrals
are straight-forward, carrying up the integration yields

cke—(uk—iw)t C—ke—(Tk—Hw/)t

(Ve —iw) (v —iw') (g +iw) (T + iw')

ick 1 ei(wfw’)t
+ — -
w—w \ (g —iw) (v —iw)

i 1 i(w—w')t
ok ( ( S ) (7.48)

w—w \ (T +iw) (T +iw)

Cp(w,w' t) =

Let us define

—(vg—iw)t : 1 i(w—w')t
’ Cre€ 1Ck €
I 7t = . . . - s 9 749
Xe(w, W' t) (v — iw) (v — i) * w—w ((Vk—zw) (Vk—zw’)) (7.49)

then we can write the decay rates as
Fe(w,w,t) = Xe(w, w, t) + xr(w, ', t) (7.50)

We then take the limit w — &'

t—iwt—1 — (v —iw)t
[p(w,w,t) = lim T'k(w,w’,t) = 2Re (Ck (et — i ) te )> . (7.51)

w—w’ (Vk — z'w)2

These expressions substitute Eq. 7.18, bypassing numerical integration . Notice that
even when the integral is one-dimensional, it needs to be computed for every value
of t, thus having an algebraic expression such as Eq. (7.48) and Eq. (7.51) is bene-
ficial, especially when high accuracy in integration is needed. Figure 7.1 shows how
it is advantageous to obtain decay rates using exponential decompositions of the
environment?.

4Relative error is undefined because the true value is zero at multiple instances in time, there
are many alternatives for relative error in this situation, out of the possible alternatives we chose
the symmetric mean absolute error.
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Figure 7.1: The plots show how the approximation of the decay rates affects its compu-
tation time and precision. In these plots, “GK” stands for the Gauss-Kronrod method for
integration with 21 points, and € is the tolerance required during the numerical integration
procedure. These plots are aggregated from 50 randomly chosen w,w’. a) The time it takes
to compute the decay rate with a fixed final time ¢y = 200 using N time steps, we see
for this particular example one gets a speed up of around 3 orders of magnitude. b)Time
taken to obtain decay rates as time increases with N = 100 points, ¢) Example of a decay
rate computed with the decaying exponential representation d) Average symmetric mean
absolute error of the approximation of the decay rates at time t¢. For these plots we used
an underdamped spectral density Eq. (1.78) with "= 0.05, w, = 1.2, a =1 and ' = 2.

7.3.2 Approximation of the Lambshift

Let us start by considering Eq. (7.19) and the fact that the sign function can be
written as

sign(x) = 20(z) — 1, (7.52)

so that

¢ t 20(t; —ty) — 1) . ,
E(w, W', t) :/ dtl/ dtg( bt ;2> )e’(wtl—wt2)0(t1—t2) (7.53)
- / dtl/ dtQ tl - tz) l(m‘/l Wt2)0<t1 - tg)

~ 5 dtl/ dtoe @ =20 () — ). (7.54)
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However, notice that for the cumulant equation

Tw, 1) = /0 o /0 e DO — 1), (7.55)

So we have
E(w, W' t) / dtl/ dta(20(t, — t5) — 1)’ @20t — ) (7.56)
== /0 dt, /0 dtyf(ty — ty)e' "2 (1 — t,) — F(WQ—ZM (7.57)

Since the Heaviside theta forces t; > t5 then

r
E(w, W', t) /dt1/ dtye’ @O () — ty) — (w; t). (7.58)

Futher notice
t 11 ) ,
I(w,w',t) :/ dtl/ Aty W=V Ot — ty)
0 0
t to ) ,
+/ dtQ/ dt ROt — 1), (7.59)
0 0
hence

1t :
E(w, W' t) = —,/dtl /dtze““’“—w L0t —ty)

(ﬁtl /dtg@ wh1 = wtg 1 - tg /jtg /dt e’ Hwh— wtz (tl — tQ)) (760)
=5 </dt1 /dt elWh—wt2) Oy — ) /dt2 /dt eilwh—wt) oty — t2)> . (7.61)
7

At this point notice that this expression contains the same integrals as Eq. (7.43)
with difference instead of a sum. This should not come as a surprise as the decay and
Lamb-Shift are associated to the real and imaginary part of the correlation function
[B1, B9]. After integration the Lamb-Shift can be written as

&(w, ', 1) Z§ w,w', 1) ! Z(Xk(w Wt) — Xe(W,w,t)). (7.62)

We then take the limit w — &'

&p(w,w,t) = lim & (w,w',t)

w—w’

. (Ck (vt —iwt — 1) + e(Vkiw)t)> | -

(v — iw)?
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Let us recall that the usual expression used to calculate the Lamb-shift is °

(w,w' 1) = ;—; /_OO d¢ sinc (@) sinc (@)

[e.o]

X P.V/DOO dvJ (v) ("(’Zﬁ); L ”d)(:/i)) . (7.64)

Compared to the standard way Eq. (7.56) and Eq. (7.63) are remarkably simple.
The main advantages of these expressions are three, namely

e The same algebraic expressions can be used to obtain both the decay rates
and the Lamb-Shift term

e The calculation of Lamb-shift is simple, and lifts the requirement of special
integration methods for Cauchy’s principal value integrals, which are often
expensive, noisy and requires special integration methods [68]

o It puts the Lamb-shift corrections and the decay rates back in the same footing,
as the imaginary and real parts of the same quantity, a fact that is not so
straightforward to see from Eq. (7.26) and Eq. (7.39) where the latter seems
more complex.

5The principal value’s presence makes this computation non-trivial [67]



Chapter 8

Hierarchical Equations of Motion (HEOM)

8.1 Introduction

The Hierarchical equations of motion [2, 20-22, 40, 69] are a powerful numerically
exact technique for the simulation of open quantum systems. The basic idea behinds
them lies in the use of auxiliary density matrices (ADOS) will encode the role of the
environment. The system plus the ADOS now play the role of the new system, which
now has a larger Hilbert space. While the system plus ADOS is a finite-dimensional
system, it does not undergo Poincaré recurrences because the equations of motion
are not unitary [38, 39] *. Figure 8.1 shows a cartoon of the normal and system
plus ADO configuration. The states of the ADOS are not usually needed once the
simulation is done, since we only care about the state of our system, however, if
we want to obtain information about thermodynamical quantities like heat (see
section 11.4) we will have to store them. This poses a problem because the amount
of memory needed to store all the ADOS states of the first hierarchy [21, 69] can
quickly become an issue.

An intuitive way to think about them is that we are removing the contribution of
each exponent (which is a Lorentzian Eq. (1.82)) to the power spectrum. That is,
after adding each ADO to our system we are dealing with a less structured weaker
environment, Figure 8.1 b) illustrates this idea. This way of interpreting it makes it
easy to connect HEOM with other methods where the same kind on interpretation

can be applied, such as pseudomode methods and the reaction coordinate methods
2

'We make this point to remark that this is different from modeling the environment with a
finite set of harmonic oscillators.
2This intuitive way of thinking about it is not too accurate, because certain exponent contribu-

Figure 8.1: An illustration of the HEOM idea, we start with the system interacting with
an environment, but rewrite it in such a way that we have the system interacting with
fictitious particles (The ADOS) that undergo dissipative dynamics
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The hierarchical equations of motion are a controlled approximation in the sense that
any desired accuracy can be obtained by increasing its “two knobs”. Those knobs
are the hierarchy n and the number of exponents used to describe the correlation
function m. In the next section we will derive HEOM from the Feynman Vernon
Influence functional.

8.2 Derivation

To derive the hierarchy we will assume our bath correlation functions obey a certain
profile
C(r) = (cff +icp)e ™, (8.1)
k

where the v, are complex numbers. In section 1.6, we show that this assumption is
not really restrictive, as numerical methods in the later years have made this possible
regardless of the spectral density (see section 1.6). This is a huge improvement as
when the method first came up [22] when it was rather restrictive as we needed
the Matsubara decomposition of the environment. Substituting this into the second
order cumulant (Eq. (5.79)) we obtain

W(ty) = —Z/OthlckR[Az,[Al,.]]+z‘cg[AQ,{Al,.}]e—ukuz_m). (8.2)

Now let us define the superoperators

O(t) = i[A(t), o, (8.3)
Ok(t) = i (cFIA(2), o] + icl{A(t), o}) . (8.4)

We would like to emphasize that ;(¢) denotes the super operator above, and 6(t) with
no subscript denotes the theta Heaviside function. Then the second order cumulant
may be written in terms of these superoperators as

W)=Y o) /Ot dt' e =19, (). (8.5)

We now take the derivative with respect to time of Eq. (5.82)

apagt(ﬁ _ T(W(t)efg W (t) p{g(O)) = T(W(t)pg(t)) . (8.6)

Let us denote

Uy = Tew Jo Hs(t)dt (8.7)
Then transforming Eq. (8.6) into the Schrodinger picture yields
X
opL(t ,
past( ) _ —i[Hs(t), ps(t)] + Ug(t)T(W(t)pfg(t)> Us . (8.8)
—Ls

tions thought about this way would make the power spectrum negative, nevertheless is an useful
way to think about it.
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8.3 ADOS of the first hierarchy tier

Let us now concentrate on the second term of Eq. (8.8)

t
X = U{Ten S / gt e =), () o (£) U (8.9)
5 J0
t
= U T UUST Y / dt'e= =10, (1" pL(t) Uy (8.10)
I n 0
t
=¢> UIT / dt'e =10, (1) pL(t) Uy, (8.11)
n 0

where we used ¢ = Ug@(t)Ug, and moved ¢ out of time ordering because ¢t > t'.
So far we haven’t discussed how we expressed the correlation function as a series
of decaying exponentials - different methods are discussed in section 1.6-. Suppose
we managed to do it using the Matsubara formalism, then for high enough n the
Matsubara frequencies are larger than system time scales meaning that

2
Vo s (8.12)
&
For high enough n the exponent behaves as
ot
e & ( >. (8.13)
Vn

Which n is high enough depends on the parameters of the problem ( Eq. (8.13)
allows us to account for the contribution of exponents beyond m in a simple way,
doing so leads to the so called terminator®). Let us split the sum at m so we have

= t , = 0, (t
X=¢> UIT | dt'e =0, pe(t) U+ ¢ Y U] (®) UgUl pL(t)U,y (8.14)
" 0 Vp, \T/

S ! I —vn(t—t' / . en
—0>ouiT | are ekt o 3 st (8.15)

n=m+1 "

n=m+1

Here we used 6,, = Ug@n(t)Uo then we can write

Ops(t " t ,
pgf ) _ —Lsps(t) +o(t) > UIT / dt'e= =10, (1 pL (1) Uy
n 0
[ee] en
+o Y Sops(b) (8.16)
n=m-+1
Now let us define
t !
oV o = UIT /0 dt'e= 0=, () ok (1), (8.17)

3The terminator is mainly used for the Drude-Lorentz spectral density, whenever using methods
other than Matsubara we simply truncate the sum at m instead of doing this split
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where the subscript (0,...,1,,0,...) indicates a m-tuple, in which a 1 is positioned
at the indexn = 1,...,m, indicating that the object corresponds to the n'* exponent.
So there is a 1 in the n'* position and the rest of the items in the list are zero, such
that the sum of the elements in this list is 1. We may rewrite our equation for the
dynamics of the system as

0 > 0, m
pgt(t) T (ES —¢ Z V_>p5(t) + ¢ZU(%,)...,1”,0,...)- (8.18)

n=m+1 "

To fully obtain the dynamics of our system we need to find the equation of motion
of o;. We start by taking the time derivative of Eq. (8.17)

dUT t ’
0poidn 0,) dtOT/ dt’e“’"(t_t)Qn(t,)Pé(t)UO
0

dt
Uoayr —un(t—t AWV
A(T fy dtre¢0,(t)pk(1))

+ U] o Uo
¢
car [ oo s
0
Counsider
t !/
F= T( / dt' eV )Hn(t’)pé(’f)>- (8.20)
0

We can then obtain its time derivative using the Leibniz Integral rule, namely

d(fy f(t.that') LOf(t,t)
dt _f(t’t)+/0 ot

dt' (8.21)

which results in

% = 0,,(t)p%(t) +T(/O dt’d(e

— 7, () p (1)) )

u" (8.22)

= 610k () + T ( / at'e g, () (W (0)ph(6) = vaps(D) ), (8.23)

0
where we used Eq. (8.6) and the fact the time ordering operator acts as the identity
on time ordered products. Then we may write
— LoV 5 (8.24)
t
+ U] <0n(t) pst) +T ( / dt' e 0, () (W () ph(t) — unpg(t))>> Us.
0

