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1. INTRODUCTION

In the above-mentioned publications we consider ideal convergence of sequences of
points and functions and we study it with the aid of infinite combinatorics. A family
7 of subsets of N is called an ideal if it is closed under taking subsets and finite unions
of its elements. We say that a sequence (z,) in a topological space X is Z-convergent
(or ideal convergent if the ideal Z is clear from context) to z € X if for every
neighborhood U of z there exists a set A € Z such that z, € U for every n € N\ A.
In the case of the ideal of sets of density zero the ideal convergence is known as the
statistical convergence and it was already considered by Steinhaus [102, p. 73] and
Schoenberg [96]. For P-ideals, the ideal convergence is equivalent to the existence of
a set from the dual filter such that the subsequence defined on this set is ordinary
convergent (see e.g. [62]). The notion of ideal convergence can be also describe in
terms of “convergence of a filter to a point” introduced in 1937 by Cartan [24].

In 1991 Mazur 78] characterized all F, ideals in terms of lower semicontinuous
submeasures on N, and in 1999 Solecki [100] obtained a similar characterization for
analytic P-ideals. Both characterizations provided us with new methods to examine
ideals (see e.g. [38,52]), as well as ideal convergence (see e.g. [P8]).

Another tool that helps to study ideal convergence (see e.g. [H4,70,87]) are infinite
games defined by Laflamme [71] jointly with the theorem of Borel determinacy and
some combinatorial characterizations of winning strategies in these games.

In the above-mentioned series of publications we use these methods to obtain
some new results and in particular to solve some problems posted by Drewnowski
and Luczak [34], and Wilczyniski [107]. Below, I show also how one can use our
results to answer some questions posted later by Borodulin-Nadzieja, Farkas and
Plebanek [17], and Hrusék [52].

2. BOLZANO-WEIERSTRASS PROPERTY AND NONATOMIC SUBMEASURES

In the paper [H1| we introduced the Bolzano-Weierstrass property (in short: BW
property) for ideals. An ideal Z has BW property if for every bounded sequence (z,,)
of reals there is A ¢ Z such that the subsequence (z,)nca is Z-convergent.

Using the notion of Z-small sets introduced by Farah [39], we proved [H1, Propo-
sition 3.3] a characterization of ideals with BW property in terms of trees: an ideal
7 has BW property if and only if for every binary tree 7 of height w such that
every level of 7 is a partition of N there exists an infinite branch {B, : n € N} of
T and a set A ¢ T such that A\ B, € Z for every n. Later, we repeatedly used this
characterization to study BW property.

Using Mazur’s characterization and the above characterization, we proved [H1,
Proposition 3.4], that every F, ideal has BW property.

For analytic P-ideals, BW property turned out to be closely related to nonatomic
submeasures on N (nonatomic submeasures are called “strongly continuous submea-
sures” in the book [15], and “compact submeasure” in the paper [89]). A submeasure
¢ is nonatomic if for every € > 0 there is a finite partition N = 4; U--- U A4,, such

that ¢(A4;) < e for all i < mn.
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By Solecki’s characterization we know that for every analytic P-ideal Z there
exists a lower semicontinuous submeasure ¢ such that Z = {A : ||A||4 = 0}, where
l|Ally = lim, ¢(A\ {0,1,...,n}).

In the paper [H1, Theorem 3.6] we proved that an analytic P-ideala Z has BW
property if and only if the submeasure || - ||4 is not nonatomic. The main ingredients
of the proof are Solecki’s characterization and the above-mentioned characterization
of BW property in terms of trees.

Nonatomic submeasure on N are considered in a series of papers by Drewnowski
and FLuczak [33-35]. For instance, in [34] the authors find two necessary conditions
for a submeasure to be equivalent to the limsup of a sequence of lower semicon-
tinuous submeasures and they pose two problems: (1) whether these conditions are
equivalent to each other, and (2) if these conditions are also sufficient.

In the paper [H2] we solve both problems: (1) we proved that, in general, these
conditions are not equivalent [H2, Theorem 5] (however for submeasures vanishing
on singletons both conditions are equivalent [H2, Theorem 3]); (2) we constructed
[H2, Example 8] a submeasure ¢ that satisfies both conditions but is not equivalent
to the limsup of a sequence of lower semicontinuous submeasures.

The construction of ¢ can be described in three steps. First, we prove that a
submeasure ¥ satisfies these conditions if and only if the family of nonzero sets of
i is a P-coideal. Next, we show that if a submeasure 1 is equivalent to the limsup
of a sequence of lower semicontinuous submeasures, then the family of nonzero sets
of 1 is a Gs, coideal. Finally, we use a maximal almost disjoint family to construct
a P-coideal which is not Gs,, and with the aid of this coideal we define ¢.

In [34] the authors also find a necessary condition for a submeasure to be equiva-
lent to the submeasure || - || where ¢ is a o-submeasure (the authors call it the core
of a o-submeasure), and they pose a question if this condition is also sufficient.

In the paper [H2, Theorem 11] we prove that the answer to the question is negative.
The proof can be split into three steps. First, we show that if the ideal of zero-sets
of a submeasure ¥ is a P-ideal, then 1 satisfies this necessary condition. Second,
we prove that there is no o-submeasure ¢ such that the coideal of nonzero-sets of
|| - || is @ Q-coideal. Last, we take a selective ultrafilter (i.e. an ultrafilter which is
a P-point and Q-point) and define the required submeasure. Certainly, for the last
step we need some extra set-theoretic assumptions (e.g. the Continuum Hypothesis).
We do not know if a submeasure with the above-mentioned properties exists in ZFC.

3. KATETOV ORDER ON BOREL IDEALS

The Katétov order was introduced by Katétov in [56]. Let Z, J be ideals on N.
Then T is below J in the Katétov order (in short: Z <y J) if there is a function
f:N— Nsuch that f71[4] € J forall A€ T.

The restriction of the Katétov order to maximal ideals coincides with the well-
known Rudin-Keisler order. There also is a connection of the Katétov order with
Z-ultrafilters introduced by Baumgartner in [13]. Namely, Flaskovd observed [42)]
that ¢/ is an Z-ultrafilter if and only if Z £€x U*. Many standard combinatorial
properties of ultrafilters can be characterized in the same way with the aid of Borel
ideals (see [43]). For instance, U is a P-point if and only if CONV £y U*, where

CONV is the ideal of all subsets of @ having only finitely many limit points.
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There is an interesting result of Guzman-Gonzilez and Meza-Alcéntara [48] (a
similar result was also obtained independently by Mrozek [83]) concerning the Katéov
order restricted to Borel ideals which says that there are antichains of size ¢ and
chains of size b of Borel ideals in the Katétov order.

In [52, Question 5.16) Hrusdk posed a question if a Borel ideal Z can be extended
to an F, ideal if and only if CONV £ Z. Using a result of Meza-Alcdntara [80],
Hrusék’s problem can be rephrased as a question whether an ideal Z can be extended
to an F, ideal if and only if 7 has inBW property (where inBW property is defined
in the same manner as BW property but instead of ideal convergence we require the
ordinary convergence of a subsequence [H1}).

In the paper [H1, Theorem 4.2] we proved that the answer to Hru$ék’s question
is positive for Borel P-ideals (we do not know the answer for all Borel ideals). The
main ingredient of the proof is the characterization of BW property in terms of
nonatomic submeasures [H1, Theorem 3.6] which is discussed in Chapter 2 of the
presentation.

4. EXTENDING IDEALS TO SUMMABLE IDEALS

An ideal Z is called a summable ideal if there is a divergent series 3 a,, of non-
negative reals such that Z = {A C N : 3, c4a, < co}. Summable ideals were
introduced by Mazur in [78], although some subclass of summable ideals was earlier
considered by Mathias [74].

In 1930 Auerbach [3] proved that if a series of nonnegative reals 3, a,, is divergent
then there is a set A C N of density zero such that the subseries Y, 4 a, is also
divergent (the same theorem was later repeatedly reproved, for instance by Agnew [1]
in 1947 and by Estrad and Kanwal [37] in 1986). Using summable ideals, Auerbach’s
result can be rephrased in the following manner: the ideal of density zero sets cannot
be extended to any summable ideal.

In [97], Freedman and Sember showed that the ideal of uniform density zero sets
cannot be extended to any summable ideal (the summable ideals are called “full
classes” in their paper).