Notice that one of the terms is 08’)’“71”,07” ) By substituting Eq. (8.5) and rearranging
inside the time ordering operator one obtains

~~~~~~~~~~~~

t
o T( ff dtldtze—%@-me-w<t—f2>en<t1>enf<t2>p§<t>) U (329)
n' 0
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by defining

t
0’5??,1n,,...,1n,...> =Ul T ( / /0 dtldtge‘”"“‘“)e—”n'<t—t2>9n(t1)9n,(tg)pg(t)> Uy, (8.26)

where again the subscript (..., 1, ..., 1,,...) = (..., 1,,0,...) + (..., 1,,0,...)
indicates a list of m indices, if n # n’ there is a 1 in the n'* and n** positions and
the rest of the items in the list are zero, if n = n’ then there is a 2 in that position,
such that the sum of the elements of this list is 2. We can now rewrite the equation
as

do'V)
(07 717L707 )_ (1)
) = —(Ls+ 1) o) 10, + Onps(D) +¢Z iy (827)

Once again we want to divide the sum into two contributions using Eq. (8.13) so
that we obtain

da((l)
OpevesLpsee
dt (ES tn =9 f—Z+1 Uy ) 0. 10.0,..) T Onps(t)
2
+ ¢ Z U((_,_),1n,,_,,,1n7_,_ )" (8.28)
Now for convenience let us define ¢%(0,...,0) = pg, then one can rewrite this equa-
tion as
da(l)
(0,...,1,0,.. )
dt (['S =0 Z U ) 0,100,y T On U 1p—1,0)
n/=K+1
(1+1)
+¢Z (07 71717 .y /-‘rl,) (829)

8.4 Higher Tiers and Truncation

To find the equation of motion of o(® we follow the same procedure

d () @) (1) (1) @)
2t ) = _Esa(ln,...,ln/) + 9n0(0,...,1n,) + Qn’a(oy...,m — (vn + Vn’)o-(ln,...,ln/)
t
+UIT / dtye= =g, (1)) / dtye™" 120, (t)W (2) pk (1) U, (8.30)
0 0

using the definition

t
U((fi1n1n) = U§T<///O dtydtydtze ™ m 1=t gmvm (tt2) gmvan (i=t3)

X Qn(tl)en’(tZ)QN”(tf%)pg(t)) Uo. (8'31)
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And using the same procedure for W (t) where we split the number of exponents we
finally obtain

d @ e —1)
dt (1n: 7171’) £S+Vn+yn ¢ Z 12 (1n’ ol +9 0 0,. ’1n/)

n'=K+1

2 ].
+9n"7(( . +¢Z (1+,, 041, )" (8.32)

n'’ =0

At this point, we can stop to appreciate the similarity between Eq. (8.29) and

Eq. (8.32). We start to see the pattern emerging By following the same procedure

(n)

0, ) One obtains

and finding the equations of motion for each ..

o 0
]0: Jm) (LS_ijVk—i_(b Z Vk) .707 ,]m)
k
k=

. (n— (n+1)
+ij0k0(jo7--~,j —1,....5m) +¢Z T (joemribt1yemfim)? (8'33)
k

where ", jr = n. We eventually truncate at a given hierarchy, meaning we stop at
o™ and solve the system of coupled differential equations to obtain the dynamics
of our system.



Chapter 9

Pseudomodes

Pseudomode methods [4, 12, 23, 25, 31, 50, 70-72] are a useful tool to study open
quantum systems; their main advantage lies in the fact that the exact dynamics can
be written down as a so-called Local GKLS master equation on a dilated space [70].
The mention of a dilated space should make us connect this to HEOM as indicated
in figure 8.1. The relationship between both methods is explored in more detail in
[73].

From the point of view of open quantum systems, different Gaussian environments
with identical correlation functions are equivalent. The core idea of the pseudomode
method is to dilate our Hilbert space to one where the extra space undergoes GKLS
dynamics [70], in such a way that the two-time correlation function of the particles in
this dilated space is the same as our original correlation function. By doing this, we
can simulate our exact dynamics by a local GKLS master equation in this extended
space and later trace out the dilation. The name pseudomodes comes from the fact
that originally, the dilated Hilbert space was comprised of the original space plus
harmonic oscillators, those extra oscillators we add to the Hilbert space are the
pseudomodes.

9.1 Equivalence between Unitary and Non-unitary
environments

Consider the dilated Hilbert space consisting of the system and the pseudomodes
that undergo GKLS evolution. The state p (system+pseudomodes) obeys

dfc’l_it) = —i[Hs. p(0)] + Xn: Lop(t) = X [A() X, (1)), (9.1)

where L,, is

b,bf
Lnp(t) = =i, [bLbn, p] + I, N, (b; pby, — M)

2

b bn,
+ To(N, + 1) (bnpr - {"Tp]) , (9.2)

and ,, I';, and N,, are coefficients we will need to adjust, to make sure the evolution
using Eq. (9.2) reproduces the original dynamics [4, 70]. This generator has the
following properties:

o It is trace preserving, meaning

Tr[L,p) =0 (9.3)
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« it has a Gaussian stationary state, such that it obeys Wick’s theorem 5.4
e The evolution preserves canonical commutation relations
Futhermore

o We impose that the original system and environment before dilation are in a
product state psp(0) = ps(0) ® pr(0) [70].

To obtain the dynamics of our system, we simply trace out the pseudomode subsys-
tems

ps(t) = Trpm [p(t)] - (9-4)
The position operator for these pseudomodes is given by:
X4 = bt 4 b (9.5)
The steady state of the generator L¥ is given by

Pon =~ (9.6)

Zn

NE+1
NE

there is more than one. Now, that we have established our non unitary evolution,
we can see the contribution of each pseudomode b' to the correlation function. For
this evolution to be equivalent to the exact dynamics, the correlation function of the
pseudomodes needs to be the same as for the original unitary environment [70]. Thus,
we need to reproduce the components associated with both positive and negative
times (sometimes called advanced and retarded components)') as given by Eq. (1.26)
or by Eq. (1.24). In order to compute the contribution of each mode, notice that
for the non-unitary evolution, the Heisenberg picture evolution is obtained by the
adjoint generator.

where n = —log< ), and p is a label for the environment in the case where

(X2(0)p = Tr| Xre (pp)] = Tu[e™ (X2)pp| = Te(XE(ps].  (9.7)
Such that
X4 (t) = et (X1, (9.8)

Since the superoperator LT acts linearly if suffices to compute its action on b*

NG
LA = — (7" - mg) b (9.9)

Using this we may compute the Heisenberg Picture operator as

N
—(%Hﬂg)t

Bi(t) = e b, (9.10)

'Remember though we are only using one parameter and referring to it as time, this is the
difference of two times so there is nothing mysterious about being negative
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Let us again notice, the remark from section 1.1. where we simply see that the only
remaining terms will be the product of b*(¢) and its adjoint. For ¢t > 0

Ch(t) = Tr[ X3 () X0 s (9.11)
T i (S tion

—Tr (e( ? )tbgwbge (0 )t> (b +bg)pgn] (9.12)

Tn ok —(Lnqi0n
= 67(7 QH)tTr [ETbkps ] + e ( £ >t Tr[bibs ol | (9.13)

Y n Ok
- e‘(rﬁ“m")t]\rg + o (Fvint): (N 4 1), (9.14)
while for ¢t < 0

Ch(—t) = Tr[ XX (1)) (9.15)

b B _iH
- e‘(gm")tw + (i) (N" +1). (9.16)

To obtain an appropriate dilation we must satisfy the following requirement
C(r) = Culr). (9.17)

As established in [70] as long as this is satisfied, Eq. (9.2) is equivalent to Eq. (5.82).
The bad news at this point is that a finite number of modes can only exactly re-
produce a sum of complex exponentials. On the other hand, we can approximate
it really closely using the methods from section 1.6. We will however, need to be
careful to satisfy Eq. (1.24) as we show in the next section.

9.2 A Simple case

To illustrate how to construct a dilation appropriately from an approximation of the
correlation function, we need to consider the contribution of each pseudomode to the
total correlation function. We consider the simplest case, namely, the case C(t) =
O(t)ae " 4+ 0(—t)ae™ for a € R. Since we want the least number of pseudomodes
that can reproduce the correlation function for both ¢ > 0 and ¢ < 0, we need both
contributions to be complex conjugates of each other (however we only need to be
careful about the exponents, as we can put the coefficient in the coupling). Inspired
by this we can see that this is easily achievable if we set N# = 0 such that the
contributions are given by

_(ta I8 (o ;0
Cl(t) = e (+ )t, CH(—t) =e (H-mt)o (9.18)
By direct comparison one can conclude
NG
Re(v) = 7", Im(v) = Qkh. (9.19)

Since a € R we don’t need to worry about the conjugation from positive to negative
times, as such, one can simply assign it to the coupling such that a = (A*)%. Following
a similar kind of reasoning one can obtain the results in the table 9.1
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Table 9.1: Pseudomode Representation of Different Exponential Terms, reproduced from
[4], FCF stands for free correlation function, while PMs stands for the number of pseudo-
modes needed.

FCF Term Conditions PMs Parameters
Q r A2
ae™ "t a€R 1 Im(v) 2Re(v) a
ae "1t + ge~¥2t | None 2 (2}(1/1 B VQ)) (Vl T VQ d
5: (12 — 1) vy + 1y a
Im(vy) 2Re(11) a
ae "1t — ge’?! | None 3 Im(vs) 2Re(1s)
211(1/1—52) 1/1—1—1/2 a—a
aje vt a1 +as €R 5 (Im(y)> (2 Re(v <a1 — a2>
+age "t | Re(a1)| > |Re(az)| 0 0 a; — ay
ae vt a¢ R Should be treated as ae ™' + ae~"2 for >

9.3 Comment on related Methods

Unfortunately, the literature is full of pseudomode methods under different names,
a fact that can be overwhelming for newcomers. For example, “Dissipative-Assisted
Matrix product factorization (DAMPF)” is a pseudomode method where we encode
Eq. (9.2) using matrix product states. Pseudofermion and mesoscopic leads are the
same method applied to Fermionic reservoirs [72, 74]. Dissipatons are pure pseudo-
modes [71], non-hermitian pseudomodes typically refers to pseudomodes for which
(), may be complex and v, may be negative. Quasi-Lindblad pseudomodes, Pseu-
dolindblad, GKLS master equation in the ultrastrong coupling, and other related
acronyms, also refer to pseudomode techniques and their main difference tends to
be the way the correlation function is approximated (see section 1.6)[50, 75]

Something similar happens for HEOM, to a lesser extend, where fortunately the
word HEOM is usually kept, and letters are added at the beginning, for example,
eHEOM uses spectral density fitting[34] (section 1.6.3), FP-HEOM uses the AAA
algorithm[15]? (section 1.6.4), HOPS is HEOM for product states [76] ... etc

Having said all of this, we would just like to remark that the methods themselves are
the same even if they have a different name, and their difference are mostly details
related to their implementation rather than differences in the theory. We hope the
reader finds this comment useful, as navigating through these methods can be a
complex challenge at first.

2Tt is also suppose to use matrix product states, but often AAA alone will be referred to as
FP-HEOM




Chapter 10

Reaction Coordinate Mapping
10.1 General |dea

The idea of the method is to enlarge the Hilbert space of the system, and at the
same time putting most of the interaction with the bath into the coherent dynamics
of the new enlarged system. This procedure changes the spectral density and its
dynamics can then be explored with any of the methods mentioned before. The idea
is that after the mapping, the residual interaction to the bath is weak enough that
we can use a Bloch-Redfield or GKLS equation [9, 12, 77, 78] to describe the system
accurately. The discussion in this section largely follows [78]. Figure 10.1 illustrates
this concept; we take one oscillator out of the environment, make it part of the
system, and now this oscillator that is part of our system is coupled to a simpler
environment.

10.2 Hamiltonian Mapping

Consider an arbitrary system coupled linearly to a bath of harmonic oscillators

H = Hg(t) + % > (pi + wp (xk — %S)Z) . (10.1)

k

Where S is an system operator and wy, (xy) denotes the angular frequency (position)
of the k" oscillator. As discussed previously, the effect of the bath can be encoded in
the correlation function, which in turn is fixed once we set T and the spectral density
(Eq. (1.21)). The spirit of the Reaction Coordinate methods (RC) is to define the
interaction with the collective degrees of freedom of the bath as a new mode, or new
coordinate which we will denote with X;. Basically we want a map that satisfies

> cprp = XX (10.2)

/ 1\

\

Figure 10.1: An illustration of the reaction coordinate mapping
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In order to achieve this formally we just perform a Bogoliubov transformation such
that

X =A%, P=Ap, (10.3)

where mayus denotes new variables, while minus denotes the old ones. The map
A must preserve canonical commutation relations, in order to do so it must be an
orthogonal matrix, meaning A~! = AT. This means it has N(N + 1)/2 independent
components. Those components are fixed once we require that the residual bath (the
N — 1 modes that do not correspond to the RC) are normal modes, meaning

D wihip g = 0w Lk > 1. (10.4)
k

Then the Hamiltonian can be written as

1 2
H=Hs(t)+5) (pk +w? <x§ - kg2 26—’;xk5)) . (10.5)
A wk w

k

If we now take out the first mode (our RC, the one not normal) and apply the
transformation, we obtain

Pf+Q§Xf+§:P,§+QZX§_§:c_i

2 2 202
k=2 k

- Xi Z Cr Xk, (10.6)

k=2

H = Hg(t) + S% — N X, S

where the sum starts from 2 because we have N — 1 modes. To rewrite the Hamil-
tonian this way, we have used

FEF=X1) Xo ) Apdawp + X7ApA ;. (10.7)
n=2 k
Then defining
Ck = — Zu)?[\kl)\kl, (108)
!
we may write
T-r=X1 ) C.X,+ X707 (10.9)
n=2

where we've defined Q2 = >, wiA?, and 6Q3 = Zk(g—:)z We finally write

PP+ 03X7 P2+ Q3 X}
Hpe = Hs(t) + ——— + ) | =8 = 5058°
k=2
— A X18 = X1 Y CiXy. (10.10)

k=2
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Notice, that the only coefficients affected by the change of the bath parameters (cx
and wy) are A\g and §€2y. They encode the information about the coupling strength.
The key point here is that the mode we choose as the reaction coordinate
does not matter, as all information will be contained in the spectral density when
going into the continuum limit. Once we go into the continuous limit we have

2 oo
502 = —/ o) (10.11)
T Jo w
2 o
A\ = —/ dwwJ (W), (10.12)
T Jo

where the second relation comes from the fact that the transformation preserves
canonical commutation relations

. C
(X, P =i= Z[A—%k, > Aeipe] (10.13)
k70 K

=iy %Alk. (10.14)

L 0

This implies that

A= il (10.15)

k

At the same time we have

Z CLT — )\0X1 == )\0 ZAlka, (1016)
k k

which must be satisfied for all indices, thus
Cr — )\lk/\0~ (1017)

By substituting in Eq. (10.15) we obtain
2 o0
A\ = Zcz — ;/ dwwJ (w). (10.18)
k 0

Similarly

2 o)
Cl 2 P

On the other hand the spectral densitity asociated to the residual bath takes the
form
02
Tiw) =23 ZE5(w — ). (10.20)
2 Qr
k#1
The only remaining step to finish this mapping is to provide a relationship between
the original spectral density and the new one. In order to relate them we follow the
prescription developed in [79].
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We would like to remark that the coefficient 6922 is what is known in the literature
as the reorganisation energy [40, 78, 80] (up to a multiplicative constant due to
convention). Adding the term 6Q2S? to the Hamiltonian may compensate for the
so-called mean force correction as indicated in [80], in a similar way as the reaction
coordinate mapping does.

To simulate open systems using the reaction coordinate we simply start our simu-
lation as if Eq. (10.10) was our original Hamiltonian, and trace out the RC after
simulation. Notice that the RC is the one in contact with the environment, so decay
rates, Lamb-shift RC are typically calculated using RC operators '. One of the main
advantages of the RC mapping is that it is a mapping on the Hamiltonian, and we
can obtain the “dressed” steady state simply by

e—BHRc
} (10.21)

ps = Irre |: 7
Futhermore the map is precise for every temperature. The reaction coordinate map-
ping is useful to check the correct thermalization of other methods such as pseudo-
modes, or HEOM for this precise reason [A2, 12, 81]

10.3 Relating the spectral densities

So far, we have introduced the reaction coordinate mapping, but we have no way
to find the spectral density that would correspond to the new Hamiltonian (System
+ RC + Environment) in terms of the original spectral density (System + Environ-
ment). Without knowledge about how the residual environment interacts with the
new system, we cannot proceed further with calculations. To use this mapping for
simulations, we need a way to relate them, which is what we will find in this section.

Without loss of generality, consider a particle with position ¢ and momentum p as
the system coupled to the environment via position and moving in a potential V' (q).
In other words, we take Eq. (10.1) and make S = ¢ and Hg = £ + V(¢). Then the
equations of motion of the system in the Heisenberg picture according to the original
Hamiltonian are given by

q=p, (10.22)

. 09V(g) c
p=-—5 +) q+zk:ckxk- (10.23)

q k

>§0|ww

While for the bath one has
Ty = —wiTy + Crq. (10.24)

The system of coupled differential equations can easily be solved via a Fourier trans-
form. After a Fourier transform we obtain (Here we use z as the Fourier transform

1Usually a local master equation is used, if one uses a Redfield or Global master equation, the
system operators are also involved in these calculations.
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variables and "~ for the transformed variables)

oV 2
—2G=— (AQ) +) ki — Y S, (10.25)
a4 - — Wi
— 220 = —widy + g (10.26)
Solving the algebraic system we can get rid of zy,
A Ck .
Which allows one to write the evolution of ¢ as
oV (q)
=L 7 10.28
Sl = ~La(2)i (10.25)
where
Lo(2) = —2% — Wy(2) + 63, (10.29)
2
c
Wo(z) = b 10.30
O(Z) Zk: w]% — 52 ( )

Let us take a closer look at Wy(z) which is sometimes known as the Cauchy transform
of the spectral density [B10, 79]

Wolz) =" a2 /Ooo wIw) (10.31)

w2 — 22 T w? — 22
%

Using partial fraction decomposition we may write

- __t 41! (10.32)
(W 2)(w—2) 2w+z2) 2w-2) '

W (z) = l/000 dw ( Jw) | ‘](w)) . (10.33)

s w—2z w—+z

Now, in many cases, it is useful to assume the spectral density is an antisymmetric

function J(w) = —J(—w). If we do we may write
L[>~ J
Wo(z) = —/ a2 (10.34)
T) o wW—2

which is the definition of a Cauchy transform. Now let us remark an important point
of this propagator [5, 6, 82|, namely that if we consider z = w + i€ in the limit of
e — 0 we can relate the propagator with the spectral density directly

lim Lo(w + i€) = lim (—(w + i€)* — Wo(w + ie) + 592 . (10.35)

e—0 e—0

Now we assume the dominated convergence theorem holds [B5], meaning both the
limit and the function are integrable. Then one may exchange the order of the limit
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and the integral such that

o0 !/
7rlin% Wo(w + i€) = / dw' lim <L> (10.36)
e— oo

e—~0 \ W — w + 1€

_ / " () lim ((W'—#) (10.37)

oo e—0 w! — w)2 + €2

e ) I ()
(10.38)

Notice however that
1 €
So finally we obtain

ng% Wo(w + ie) = /00 dw'L,)) —am /00 dw' J(W)d(w" — w) (10.40)

e (W —w .
if we substitute this back into Eq. (10.35) then we obtain
_ 1 [* J(w') ,

Notice the imaginary part is directly proportional to the spectral density, Because of
this we have found a relationship between the Fourier propagator and the spectral
density

Im(liné Lo(w +i€)) = —J(w), (10.43)

€E—r

As a next step we follow the same procedure with the transformed Hamiltonian. As
we want the dynamics to be the same before and after the mapping their propagators
must be equal, which will allow us to relate the spectral densities. The equations of
motion for the transformed Hamiltonian are

ov
j= _% — @02 + Mo X1, (10.44)
k
X = Q2 X, 4 Cp X, (10.46)

Once again we turn this into an algebraic system of equations using the Fourier
transformation

oV ;
—2%q = —% — GO + N X1, (10.47)
"Xy = Mg — X1 + ) CeXy, (10.48)
k
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This allows one to find the relations

X o

. Ao
X)=- ]. 10.51
YT T - ! (10.51)
where analogously to Eq. (10.31) we have defined
Ck 1 e Jl(w)
= — —. 10.52
Wi(z) ;Qg—z2_>7r/oodww—z (10.52)

Finally, we may write the propagator of the transformed Hamiltonian as

oV .
_ 8((;1) — _L(2)i, (10.53)
where
Li(z) = —2% + 002 + Ao (10.54)

Li(z) = Lo(z), (10.55)

—2% 4 60 + = —2% — Wy(z) + 692. (10.56)

22 + W1(2> — Q%

This allows us to write one Cauchy transform in terms of the other as

)\2
Wi(z) = Qf — 2% — 22—, 10.57
1(’2) 1 z Wo(Z) ( )
If we now again consider the analytical continuation we have
)\2
Im(lii% Wi (w +ie)) = Im(lii% (Qf — (w +i€)? — m>) (10.58)
)\2
—Ji(w) = Im(lim ——>—— 10.59
1(0.]) m(:_r}% Wg(w i 26)) ( )
ANaWo(w + ie)
= Im(li 0 10.
m<61—1>% Wo(w + ie)Woy(w — ze)) (10.60)
A5 (w)
= ——=. (10.61)
[Wo(w)]

Thus we finally found a relationship between the original and transformed spectral

densities

)
[Wo(w)|

J1(w) (10.62)



RELATING THE SPECTRAL DENSITIES 81

10.3.1 Iterative nature of the mapping and Markovianization

Once we have obtained a relationship between the new and old spectral density, one
might wonder what would happen if we decided to repeat the procedure with the
system and RC as our new system and find a new reaction coordinate. We may also
wonder whether many iterations of the mapping reach a terminal spectral density.
We will address both of these questions in this section.

Let us define

c: 2 [
=Y ok —/ a1 (10.63)
Sk T Jo w
Then notice that by definition
2
Wo(0) =Y % = 502, (10.64)
k k
CQ
W1(0) = Q_g = 502, (10.65)
w
by substituting this into Eq. (10.57), we obtain
)\2
507 + 502 = Q1 (10.66)

For convenience let us rewrite the Hamiltonian of Eq. (10.10)

P2+QZX2 P2+QQX2
H _ H 1 1<*1 k k<Y k
s(t) + =y At
k=2
— 00557 = X X1S — X1 ) CpXs. (10.67)
k=2

Substituting Eq. (10.66) we get

PZ+ (59% 50 )XQ p2 2 2
g + X
oy
k=2

H = Hg(t) + 5 5
593 )