Now we show that our results on BW property allow us to generalize the above
theorems. Summable ideals have inBW property (it follows from the fact, that sum-
mable ideals are F;, and all F, ideals have finBW property [H1, Proposition 3.4]).
On the other hand, if an ideal has inBW property, then every ideal contained in it
also has finBW property. As a corollary we obtain that if an ideal does not have
finBW property, then it cannot be extended to a summable ideal. Since the ideal of
density zero sets and ideal of uniform density zero sets do not have inBW property
(see [H1,P4]), so the above observation extends the results of Auerbach, Freedman
and Sember.

Another result about extending ideals to summable ideals is a theorem of Pa-
Stéka [89] which says that no ideal of zero-sets of a nonatomic submeasure can be
extended to a summable ideal. In [P4, Theorem 1] we proved that the ideal of zero-
sets of a nonatomic submeasure does not have inBW property. This fact jointly
with the earlier observation that ideals without finBW property cannot be extended

to summable ideals can be regarded as a generalization of Pastéka’s theorem.
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Two other papers about extending ideals to summable ideals, which are worth to
mention, are papers [2,36] (in both papers the property that an ideal can be extended
to a summable ideal is called “Positive Summability Property”). In [36] Drewnowski
and Patl proved among others that generalized density ideals (these ideals are con-
nected with matrix summability methods) can be extended to a summable ideal
if and only if they do not have the Nikodym property. In 2] Alon, Drewnowski
and Luczak using the Kneser graph constructed an ideal with the Nikodym prop-
erty that has finBW property but cannot be extended to a summable ideal (in that
paper the authors use the term “nonatomic ideals” instead of ideals without finBW

property).

It turns out that the problem of extending ideals to summable ideals is connected
with the Riemann rearrangement theorem (i.e. the theorem which says that if a
series is conditionally convergent, then its terms can be rearranged so that the new
series converges to any given value). In [107] Wilczynski strengthened the Riemann
rearrangement theorem by proving that one can only rearrange terms whose indexes
form a density zero set, and he posed a problem about characterization of all ideals
having the same property, i.e. ideals Z such that for every conditionally convergent
series 3, a,, and for every r € R there exists a permutation ¢ : N — N such that
Sn@omy =7 and {n : o(n) # n} € I. We say that such ideals have the Riemann
property (in short: R property).

In the paper [H3, Theorem 3.3] we solved this problem by proving that an ideal
has the Riemann property if and only if it cannot be extended to a summable ideal.
There are two main components of the proof of this characterization. First, we show
that no summable ideal has R property. Second, assuming that an ideal Z does not
have R property, we use the series that witnesses to the lack of this property to
construct a summable ideal extending Z.

In [17] Borodulin-Nadzieja, Farkas and Plebanek generalize the notion of sum-
mable ideals using series in Banach spaces or Polish groups, and call them ideals
representable in a given space (summable ideals turn out to be ideals representable
in the space R). They proved that all analytic P-ideals are representable in Pol-
ish Abelian groups, and all nonpathological analytic P-ideals are representable in
Banach spaces. Moreover, the authors posed a question [17, Question 6.13] about
a characterization of ideals (analytic P-ideals) that can be extended to summable
ideals.

Since the negation of the Riemann property characterizes ideals that can be ex-
tended to summable ideals, so it gives an answer to the above question for an
arbitrary ideal. In the case of some subfamily of analytic P-ideals we can give an-
other characterization. Namely, in the paper [H3, Proposition 3.7] we proved that
for the class of all density ideals considered by Farah [38] (it is a proper subfamily of
the family of all analytic P-ideals), R property is equivalent to the negation of BW
property. As a corollary we obtain that a density ideal can be extended to a summa-
ble ideal if and only if it has BW property. However, this characterization does not
hold for all analytic P-ideals, since we showed [H3, Example 3.6] that there exists
an F, P-ideal (hence it has BW property) which cannot be extended to a summable

ideal.
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In [14] Bermiidez and Martinén used our characterization of ideals with R property
to prove an ideal version of a theorem about changes of signs in a conditionally
convergent series.

A vector-valued counterpart of the Riemann rearrangement theorem was proved
by Lévy’ego and Steinitza at the beginning of the 20th century, and recently Klinga [58]
proved that the ideal counterpart of Lévy-Steinitz theorem holds for ideals that can-
not be extended to summable ideals.

5. CARDINAL INVARIANTS OF QUOTIENT BOOLEAN ALGEBRAS

A set S C B is a splitting set in a Boolean algebra B if for every nonzero element
b € B there exists s € S such that b-s # 0 and b— s # 0.

It is known that any splitting set in the quotient Boolean algebra P(N)/Fin (where
Fin denotes the ideal of all finite sets) is uncountable. The minimal cardinality of
a splitting set in P(N)/Fin is denoted by s and is called the splitting number (see
e.g. [106] or [16]).

It turns out that there is a relationship between splitting sets and BW property.
In the paper [H1, Theorem 5.1) we proved that an ideal Z does not have BW property
if and only if there exists a countable splitting set in P(N)/Z.

The main ingredient of the proof of this theorem is the characterization of BW
property in terms of trees (see Chapter 2 of the presentation). The proof can be
briefly sketch in the following way. If P(N)/Z has a countable splitting set .S, then
we construct an appropriate tree (at a given level we split sets from the previous
level with the aid of S) and using the characterization we show that Z does not have
BW property. On the other hand, if an ideal Z does not have BW property, then
we take a tree 7 from the characterization and show that the union of all levels of
T is a countable splitting set in P(N)/Z.

In [5,50] Balcar, Herndndez-Herndndez and Hru$ak proved that there is a count-
able splitting set in P(N)/Z; (where Z, is the ideal of all sets of density zero) and in
P(Q)/NWD (where NWD is the ideal of all nowhere dense subsets of Q). Since the
ideals NWD and Z,; do not have BW property ([H1]), so their result can be regarded
as a particular case of our theorem.

In [50] the authors proved also that for an analytic P-ideal Z, if P(N)/Z has
a countable splitting set, then the ideal T is totally bounded (i.e. ¢(N) < oo for
every submeasure ¢ that defines 7 according to Solecki’s characterization). Now
we show that this theorem also follows from our results about BW property. Using
the characterization of BW property for analytic P-ideals in terms of nonatomic
submeasures (see Chapter 2 of the presentation), we know that if an ideal Z does
not have BW property, then the submeasure || - ||4 is nonatomic. Moreover, one can
show that if || - ||; is nonatomic, then ¢(N) < co. Thus, if P(N)/Z has a countable
splitting set, then Z does not have BW property, hence Z is totally bounded.

It is consistent with the axioms of ZFC that P(N)/Fin does not have a splitting
set of cardinality less than ¢ (even if 8; < ¢). For instance, it holds under Martin’s
axiom and the negation of the Continuum Hypothesis (see e.g. [16]).

In the paper [H6, Theorem 4.3] we proved that the same result holds for every
analytic P-ideal with BW property (recall that for an ideal without BW property

there always is a countable splitting set).
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Here is a brief sketch of the proof. We start with a family F of less than ¢ subsets
of N, and we will show that it is not a splitting set. With the aid of 7 we define a
partially ordered set IP (in this case it is the so-called Mathias poset with respect to
F) and an appropriate family D of dense subsets of P. Then, by Martin’s axiom,
there is a filter F/ C P that intersects all elements of D. Using the filter F' we define
a set that is not split by any member of F (thus F is not a splitting set).

In this outline, there are two steps for which we need some additional tools to
carry out. First, we use Solecki’s characterization of analityc P-ideals to define
an appropriate dense sets (we use the fact that considered submeasures are lower
semicontinuous, hence the sets from outside the ideal can be approximate by finite
sets). Second, we need the lemma [H6, Lemma 2.7] to show that sets from D
are dense. Actually the lemma gives another characterization of BW property,
namely an analytic P-ideal has BW property if and only if there is § > 0 and
z : P(N) — {0,1} such that ||N{A*™ : A € G}||s > ¢ for every finite family
G C P(N) (where A° = A and A = N\ A). It is worth to notice that the function
z does not depend on a choice of a family G i.e. for every set A we know in advance
if we take A or N\ A in the intersection for every family G containing A.

In [H6, Theorem 3.2] we prove also that Martin’s axiom implies that there is no
splitting set of cardinality less than ¢ in P(N)/Z for every F; ideal. The same results
for F, ideals and analytic P-ideals was obtained independently by Mrozek (83].