—05% = X X1S = X1 ) CuXy. (10.68)
k=2
However, notice that
Ao 59(2) s Ao 5 59(2) 602
2692X Ao X1S + S = %502 Xj )\ —SX1+ (— N 0)252 (10.69)
Y 5 08
= 208 (X — S) , (10.70)

and by substituting Eq. (10.63)

Q C? 02 Cr o\’
> 7’“)(,3 — OW X1 X, + 252 Xp==F (Xk - —kX1> . (10.71)
k
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so that the Hamiltonian can be written as

P2 Pz Q2 Cr . \?
S()+2+_2+2(k9%1)

Ao . 0% .\’
* o5 (Xl - TS) . (10.72)

Notice that this makes thermodynamic stability evident as everything depends only
on the initial parameters. At the same time notice that this has the same form as
the original Hamiltonian if the Reaction Coordinate mode X is considered part of
the system. So one might just apply the procedure once again. In practice adding
harmonic oscillators to the system is undesirable, and it’s preferred to use a better
approximation for the dynamics or another transformation like polaron to reduce
the effective coupling [9, 77]

One may wonder whether succesive applications of the mapping reach a fixed point.
Since the Hamiltonian is in the same form, the same procedure would follow in each
iteration. In particular it is clear that

Wisi(2) =Q2,, — 2 — Wii)' (10.73)
Provided the limit n — oo exists, this would lead us to
Wi(z)=Q*— 2%~ > (10.74)
Wi(z)’

where W(z) = lim, o W,(2), Q = lim, o 2, and A = lim,,_,, A,. The spectral
density

J'(w) = — lim Im(W(w + ie€)) (10.75)

e—0t

is the limiting case. We expect this spectral density to be analytic in all of the
complex plane except in its support points on the real axis. Using Eq. (10.74) we
have

W(2)? — (2% — 22)°W(2) — \* =0, (10.76)

from which we obtain

B \/4>\2 _ (Qz _ w2)2
N 2

J (w) for 4X* > (0 — w?)? (10.77)

This spectral density that terminates the chain must obey J'(w) > 0 for w > 0.
This indicates it has a non-vanishing value for

w? € [max(Q? —2X,0),Q* + 2], (10.78)

and must be zero everywhere else, as all other modes have been taken out. This is
made clearer if we rewrite it as

7oy = VD)

wr < w < wg, (10.79)
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where
wh =+ 20 Wi =mar(Q® —2),0). (10.80)
Since we require J(w) > 0 this fixes Q? = 2\ then

(A)Q(WQ _ w2)

J'(w) = QR 0 <w < wg, (10.81)
2
- % 1— 2 0(wp — w). (10.82)

Wgr

This is the Rubin model for dissipation, while this is argued to be Markovian [79]
and it’s generally claimed to be the markovian fixed point of the RC [78, 79], this is
still colored noise. Another remark is that this procedure fails if there are gaps in the
spectral density as well as when there are low frequency cutoffs. However, this does
not mean that RC is a bad description, but rather means that the prescription does
not necessarily converge to the real spectral density/correlation function, thus being
an approximate solution at best in those cases, and this is due to the assumptions
related to the Cauchy transform.

10.4 Mappings for typical spectral densities

J(w) A2 Q J1(w)
85%ew(w? + 62 + €2) 855w (62 + w? + €2)
1) V362 + €2
[+ (w-—02P[R2+w+e?2 | e wh + 202(502 — €2) + (302 + €2)?
46°w3 52 3.3
ol /582 & 2 1653w
[02 1 (w— )22[02 + (w+ €)% 1 50% +e w1202 (702 —e2) 1 (62 42>
2 3
i@(wm - w) 2;’7:_n gwm Ty, _
Wm, 6(wm —w arctanh( Tm)) (um —uarctanh( % ))

Table 10.1: Reaction coordinate mapping for selected spectral densities. Unfortunately
the number of spectral densities for which the reaction coordinate is available is limited.
However, notice the underdamped spectral density is here. One could in principle express
other spectral densities as the sum of an underdamped one using the methods in section
1.6



Chapter 11

Defining Heat and Work

Open quantum systems are an essential part of quantum thermodynamics. While
we have been mainly concerned with equations for the density matrix we may now
wonder how to obtain thermodynamic quantities from it. This section follows and
unifies [4, 69]. Consider the energy of the system at time ¢ [83, 84]

E(t) = Tr[H(t)p(t)]. (11.1)
If we now take a time derivative

B(t) = Tr [H'(t)p(t)} +Te[H (8)4(1)]. (11.2)

From thermodynamics [84] we know that the energy change of the internal energy
of the system is due to heat and work, we then associate work to the changes we can
control, in this case our time dependent Hamiltonian. Since this is per unit time,
the term in the right hand side is asociated with power, the time derivative of work

E(t) = P(t) + Q(t), (11.3)
P(t) = Te[H{t)p(t)] (11.4)
Q(t) = TeH (1) = 3 Ji(t). (11.5)

Q(t) is the sum of net heat currents supplied by individual baths. The Jj, are the heat
currents associated with each bath. While this is general, more specific formulas can
be applied to more specific situations, which we will explore in the next sections. The
formula for power on the other hand, remains the same for the different approaches.

11.1 Heat for a GKLS or Redfield Master equation

Let us remember that the GKLS master equation is given by

I ) A(w). ol
apS(t) _ Z ’7(&)) (A(w)pé(t)AT(w) o {A ( )A( )’pS(t)}>

ot 2

w,a,

+i > Suslw)|ph (1), Al W) Aw)| (11.6)

w,a,

—i Y Sis(w) | k(1) ANW)Aw)| + D(p), (11.7)

w,a, B
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where D describes the dissipative part of the generator. By substituting p(¢) into
Eq. (11.5)

Q(t) = Tr [H <D<p> +i 3 Sps(w) [p§<t>,A*<w>A<w>]> | iy

Now let us notice that

Tr{A[B,C|} = Tr{A(BC — CB)} = Tr{ABC — BAC} (11.9)
= Tr{[A, B]CY}, (11.10)
using Eq. (A.12) we see that only the dissipative part contributes to heat for a

GKLS master equation. On the other hand notice that for the Redfield equation the
Lamb-shift depends on two Bohr frequencies so that

[Hs, AN(w)Aw)] = [Hs, AN(W)]A(w) + AN(o") [Hs, Aw)] (11.11)
= VAT (W) A(Ww) — wAT (W) A(w) (11.12)
= (W — w)AN (W) A(w), (11.13)

which is nonzero in general. Thus let us define

Derrs(p) = D(p), (11.14)
(W) A(W
Drediia(p) = Y (7(w,w’,t) (A(w’)pAT(w) _ A% )/21( ),P})
+iS(w, 1) [p(t), AT(w)A(w')D , (11.15)
Then

where ¢ indicates the GKLS or Redfield generator respectively. Each bath has a
dissipator associated to it. To find the individual heat currents we simply consider
the contribution of each to the k environments to D; = Y, DF such that

Jp = Tr [HDf(p)] (11.17)

Now, we would like to remark the two main differences between the Redfield and
GKLS generator, at least for the computation of heat currents

e The Redfield Lamb-Shift does not necessarily commute with the Hamiltonian
of the system, while the GKLS one does; this means that for the GKLS it is
merely an energy shift while for Redfield it can induce non trivial changes. We
find in chapter 16 that the inclusion of Lamb-shift is necessary to study heat

o The GKLS master equation is time independent, and the generator does not
depend on any information about the state. This often leads to non-zero cur-
rents at time zero, which should not be the case.
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11.2 Heat for dynamical maps

The cumulant equation presented in section 7.1 is a dynamical map rather than a dif-
ferential equation, for that reason finding the time derivative of the generator might
be non-trivial. Doing it analytically is particularly challenging as the derivative of a
time dependent exponential yields

1
4 xw _ / dse1=9X0 L x ()X, (11.18)
; dt

In the weak coupling limit we may ignore powers of the operator X (¢) to approximate
this as

%emp(()) ~ %X(t)p(t% (11.19)
with a similar justification as in section 6.1. Equation Eq. (11.18) makes it hard to
obtain an expression for the heat current, except in some particular cases where the
general expression might simplify. In practice, however, Eq. (11.18) can be obtained
numerically fairly cheaply via automatic differentiation [85, 86] or via numerical
differentiation; in this thesis we use the latter. Once we are able to get this sort of
expressions we consider

ps(t) = A(t)ps(0). (11.20)

ps(t) = A(t)ps(0) (11.21)

We can then simply substitute this in the definition of heat to obtain

Ot) = Tr {HA(t)pS(O)} . (11.22)
Then the heat currents can be isolated from the individual bath contributions

Jp = Tr [H/\k(t)pg(())]. (11.23)

11.3 Heat for Pseudomode methods

A pseudomode equation is after all a master equation of the GKLS form, on an
extended Hilbert space space, so one can expect the same expression as the GKLS
expression would apply namely

Ot) = Tr [HD(p)] (11.24)

However, one needs to be careful, in pseudomodes, the system is not dissipating
directly, the pseudomodes are. Thus the Hamiltonian to be used is the Hamiltonian
of the pseudomode and its interaction to the system, we can extract it from Eq. (9.2),
and it reads

HY = Qublbi + \eA(t) X, (11.25)
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Finally the heat current is given by

Q)= Tr [H}ka(p)] . (11.26)
k=1

Other than that it is a direct analogy to the GKLS equation, this same expression is
usually defined via more complicated arguments [4] but the procedure is equivalent
to the simple derivations we have outlined so far. In the case of the Reaction Coor-
dinate it can be thought of as a special kind of pseudomode and the same equation
applies.

11.4 Heat for the Hierarchical equations of motion

When using HEOM we need to be aware of the fact that heat will depend on the
states of the ADOS of the first tier [20, 44, 69] which will need to be stored during the
simulation. To define heat for this approach, let us recall that from the hierarchical
equations of motion we have

0 k
p(;( - <Z£S ¢ Z )ps + ¢Z Uéé,)...gn,o,...y (11.27)

n= k+1

where k is the number of exponents used to approximate our correlation function
using the methods from section 1.6. Just as before the coherent part will commute
with the Hamiltonian, so that if we identify

Durom(p <<Z5 Z ) +¢ZU(1) [ (1), AM(w)A(w)|,  (11.28)

*k+1

where the first term is associated to the terminator and typically only used for
the Drude-Lorentz spectral Density (typically one considers enough exponents or
Eq. (8.13)). Using this we may write the heat for HEOM in terms of the first tier of
ADOS as

Q(t) = Tr [HDHEOM(p) : (11.29)

To conclude this section we would like to remark that even though these are the
accepted definitions of heat currents in the literature, the results from 16 seem to
suggest that this cannot be interpreted as heat currents in the Non Markovian case.
Further study in this direction is required, as there seems to be heat flow from cold
to hot reservoirs.



Chapter 12

Projection operator techniques

Projector operator techniques are techniques inherited from Non-equilibrium statis-
tical mechanics [B1, 87, 88]. The basic idea behind these techniques is to separate the
complex system which we want to study into the “relevant” (to us), and irrelevant
degrees of freedom by means of some projector operator.

12.1 Projection operators

A projection operator is a map
Pp—p. (12.1)

The projector operators obeys the following properties:
It is a linear i.e. P(ap+ bo) = ap’ + bo'.
o It is idempotent meaning P? = P.
o It is a completely positive and trace preserving map (CPTP).

We need to keep in mind that our Hilbert space of interest will typically be H =
Hs @ Hir, where IR is our subscript for the “irrelevant part”of the system. With
that in mind our projectors of interest are of the form

P=I®A, (12.2)

where A is a CPTP idempotent map on H;g. This form is chosen because product
states are mapped to products states, this way we do not create artificial correlations
between subsystems. Then for pure states we can write:

ps =Pp=(1®A)ps® prr = ps @ Aprr. (12.3)

We then realize than in order for the the expression to make sense we need Aprg — 1.
A sensible choice then seems to be the partial trace on H;g. Then

Pp =18 Trralpl, (12.4)
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Box 12.1.1: Theorem: Valid Projection operators

A projector operator that obeys the desired properties can be written as

Pp= Z Trrr[Aip] ® B; (12.5)

Where {4;},{B;} are linearly independent sets of observables, that satisfy

O TrIR[AiBi] = 5ij

Q ZZ TrIR[Bi]Ai =I;r

* Zz A%F ®B; >0
However in practice it is standard to pick A = [;g,B = p;g it is useful to
know that there exist infinitely many choices

12.2 The Nakajima-Zwanzig equation

Based on the projection operator technique outlined above, one can derive the
Nakajima-Zwanzig equation, which is an exact equation for the dynamics of the
system of interest. It is given by (see appendix B for the derivation)

d

Eps(t):/o dt Ks(t, 1) ps(t)- (12.6)

Where we applied the projector operator P and traced out the environment from
Eq. (B.20). Here Kg(t,t1) is the memory kernel superoperator given by

and
G(t b)) = Telo #2QL0), (12.8)

While the Nakajima-Zwanzig equation is formally exact, it is generally too com-
plex to solve. A common simplification involves approximating the Green’s function,
which yields an approximate memory kernel. For greater computational tractabil-
ity, however even then, a time-local formulation is desirable. This motivates the
development of the time-convolutionless equation, which is discussed in the next
section.

12.3  The Time-Convolutionless (TCL) equation

As mentioned previously we would like to have a time local description of open
quantum systems. To do so one can begin by realizing that one can write (see
appendix B)

p(s) = Gr(t,s)p(t) = Gr(t, s)(P + Q)p(t), (12.9)
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where Gr(t, s) is the backward propagator of the full evolution
Gr(t,s) = Te Js dLi2), (12.10)

and 7. denotes anti-chronological time ordering. Using these (see appendix B for
the derivation) we obtain the time local equation

d
“pult) = K(1)pu(1). (12.11)
Here we assumed an initial product state. IC(t) is a complex object that contains the

Green functions mentioned above. But one can obtain K(¢) perturbatively using

K(t) = a i PLES(H)" = i Q"I (), (12.12)

where « is our parameter for the perturbative expansion i.e. the coupling constant,
and

t

X(t) = / dsG(t,s)QL(s)PGg(t,s). (12.13)
to

When talking about baths that have been centralized 5.1, the first non trivial order

TC'Ly corresponds to the Redfield equation 6.1, while the next order reads

= [ / [ (m L)L) P (12.14)

— PLE)L()PL(E)L ()P — PLIE)L(E)PL(L)L(t;)P (12.15)

Pﬁ(t)ﬁ(tg)m(tl)ﬁ(tm) . (12.16)

In general the n'* order contribution is given by

t) = /Ot dt, /Ot1 dty- - - /Otn} Aty (LOOLANL(E) - L(ta1))oer  (12.17)

where the subscript oc stands for ordered cumulant [41, 42] ( See appendix B). The
TCL equation gives us a systematic way of obtaining higher-order approximations
to the open system dynamics. Furthermore, these approximations are time local. On
the downside, there are problems with invertibility of ¥(¢), which is required for the
derivation to hold, though, some claim it might not be an issue after all [89]. A
problem that has prevented its mass adoption is that the TCL generator depends
on n — 1 dimensional integrals which often need to be computed numerically. This
often makes the simulation too expensive for practical purposes. This problem can
be overcome by solving some of the integrals analytically when possible [18, 90].
However, that is not always the case, and it involves a considerable amount of
work. In the next section, we show that we can obtain these integrals easily using
a decaying exponential approximation of the correlation function, regardless of the
order of the approximation.
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12.4 Using the decaying exponential approximation
in TCL

Whatever the order of the approximation is, when considering Gaussian environ-
ments, the ordered cumulants will be composed of a combination of the system
operators at different times, which we can write in terms of jump operators, and
the product of n — 1 correlation functions that come from the bath operators. The
decay rates and Lamb-shift can always be written down in terms of expressions like

t t1 to ton—2
/dtl/ dt2/ dtg..-/ dton 1C(t— 1) ... Ct — ton1)
0 0 0 0

Xeiwlt:tiwztzi"'iiwnfltliiwnt"*I_ (1218)

Although complicated, notice that if we use the approximations outlined in section
1.6 then this is just a high dimensional integral of an exponential function.

ton—2
Z/ dtl / dtQ / dth_lc]ﬂ@_Vkl (t=t2) e ckne_ykn (t1—tn-1)

zwlt:tsztQ:I: w1t Fiwntn — 1 (12 19)

By doing the integral analytically we will turn this high dimensional integral into a
multi-index sum. Notice that the decay rates in previous sections, were approximated
by a sum of m elements, where m is the number of exponents we used to describe our
two time correlation function, as the sum was over only one index is computational
cost was O(m). However, from the T'C' Ly, expansion with ordered cumulants, we see
that after approximation we will have O(m™) indices in the summation (as it will be
an integral of the product of n correlation functions), increasing the computational
cost, thus for higher order master equations, reducing the number of exponents used
has significant impact on the computational cost of the simulation. However, the
approximation of the high dimensional integrals to this form will remain possible
regardless of the order of the truncation (n). While the idea seems a bit abstract in
this section, we will have a practical example in section 14.2.
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Chapter 13

The Mean Force Hamiltonian

13.1 Introduction

Usually in the theory of open quantum systems, the weak coupling limit is used. Typ-
ically this limit leads to descriptions that are second order in its coupling strength. In
these descriptions, it is assumed that a system interacting with a single quantum
environment will thermalize to the Gibbs state of the system at the temperature of
the environment. That is, assume our Hamiltonian is

HZHS+04HSB+HB. (13.1)

Then the thermal equilibrium state of our system is given by its Gibbs state.
e_BHS

= 13.2
Ps Trg[efﬁHS] ( )

However, the real equilibrium state of the full Hamiltonian is given by [A2, 46, 47,
91, 92]
e BH

Pes = TofepH]" (13.3)

As we only want the information about the system, we now take a partial trace

Trp [G_BH} e BHME
= . 13.4
Trle—PH] Trgle AHumr] (134)

ps = Trp [peq] -

The state pg' is called the mean force Gibbs state. We can also appreciate from
Eq. (13.4) that any finite a@ modifies equilibrium Gibbs state, which has led to
different naming conventions for the different coupling regimes in statics and dy-
namics, as figure 13.2 shows. The ground state if the Mean Force Hamiltonian Hy, g
is not uniquely specified by Eq. (13.4), as it is invariant under the transformation
Hyr — Hpyp + 6 for an arbitrary real constant 6. Commonly, this constant is fixed
by using the gauge [A2, 47, 92, 93]

Tr[e ?"] = Trgle ?"r] Trple ""7]. (13.5)

The figure 13.1 illustrates the difference between the state in Eq. (13.2) and Eq. (13.4).
Using the gauge Eq. (13.5) we can write

Trp |:€_5H] e PHMF

Trg[e—ﬁHMF] TI“B[e_IBHR] - Trs[e—ﬂHMF] !

(13.6)
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“ P

Figure 13.1: Illustration of the thermalization process, the system thermalizes to the
joint Gibbs state on the right rather than the product of local Gibbs states on the left

therefore
BH TI‘B [e‘ﬁH]
TPHME — = 13.7
e Tl P (13.7)
Thus, the Mean Force Hamiltonian is then given by
—1 TI‘B [EBH]
Hur () = o (1), 133
MF(B) B n TI‘B[BfﬂHR] ( )

which determines the Hamiltonian up to a ‘gauge”. We see the expression involves

the full Hamiltonian, thus it is challenging to compute a quantity such as its expo-
nential. In practice one can use approximate techniques to estimate the Mean Force
Hamiltonian. While the literature mainly focuses on the state [91], we will focus on
the Hamiltonian following [A2], our main reason to do this, is that the Hamiltonian
correction can be used to “dress” our system in a similar way that the reaction co-
ordinate (see chapter 10) but without increasing the size of our Hilbert space, akin
to more recent efforts in this direction using the reorganisation energy Eq. (10.11)

[30).

13.2 The mean force Hamiltonian calculated pertur-
batively

To calculate the mean force correction perturbatively we may perform a Dyson series
in imaginary time [A2, 27, 28, 91]. In the following section, we use the notation

LA gauge is needed because the state determines the Hamiltonian up to a term proportional to
the identity. This constant is not relevant for the physics, but we need to keep track of it to obtain
the correction from a given quantum state.
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Dynamics Ultra
strong
Coupling
Wealk Coup.hng Intermediate gtrorllg
(2nd order in o) 4 ling oupling

87

) (Coupling
Weak Coupling Strong Coupllr%g Strength)
Thermodynamics
Statics

Figure 13.2: Naming convention of the coupling regimes in dynamics and statics. In stat-
ics, any coupling for which the mean force correction is non-negligeable is strong coupling.
This figure is reproduced from [91]

A(t) = ettHotHr) Ae~HHo+Hr) We start with the LHS of the Eq. (13.6), which we
represent by the formal expansion Dyson form:

¢~ BHnt — o=BHo ofHo o —BHrrr — o~BHo o= [ db SHu(t) (13.9)
where
0 Hong = Hyor — Ho, (13.10)

which gives us the series expansion:

B B t1
Te It dt Smelt) — / dty 6 Hog(t1) + / dt / dty 6 Hog(t1) 6 Hone(ts) 4 ... (13.11)
0 0

0

Similarly, for the RHS, we have
e PH — e PHoT ey 4t Hsnlt), (13.12)

so that

. B B 131 . .

TefafoﬁdtHsB(t) = H—a/dtlHSB(t1)+()é2 /dtl/dtg HSB<t1> HSB(t2)+. .. (1313)