In the paper [H6] we study also the reaping number v. We proved that in P(N)/Z,
where Z is an F, ideal or an analytic P-ideal, the reaping number is uncountable
[H6, Proposition 3.1 and 4.1], and under Martin’s axiom the reaping number equals
¢ [H6, Theorem 3.2 and 4.2]. It is worth to notice, that in this case the results hold
for all ideals (with and without BW property). Another interesting result about the
number t was obtained by Steprans [103] who proved that the reaping number in
P(N)/Z; (where Z, is the ideal of all density zero sets) equals ¢ in ZFC.

Another cardinal invariant we are interested in is the bounding number b. This
number in quotient Boolean algebras P(N)/Z was already considered by Farkas and
Soukup [40], and Brendle and Mejia [19]. For instance, in [40] the authors proved
that the number b in P(N)/Z, where 7 is an analytic P-ideal, is equal to its classical
counterpart in P(N)/Fin. Careful reading of their proof jointly with Talagrand’s
characterization [104] of ideals with the Baire property reveales that their result can
be extended to all ideals with the Baire property.

The bounding number turned out to be important in comparing ideal pointwise
convergence with ideal equal convergence of sequences of functions. This topic is
discussed in detail at page 15 of the presentation.

6. EQUAL (QUASI-NORMAL) CONVERGENCE OF SEQUENCES OF CONTINUOUS
FUNCTIONS

A sequence of functions f,, : X — R is ideal pointwise convergent to f: X — R
if the sequence of reals (f,(z))n is ideal convergent to f(z) for every z € X.

Ideal pointwise convergence was already considered in 1970s by Katétov [55,57.
He proved, among others, that for every countable ordinal o there exists a Borel
ideal such that the family of all ideal pointwise limits of sequences of continuous

functions equals the family of all functions of Baire class a (in particular, there is
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an ideal and a sequence of continuous functions such that the ideal pointwise limit
of the sequence is not of Baire class one).

It is also known that for every maximal ideal there is a sequence of continuous
functions such that the ideal pointwise limit of the sequence is not even Lebesgue
measurable.

On the other hand, it seems to be interesting to describe ideals for which ideal
pointwise limits of sequences of continuous functions are of Baire class one. In [62]
Kostyrko, Salat and Wilczynski proved that the ideal of density zero sets has this
property. Later, the problem was studied by Laczkovich and Rectaw [70] and Debs
and Saint Raymond [31]. For instance, in [70] and independently in [31] the authors
proved that ideal pointwise limits of sequences of continuous functions are of Baire
class one if and only if the ideal does not contain an isomorphic copy of the ideal
Fin x Fin.

In the paper [H4], beside pointwise convergence, we consider also discrete conver-
gence and equal convergence (also known as quasi-normal convergence or g-uniform
convergence). Both kinds of convergence were introduced by Csészar and Laczkovich
[27] (discrete convergence was also considered by Sierpiniski [99] in the case of trans-
finite sequences). Topological spaces defined with the aid of equal convergence (the
so-called QN-spaces) were examined by Bukovsky, Rectaw and Repicky in the series
of papers [22,23,94].

In the paper [H4] we use an infinite game of Laflamme [71] to describe ideal (point-
wise, discrete and equal) Baire classes. Below I describe the results we obtained for
equal convergence.

A sequence of functions f,, : X — R is ideal equal convergent to f : X — R if there
is a sequence of nonnegative reals (¢,) — 0 such that {n : |f,(z) — f(z)| > €.} €T
for every z € X.

Let 7 be an ideal. Let us consider the following game G(Z). Player I in the nth
move plays a set A, € Z, and then player II plays a finite set F,, C N\ 4,,. Player I
wins when U, F,, € Z. Otherwise player II wins.

We proved [H4, Theorem 5.5] that if player II has a wining strategy in the game
G(Z), then ideal equal limits of sequences of functions of equal Baire class « are of
ordinary equal Baire class o + 1 for every finite o (in particular, ideal equal limits
of sequences of continuous functions are of ordinary equal Baire class one). The
problem for infinite @ remains open.

There are two main ingredients of the proof (for simplicity, I outline only the case
of sequences of continuous functions). First, we use Laflamme’s characterization
[71] of ideals for which player II has a winning strategy. The characterization is
rather technical and I will not provide it here, but the most important feature of
this characterization is that all sets from the dual filter can be described by a fixed
countably family of finite sets. Second, we use Csaszar-Laczkovich characterization
[28] of functions of equal Baire class one: f is of equal Baire class one if and only if
there are closed sets A, C X such that U, A, = X and f | A, can be extended to
a continuous function on X for every n.