0 0 0

Finally, one can write

Trple ##]  Trple PHoTe Jg dt ﬁSB(t)]
Trple=#Hr] Trple—PHr]

— ¢ PHo TrB[Te_afoﬂ dt HSB(t)pB], (13.14)

where pp = 7:_133 is the Gibbs state of the bath. Substituting Eq. (13.14) into

A
rple”PHR]

Eq. (13.6), we have:

e~PHnt — o=BHo Ty [T = Ji dt 6Fmi(t) 1 (13.15)
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so that Eq. (13.6) can be written as:
Trp [T (e_ J5 at Ou(t) _ g=a [ dt F’SB“)) ;OB] =0, (13.16)

or in the series form as:

e B i1 th—1 . R .

o1 0 0 0

PN <ﬁSB(t1) Hesp(ts) . ..F[SB(tk)> ) — 0, (13.17)
PB

where (-),, = Trg[ - pgl.

13.3 Mean Force Expansion for Weak Coupling

Now, let us assume that @ < 1, and we expand:
Hyp=Hy+ ol + *HY + (13.18)

so that (SFIMF = aﬁ](\})F + azﬁ](\Z)F + .

Then, we collect terms in the same order of « appearing in Eq. (13.17). we will
obtain the same series as in Eq. (2.12) replacing i — 1. As a reminder for the n'”
order we have

/dtlH](\’jF t) /dtl / W(Hsp(t) ... Hsp(t)) 5, (13.19)
0

where we assumed we have centralized our interaction (see box 5.1).

13.3.1 First-order correction

Let us first solve the equation for the first-order correction, i.e.,

/ dty . (1) = / Y it (Hlss(t))s (13.20)

H{J(8) = (Hsp(B))5 = 0, (13.21)

as we assume that bath operators are centralized so that (B(/))s = (B)p = 0, which

implies H ](\/1[)F = 0. Where we used the fact that the bath Hamiltonian commutes with
the bath’s Gibbs state.

13.3.2 Second-order correction

In this section we provide general formula for second-order correction for mean-force
Hamiltonian. This is often the one in which the literature is most interested because
it is the leading order and that commonly used techniques in open systems cannot
reproduce it completely [94]. Remarkably our expression for the correction does not
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exhibit any poles, which was unexpected as the Lamb-shift correction does. Yet we
also decompose it into bricks that are used to build the Lamb-shift corrections we
find in dynamical equations, which do have poles, and require the Cauchy principal
value to be well defined.

Let us start with the equation for the second-order correction with centralized bath
operators

/ dt i) (t / dt / ds(Hgsp(t)Hsp(s)) 5. (13.22)

Next, we represent the mean force correction as a Lamb-shift Hamiltonian, that is
we will write it in the basis of jump operators, using also Eq. (A.15), to write

HE(t) = Z T (w0, 0 )Mo AT (w) A et (13.23)
= ZTW w, w)et @) AT (W) A(W). (13.24)

Then, the LHS of Eq. (13.22) is equal to:

/B dt ZAT ( 50 (w, W) /B dt e““—““)), (13.25)
0 0
whereas the RHS is given by:
/ dt/ ds Hgp(t)Hsp(s m / dt/ ds A(t)A(s)(B(t) B(s))p (13.26)
— _Z/ dt/ ds e~ AN (W) A(W)(B(t — s) B)s (13.27)
W' 0

t
— -3 AT(w)AW) / dt et / ds ¢ (B(s)B) s, (13.28)
w,w’ 0 0

where in the last line we change a variables s — § —s. Next, according to Eq. (6.34),
let us observe that

1 [t ,
Ct)=(B(t)B)p = o Q) e S(Q), (13.29)
™ —00
so that in imaginary time
R R 1 +o0
(B(B)B) = %/ dQ e S(Q). (13.30)

Finally, the RHS is equal to:

/dt/ ds Heop(t)Hsp(s > ZAT (;ﬂ/foon S()

o0

3 t
X / dt et(“’_w,)/ ds es(”/_m) (13.31)
0 0
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Equating LHS=RHS we get

> M(w,w) A (w)A(W') =0. (13.32)
where
B ] 400 t
M(w,w') = / dt e T(mf)(w,w')+2— / aQ S(Q) / ds 5@~V (13.33)
m
0 —00 0

Finally, we obtain the second-order correction to the mean force Hamiltonian, which
is given by:

1 [t
00,0) = 5= [ d S(O) D, ), (13.34)
™ —0oQ
where
B t t(w—w') ,s(w'—0)
dt [, ds e e
Dipi(w,w', Q) = ! foﬁ ; : (13.35)
fO dt et(w—w’)
Performing the integrals, we obtain
1 — W (P _ 1
Dipg(w, W', ) = I G ) (13.36)

W =0 (w—=Q)(w —Q)(eflow) — 1)

Now, at the beginning of the section, we promised no poles. While there seemingly
are, all the limits are well defined and we do not require principal value integration
[A2], namely

P DB -w)+1) -1

. / o
wl/linﬂ Dp(w,w’, Q) = o @1 (13.37)
. Blw — Q) + PO 1
! —
U_l,grgl) Dmf<("}7('u 7Q) - (w, Q) (66(9 W) _ 1) ) (1338)
Q) — P 41
lim Dyl o, Q) = D@ =D =" 4 (13.39)

bR Blw— Q)2

The fact that it is well-behaved at these values is what we meant by no poles.

13.4 Quasi Steady-state corrections

Approximate descriptions, such as master equations, have generators whose steady
state deviates from the mean force one. In this section, we study how to calculate
the Hamiltonian correction due to those methods.

13.4.1 General method

We look for a solution to the equation:

L[] =0, (13.40)
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where L is the generator of the master equation and g is its stationary state[A2, 94].
We expand the generator and steady-state in the series, i.e.,

Llp] = Lolp] + o> La[p] + a La[p] + . .. (13.41)

0=100+a’0+atos+ ..., (13.42)

so that we have the following set of equations (for each order in «):
Lo[oo] =

0
Lolo2] + L2[0o] =0
Lolos] + Lo]oa] + L4]oo] =0

13.43
13.44
13.45
13.46

~~ I~
~— ~— ~— ~—

Hence we postulate the stationary state to be:

(2) (4)
Q — 6_6(H0+042Hst +a4Hst _.I_ . ) = QO —I— a2g2 —'I— a4Q4 —‘I— ceey (1347)
so that

00 —e—PHo (13.48)

B
0y = — e PHo /dt etlo %) e=tHo (13.49)

5

04 = 7ﬁH0 /d tHoH 7tH0
0
t1
+ e—BHo /dtl /dtz €t1HoHS(S)e—t1Hoet2HoHs(t2)€—t2H0' (1350)
0 0

We start with representation of the second-order correction in the basis of jump
operators:

HY =3 "1 (w,w) Al (w) As(w). (13.51)

w,w

Note that contrary to mean force correction, the above form assumes that Bohr
spectrum is nondegenerate. Indeed, then pairs of jump operators span linearly all
the space of operators of the system. In accordance, we have the following expression
for o9, i.e.,

B
= Z —e PHo(sY (w,w’)/ dt e AT (W) Ag(w)e o (13.52)
0

==Y T (w,w)a(w — w)e A (w) Ag(w), (13.53)

where we define:

B 1—e Pw
a(w) :/0 dt e = {B © Zio‘ (13.54)



100 SUMMARY OF CORRECTIONS

Higher orders can be obtained in analogous fashion. The 4" order is of particular
relevance. It has been shown [A2, 46, 47, 91, 94] that it’s the lowest order contribution
to the diagonal. The calculations are different for different dynamics considered,
explicit expressions for each correction and relationships between them can be seen
in [A2]. What we would like to remark here is that master equations at fixed order
n have finite o while dynamical maps at the same order have many contributions
Eq. (11.18). Those contributions may be canceled out. For this reason we call them
quasi steady instead of steady state corrections. For example in the cumulant they
vanish in the actual dynamics, nevertheless their presence seems to indicate slow
relaxation which often helps the cumulant equation have higher fidelity to the exact
dynamics [A3].

13.5 Summary of corrections

Both the quasi steady state correction and the Lamb-shift correction can be found
in a manner similar to equation Eq. (13.34) (see [A2] for derivations)

+oo
T(Cor)(w,w/) = 2i7)/ dQ Dcor(wvwla Q)S(Q)7 (1355)
m —00

Where D, depends on the approach used (either a master equation - GKLS or
Bloch-Redfield -, the mean force expansion, or the cumulant equation). The table
13.1 shows the different kernels for different methods.

GKLS GKLS (non-secular) Bloch-Redfield Cumulant
Drs(w,w, Q) ﬁ
Dys(w,w', ) 0 32+ i) H 20 —w) = 6(Q — W)
Dy (w,w, ) 0 general form not known
Dy (w,w', Q) 0 Dis(w,w’, Q) Dpe(w, ', )
— B2 4 Bl
Dmf(wa W, Q) . 6(00*_5?2( 2
() (D 1)
Dmf(wa (U/7 Q) WII,Q - (w_Q)(w/_Q)(e,B(w_w’)_l)

Table 13.1: Explicit kernels Dcq,(w,w’, Q) according to the representation Eq. (13.55)
for all Hamiltonian corrections, i.e., cor = LS (Lamb-shift) , cor = mf (mean-force) and
cor = st (quasi-steady state).

These corrections summarize results in [A2]. The main difference in this approach
with respect to others in the literature [95, 96], is that rather than computing the
higher order contributions to the state, we do it at the level of the Hamiltonian, the
advantage of doing this instead of considering the state directly, is that one can use
it as a “Hamiltonian Dressing” [80, 97, 98] which leads to corrections of the state.
While the general expansions for second order corrections in the state are hard to



EXTRACTING THE SECOND ORDER HAMILTONIAN CORRECTION FROM A
DENSITY MATRIX 101

compare with previous results in the literature directly, in section 13.7, we show that
the Gibbs’ state of our “Dressed Hamiltonian” corresponds to the formulas in the
literature [95, 96] when this state is Taylor expanded to the relevant order.

13.6 Extracting the second order Hamiltonian cor-
rection from a density matrix

The methods treated in this thesis, are equations for the density matrix. Once the
density matrix for equilibrium is found, we need to extract the second order correc-
tion from it, to be able to compare these to the mean force Hamiltonian corrections
obtained in this chapter. We start by obtaining the steady state density matrix,
which is given by a Gibbs state of the form:

e BH
o = 13.56
p Z (13.56)
By taking the logarithm, one obtains
log(Z) +log(p.) = —FH. (13.57)
We then expand H
H=Hy+o*Hy+a*Hy+ ..., (13.58)
substituting in Eq. (13.57)
log(Z) +log(pa) = —B(Hy + o*Hy + o Hy + . ..). (13.59)

We now impose our gauge Tr[H| = 0. Then tracing out both sides we obtain
1
log(Z) = —3 Tr[log(pa)]- (13.60)

By substituting back into Eq.Eq. (13.59) and rearranging terms one obtains

= [% (5 Tllos(pn)] ~los(o) — (Ho+0(h)]. (1361

Finally as o approaches zero

lim Hy = lim % [% (é Trflos(pa)] — log(pn) ) — Ho|. (13.62)
Higher order corrections to the Hamiltonian can be extracted in a similar fashion. In
this section, we use the reaction coordinate mapping as the true solution, similarly
to [A2, 81]. The reason to choose reaction coordinate over HEOM or Pseudomodes
is that, the reaction coordinate is a Hamiltonian mapping, that depends on the
spectral density only and not on temperature. Thus we will have the same accuracy
for every temperature, unlike in HEOM and Pseudomodes where we will have to
perform different fits. This of course restricts the spectral densities we can study,
but it is something we are happy with in this section.
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13.7 Comparison with Lamb-shift Hamiltonian and
the steady state - qubit case

In this section, we consider the particular case of a qubit coupled to a Bosonic bath
given by

Wo >
H= —702 + zk: Qkalak + S;ak(ak + aDa (13.63)

where we take S to be a general interaction operator in the pauli basis:

S = fio, + foo, + f30, (13.64)

Writing the correction in the jump operator basis Eq. (13.51) and this interaction,
the second-order correction to the Hamiltonian takes the form:

27 2y T —w) =T
H(Z) _ 3 COI‘(07 0) + ‘fl cor(waw) f.f3( COI‘(07 w) COI‘(w7 0)) : (1365)

T A (Tear(0, =) = Teor(@,0)) 2T e0r(0,0) + [ Teor(—0, —)

where cor indicates the Lamb-shift (LS), steady-state (st) or mean-force (mf) cor-
rection, and f = f; —ify. We can rewrite this correction as a linear combination of
the Pauli matrices so that:

H?) = Al + Bo, + Co, + Do, (13.66)

bik

A= 20 e0r(0,0) + = (Teor(w, w) + Teor(—w, —w)), 13.67

: (13.67
B = f1f3(Tcor(07 _w> - Tcor(wa 0))7 (1368)
C= f2f3(Tcor(07 _w) - Tcor(w7 0))7 (1369)
D= %(Tcor(waw) - TCOT(—W7 —CU)). (1370)

We can see how the different approaches differ qualitatively by looking at the struc-
ture of the different Yo (w,w’) given by each approach. It is important to remark
that any approach that performs the secular approximation will have both B and
C equal to zero, meaning the correction will be diagonal and as such won’t be able
to describe the off-diagonal elements of the steady states accordingly. On the other
hand, nonsecular approaches such as the Bloch-Redfield equation, will have non-
diagonal corrections, leading to a more appropriate description of the off-diagonal
elements of the correction as well as steady state coherences. Substituting the results
of table 13.1 and using the spectral density

dywwy,

9
Jw)=a (w2, — w?)2 4+ (2Tyww,e)?

(13.71)

we can see from the figure 13.3 that when the coupling is weak, the mean force and
reaction coordinate approaches match exactly. A small discrepancy is seen when the
width (7) is augmented, but this is due to the limitations of the reaction coordinate
mapping with only one iteration. We can also see that the cumulant equation quasi-
steady state correction is in good agreement with the mean force solution, however,
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Off-diagonal (y=0.001) Diagonal (y=0.001)
. ‘ . . - Buwg
1 2 3 4 5 o0sf
—00025
002
00047 )
R 001}
-0.006 -
ooms} i ; 3 i 5 Buo
001}
0010
012} 0021
_ Diagonal (y=0.01)
Off-diagonal (y=0.01) .04
. . N N N i d
1 2 3 4 5 By 0.03F 4
~0002 |
0.02f
0004y LA ) 8 8 8 8 8 8 8 8 8 e
001
—0.006 [
0008 1 2 3 n 3 Bug
0010 F 001§
—0.012f -0.02
— & 59 (Redfield & Cumulant) — e s’ (Redfield & Cumulant)
Re[z?T] (Redfield & Cumulant) » Reaction Coordinate Zﬁ,’g% (Cumulant) — Zg';gs (Redfield)
Im[3}§] (Redfield & Cumulant) * Reaction Coordinate

Figure 13.3: In the figure we present the diagonal and off-diagonal corrections, com-
puted for the spin-boson model (Eq. (13.63)) for the spectral density Eq. (13.71) and for
wre = 20wp. As expected, we observe a very good agreement for v = 0.001, whereas some
discrepancy is present for v = 0.01. showing the limits of the reaction coordinate method.
Reproduced from [A2]

as mentioned before the quasisteady state is different from the steady state and the
cumulant equation does not exhibit corrections to the diagonal. The steady state
was obtained simply from the Gibbs state of the reaction coordinate. We can see
how the different approaches differ qualitatively by looking at the structure of the
different Yo (w,w’) given by each approach.. Let us examine the second order mean
force correction, using the information from the table 13.5, and substituting the
relevant Bohr frequencies (—w, 0,w) for the Hamiltonian Eq. (13.63):

~ Sps(—w) = Sps(w) | .S(0) — (S(w) + S(~w))

TLs(O, —w) — TLS(w, O) = 5 +1 1 . (1372)

Let us compare this with the mean force correction

1o
T b(0, —) — Tont(w, 0) = —— / d0S(Q)Cw, ), (13.73)

2 J_o

where

wW?(1 = ™) coth[ 5] + (1 + €‘m)9“> (13.74)

C(w,Q) = ( Q02 — w?)

Additionally, our coefficients satisfy detailed balance conditions such that:

S(—Q) = S(V)e Y, C(w, —Q) = C(w, Q)e (13.75)
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Using those we see that S(—Q)C(w, —§2) = S(2)C(w,?) and

1 [t
L0, ) = Yor(,0) = o= / 40S(Q)C(w, Q). (13.76)
0
Let us now separate S(2) into its symmetric and anti-symmetric parts:
1 [619)
Ss(2) = Q(S(Q) + S(—Q)) = J(2) coth (7) (13.77)
1
Su(0) = 5(S(2) = S(-9) = J(9) (13.78)
Then we may write:
K(w) = Te(0, —w) — True(w, 0) (13.79)
9 [+ w25, () coth[22] + S,(Q)Qw
== dQ 2 13.
7r /0 ( Q02 — w?) (13.80)
2 [T w?J () coth[22] + J () coth[ £ Qw
_ ;/0 00 ( o . (13.81)
Let
w
Hg = —?"az +HE), (13.82)

where H,Sf} is the second-order mean force correction. To obtain it, one substitutes
the coefficients from the table 13.5 into Eq. (13.65). Then we may find that

Tr|o,e PHs tanh 2 w 2,)2
(00) = r[ng | tanhlya? + (5 + a?2)0] (13.83)
Tr[e-#Hs] V2 + (5 4 a2z)?
where © = % f) f3K (w), 2 = | f]*(Teor(w, w) — Teor(—w, —w)), if we expand it up to
the second order of «, i.e.,

(02) = —%“’ tanh[%"] +0(a?), (13.84)

and the final result becomes:

a?fifs wl [ co % w w2
(o) = —* wi:f tanh [%}/0 ) (‘](sz ihc(uz ) _Q(Q;](—QLZQ)> , (13.85)

which can be rewritten as

40> r th (52 1 1
(0,) = — O‘W{Tlﬁ tanh [%“’} / d0J(9) (C(;p (_2w)2“ ook 5) - (13.86)
0

To compare with the literature let w — —w,, f3 = cos(6), f1 = sin(#) then

() = 2025mC0) {% jm(m coth (%),

2 _ 2
TWy Q02 —wz

0

AN ‘](Q)> . (13.87)
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which is the Eq.(46) in the supplemental material of [95] up to a factor of 7! due
to notational differences. The exposition of the mean force correction here in terms
of Hamiltonians is equivalent to the section results there for the weak coupling limit
on states. On the other hand the diagonal correction is given by

Tr[o.e 5] B (£ +a’z)
Trle=PHs] /22 + (2 + a2z)

<UZ> =

= tanh {ﬁ\/xﬂ + (g + a2z)2} (13.88)
Expanding it up to second order in a we get

= tanh[%}] +

Tr [azefﬁHS}

a?Bz
(02) = W

2

<1 — tanhQ[%w]) +0(a®).  (13.89)

using Eq. (13.55) one can write z as

— ile ~ ﬂ co @ w(? — w? w? 2) sinh(Bw
T B /0 By th<2)<ﬁ (@ =)+ (74 ) sinb ()
+ 2wQ(1 + Cosh(ﬁw))] : (13.90)

Using this, we may finally write the diagonal correction as

(0.) —(0.)0 = /0°° g% 40w + coth (?) <5w sech? (%) (0 — )

— 2 (w4 Q%) tanh (%‘”))] : (13.91)

If again we let w — —w,, fi = sin(f) then

w & cO B2
(0.) — (0.)0 = 202 sin(h)? (ﬁquechﬂ%]/o g J<£(2g)22 _ﬂ;(Q)Q )

Buwg\ [dQ J(Q)coth (£2) (w2 + Q?) >dQ 4w, QT (Q)

which is the equation Eq. (42) in the Supplemental Material of [47], and up to a
factor of (w)~! is the same expression as Eq. (47) in the Supplemental Material
of [95]. Those factors are notational differences related to those we mentioned in
section 1.1, luckily in this case this notational differences are easy to spot, but this
is not always the case.
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Chapter 14

The Spin Boson Model at zero
temperature

The spin boson model at zero temperature with the rotating wave approximation
(RWA) is one of the few systems to have an exact solution in the field of open quan-
tum systems. This exact description of course is somewhat limited, in the sense that
the original system underwent several approximations; nevertheless, this exact mas-
ter equation provides us with a nice example to test the methods we have developed
so far. This chapter loosely follows the descriptions in [B1, 99] with the addition
of modern approaches. One thing to keep in mind is that in this chapter, only the
exact master equation and the Volterra equation Eq. (14.28) employ the RWA, the
other methods agree because the simulations are run with parameters for which the
RWA is valid. Consider the Hamiltonian

H=Hs+ Hp+Hj, (14.1)
——
Hy
Hs = wyoyo_, (14.2)
k
H =0, ®B+0_®DB, (14.4)

k

Notice we use Hg = wgo,o_ rather than the standard Hg = %o, the reason to
choose the former is that it makes the algebra in this section a little easier, as we
don’t need to carry a factor of j:% in some commutation relations.. While we will
apply the methods developed in Part II of the thesis, we will briefly review how to
obtain an exact master equation for this system in the case of T'= 0. For methods
other than T'C'L which was derived using the exact master equation, and the exact
solution, we will consider the Hamiltonian without the rotating wave approximation.

Their agreement will validate the usage of this approximation.

14.1 The exact master equation

Let us introduce the states

o) = 10)s ® [0) 5, (14.6)
1) =[1)s®[0)p, (14.7)
|¢k> = |0>5 ® |k>B, (14.8)
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where |k) 5 denotes the state with a single photon in mode k. This states span all the
possibilities of a single excitation in this model. These states will be enough because

N=o,0_+ Z blbk, (14.9)
k
[H,N]=0. (14.10)
which means that the Hamiltonian conserves the number of particles. If we start
with a single excitation in the vacuum, the three states we mentioned before will be

the only ones involved in the dynamics. In the interaction picture the state of the
full system obeys

o(t) = —iH()9(t), (14.11)
with
H;(t) = o, Be@omwrlt | 5 Bieilwown)t, (14.12)

Consider an initial state of the system of the form

$(0) = co(0) [tho) + c1(0) [¢1) +ch ) [vn) . (14.13)

since [1o) , [11), [t) are the only states involved after time ¢ the state will have
evolved to

o(t) = colt) [to) + cr(t) [¥1) +ch ) [9k) - (14.14)

We then use the equation of motion to find the evolution of ¢, ¢y, cx. But first,
consider

t) |tho) = (o Be'@omwt 4 5 Bleiowilt) o) @ |0), (14.15)
= (14.16)
Hi(t) [P) = (o Be'™om)t 4 g Blem oty 1) @ [0) (14.17)
= gee o oy (14.18)

k
Hi(t) |¢r) = (04 Be'@omw)l 5 Blemiomerlt) 10y @ |k) (14.19)
= gee’ T ) (14.20)

k

We can then just insert this into the Schrodinger equation in the interaction picture
to obtain

Co(t) [to) + 1(t) |vn) +ch ) [Whe) = —icr(t) D gre o [y
k

— i > en(t)gre’ 0 iy ) (14.21)
k
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By using the fact that the states are orthogonal we find

co(t) =0, (14.22)

Git) = =iy en(t)gre’ @), (14.23)
k

Cp(t) = —icy (t)gre o wr)t, (14.24)

We then need to solve the set of differential equations, as mentioned before we
assumed that we have the oscillators in the vacuum, meaning ¢ (0) = 0. We then
solve the equation for ¢ directly which results in

t
Golt) = —i / dsey (s)gre—io-n)s. (14.25)
0

We then insert this formal solution into the first equation

t
ait) = — ngei(“’owk)t/o dscy (s)gre womwn)s (14.26)
!

t
0

= —/ dscy(s) Z |gi,| et o mwn)(t=2) (14.27)
k

= —/0 dsci(s)f(t —s), (14.28)
where

Ft =)= |gelei@o 0t — Ty, [B(t)BT(s)pB] gin(t=s), (14.29)
k

We can identify f as the two time correlation function (see section 1.1) times a
phase. Using the equations we derived the density matrix of the qubit which can be
written as

po(t) = Tra |0(t)6' (1) = 'Cl((t))l 1 C_Orl((t)” ~ (14.30)
C_1 t Co — |C1 t 2

By taking a time derivative we obtain

Lle () @)

ps(t) = ' . (14.31)
alt)ey  —gla®)P
Notice that
0 0
o_ps(t)oy = : (14.32)
0 e(t)?
1 cq (1 2 Ecl(t)
5{0_4-0——’ pS(t)} = |1< )| ? ) (1433)
Cl(t)C() O
2
0 %Cl(t)
o o, ps(t)] = B . (14.34)
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Then let us define the quantities

() = — (2% + 253) , (14.35)
S(t) = — (2% - Zgg) : (14.36)
so that

03150600 .
N0 = R0~ 0 (14.38)
~ Llealt)l (14.39)

Armed with these definitions we may now write
S [ OF —ems e

—emiS(t) (D) 0P

= P00 0] +90) (7-pit)os ~ Gloso ). (14

The exact master equation Eq. (14.41) is already in TCL form (it is time local). We
can now proceed to show that the TCL expansion to any order gives us an equation
in this form, we begin by expanding v(¢) and S(¢) in powers of the coupling strength

Y(t) = o yan(t), (14.42)
S(t) = i " Son (). (14.43)

Then notice that o, is an eigenoperator, of the generator of the exact master equa-
tion

KezactOy = —i[?mra, 14+ ~(t) (a coy — %{(Lra, }> o (14.44)
— —w@ (14.45)

The generator of the exact master equation is related to the TCL generator by
Eq. (12.17) so we have

0 t t1 lon—2
Kexact0+ = Z OéQn /dtl /dtg s /dtgn_1<£(t)£(t1)£(t2) Ce ‘C(th—l)>ocO—+' (1446)
n—1 0 0 0

Using the fact that £(t) = —i[H/(¢), -] we can find

L(t)[oy] = io,Blelwowrlt, (14.47)
L(t)L({)[oy] = —04 @ (BB + BIB) ¢lomwwt=h), (14.48)
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By taking the average with respect to the thermal state and using the fact that at
zero temperature then mean number of photons in the bath is zero then

(L)L) os] = —o f(t - ). (14.49)

Which allows us to write

00 t tq tan—2
’Cea:actO'-t,- — Z(_l)na2n/ dtl / dtQ . / dth_l
n—=1 0 0 0

X (f(t — tl)f(tl — tg) R f(tgn_g — t2n_1>>ac o4, (1450)

by direct comparison se see that

" e 00 t t1 ton—2
M :Z(—l)”oﬂ"/ dtl/ dtz"'/ dtzn
n=1 0 0 0

X (f(t — t1>f<t1 — tg) e f(tgn_g — tgn_l))oc . (1451)

Where oc stands for ordered cumulant. The T'C Lo, equation corresponds to truncat-
ing the sum to n, n = 1 corresponds to the Redfield equation we have been studying
so far. While n = 2 yields

'7( +'LS4

/ it / dt / dts (F(t — 1) f(ty — 1) f (2 — ), (14.52)
_ /0 dt, /0 dt /0 dty (F(t — 1) f(ty — t5) + f(E—t) (b1 — 1), (1453)

where 7, is the 4" —order contribution to the decay rate and Sy(t) to the Lamb-shift.
We will now show how our method for approximating decay rates can be used in
the TCL equation in practice (see section 12.4)

14.2 Using the decaying exponential approximation

in TCL

One nice thing about the T'C'L equation is that in the way we have presented it the
correlation functions are always ordered in a way that allows for direct integration
as their arguments are always positive, thanks to the ordered cumulants and time
ordering. This allows us to use the same approximation we used for second order
descriptions (see 6.2 and 7.3) to quickly compute the decay rates and Lamb-shift
contribution without the need for high-dimensional integration and for arbitrary
spectral densities. While we present it for this simple example, the general case!
will just include phases due to the jump operators and will remain analogous (see
[B1, 18, 89, 90] ). This example was chosen because it allows us to concentrate on
the decay rates and Lamb-shift without paying the price of the summation over the
combinatorics of Bohr frequencies.

'We mean the general TCL equation Eq. (12.6)
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If we follow the same procedure as in sections 6.2 and 7.3 for the fourth order
contribution of the TCL equation, we obtain

y(t) +iS(t) Chy Chy
( 2 )4 =2 (ivg, + wo)(ive, + wo)

k1,k2
k1Ko
eft(vk2 —iwo) eft(vk1+vk272iwo) 1
X + . .
Uiy — Uk Vg, — W Wy — Vg,

+ (t+ 1 . _ 1 - + 1 )e—tvk1+it2w0:|
Vg, — Wo Vi, — Wo Vg — Uky

c —2t (v —1w Y —t(vg —iw
b3 o [ ) (g (s

Notice that the decay rates in previous sections, were approximated by a sum of
m elements, where m is the number of exponents we used to describe our two time
correlation function. As the sum was over only one index is computational cost was
O(m). However, from the T'C'Ls, expansion with ordered cumulants, we see that
after approximation we will have O(m™) indices in the summation (as it will be
an integral of the product of n correlation functions), increasing the computational
cost, thus for higher order master equations, reducing the number of exponents used
has a significant impact on the computational cost of the simulation. However the
approximation of the high dimensional integrals to this form will remain possible
regardless of the order of the truncation.

14.3 Turning the Integro-Differential equation into
a system of ODES

For the simple model studied in this chapter, the dynamics is given by Eq. (14.26)
t

ér(t) = — / dsey(s)F(t— s). (14.55)
0

Now if we assume that we can represent our environment’s two time correlation
function as a sum of decaying exponentials (See 1.6) then we have[l, 100, 101]

N
)= e ™, (14.56)
k
hence
N t
cit) = — Z/ dscy(s)cpe™ =9, (14.57)
k, 0
If we let

t
yr(t) :/ dscy(s)cpe ), (14.58)
0
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then
at) ==Y uslt). (14.59)
To find the yx(t) we simply take the time derivative of Eq. (14.58) resulting in

Ur(t) = c1(t) — v /Ot dsc (s)cpe™ =9 (14.60)
= c1(t) — vry(t), (14.61)

where we used

d b(x) e »
i ([ ) = o) 52— st 452
b(x) 0
PRARRES 14.62
+/Q(z) axﬂ t)dt ( )

To obtain the dynamics one then solves the system of ODES

at) == (D), (14.63)

Subjected to the initial conditions
y(0) = 0. (14.65)

With this change the Volterra equation can be solved as a set of differential equations.
We expect this way of solving Volterra equations will be useful in the field beyond
this simple example.

14.4 Analytical Example: A Lorentzian Spectral den-
sity

Generally, the integro-differential (Volterra) equation Eq. (14.26) cannot be solved
analytically, requiring the use of numerical methods. These approaches include di-
rectly solving the equation with techniques like the finite element method or convert-
ing it into a system of ordinary differential equations (ODEs), as was done in the
previous section. In the specific case where the correlation function can be expressed
as a single exponent, an exact analytical solution exists [B1, 19]. We will use this
solution to validate our proposed numerical scheme.

Let us consider 2

1 A2y
J = — 14.66
() 27 (wg — w)? + N2’ ( )

2The fact that this spectral density is not zero at zero frequency is rather problematic [29]
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Numerical
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0.01
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t

Figure 14.1: The figure shows the result of the simulation using our numerical approach
in terms of the system of ODES, and the Analytical solution. The parameters for the
simulation are A = 0.05,y = 0.17

Then we find that

. o0 . 1
f(T) — ezwo‘r/ J(w>671w7 ~ 5)\"}/67)\2 (1467)
0

in this case we can solve the Volterra equation exactly , by using the Laplace trans-
form on Eq. (14.26)

L(c1(t) =—-L (/0 dsci(s)f(t — s)) (14.68)
sCy(s) — C1(0) = =C1(s)F(s), (14.69)

where F(s) = 2(§—i/\) this allows us to write
Cils) = — 210, (14.71)

s2 4 sA+ 2 '
By taking the inverse Laplace transform and using d = /A? + 29\ we finally obtain

a(t)=e 2 (Cosh (%) + gsinh (%)) . (14.72)

Figure 14.1 shows that out way of turning the integro-differential equation to ODEs
using an approximation of the correlation function, matches the numerically exact
solution Eq. (14.63).

14.5 Beyond Analytical Spectral densities

In this section we will explore the dynamics of our model under two previously unex-
plored cases. This will also allows to compare the T'C' L4 equation with the Redfield
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Figure 14.2: Behavior with an Ohmic Spectral density Eq. (1.99) with s = 1, w. = 5 and
a = 0.01. a) shows the weak coupling limit where all methods agree. b) shows the strong
coupling a = 0.2, where we see evidence of the localization-delocalization phase transition
even when using the RWA c) shows the localization delocalization transition for strong
coupling in the RWA model

and cumulant equations in this simple scenario as well as test our numerically pro-
posed scheme for the Volterra equation by comparing its result to the Hierarchical
equations of motion for our model.

As a first example we will explore the dynamics of this model under the influence of
a Ohmic spectral density, where we expect all the approximate methods to do fairly
good in the weak coupling regime. We also expect those approaches and Eq. (14.26)
to break down in the strong coupling regime where the spin boson model has the
localization delocalization phase transition [A1, 15, 102]. The figure 14.2 shows the
behaviour of the solutions under two sets of parameters, overall we find good agree-
ment in all methods when the coupling is weak, but if we increase either the cou-
pling strength or the cutoff (both increase the value of S(wp)) solutions diverge
significantly.

An interesting feature of the spin boson model is the localization-delocalization
phase transition [A1, 15, 103]. In simple terms that phase transition is a change in
the final state of the system from the localized ground state to a delocalized one.?.
Up until recently it was thought that counter rotating terms were necessary for such
a transition, however, using Variational Matrix Product states (VMPS) Wang et
al.[104] were able to show that it is possible to have that transition in the rotating
wave approximated regime.

Now that we have unlocked the simulation of the exact solution with the Volterra

31t is typically studied with a o, rather than a o, system Hamiltonian. The terms localization
and delocalization are not the most appropriate here
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Figure 14.3: a) Spectral density under consideration, the dashed line is the effective
spectral density, namely the spectral density that corresponds to the decaying exponential
approximation, the inset shows the spectral density near the frequency of the two level
system, b) The correlation function under consideration, again the effective one refers to
the approximation. ¢) Decay of the population with all the different methods for the first
value of wy (the red line in the inset of subfigure a) d) Decay of the population with all
the different methods for the second value of wy (the blue line in the inset of subfigure a)

equation, a natural question is whether this simple model (with the RWA) also
sees the phase transition in the same way the full spin boson model does, and
how much it differs from a simulation that takes the counter rotating terms into
account. The answer is it does as 14.2 shows. while it does show the transition for
the same parameters the simulation cost is way less, however the steady states are
significantly different, which agrees with the fact that one expects counter rotating
terms to become important in the strong coupling regime.

As a second example we consider a structured spectral density taken from [31] where
the data for the so called Huang-Rhys factors of experimental data are provided. We
rescale the spectral density so that the coupling to our qubit is weak. The data for
the spectral density is in the appendix C as well as the rescaling done. In Figure
14.3 a) we can observe the rescaled spectral density in arbitrary units as well as the
values of J(wp) for the two values of wy chosen, the two examples ¢) and d) show
that while T'C'Ly is better in one of them, the fourth order correction seems to take
the dynamics away from the exact solution in the other, which is consistent with
the results in [90] where they see that T'C'Ly can be better than T'C'L, for a certain
regime of parameters.

Finally, Figure 14.3 provides clear evidence against the belief that master equations
cannot be used when dealing with structured spectral densities; however, when used
within their established regime of validity, Non-Markovian master equations can
indeed capture the dynamics of open systems in structured environments with high
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fidelity. Furthermore, approximating the decay rates makes these simulations cheap,
as the cost of the computation of the decay rates is O(m) where m is the number
of exponents needed to represent the environment. We hope this combination of
techniques proves useful to others in the future.



Chapter 15

The Spin Boson Model

In the previous chapter we considered a spin-boson model, applied the rotating
wave approximation and considered zero temperature. This section considers the
spin boson model without the rotating wave approximation and coupled to the
environment through an arbitrary operator, which is sometimes called the Non-
equilibrium spin-Boson model [98]. For generality we will consider the most general
Hamiltonian we can get for a simple Spin-Boson model, which is given by:

w
H= 70024- wka};ak‘i‘zgk(flax_"féo—y + f30.) (ar + af), (15.1)
N—— k k
Hg ~ ~ 7N N~ -
Hp Hjp
(CL) <gz> (b) <0z> (C) <0z>
<w$@<ax> <gy> <gx> <gy> <oX>
Thermalization NO SSC Same Energy NO SSC

Figure 15.1: a) The interaction Hamiltonian is orthogonal to Hg, in this case the system
thermalizes and no steady state coherences are generated. b) The interaction Hamilto-
nian is neither orthogonal nor parallel to Hg, in this setting steady state coherences are
generated. c¢) The interaction Hamiltonian is parallel to Hg, this is the pure dephasing
case.

The system can undergo three types of dynamics, namely thermalization, the forma-
tion of Steady State Coherences (SSC)', and dephasing. The Steady-state coherences
arise when composite interactions are in place, meaning there is an interaction that
is both parallel and orthogonal to the system Hamiltonian Hg = “2= the figure
above illustrates the different cases that rise in a Spin-Boson model depending on

the interaction Hamiltonian H;

 Figure 15.1(a) shows the case in which we have an interaction that is orthog-
onal to Hg 2, the system is driven to a Gibbs state at the temperature of the
bath. No steady state coherences are generated.

1Steady state coherences are mean force corrections in the off-diagonal (see 13)
2In this context we say an an operator is parallel to another if they commute and orthogonal if
the commutator generates a different member of the SU(N) group.
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o Figure 15.1(b) shows an interaction that is neither orthogonal nor parallel to
Hg but that instead is made of a composition of both orthogonal and parallel
components, in this setting steady state coherences are generated

» Figure 15.1(c) illustrates Hg parallel to the interaction. In this case, the pop-
ulations of the system are not driven towards the Gibbs state at the bath’s
temperature, only coherences evolve and they go towards zero.

In the reference [A3], we obtain remarkably simple expressions for the dynamics
of this system using the cumulant equation. In this section, we will reproduce and
extend the results of that paper, by conducting a similar study using all of the meth-
ods outlined in the thesis so far, and seeing how a different spectral density affects
those results. In particular, in the paper we used an Drude-Lorentz (overdamped)
spectral density

J(w) = —Q/EODWZ.

v Fw

This spectral density is easy to use in practice, due to its pole structure. However,
there are several concerns about the physicality of Drude-Lorentz (overdamped)
spectral densities at low temperatures [29]. We justify its use because we work in
the limit where this is obtained from an underdamped spectral density

(15.2)

N Tw
Jy(w) = o 15.3
U( ) [((.U(Q) . w2>2 4+ szz] ) ( )
2 2
in the limit of I' > wp, where v = WF—U, and \op = ;J—‘% . This regime is free of the
issues that make the former unphysical.
0.020
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_ _01s
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Figure 15.2: Underdamped vs Drude-Lorentz (overdamped) spectral densities. a) Shows
parameters where the Drude-Lorentz (overdamped) spectral density is a good approxima-
tion of the underdamped case (Ay = 0.2wp, I' = 10wp) b) Shows parameters for which
they differ, all are the same except I' = 0.05wyq

In this section we will explore a bit the underdamped regime before quoting the
results in [A3]. The underdamped spectral density induces underdamped oscillations.
As its name suggests, these oscillations can exhibit revivals both in coherence and
population in the underdamped regime. This population revivals are not captured
by second order master equations even in weak coupling, thus besides coupling we
need to consider the width of the spectral density, this fact is usually phrased as
“We assume the relaxation time of the environment is much faster than the one of
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the system” . This just means our correlation function decays to zero fast compared
to the relaxation time of the system, this is broken for correlations that take long to
decay, which correspond to narrow spectral densities, which make master equations
invalid even in the weak coupling regime (see figure 15.3a) . As an example, consider
a spin coupled to a bath at fixed temperature, and coupling constant, but with
different widths (I'). To further illustrate another point the simulation is done at
T =0.

1.oL¢ RC 1.01‘ .
oot | —fieon | o — fige
i‘ { ﬁ GKLS h ’ ”\ | ® . — GKLS
~06(4 ! 1 . , ~06[4 1| !
il gt A
i
AR 02 ¥
MLk oI
0 2 4 6 8 ) 2 4 6 8
At At
(a) T = 0.05wp (b) T' = 0.4wo

Figure 15.3: Spin boson model, with different widths the spectral density parameters
correspond to those of figure 15.2, except for I', we used T' = 0 for the simulation. We
can see that when I' is comparable to wy master equations already give good results,
similar results are obtained when I' > wg, but when it is small they deviate significantly.
Figure (a) reproduces figure 3 from [12] with the addition of master equation methods.
The Hamiltonian used for the simulation corresponds to wg =1, f1 = —1, fo = f3 =0,
after rotating the Hamiltonian Eq. (15.1) with U = R,(5) where R, denotes a Bloch-
sphere rotation along the y — axis. The dynamics shown in both plots correspond to
the reaction coordinate with a GKLS master equation (RC), pseudomodes (PM), the
hierarchical equations of motion (HEOM), the cumulant equation (C), Redfield (R).

Looking at figures 15.2 and 15.3, notice that even though Fig. 15.3b has the same
“coupling strength” (A\y) to Fig. 15.3a, it yields worse results with respect to the ex-
act solutions. In both the reference and this section, we consider the regime I' > wy
where master equations work and the Drude-Lorentz (overdamped) spectral density
provides a good approximation of the underdamped case. Looking at Fig. 15.2 one
can appreciate that the coupling constant alone Ay p is not enough to know the am-
plitude of the spectral density, that is precisely he point of this discussion, contrary
to popular belief, a small coupling constant does not necessarily mean we are in the
“weak” coupling regime.

The other issue we want to point out, is that when using an exponential decompo-
sition of an environment, one really needs to be careful about preserving detailed
balance, as not using enough exponents may lead to dynamics that is close to the
exact one in the transient regime but with an incorrect steady state, which is not
always obvious ®. We make this remark because often it is a good practice to check
the final state with more than one method as checking convergence is not always
straightforward.

Figure 15.4a shows that detailed balance is violated for many values of w (where the

3This problem is magnified at T = 0, but it is present for every T
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Figure 15.4: a) Power spectrum of the environment used for the calculation of (b), the
power spectrum corresponds to 7' = 0, b) Expectation value of o, from different methods.
Notice the methods predict a different steady state value. Both figures illustrate the loss
of detailed balance and the steady state issues associated with it (for a “good environment
approximation” Pseudomodes (PM) and HEOM should agree with the reaction coordinate
approach (RC)). The parameters are the same as in Figure 15.3.he dynamics shown in
both plots correspond to the reaction coordinate with a GKLS master equation (RC),
pseudomodes (PM), the hierarchical equations of motion (HEOM), the cumulant equation
(C), Redfield (R).

spectrum is negative 1), this can lead to correct dynamics and an incorrect steady
state. This can of course be fixed by better fits. However, it is something one should
keep in mind when using methods that rely on this decomposition.

For this model, we obtained a semianalytical solution in terms of SU(N) for the

cumulant equation. The dynamics of this system using the cumulant equation reads
[A3]

I
Ml =<+ (M -T)M'7- 74+ M- 7, (15.4)

Oz <UZ(O)>
F=ou | A= |(0u(0) | (15.5)
oy (0,(0))
—|fI’T 2 fof. + Re(I') —2f1€, — Im(T})

M= | Re(I'}) — 2f28. — (I —Re(f2T_.)) — (If]*¢ +Im(f2r_p)) | (15.6)
2f1i6, —Im(TH)  (|f%€ —Im(fI_y))  — (. + Re(f2T_4))

4This is typically not an issue if S(wp ) is well approximated, where wy are the Bohr frequencies
of the system Hamiltonian
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2(Tpy—T_)
|5

r= Re(I';) ) (15.7)

where we used the definitions[A3, 55]

=8+ — &, (15.8)
Fz_ - f3f(r—z - Fz—i—)y (159)
If = f3f(T.m + T2y, (15.10)

P=T__+T,,, (15.11)

Sz = f3(§z+ - SZ—)a (1512)
2
f=h—1fs, (15.14)

and the explicit frequency dependence was labeled as sub-indices, such that I',, ., =