In [87] Natkaniec and Szuca use another Laflamme’s game to study ideal point-
wise limits of sequences of quasi-continuous functions. Ideal discrete and equal
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limits of sequences of quasi-continuous functions are studed by Kwela, Natkaniec,
Staniszewski and Szuca, and the papers with their results are in preparation.

We continue the study of various kinds of ideal convergence of sequences of func-
tions and the results we have obtained so far are published in the papers [P10,P11]
which are described in detail at page 15 of the presentation.

7. HINDMAN SPACES

A topological space X has BW property with respect to an ideal I if every sequence
in X has Z-convergent subsequence defined on a set from outside the ideal ([H1]).

One can see that an ideal 7 has BW property if and only if the interval [0, 1]
has BW property with respect to Z. If a Hausdorff topological space X has BW
property with respect to some ideal, then X is countably compact. A space X has
BW property with respect to the ideal of all finite subsets of N if and only if X is
sequentially compact. Moreover, every metric compact space has BW property with
respect to every ideal with BW property (this theorem is not true if we drop the
assumption about metrizability) [H1, p. 505].

A set A C N is an IP-set if there is an infinite B C N such that FS(B) C A
(where FS(B) is the set of all finite sums of elements of B). Hindman’s theorem
[51] says that for every finite partition N = A; U--- U A, there is i < n such that
A, is an IP-set.

Topological spaces connected with Hindman’s theorem were studied in a series
of papers by Kojman, Jones and Shelah [53,59,61]. The definition of these spaces
requires the notion of IP-convergence introduced by Furstenberg and Weiss [47]. A
subsequence (Zn)ners(a) is IP-convergent to x if for every neighborhood U of z there
is N € N such that z, € U for every n € FS(A\ {0,1,..., N}). A topological space
X is a Hindman space if every sequence in X has an IP-convergent subsequence
(59]).

In [41] Fliskovéd compares Hindman spaces to spaces having BW property with
respect to summable ideals. Among others, she proved that there is a space having
BW property with respect to a given summable ideal that is not a Hindman space.

In the paper [H5] we study relationship between Hindman spaces and spaces with
BW property with respect to Hindman ideal H = {A C N: A is not an IP-set}.

We proved [H5, Proposition 3.5] that every Hindman space has BW property with
respect to . On the other hand, we constructed [H5, Theorem 3.7] a topological
space that has BW property with respect to H but is not a Hindman space. The ex-
ample we provided is a one-point compactification of the Mréwka space [81] defined
with the aid of maximal almost disjoint family of sets from H.

In the same paper we proved [H5, Theorem 3.3] that Hindman ideal H has BW
property. In the proof of this theorem we use idempotent ultrafilters on N i.e.
ultrafilters U such that U + U = U where “+” is an extension of addition of natural
numbers on the family of all ultrafilters. The second tool we use in the proof is
the characterization of BW property in terms of trees [H1, Proposition 3.3] (see
Chapter 2 of the presentation for details).

We continue the study of topological spaces with BW property with respect to
ideals and the results we have obtained so far are published in the paper [P9] which
is described in detail at page 16 of the presentation.
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V. Description of the remaining scientific achievements

The remaining scientific achievements consist of the following publications.
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loq. Math. 97 (2003), no. 2, 169-180.
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[D5] F. G. Dorais, R. Filipéw, and T. Natkaniec, On some properties of Hamel bases
and their applications to Marczewski measurable functions, Cent. Eur. J. Math.
11 (2013), no. 3, 487-508.

Publications containing results obtained after PhD:

[P1] R. Filipéw and P. Szuca, Density versions of Schur’s theorem for ideals gen-
erated by submeasures, J. Combin. Theory Ser. A 117 (2010), no. 7, 943-956.

[P2] R. Filipéw, N. Mrozek, I. Rectaw, and P. Szuca, Ideal version of Ramsey’s
theorem, Czechoslovak Math. J. 61(136) (2011), no. 2, 289-308.

[P3] R. Filipéw, A. Nowik, and P. Szuca, There are measurable Hamel functions,
Real Anal. Exchange 36 (2010/11), no. 1, 223-229.