['w,w', t) we further simplified the notation by replacing the explicit frequencies as
wop — —,—wp — +, 0 = z, such that I'(wy,0,t) =T_,

15.1 Pure dephasing is exact at second order

If we want to recover a pure dephasing model, it suffices to set f; = fo = 0 for which
our linear transformation M becomes

0 0 0
M=o —2fT.. 0 : (15.15)
0 0 —2fT..

In this case, the dynamics are easily solvable as Eq. (15.4) becomes

p(t) = g +oleMa (15.16)
o 1 e 230 (o — (o
. (:(0)) + (o) =il )
e 1= ((0,(0)) + (0, (0))) 53— (0:(0))

Notice the dynamics doesn’t induce any change on the diagonal, namely there are
no energy exchanges between the system an environment,the interaction simply kills
coherences for this sort of evolution as it is expected. For longer times I',, increases
with ¢ then the steady state is simply given by

Psteady = =0 + . (15.18)

0 5 — (0:(0))

N[
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Figure 15.5: (a) Shows the absolute value of the coherence in pure dephasing evolution (b)
Shows the fidelity to the exact solution for the different approaches under pure dephasing
evolution, cumulant is excluded as it matches the exact solution (c) Shows the Fidelity
of the Davies-GKLS and Bloch-Redfield equation for a wide range of parameters. The
dynamics for the pure dephasing model are shown, it corresponds to fi; = fo = 0 and
f3 = 1. For (a) and (b) the parameters used for the simulation were %% = 4,% = I,
v = bwp. We can see HEOM has converged to the analytical exact solution. It should

be mentioned the computational effort is significant when compared with the cumulant
equation.

wo

A surprising fact is that the cumulant equation is the exact solution in this case
[A3, 51, 63]. The cumulant is not the only equation that has this feat. The time
convolutionless master equation at second order (Redfield 6.1) is also exact for this
model. The fact that we can obtain an exact solution from a second order description
was called a conundrum [63]. We see now from section 7.1 that this is simply because
[ICa(t), Ko(t')] = 0, so that the Magnus expansion of the Feynman Vernon Influence
functional is complete at second order. To prove this we could construct Ko normally,
or by vectorizing Eq. (15.16) to obtain

plt) = €U 5(0) (15.19)
1 0 0 0 (0.(0)) + 3
e_Qf??F“ o A
_ 0 0 0 [ ({e2(0)) —i(0,(0))) . (15.20)
0 0 e M= 0| | ({04(0)) +i(0,(0)))
0 0 0 1 L —{0.(0))
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And from Eq. (15.19) we can see that

0 0 0 0
0 —2f2T..(¢ 0 0
KCa(t) = L) . (15.21)
0 0 _2f32Fzz(t) 0
0 0 0 0

In the last equation we made the time dependence of I', , explicitr, for the sake of
clarity. From there it is straightforward to check that [KCqo(t), Ko(t')] = 0. Similarly
using Eq. (5.83) one can show the same holds true for the Redfield generator.

In Fig. 15.5, we can see a contour plot that shows the minimum fidelity the BR
equation has for a given set of parameters. We can see that the area where it works
with high fidelity is rather restricted, which is understandable given that it is only
meant to operate in the weak coupling limit. Still the cumulant equation which was
derived in the weak coupling limit, is an exact description, showing a clear advantage
to study dephasing scenarios.

In this setting even the simplest equation, namely the GKLS equation is in good
agreement with the exact solution, the Redfield and cumulant equation exhibit an
advantage as they match the exact solution whereas Bloch-Redfield does not (simi-
larly FA is also not exact in this case).

15.2 The standard Spin-Boson Model

The standard Spin-Boson model [A3, B3] can be recovered from Eq. (15.1) by making
f3 = fo = 0, the linear transformation giving rise to the cumulant equation dynamics
is then given by:

T 0 0
M=10 -L4ReC ) —(ImT_;)+¢) (15.22)
0 ¢—ImT_;) —L—Re_y)

Ciy-T_-)
2

7= 0 . (15.23)

The evolution of the system is obtained from Eq. (15.4) easily, in particular one re-
markable fact is that since the matrix M rank is 2 this allows us to obtain analytical
expressions for its exponential easily, providing a way to get analytical answers for
the Spin-Boson model out of this Non-Markovian description.

Another advantage of this form of the evolution is that we may separate the asymp-
totic dynamics from the memory dependent one, as we know that e — 0 ast — oo
for this model as the real part of its eigenvalues is always negative.
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Therefore, if we only aim at knowing the steady state of the system then it suffices
to look at the non-vanishing terms of Eq. (15.4) in the long time limit, which results
in :

Iy —T__
]I 2
Psteady = 5 —0- MﬁlF: g- 0 (1524)
0
T T, —T__
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Figure 15.6: (a) Shows the absolute value of coherence for the different approaches,
notice in the inset GKLS is the only one with no oscillations (b) Shows the evolution of
the population for each of the different approaches (¢) Shows the fidelity with respect to
the HEOM method. The dynamics for the Spin-Boson shown corresponds to f3 = fo =0
and f; = 1, The parameters used were % = 2, % = 0.01m, v = bwy.

This can be obtained analytically in the long time limit, substituting the adequate
time-dependent coefficients into Eq. (7.26):

I 4+T,, = —/ dwJ (w) coth (2T>

(sin02 (W) + sinc? (M)) , (15.26)
I, —T__=— / dwJ (w

(smc (”T“(’)t) — sinc? (M)) . (15.27)
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Since we only care about the steady state of the system at this point we may take
the limit of ¢ — oo which greatly simplifies the analysis as the limit of the time-
dependent function as :

lim #*sinc? (M) = 27t (w — wp). (15.28)

t—r oo

Thus we have

I I__-T.,

steady — 8 — T T a0z 15.2
Psteady 9 o g (59)

_ fooo dwJ(w) (d(w — wp) = 0(w + wp)) 0
2 [, dwJ(w) coth (55) (6(w — wo) + 6(w + wo))

— 1 ‘](W(J) - J(—wo) U
2 ((J(Wo) — J(—uwp)) coth (%)) z (15.31)

(15.30)

Which can finally be written down as:
1
Psteady = 5 (H + tanh (%) Uz) . (1532)

Thus the steady state is just Gibbs state to bare Hamiltonian, in agreement to what is
expected for a second order description [A2, 46, 47] as off-diagonal corrections vanish
for orthogonal couplings in the Spin-Boson model. Regarding the true evolution,
we know that indeed there are no steady state coherences [A2, 46, 47, 97] in this
scenario, but there are corrections to populations that are a consequence of O(\*)
effects, so we see that in this case the cumulant equation does not reach the correct
the stationary state, as opposed to what was expected [A2]. The derivation of the
cumulant equation in terms of the Feynman-Vernon Influence functional gives some
clarity on why this expectation is not met. The Dyson expansion in imaginary time
[A2] adds time ordering in terms that are not present in a second order. Magnus
expansion. It is no wonder the results of Chapter 13 were so good for the diagonal, as
they were more akin to an expansion of the influence functional than an expansion
for the dynamics of the cumulant equation.

Since in our representation Eq. (15.4) the dynamics of populations and the dynamics
of coherences are decoupled in this case, this allows one to exponentiate the matrix
from Eq. (15.22) without making any sort of assumption, which in turn allows us
to write the evolution of the population and coherences compactly. We will neglect
Lamb-shift to make the equations simpler, we obtain:

e T — —1__
R (15:3)
e IT—4—%
(o4(t) = T (F—+<U—(0)>(€2F_+| — 1)+ [Ty (o4 (0)) (AT + 1)), (15.34)
e IT—+—%
(o-(1)) = .| (F—+<U+(0)>(€2F_+I — 1)+ [Ty [ (o (0)) (e + 1))- (15.35)

In terms of the dynamics one can see that the cumulant equation is the most fa-
vorable approximate description for the parameters chosen in Fig. 15.6. As we are
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in the weak coupling regime, we can see a pretty good agreement with the exact
dynamics even for the simplest equation, namely, the Davies-GLKS approach. Still
the cumulant equation is a better description in early and long times when compared
to the other master equations presented here, it is also as good as Bloch-Redfield in
intermediate times, which indicates higher orders of the cumulant equation might
be worth pursuing in the same way the TCL equation is often written down.

In figure 15.7 we see that the cumulant equation is not only better for our chosen
parameters, but that it is a better description for a wide range of parameters. Par-
ticularly for the example considered, it is only a worse description in the regime of
high “2” and high temperature, a regime where we expect second order descriptions
to fail. Bare in mind that the black line that divides the regime where cumulant is
better that Bloch-Redfield may change shape for different values of v with respect
to wp and different spectral densities, here we have chosen v = wy. However in gen-
eral we see that the cumulant equation is a better description at small % and low
temperature, while Bloch Redfield is better in the opposite regime.
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Figure 15.7: a) Shows the minimum fidelity of each of the three approximate descriptions
considered with respect to HEOM for a wide range of parameters b)Shows the difference
in minimum fidelity between the cumulant equation and the Bloch Redfield equation, the
black line divides the region where the difference is positive (cumulant has higher minimum
fidelity) and where it is negative. ¢) Shows the difference in minimum fidelity between the
cumulant equation and the GKLS equation, the cumulant equation is a better description
for all chosen parameters.

15.3 The Composite interaction case

In the case of composite interactions the matrix M is rank 3, which makes analytical
expressions complicated as they depend on a cubic root, and therefore it’s hard to
get Eq. (15.4) in a compact form unless approximations are done on the integrals.
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Figure 15.8: (a) Shows the absolute value of the coherence for the different approaches

considered (b) Shows the evolution of the population for the different approaches consid-

ered (c) Shows the fidelity with respect to HEOM for each of the methods considered. The
wo

plots corresponds to fo = 0 and f3 = f1 = 1, for the plots shown %2 = 2,% = 0.017. The
shadowed area marks negativity issues in the Redfield equation.

The result of the dynamics can be observed in the Fig. 15.8. We can see that in this
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Figure 15.9: (a) The minimum fidelity of the cumulant compared to the Davies-GKLS
equation (b) The minimum fidelity of the cumulant compared to the Bloch-Redfield equa-
tion. These plots show the different in minimum fidelity between the standard master
equations and the cumulant equation, when the couplings between the parallel and or-
thogonal components of the Hamiltonian are imbalanced. For the simulations we fixed
“ =2, g =0.017

case the cumulant equation has an advantage over the more standard Bloch-Redfield
equation. The fact that the cumulant equation can reproduce better the early time
populations is the main source of its advantage with respect to the Bloch-Redfield
equation. This advantage is lost as t — oo because the cumulant equation will go to
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the bare Gibbs state in the steady state; however, until then, it has a better fidelity
to the true dynamics.

Notice that small oscillations in coherence remain in the cumulant equation while
the other master equations have already reached a fixed value. This is due to the
slow decay of the cumulant equation to the Davies-GKLS steady state. As we have

mentioned this gives a reminiscence of the steady state coherences as they are long
lived.

One may wonder if the parameters chosen above namely equal f; = f3 played a role
in the superiority of the cumulant equation, Fig. 15.9 shows that this is not the case
by showing the difference in minimum fidelities over a range of different |f| and fs.

In this section, we observed that the Bloch-Redfield equation regime of validity seems
to be larger than that of the cumulant equation/refined weak coupling as mentioned
in [43]. The cumulant equation is a more faithful description when 2 < 1 which
corresponds to the weak coupling regime where master equations are valid descrip-
tions. As Figure 15.10 shows the cumulant description is more faithful in the regime
of small “2” and low temperature, just as in figure 15.7, while for stronger coupling
which one is a better description seems model dependent. From these examples, we
can conclude that the cumulant equation is a better description at low temperature
in the weak coupling regime

Fidelity Cumulant Fidelity BR __ Fidelity GKLS 1.00
0.95
0.90
0.85
0.80
0.5 A 1.0 15 0.5 A 1.0 1.5 0.5 é1.0 1.5
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Figure 15.10: a) Shows the minimum fidelity of all master equations against HEOM.
Both plot (b) Shows the difference in minimum fidelity between the cumulant equation
and the Bloch Redfield equation, the black line divides the region where the difference
is positive (cumulant has higher minimum fidelity) and where it is negative. (c) Shows
the difference in minimum fidelity between the cumulant equation and the Davies-GKLS
equation; the cumulant equation is a better description for all chosen parameters.

In figure 15.8 we see an example of the dynamics of this system, using some of
the methods considered in the thesis. The main fact we want to highlight here is
that while the Redfield equation does a remarkably better job at keeping track of
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coherences in this model, it has negativity issues that render it worse than the other
approaches in the long time limit, which is a well known fact [51, 57, 98]. Particularly
because of that, and its relatively high computational cost, are some of the reasons
we don’t see widespread adoption of the Redfield equation. The cumulant being
CPTP does not have this problem, and its simulation is less costly.

15.4 Non-Markovianity

The Spin-Boson model has been shown to have Non-Markovian behaviour [A3, A4,
55]. In this section we show the cumulant and Redfield equations exhibit Non-
Markovian behaviour whereas their approximations do not. The measure of Non-
Markovianity used is the trace distance measure

1 1
Sl = o)l = 5 Te{V/0®) = o @M —o@)}.  (15.36)
The initial states for the two evolutions were chosen to be orthogonal specifically
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Figure 15.11: (a)Trace distance measure (Eq. (15.36)) of the the different approaches for
the Non-equilibrium Spin-Boson model. An inset with the derivative of the trace distance
is provided so that increase in trace distance can be observed clearly (values bigger than
zero in the inset indicate increase of trace distance). Notice the cumulant equation correctly
shows the Non-Markovianity of the model even when overestimating the increase of the
trace distance, f; = 1,fo = f3 =0 for % = 0.017,52 =

we chose
0.5 0.5¢ _
p(0) = =0(0). (15.37)
—0.5¢ 0.5

For Markovian evolutions the trace distance between the states decreases monoton-
ically, while for Non-Markovian evolutions it does not. Usually, the increase in the
measure is small [105]. To visualize the increase in the trace distance better, an inset
has been placed in Fig. 15.11 the inset contains the derivative of the trace distance,
and it is shown in logarithmic scale, a positive value indicates an increase of the
trace distance measure and therefore Non-Markovianity



Chapter 16

Heat Transport

The main purpose of this section is to show that Non-Markovian descriptions are
necessary to study finite time thermodynamics. An original contribution of this work
lies in remarking that Non-Markovian Lamb shift needs to be included to describe
heat flows in finite time, as without it the heat flow described by master equations
deviates from the exact dynamics. This nonintuitive need for Lamb-shift stems from
the fact that Non-Markovian Lamb-shift does not commute with the Hamiltonian
(see chapter 11) . We expect this will have impact on the study of finite time thermal
machines and the finite time Landauer principle [106-115].

To illustrate the need for Lamb-shift, we will study two simple models, the first one
will be a minimal two-qubit engine, and the second one will be a small “Heisenberg
spin chain” with X X interaction, with both qubits at the ends of the chain having
internal tunneling. We hope Non-Markovian equations as presented in the thesis can
help study the dynamics of large open spin chains in the future.

16.1 A two Qubit Machine

In this section, we consider two qubits coupled to two thermal baths according to
the Hamiltonian.

We A w a) («a e
H = 5020) + EUQ(EC) + ?hagh) +go9aM Z cu,(C )agg )Ta,(€ )
(. ~~ - ]{,‘,Oézh,c
HS A ~~ /
Hp
+ 3 gl +ah). (16.1)

k,a=h,c
N >

g

Hsp

Figure 16.1: A two qubit machine, each qubit is interacting with a different reservoir.
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Figure 16.2: Heat transport scenario. Two qubits coupled to two different baths with an
underdamped spectral densities. The parameters of the simulation are T, = 0.01lw., T}, =
2we, A = we = wp, = P, A1 = A2 = 0.057wp, g = 0.5wp, I' = wp, a) Shows the heat current
from the environment at the hotter temperature. It illustrates that Lamb-shift is necessary
to obtain a proper description of heat currents in the transient regime and the failure of
GKLS at early times b) Shows the error of the heat generated in this process, ¢) Shows the
time used to obtain the evolution of the density matrix in each approach, the orange block
indicates the usage of numerical integration, while blue the usage of decaying exponentials
d) Shows the fidelity of the approaches to the exact solution. Notice that even though the
global master equation describes the states correctly, the description of heat currents fail
as a) and b) show.

Here w.(wy,) refers to the frequency of the qubit attached to the cold (hot) envi-
ronment, g denotes the coupling strength between the qubits and A is the cold’s
qubit tunneling rate between its two levels. The inclusion of a tunelling term in the
Hamiltonian of the cold qubit was done to make the Lamb-Shift not commute with
the system Hamiltonian®. An illustration of the system can be seen in figure 16.1

In Figure 16.2 we can see how a correct description of heat currents in time requires
the inclusion of Lamb-shift. This begs for the investigation of Lamb shift corrections
to heat currents, a previously unexplored area warranting further research. Further-
more, the question of whether Lamb-shift impacts the description power and work
remains open. Consequently, using decaying exponentials to compute Lamb-shift
is expected to be instrumental in advancing the understanding of heat and power
within non-equilibrium quantum thermodynamics as it makes Lamb-shift inclusion
accessible. On the other hand notice from Figure 16.2 that the GKLS master equa-

1Similarly we could have considered o, coupling to the environment, for the Lamb-shift not to
commute with the Hamiltonian
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tion both in its global and local forms, fails to capture the behavior of heat currents
at early times, predicting non-zero heat at ¢ = 0. This is expected as they are meant
as a long time approximation. Non-Markovian master equations correctly capture
this behaviour, as other methods such as pseudomodes do [4, 116], in contrast with
other works exploring heat transport beyond GKLS descriptions [10, 116] . Notice
that neither the cumulant nor Redfield equation increase the size of the Hilbert
space of the system unlike the methods considered in the references mentioned.

16.2 The cumulant equation for weakly interacting
subsystems

In reference [43], it was shown for a particular model that Redfield was superior to
the cumulant equation. However, in several of our examples, the cumulant equation
was better. This sort of puts up a contradiction between the conclusions reached in
[43] and ours. The difference in conclusions comes from the fact that in [43] they use
a model in which the subsystems do not interact. The cumulant equation goes to the
“Global GKLS equation in the long time limit”?, which is a poor approximation for
systems that interact weakly or do not interact. The Redfield equation, on the other
hand does not tend to the Global GKLS equation in the long time limit and is usually
a better approximation when weakly or non interacting systems are considered. To
show this point, we will consider the same example as the previous section but will
have the interaction among the qubits to be 10 times weaker.
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Figure 16.3: Same parameters as figure 16.2 except g = 0.05wg a) Shows the net heat Q
Eq. (11.5). b) Shows the fidelity of the different approaches with respect to HEOM

Although Redfield is always better than cumulant when the coupling between subsys-
tems is small, as figure 16.3 shows, notice cumulant is still a pretty good description
and is also able to describe the heat current as well as Redfield. The cumulant still
has the advantage of being CPTP, though negativity issues are less often encoun-
tered in transport scenarios. In this particular case, we see Global and cumulant
have basically the same fidelity, however the cumulant is still able to adequately
predict the behavior of heat currents in early and intermediate times, unlike the
former.

2Tt does in the limit of sinc(t) — §(¢), in practice one finds lingering oscillations that make it
different from the GKLS equation even in long times
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16.2.1 Entanglement
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Figure 16.4: Dynamics of the entanglement between qubits. We use negativity as an
entanglement measure. The difference between both panels is the coupling between the
qubits a) g = 0.5wp b) g = 0.05wp. The rest of the parameters are the same as in figure
16.2

The thermal machine considered is sometimes called the entanglement engine [117],
in this section, we will not worry about generation of entanglement in the steady
state but rather if the entanglement of the states calculated using the different
approaches matches the entanglement of the exact solution. We will recycle the
calculations of the previous section and calculate the entanglement dynamics for
the same parameters. To characterize entanglement we use negativity [118]

N(p) =D Al (16.2)

Ai<0

where the \;s are the eigenvalues of the partial traspose of the density matrix, with
respect to one of the qubits. From figure 16.4 we see that in both situations the
Markovian approaches tend to overestimate the qubit entanglement, whereas the
non-Markovian descriptions follow the entanglement generated by the exact solution
closely. We can also appreciate the generation of high entanglement N(p) > 0.3 in
the transient regime. While the transient regime entanglement might not be too
useful, we could stabilize them using quantum control later on [A6].

16.3 Cumulant equation for many subsystems

From the previous section, one might wonder whether the cumulant equation is
actually a good description to study heat transport scenarios. The fact that it goes
to the Global GKLS equation can be seen as a good thing as it ensures obeying the
second law of thermodynamics [A4, 119-122]. On the other hand, the same feature
becomes an issue as for weakly interacting systems a local master equation is more
precise. This seems to put the cumulant equation in a bad spot, as it seems it suffers
the same downsides as the global equation in the “local vs global” debate [120, 123].
However, as mentioned in [A4], one of the advantages of the cumulant equation
lies in its resolution of small Bohr frequencies. When those Bohr frequencies are too
small the sinc functions tend to Dirac deltas slowly. If the Bohr frequencies are small
enough, then the cumulant equation deviates from the GKLS global equation for
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long times. We will show this using a Heisenberg spin chain whose Hamiltonian is
given by

i
Mz

Wi i i (a) (Ol)T
E()+ ()+Zgz ()(J+Zwk ak

1 1<J k:a h,c
>
Vv Vv

Hp

910 (ap +al). (16.3)

( .
Il

+

k,a=1,N

J/

~
Hsp

For simplicity we will consider Ay = Ay = w; = wp, and all other A; to be zero.
In spin chains, as one increases the number of spins in a spin chain of this type,
the gap in the Hamiltonian’s spectrum diminishes, thus giving rise to smaller Bohr
frequencies. We show that even for weak coupling between subsystems as we increase
the number of spins the cumulant equation deviates more and more from the Global
equation even for long times. This makes the cumulant equation not susceptible to
the Global vs local debate [120, 122, 123], as regardless of the coupling, it is an
accurate description for systems of many parties.

In figure 16.5, we can observe how the cumulant equation becomes a better descrip-
tion as the number of subsystems grows. Not only it is a good description of the
density matrix, but it is also able to reproduce the heat currents faithfully, unlike
the local GKLS approach. Thus, it is a perfect candidate for the study of quantum
thermal machines in finite time. Remarkably, the cumulant equation fidelity is still
high for times for which the system has already reached its Non-equilibrium steady
state (Q = 0), this is because the sinc functions have finite width by the time the
system thermalizes, thus not reaching the Global GKLS generators a long time limit
[A4, 55]. The possibility of the failure to reach that limit had been mentioned in
[A4] and is discussed in [97] in a different context. This example represents the first
evidence that the cumulant is not going to the GKLS global generator for long times.
In the next chapter we will observe similar behavior due to small frequency spacings
in a harmonic oscillator with a Kerr nonlinearity.

Our main point in this section was to show that the cumulant equation tends to the
exact solution even for long times when more parties are involved, however, here we
would like to discuss an apparent problem which is that the heat currents of the
hot bath for N = 3 and N = 4 matches the local master equation and are negative,
which seems to contradict the second law of thermodynamics [84, 122], further study
in this direction is needed. Perhaps the definition of heat current for Non-Markovian
descriptions needs revisited as figure 16.5 (f) and (e) seem to indicate an apparent
violation of the second law [84, 120, 122, 123] .
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Figure 16.5: This figure shows the fidelity and heat currents of the different approaches for
the Hamiltonian Eq. (16.3). The first row corresponds to the fidelity to HEOM for different
number of spins in the chain. The second row corresponds to the heat current from the
hot bath. Here we can observe how the Markovian approaches are not adequate for finite
time descriptions. In the last row, we show the total heat. Notice how, regardless of the
number of spins, Lamb-shift is needed for agreement with the exact solution. Remarkably,
already for only N = 4 spins, the Global and cumulant solutions differ from each other for
long times. In these simulations, Ay = Ay = w; = wp while all other parameters are the
same as in the previous figures, except for A\; = A2 = 0.17wp, g;; = 0.05. Let us remark
that regardless of the deviation at long times the cumulant is always a good description
at early times.



Chapter 17

The Damped Harmonic Oscillator

The quantum damped harmonic oscillator, characterized by the Hamiltonian

Hp
2 2 7 2 2
p 24 Pk QQk
H = —+Q°=— = 4 Wr=E — C 17.1
7 " 2+22+’“2 12 G, (17.1)
~—— k k
Hg N e’

Hp

is one of the few systems that can be solved exactly. The standard method for
solving the quantum damped harmonic oscillator in the continuous limit are the
Heisenberg-Langevin equations [17, B9, 123]. In recent times, it has served as a
guideline to assess the adequacy of different master equations [123] which will be its
main purpose in the manuscript. We will closely follow the approach taken in [17].

The first part of this section aims to demonstrate how to use the cumulant equation
on infinite-dimensional systems. The second part illustrates how it can be useful to
describe nonlinear processes in quantum optics.

17.1 Heisenberg-Langevin Equations

We follow closely the development explained in [17]. Our original contribution in this
section is Eq. (17.27) at the end of this segment. We start by deriving the equations
of motion for the oscillators in the Heisenberg picture

q=p, (17.2)

p=-q+ > CrQr, (17.3)
k

Qr = P, (17.4)

B, = —WZQy + qC. (17.5)

By taking another time derivative and substituting we obtain:

i+ Q%= CrQs (17.6)
K

Q1+ WEQr = qCy. (17.7)
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Notice the equations are those of a driven oscillator, for now let us focus on Eq. (17.7).
We might find the solution using the standard Green function method [17, B11], first
we obtain the homogeneous solution:

1 . .
Qz = Qhomogeneous = NG (akeilwkt + &Lezwkt> . (178)
k
Where we used the fact that at ¢t =0
1 f
Qk(0) = oA (ak + ak). (17.9)

We find the particular solution using the Green function for a driven oscillator [B11]

sin (Wk(t — t’)>

G(t,t) =60t —1t) (17.10)

Wi
Thus the particular solution is given by
t Ck sin (Wk(t — t,))
= t)dt', 17.11
Q= [ ———a) (17.1)
such that
Qr = Q) + Q. (17.12)

Substituting Eq. (17.7) into Eq. (17.6) one obtains

t C2sin (Wy(t —t')
G+ 0%q = g <CkQ2 +/0 ' (Wk )q(t’)dt’>. (17.13)

At this point it becomes convenient to introduce the following notation

/ Cr . / i = w(t—t'
X(t—-t) = —;WZsm (Wk(t—t)> = %/Ooa(w)e =) du, (17.14)
€)= 3Gl (17.15)
k
o (w) zzg%a(w — W) (17.16)

k

In the literature (¢ — t') is known as the self-energy kernel, £(¢) as the noise term
and o(w) is the bath’s spectral density. Using this one may now rewrite Eq. (17.13)
as

i+ Q%+ / St — )t — (1) (17.17)

We may now use Laplace’s transform to solve Eq. (17.17) which results in
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q(t) = G(t)p(0) + G(t)q(0) + /Ot G(t —the(t)at', (17.18)

where we used the spectral density

w2
o(w) = yw”wg —|—cw27 (17.19)
and

G(t) =<2 sin (Wt), (17.20)
W o=1/9% - (2)% (17.21)
03 = Q% — yw, (17.22)

Where Qp is the re-normalized frequency of the oscillator! and ~ is a constant
that characterizes the strength of the interaction. We now proceed to look at the
expectation values. Because the environment operators are centralized (£(t)) = 0
(which can always be done [B1]) we obtain:

(a(t)) = G()(p(0)) + G(t)(q(0)). (17.23)

And we may finally write:

—~t —yt

in(Wt)(p(0)) + (62 (W) + W%lﬂ(‘”)) (q(0)), (17.24)

—t

(q(t)) =

Similarly, the evolution of the product of the position operator at different times or
two point correlations are given by :

<Q(t)Q(t')> = GG (P*(0)s + G(t)G(t’)§q2(0)>s
G(H)G()(g(0)p(0))s + GH)G(#) (p(0)q(0)) s

/ / Gt — 1) Gt — 1) / dwo (w)n(w)e™ B (17.25)

Whenever t/,t > % the only non-negligible term in Eq. (17.25) is the last one, since
the first 4 terms are short time effects that vanish for longer times, so that:

(q(t)q(t)) = % /_ N At _"%};ﬁ”)@w)z} i), (17.26)

The first result of this section is an analytical answer for this correlation in the limit
of the cutoff going to infinity. We take o(w) = yw™ and perform contour integration,
to obtain

92-n o (D+) z‘r(«/492 —y +Z'y>
49% — 2 i V49— iy

—1+e )

) <77+ (1-irT) 4 /40% —~2 >
_D_ n—1 2 T
_ D) e (17.27)

!Typically, one takes Qi from the experiment and do not work with Q
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where Dy = £,/40% — 72 +4y and 7 = t —t'. Remarkably the result is finite ,taking
an Ohmic bath with 7 =0,n =1,z > ~ we obtain

Q
lim (¢*(t)) = coth =2,

lim. o7 (17.28)

which is what we expect after the system has thermalized. One may check the
consistency of Eq. (17.27) by numerically integrating Eq. (17.26) for some set of
parameters, this comparison is shown in Fig. 17.1

@) b @)
( Cl) 5 \/( ) 5 R (aa(t)
~ 3
4 /‘,/' “ L i \ — Analytical
3 _~Z_ Analytical 3 =2 Analytical Numerical l \
‘,/’ Numerical Numerical 1 \
2 . Coth 2 T Coth \ -t
1
f

-

Figure 17.1: Two point correlations with a)y = 0.025Qg, 7 = 0,n = 1b)y = 0.025Qg, 7 =
0,n = 3,c)y =0.025Qz,n =1,T = 1.5Qg

17.2 The cumulant equation for systems of infinite
dimension

We start from the Hamiltonian Eq. (17.1). We decompose H; into the bath and
system operators:

=> A ® By (17.29)
k

In this case we only need one system and bath operators, namely:

Ay = (a'"+a) (17.30)
B - / g(w)(al, + ap)dw. (17.31)
From there, we get:
A(Q) =a, (17.32)
A (- =d, (17.33)
Bi(w) = g(w)b,. (17.34)

Using these definitions let us see that Eq. (7.20) will look like for this particular
case. We first calculate the dissipative part of our evolution:

D =) T(ww, t)L(w ), (17.35)

where D is shorthand notation for the dissipative part and:

L(w, W) = Loy = Alw)psAt(w) — {AT(w)AQ(w/),ps}’ (17.36)
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so that:

L., =apgal — ﬂéps}’ (17.37)
L =apsa— WT’pS}, (17.38)
L_ =apsa— %, (17.39)
L, =adpgal — M. (17.40)
where the subindices follow the same notation as in chapter 15 (Q — —,—Q — +).

We now compute the Hamiltonian part 2:
A(t) =) €(w,o ) AT (w) A(w'). (17.41)

w,w’

Expanding A(t) and considering that 4;(Q) = Al(—Q) = a and A;(—Q) = Al(Q) =
al:

At) =& a’a+é _aa’ +& _alal + €& Laa (17.42)
= ({14 +&)ala+ & (af)? + & 4a’ (17.43)

where we dropped the constant term as any operator commutes with it, then by
defining

a = (&Gr+&-), (17.44)
f = &G-o=¢&+ (17.45)

we write our superoperator as:

+M>

Ka(t)[ps] = —i[aata + B(a")? + Ba®, ps] + T4yt (apga - 5

f ot
+T__ <ansCL — {aa—Q,ps}) + I, (anSaT _ {a a27 ps})

v, <apga _ {aap S}) , (17.46)

2

Now, our aim is to compute expected values of the form:
{aa')(t) = Tr{aaTe’C2(t)p(O)}, (17.47)

To do that, we find the adjoint of Iy so that we can apply it to our operator of
interest. To do that, we use:

Tr{AK, o]} = Tr{;c; [A]p}, (17.48)

2We don’t use this in the actual comparison, due to the Heisenberg-Langevin equations being
renormalized
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To find K} let us note the following identities:

Tr{A{BC,p}} = Tr{{BC, A}p}, (17.49)
Tr{A[B,p]} = Tr{[A, Blp}. (17.50)

Using those and cyclic property of the trace one may write

KL(1)[0] = —i[0, aa’a + B(a’)? + Ba?]
+I' 4 (aTOa = {aTa—,O}) +I__ <a0aT = M)

2 2
Tl
+1 - ((ZTOGT - w> +I_ 4 (aOa - %) . (17.51)

Now, we finally aim to compute e Kl a'a, for that we note that:

K[ = o, (17.52)
Ki(#)]a] = === F;* — 2 gigal, (17.53)
Ki(t)[a] = b= F;* R 2ifa, (17.54)
Ki(t)a'a) = K§(1)[aa’] = —2iB(a’)® + 2iBa’ + (T - =Ty y)a'a+T__, (17.55)
Ki(t)[a?] = (=2ia + (P__ —T'}))d® — 4Biata — T_ — 2i, (17.56)
K [(ah?] = (2ia+ (T__ = Ty))(ah)? + 4BiaTa — T, + 2i8. (17.57)

Since the superoperator is linear, we can write the evolution of linear combinations
of the operators, for example

Ki(t)[eata + ba® + c(a')?] = e (—2iB(a’)? +2iBa® + (P__ — Ty )ala+T__)

+b((—2ia+ (T-- —T1y))a® — 4Bia’a — T — 2iB)

+c((2ia+ (- —=T41))(a")* + 4Bia’a — T, +2iB), (17.58)
Kh(t)[la +ma] =1 (F__ — F;“ a 2ma* + Zzﬂa)

+m <F“ - F;* M wcﬁ) . (17.59)

Using I' = (I';y — I'__), these can then be seen as a linear transformation on the
coefficients [A3]

e -I —4if 4if3 e r__
v =1\ 28 —2ia-T 0 b+ | —2i8-T,_|, (17.60)
d —2if3 0 2iac—T') \c (2ip+T_4)
and
I % —2ip [

_ . (17.61)

/ - _ I'+2ia
m 2i03 5 m
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Then the evolution of the observables can be written as the exponential of a linear
map Eq. (15.4). Using the equations above and going back from the interaction
picture[17] *, one obtains

e =5 (cost@n-+ o)) + IO o ) a7

Unfortunately, the procedure is not always possible, as the number of variables that
need to participate in the linear transformation for the evolution may not be finite.
In such cases, one may perform a mean field approximation or truncation of the
Fock space. Figure 17.2 shows the dynamics of position for the damped harmonic
oscillator.

1.0 £ - Heisenberg-langevin [
i & Cumulant 0.01251 gtlj(rl:ﬁsulant
(a) N x  GKLS
0.5 | 1F 1 o 0.01001
MBIy =
= 1 (B | *% % 5
S PIUIVIVIN TR % % & & & 0.0075
T 0.0 ;:;.**f;‘gg,!*;;;g’%f&f T
SIRIR'R R 50.00501 | |1/
—os5{ || U #¥" e w
% * 0.0025 \ 0
| M|
0 10 20 30 40 50 0 10 20 30
t t

Figure 17.2: Dynamics of the damped harmonic oscillator, a) shows position, b) the
error with respect to the Heisenberg-Langevin equation. The parameters are Qp = 2,y =
0.15,77=0

17.3 Harmonic Oscillator with Kerr non-linearity

Nonlinear processes are important in quantum optics [B6, B7]. One of the most
studied processes are Kerr Nonlinearities. Modeling their interaction with the en-
vironment is the reason for the cumulant/refined weak coupling equation was first
proposed [54]. The idea behind proposing this equation was that it can handle small
spacing in Bohr frequencies, which are important for transient dynamics, and has
the GKLS master equation as a limit when ¢ — oo [A4, 54, 55] (see [A4] for an
in-depth discussion ). In this section, we consider the Hamiltonian

H = woa'a + %aTaTaa + Z wiakag + (a + af) Z grlax +al). (17.63)
N—— k k
Hg N ~ ~ d
Hp Hyp

with an Ohmic Spectral density Eq. (1.99). We show how the master equation is
almost exact but cheaper than the numerically exact approach. To perform the

3We simply rotate back to the Schrodinger picture because our equations here are in the
interaction-Heisenberg i.e. (interaction picture evolution of observables with respect to the free
Hamiltonian) picture rather than the normal Heisenberg picture
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Figure 17.3: a)Shows the computation time required for the cumulant and HEOM,b)
Shows the fidelity of the cumulant and GKLS master equation to HEOM |, ¢) Shows the
evolution of the average population, position and momentum which are represented by
the solid line, while the shadow represents their variance. The parameters used for the

simulation are , T'= 0.1wg, A = @, 5 = 1, we = wp, § = %

simulation We truncated the Hilbert space of the oscillator such that it contains
N = 10 excitations. This number is chosen to keep HEOM feasible, but as we see
from the figure it is enough as the mean population of photons is never high. We
can also appreciate the difference in simulation time and precision of the different
approaches.

Notice from Figure 17.3 b) and c) that the cumulant equation has not converged
to the GKLS equation. Similarly to the results in chapter 15, the oscillation of the
coherence dies out slower than the exact solution. The presence of those oscillations
are what keep the cumulant equation more faithful than the GKLS master equa-
tion, even when in Figure 17.3 it looks like the steady state was achieved for the
observables.



Conclusions

In this thesis, specifically in chapters 1-12, we have provided an exhaustive and
comprehensive overview of techniques used to simulate open quantum systems be-
yond the Markovian regime, including HEOM, TCL, the cumulant equation, pseu-
domodes, etc. Chapter 1 presents the correlation function and its approximation by
decaying exponentials, a key ingredient in many numerical methods, such as HEOM
and Pseudomodes. We present modern methods to obtain such a decomposition and
propose our own, which borrows the idea from [33, 34] but ensures that one does
not depend on the Matsubara decomposition and is therefore not limited by tem-
perature. All the methods were also made available for Bosonic environments in the
open-source package QuTiP [A1], and this chapter was mainly based on [1].

In Chapter 5, we provided a derivation of the Feynman-Vernon influence functional
for open systems in a Gaussian environment and with linear coupling. We used this
derivation to obtain both the Redfield (TCL2) and the cumulant equation as partic-
ular limits in chapters 6 and 7, respectively. This unconventional derivation allows
us to understand the relationship between the cumulant and Redfield generators we
first obtained in [A2]. In these chapters, we also show how one can use the approxi-
mations described in Chapter 1 to obtain the decay rates and Lamb shift required
in master equations, accelerating their simulation.

In chapters 8 and 9, we discuss two numerically exact methods, pseudomodes and
HEOM. We end chapter 9 with a discussion of the many methods based on these
two that are closely related. We then discuss the Reaction Coordinate mapping in
Chapter 10, where we derive the mapping and show how to relate the old and new
spectral densities. Chapter 11 shows how to calculate heat using some of the methods
we explored before; special emphasis is given to the fact that, in Non-Markovian
master equations, there is a coherent contribution to the heat currents. Finally, we
conclude this overview of the literature with a brief discussion of projection operator
techniques, in which we again propose using the approximations of Chapter 1 to
accelerate their simulation.

In chapter 13, we discussed the results in [A2], which include a discussion of the
steady state of open quantum systems and an application of the reaction-coordinate
mapping. We also briefly discuss how the quasi-steady state differs from the steady
state and explain it in terms of the relationship between the cumulant equation and
the Feynman-Vernon influence functional.

In chapter 14, we analyze a simple open quantum system with an exact solution. We
show how the approximations of chapter 1 may be used to solve integro-differential
equations, and extend this model to arbitrary spectral densities. We study an Ohmic
spectral density and confirm the presence of the localization-delocalization phase
transition in this model. We then show how master equations can be precise even
when dealing with highly structured spectral densities.

In chapter 15, we study the spin boson model with composite interactions [A3]. In
this section, we added the filtered approximation to the cumulant equation FA [A4],
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and compare with other methods such as the Bloch-Redfield master equation and
HEOM. In this section, we introduce a method for solving the cumulant equation
via linear maps and show that it is exact in the pure dephasing case.

In chapter 16, we showed that the cumulant equation can accurately describe heat
transport in open quantum systems. We also showed that including the Lamb shift
is necessary to adequately describe currents in this regime. We also explained the
discrepancy between [43] and [A3], which stems from the fact that the former uses
non-interacting qubits. We also showed that the cumulant equation may fail when
the local master equation is adequate in bipartite systems, but that as we include
more parties, the cumulant equation takes longer to reach the global GKLS state,
and becomes faithful even till reaching the steady state. We remark that this chapter
casts doubt on the definition of the heat current for Non-Markovian equations, as it
appears to contradict the second law in one of the scenarios studied.

Finally, in Chapter 17, we showed how to use the cumulant equation for infinite-
dimensional systems, provided the exact solution using the Heisenberg-Langevin
equations, and also provided an analytical solution for the Heisenberg-Langevin
equations in the infinite cutoff limit. As the last example, we used a damped oscillator
with a Kerr nonlinearity, and we observed the same behavior: the cumulant does not
tend to the Global master equation prior to equilibration time due to the small Bohr
frequencies.



Appendix A

Jump operators

Let us express our interaction Hamiltonian as

Hgp(t Z Sa ® Ba. (A1)

Here both S, and B, are Hermitian operators. If the spectrum of our system of
interest is discrete, and we denote the eigenvalues of Hg by epsilon one may write

Aa = leNel A I€X I—ZI e[ Ale')e (A.2)
\;H,_/ ;H,_/
In consecutive levels € — ¢ = w, so we may write this as
Aw)

“STY (el ALl = 3 A). (A3)

w €—e=w

An immediate (and useful) consequence of this way of expressing the operators is
that

He o) = Hs 3 [l AN = 3 leNel AN Hs  (Ad)
iééﬂ@@!zﬁevk;! B (A5)
=0 Yl AleXe (A6)
) (A7)

In the same way one can see that
[Hs, Al (w)] = wAL(w). (A.8)

Because of the expressions above Al (w) and A,(w) are said to be Eigenoperators of
[Hg, e] belonging to the frequencies +w respectively. This representation is conve-
nient because the operators in the interaction picture take the form:

Ar(w) = e"H5t A(w)e st = A(w) + (it)[Hg, A(w)] + (Z;) [Hg, [Hg, A(w)]]

[Hs, [Hs, ... ,[Hs, A(W)],...]]
(A.9)

= e A(w). (A.10)

OO . s, [ A -+
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Similarly one obtains .
Al(w) = et AT (w). (A.11)

From these definitions we can notice that:
1. Positive and negative frequencies are related via Al (w) = A,(—w)

2. The product of the jump operators of a given frequency is a conserved quantity
under free evolution

[Hs, Al(w)Aa(w)] = [Hs, AL ()] Aa(w) + AL (w)[Hs, Aa(w)] (A.12)
= WA! (W) A (w) — wAT (W) Ay (w) = 0. (A.13)

We may now write our interaction Hamiltonian as

Hgp(t) =Y Aa(w) ® By =Y Al(w) @ Ba. (A.14)

Both sides are the same since the sum over frequencies runs for both positive and
negative. This notation allows us to have a simple representation in the interaction
picture, namely

His(t) = Z e AL (w) ® By(t) = Z Al (w) @ Bl(t). (A.15)

where B, (t) = e!'8t B e~ 15t = BI(t). The expectation value remains zero as
(Ba)p = (Ba(t))s = 0. (A.16)

this indicates that the first moments of the bath are always zero. The procedure of
the box 5.1.1 is usually called centralization for this reason. In particular, notice that
this is satisfied for thermal environments, and that in this notation the procedure
of 5.1.1 becomes apparent.



Appendix B

Projection Operator Techniques

B.1 Evolution of projected density matrices

We start from the standard Von Neumann equation Eq. (2.27)

d

Zlt) = L(D)p(t). (B.1)
Then
SPolt) =P plt) = PLI), (B.2)
%Qp(t) - Q%p(t) = QL(t)p(t). (B.3)

Since we do not want to deal with the full p, we use the fact that P+ Q = I to write
has

%pp@) = PL(tYPp(t) + PL(H)Qp(t), (B.4)
%gpa) = QL(t)Qp(t) + PO(t)Pp(t). (B.5)

Once in this form, we can solve the second equation by Green functions [B11] to
obtain

t

Qp(t) :G(t,o)Qp(o)+/0 dtrG(t,t1)QL(t)Pp(t). (B.6)

The Green function satisfies the homogeneous equation, which has the formal solu-
tion Eq. (2.31)

Gt b)) = Tela #2QL), (B.7)

where 7T is the time ordering operator, it is typical to perform some extra simplifica-

tions at this stage. The first one we call centralization. Namely PL(t1)L(t2) . .. L(ton11)P =
0, while this assumption may seem strange we have been doing it all along, this is
nothing more than 5.1 in a more general form (the form in 5.1 corrresponds to n = 0).

To see this clearly let us expand this

TI"IR[,C(tl),C(tQ) c. ,C(tgn_ﬂ)p] (%9 p[RP =0. (Bg)
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This is a chain of commutators, however for simplicity let us just look at one of the
terms involved

Tr[R[H<t1)H<t2) Ce H(t2n+1)p] X PIRP = 0, (Bl())
TI'[R[H(tl)H(tQ) . H(t2n+1)Qp + Pp] & p]RP = 0. (Bll)

Essentially, what we are asking for is that the expectation value of the product of
the interation hamiltonians at different times is zero. Meaning

TI‘]R[H(tl)H(tQ) e H(t2n+1)p1R] = 0. (B12)

While this seems like a big ask, it is true for the typical applications where we
consider the irrelevant part of our system to be in a thermal state, and be large
enough so that it is not affected by our system such that it remains on a thermal
state, and thus the state is time independent (This can also be justified from the
point of view that the time scale of evolution of the system is short compared to
the changes in the environment). This technical assumption is not required for the
derivation of the equations to follow but makes the math way easier, also bare in
mind that so far we have not asked for any special initial conditions !. Substituting
Eq. (B.4) into Eq. (B.6) yields

L po(t) = PLEP() + PLEG(0)Qp(0) + / AP LG L)QL)Po(t).

dt
(B.13)
Equation Eq. (B.13) is known in the literature as the Nakajima-Zwanzig equation.

It is an exact equation for the dynamics of the system of interest. If we now assume
we can centralize this equation simplifies to

%77,0(15) = PLIH)G(t,0)Qp(0) + /O t At Ks(t, 1) Pp(t), (B.14)

where ICg(t,t1) is the memory kernel superoperator given by
Ks(t,t1) = PLE)G(t,t1)QL(t). (B.15)

Even with the assumption of centralization, in practice the Nakajima-Zwanzig equa-
tion while exact is hard to work with. So further approximations are typically taken
into account.

B.2 The Redfield equation from the Nakajima-Zwanzig
equation

In this section, we will briefly show how the second order expansion of the Nakajima-
Zwanzig equation yields the Redfield equation when we consider an initial product

!There could be an interesting discussion regarding how feasible is the time independence of
the environment, however that is beyond the scope of this thesis
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state. If we consider an initial product stat,e we have

Qp(0) = (I —"P)p(0) (B.16)
= p(0) = Pp(0) (B.17)
= ps(0) @ prr(0) — ps(0) @ prr (B.18)
= 0. (B.19)
Then Eq. (B.13) simplifies to
SPolt) = [ kst 0)Pott) (B.20)

We then expand the memory kernel in powers of the coupling strength. Since L is
linear in the coupling strength, the first non-trivial term is given by the second order
in coupling strength, which effectively means we approximate G(t,t;) ~ 1 ? so that

Ks(t.t) ~ PLEQL(H) (B.21)
~ PLIL() — PLE)P L) (B.22)

0
~ PL(L(E). (B.23)

So then we can rewrite the evolution of the system as

d

—Polt) = /0 Aty PLE)L(t)Pp(ty), (B.24)

using the fact that

d

ZPolt) = %Ps(t) ® pp. (B.25)

If we now reintroduce the definition of £(t¢) as in Eq. (2.31) we finally obtain

st @ ps = / 4sTrp [[H(1), [H (). ps() @ psl)] @ ps. (B.26)

which we can recast as

d

—ps(t) = — / dsTrp |[H(8), [H(s). ps(s) @ ps]]] (B.27)

Notice this is the same as Eq. (6.12), namely the Redfield equation. (Up to the
Markov approximation). While approximating the memory kernel helped to simplify
the equations the resulting equation is still time non-local and integro-differential,
making it hard to work with. In the next section we will take a look at an alternate
approximation approach that yields equations that are time local, and thus easier
to work with.

2Notice this is exactly the same we did when deriving Redfield from the Feynman Vernon
influence functional
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B.3 The Time Convolutionless (TCL) equation

As mentioned at the end of the previous section, it is desirable to come up with an
approximation scheme that yields time local equations. The first step to realize this
is to notice that we can write

p(s) = Gr(t,s)p(t) = Gr(t,s)(P + Q)p(t), (B.28)

where Gg(t, s) is the backward propagator of the full evolution
Gr(t,s) = Toe Jsdnti), (B.29)

where 7, is the anti-chronological time ordering operator. Then substituting in
Eq. (B.6) one can write

Qp(t) = G(t,0)Qp(0) + /Ot dt\G(t,t1)QL(t1)PGR(t, t1)(P + Q)p(t), (B.30)

we then introduce the superoperator >
t
X(t) = / dsG(t,s)QL(s)PGr(t,s). (B.31)
to

The superoperator > contains both the chronological and anti-chronological time
ordering, thus computing it is a challenge. However, it allows us to express the
irrelevant part of the density matrix as

Qo(t) = G(£,0)Qp(0) + Z(H)(P + Q)p(1). (B.32)
(I S(1)) Qo(t) = G(t,0)Qp(0) + Z(t)Pp(t). (B.33)

The superoperator > has two obvious properties
o X(tp) =0.
© E(t)|a=0 = 0.
Asumming the superoperator can be inverted we can write .
Qp(t) = (L= 3(1)) ™ G(t,0)Qp(0) + (- (1)) " S()Pp(1) (B.34)
= (1= X)) G(t,0)Qp(0) + (L= X(t)) ™" Pp(t) — Pp(t). (B.35)
where we used

S T-1+%() »
I— E(t) - I— E(t) - (]I - Z(t» — L (B.36)

This means that the relevant part of the density matrix can in principle be obtained
from minimal knowledge of the irrelevant part and the initial condition. The his-
tory kernel in the Nakajima-Zwanzig equation Eq. (B.13), has been removed at the
expense of using the exact backwards propagator. Of course, this may not always

3This may not always be the case, and it happens in many circunstances that it is only invertible
for weak coupling or short times
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be reasonable as it might not be possible to invert I — ¥(¢). By inserting this into
Eq. (B.4) we get

%Pp(t) = PL(t)Pp(t) + PL(t) ( (I=%(1) " G(t,0)Qp(0)
+ (1= 3(1)" Pp(t) - Po(t)). (B.37)
We then define the superoperators
I(t) = PL(t) (I - (1) G(t,0), (B.38)
K(t) = PLt) (I-2(t)"". (B.39)

Then the evolution can be rewritten as
d
S PP(t) = K(0)Pp(t) + 1(t)Qp(0). (B.40)

This equation, while time local still involves the calculation of intractable objects,
comprised of both chronological and anti-chronological time ordering. In order to be
able to compute actual dynamics, we need to approximate the superoperator X(t)
to be tractable.

B.3.1 Perturbative expansions of the TCL generator

On top of the assumption that (I — X(¢)) is invertible, we also now assume the
following Taylor expansion is admissible

I-X() " =Y n@", (B.41)
so that
K(t) = o i PLED(E)" = i ) (B.42)

Here we introduced the parameter a (the coupling constant) explicitly for the sake
of bookkeeping. In order to find the contribution K, () of the n'® order expansion in
coupling strenght, we also need to expand X(¢) in powers of the coupling strenght

S(t) = f: Q" (). (B.43)

Inserting Eq. (B.43) into Eq. (B.42), and then sorting the terms of the same power
in coupling strength, up to the fourth order, one obtains for n = 1:

alky(t) = « i PL(t)E(E)". (B.44)

Thus, the same power of the coupling strength is obtained for n = 0 in the sum
which yields

alkly(t) = aPL(1). (B.45)
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For n = 2 we have

?Ksy(t) = iP/L(t)E(t)" =« ipﬁ(t) (i o/“Zk(t)> , (B.46)

this is satisfied when n = k = 1, thus we obtain
Q?Ko(t) = &P PL(IH)S (1) (B.47)

For n = 3:
a’Ks(t) = a i PLOX(H)" = i PL(t) (i o/“zk(t)> : (B.48)

In this case, there are two instances where the sum generates a second order expres-
sion in coupling strength, those are n = 2,k = 1 and n = 1,k = 2. All different
terms generate other couplings, thus we have

a’Ks(t) = o®PL[E) (Z3() + Ta(t)) . (B.49)

The last term we will consider is n = 4. In this case there are more combinations
that give rise to a third order power, the obvious ones are n =1,k =3n =3,k =1,
to understand where the others come from consider:

(%1 () + a2%5(1)? = (%1 (1)* + (?Sa(t))” + ®{Sa(t), (1)}, (B.50)

there we see that the n'* of many ks can generate terms of a given power, in this
case the non-obvious terms are those with n = 2,k = (1,2). Then we have

aMICa(t) = o PL(E) (S3(t) + Ta(t) + {Za(t), (1)} - (B.51)

The contributions of the first four orders can then be written as

Ki(t) = PL(), (B.52)
Ka(t) = PLIES, (D), (B.53)
Ks(t) = PL(t) ( (B.54)

(t) (t) (B.55)

In order to write down the final contributions we need to find the expressions for
Y; using Eq. (B.43). This simply boils down to expanding the Green function. For
completeness let us find more concrete expressions for these contributions in the
case where we use box 5.1.

Since KC(t) acts on Pp and because we have centralized, then
Ki(t) =0. (B.56)

Now to get 3 let us consider Eq. (B.31)

St = a / ' 4sG(t. $)QL(s) PGl 5). (B.57)

to



THE TiME CONVOLUTIONLESS (TCL) EQUATION 155

The idea now is to approximate both G(¢,s) and Gg(t,s) which contain all powers
of a. In order to get first order in coupling strength, both superoperators need to
be approximated to the identity superoperator namely

Yi(t) = a/t dsQL(s)P, (B.58)
to
so then the second order contribution of the memory kernel is
Ka(t) = a / SPLINOL(s)P (B.59)
to
= &/t dsPL(t)L(s)P. (B.60)
to

Here in the last line we used the fact that @ =1 — P and 5.1. At this stage notice
what the equation of motion generated at this order is (considering an initial product
state):

SPlt) = Knlt)Polt) (B.61)

Notice the similarity to Eq. (B.24). Expanding this expression in the same way one
obtains:

d

Zps(t) =a /t dsPL(t)L(s)Pp(t) (B.62)

__ / dsTag[[H(1), [H(s), ps(t) @ ps]]] (B.63)

which is the Redfield equation Eq. (6.12). Notice the locality in time did not involve
the Markov approximation. To find the next contribution we need to find ¥5(¢).
To do it we approximate the Green functions by G(t, s) = [+aQA(s), and Gg(t, s) =
I—aA(s), where A(s) = fst ds'L(s") and consider only the contributions proportional
to the coupling strength. Using this we find

S(t) = 24 (t) + /0 s (QA(3)QL(s)P — QL(s)PA(s)) +O(a?). (B.64)

-~

3o

We then have
Yo(t) = /0 ds (QA(s)QL(s)P — QL(s)PA(s)) (B.65)
_ /0 ds / ds' (QL()QL(s)P — QL(s)PL(s)) | (B.66)

by making the same change of variable as in Fig. 2.1 we obtain

Yo(t) = /Ot ds' /08 ds (QL(S"NQL(s)P — QL(s)PL(s")). (B.67)
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Substituting this into Eq. (B.54)

= /Ot ds' /05 dsPL(t) (QL(sQL(s)P — QL(s)PL(s")) (B.68)
—0. (B.69)

On the last line we replaced @ = I — P in all instances and used 5.1. From what
we have derived so far we know that ¥;(¢)¥5(t) = 0 (becase PQ = 0) and the
contribution of 3 (¢)® is null. Thus

Ka(t) = PL[) (X2(8) X1 (F) + Es(2)) - (B.70)

Lastly we need to find X3 whose calculation is a bit more troublesome and not
included here, but yields

g = /t dt, /tl dt, /t2 dts (L(t1)L(t2)L(ts) — L(t1)PL(ta)L(t3) + L(t3)PL(t2)L(t1))

(B.71)
Finally, Eq. (B.55) is given by
/ n / dt / s (PLUVL()L ()LL) P (B.72)
— PL({)L(t1)PL(t2) L(t3)P — PL(t)L(t2)PL(t1)L(t3)P (B.73)
— P,C(t)ﬁ(tg)PE(tl)L’(tg)P) : (B.74)

The general expression for higher order contributions can be obtained in the same
way or by using ordered cumulants [B1, 42]

_ / 'ty / " e / U e (COL)L) . Lt (BT5)
where
(LIOLE)L®E) - Ll )yoe = S (—DTPL(E) ... LE)PL(E) ... L(B)P, (B.T6)

where oc stands for ordered cumulants. Here g refers to the number of P we insert
between the first and the last to partition the n elements, in such a way that each
partition is time ordered. The sum is over all possible partitions. Luckily if we
centralize PL(t)P = 0 the number of partitions decreases greatly, basically, boiling
down to the different partitions of pairs, similar to the ones we had in 5.5. This
formula allows us to obtain higher order terms, or the ones shown here, without
going through all the hassle of equating terms of different powers.



Appendix C

Data for the structured Spectral density

The structured spectral density considered corresponds to an experimentally esti-
mated phonon spectral density of the FMO complex. It was taken from [11, 31] .
The low-frequency part is modeled by the Adolphs-Renger (AR) spectral density

2

S S; \1/2
J = L wPemw/w) C.1
AR(W) S]_ + 82 Zz:; 7|2w24w € Y ( )

where S = 0.29, s; = 0.8, s = 0.5, w; = 0.069meV and wy, = 0.24meV. The
intra-pigment vibrational modes are modeled

62

B Awgsin (Wi + )W
) =2 T B o T (€2)

where wy, is the vibrational frequency and s, the Huang-Rhys factor. whose values
are summarized in Table C.1. The parameter 7; is taken to be 1ps™ ~ 5cm™![31].
The total phonon spectral density of the FMO complex is given by J(w) = Jar(w)+

Jh(w).

Table C.1: Vibrational frequencies wy and Huang-Rhys factors s [11, 31]

k 1 2 3 4 5 6 7 8 9 10
wylem™] 46 68 117 167 180 191 202 243 263 284
Sk 0.011 0.011 0.009 0.009 0.010 0.011 0.011 0.012 0.003 0.008
k 11 12 13 14 15 16 17 18 19 20
wilem™] 291 327 366 385 404 423 440 481 541 568
Sk 0.008 0.003 0.006 0.002 0.002 0.002 0.001 0.002 0.004 0.007
2 21 22 23 24 25 26 27 28 29 30
wilem™!] 582 597 630 638 665 684 713 726 731 750
Sk 0.004 0.004 0.003 0.006 0.004 0.003 0.007 0.010 0.005 0.004
k 31 32 33 34 3 36 37 38 39 40
wilem™] 761 770 795 821 856 891 900 924 929 946
Sk 0.009 0.018 0.007 0.006 0.007 0.003 0.004 0.001 0.001 0.002
k A1 42 43 44 45 46 A7 48 49 50
wilem™] 966 984 1004 1037 1058 1094 1104 1123 1130 1162
Sk 0.002 0.003 0.001 0.002 0.002 0.001 0.001 0.003 0.003 0.009
k 51 52 53 54 55 56 57 B8 59 60
wilem™!] 1175 1181 1201 1220 1283 1202 1348 1367 1386 1431
Sk 0.007 0.010 0.003 0.005 0.002 0.004 0.007 0.002 0.004 0.002
k 61 62

wJem™] 1503 1545
Sk 0.003 0.003
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The spectral density is defined in terms of these factors as
Sk
J(w) = 2755 (w — wi). C.3
(@) = 7 i o =) (C3)

Notice there is a factor = with respect to [11, 31] to agree with the definitions in
the Thesis Eq. (1.21). We will rescale the coupling strength to the experimentally
measured factors via a constant g (which already includes the factor )

Tnew(W) =g Zwiskc?(w —wy) = Zwis%é(w — wy). (C.4)

For the simulations shown we choose g = %5



Appendix D

Matsubara Expansion

Let us consider the correlation function using an underdamped spectral density, by
substitution of Eq. (1.78) into Eq. (1.23) we get

C(t) = %/000 dw[(w? — 3;1;w+ T7,7] <cos(wt) coth(%u) — isin(wt)) (D.1)

We will perform Contour integration here, however notice that there’s two contribu-
tions to the poles, the poles coming from the spectral density and the poles coming
from the temperature (those in the cotangent). We will first deal with the former,
which are (in the upper half of the complex plane):

I

w = % +Q, (D.2)
I

Wy = % — Q, (D3)

where Q = {/w, — (5)2. Using Contour integration over the upper half with a semi-
circle, with obtain the contribution of these spectral poles to be

(o (2 0= D)o (2= )
+ coth (g(Q + zg)) cos ((Q + %) t)
o ({0 ) ) s (- ). o

we can now split this part into a sum of decaying exponentials, taking into account
Eq. (7.41), we can write this contribution as

C(r) = Z cxe” FT (D.5)

where

_ {(a2 coth(B(Q +i0/2)/2) +ia?) /4Q &k =0,

(a2 coth(B(Q — iT/2)/2) — ia?) /40 k= 1, (D6)
(—ia+r/2 k=0,
o {iQ+F/2 k=1 (D7)
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However, to complete the expansion we are missing the poles of the cotangent, which
are infinitely many and are known as Matsubara poles [27, 28]. We will consider the
series expansion of the cotangent, namely

o)
X

coth(z) = kzoo s (D.8)

such that our thermal part gives us the poles (again on the upper half plane)

The contribution of each of these poles to the contour is

4 BTk cosh (%’“)

— . 5 (D.10)
(52 (FT 4 Qz) 4 472/{;2) _ 47?262F2k2
4w BTk cosh <2me>
BA(Q+40/2)% + (35))][(Q —4T/2)2 + (35)?]
which can be rewritten as
—4a’T7k
R (R ER o) Ry e = e
v, = % (D.13)

The Padé expansion works similarly, but we integrate over the poles of the Padé
approximation of the Bose-Einstein distribution instead of the Matsubara poles.



Appendix E

Software and Hardware used for the simula-
tions

For the simulation of GKLS master equations and HEOM the optimizations per-
formed for this methods see [A1, 20]. The versions and configuration of the software
used was

e QuTiP Version: 5.0.4
e Numpy Version: 2.1.1
e Scipy Version: 1.14.1

e Cython Version: None
o Python Version: 3.12.6
e Number of CPUs: 16
« BLAS Info: openblas64

For the simulation of Redfield and cumulant we used [124] which we built on top of
QuTiP. For the simulations here we used the QuTiP backend in [124] no optimiza-
tions were used, even though the usage of GPU (via the jax backend or qutip-jax),
just in time compilation and parallelization is available for the cumulant equation,
we did not use the optimizations available because we did not produce equivalent
code for the Redfield equation. Which was at a disadvantage with respect to GKLS
and HEOM as QuTiP’s internal ODE routines are faster than the one we used for
Redfield. Both equations would benefit greatly from caching which will be available
in future versions of [124]

Simulations were run on the Windows subsystem for linux a lenovo Thinkpad X1
with the following specifications

» Processor: 12th Gen Intel(R) Core(TM) i7-1260PR
« RAM: 16GB
« RAM accessible by WSL: 11GB
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