[P4] P. Barbarski, R. Filipéw, N. Mrozek, and P. Szuca, Uniform density v and
Z,-convergence on a big set, Math. Commun. 16 (2011), no. 1, 125-130.

[P5] R. Filipéw, N. Mrozek, I. Reclaw, and P. Szuca, Z-selection principles for
sequences of functions, J. Math. Anal. Appl. 396 (2012), no. 2, 680-688.

[P6] R. Filipéw, N. Mrozek, I. Rectaw, and P. Szuca, Extending the ideal of nowhere
dense subsets of rationals to a P-ideal, Comment. Math. Univ. Carolin. 54
(2013), no. 3, 429-435.

(P7] P. Barbarski, R. Filipéw, N. Mrozek, and P. Szuca, When does the Katétov
order imply that one ideal extends the other?, Colloq. Math. 130 (2013), no. 1,
91-102.
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[P8] R. Filipéw, T. Natkaniec, and P. Szuca, Ideal convergence, Traditional and
present-day topics in real analysis, Faculty of Mathematics and Computer
Science. University of L.odz, L.6dz, 2013, pp. 69-91.

[P9] R. Filipéw and J. Tryba, Convergence in van der Waerden and Hindman
spaces, Topology Appl. 178 (2014), 438-452.

[P10] R. Filipéw and M. Staniszewski, On ideal equal convergence, Cent. Eur. J.
Math. 12 (2014), no. 6, 896-910.

[P11] R. Filipéw and M. Staniszewski, Pointwise versus equal ( quasi-normal) con-
vergence via ideals, J. Math. Anal. Appl. 422 (2015), no. 2, 995-1006.

What follows is the discussion of the results of the above-mentioned publications.

The difference property in de Bruijn sense. In the papers [D1,D2,D3] we
study the difference property in de Bruijn sens (in short: the difference property)
for families of measurable functions. A family F of real-valued functions defined
on R has the difference property if for any function f such that A, f € F for every
h € R (where A, f(z) = f(z + h) — f(z)) there is a function g € F and an additive
function A : R — R such that f = g + A. This notion was introduced by de Bruijn
[30] in 1951. Since then the difference property has been examined for many classes
of functions and some generalizations of the notion have been considered. A survey
paper by Laczkovich [68] is a very good source of information on the notion.

Erdés, assuming the Continuum Hypothesis, proved (see e.g. [68]) that the family
of Lebesgue measurable functions (the family of functions with the Baire property,
respectively) does not have the difference property. On the other hand, Laczkovich
proved [69] that it is consistent with the axioms of ZFC that the family of Lebesgue
measurable functions has the difference property, and in the paper [68] he posed
a problem if it consistent with ZFC that the family of functions with the Baire
property has the difference property.

In the paper [D2, Theorem 1.2] we proved that the answer to the above problem
is positive. In the paper [75] Matrai also solved the same problem using a different
technique.

In the paper [D1, Theorem 2.2] we proved that the family of Marczewski measur-
able functions (a.k.a. (s)-measurable functions) does not have the difference property
in ZFC.

In the paper [67] Laczkovich posed the following problem. Suppose that functions
Anf are Borel for all h € R. Is it true that they are of bounded Borel class?

In the paper [D1, Theorem 3.1] we proved that if we assume the Continuum
Hypothesis then the answer to the above problem is negative. The same answer was
also obtain by Ciesielski and Pawlikowski in the paper [25] under the assumption
of the axiom CPA (Covering Property Axiom). Other results connected with this

problem were obtained later by Fujita and Métrai in the papers {45,46].
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Nonmeasurable algebraic sums in Marczewski-Burstin algebras. An alge-
bra of sets A C P(X) is a Marczewski-Burstin algebra generated by a family F if
A={ACX : (VFeF)IGe F(GCFNAVGC F\ A)}. The notion of a
Marczewski-Burstin algebra generated by a family F (in short: MB algebra) was
introduced by Brown and Elalaoui-Talibi in the paper [20], and later it was stud-
ied for instance by Balcerzak, Bartoszewicz, Ciesielski and Koszmider in the papers
[6-8,10-12]. The families of Lebesgue measurable sets, sets with the Baire property
and (s)-measurable sets are examples of MB algebras.

Sierpinski [98] proved that there is a Lebesgue null set A such that the algebraic
sum A+ A= {z+y: 2,y € A} is not Lebesgue measurable.

In the paper [D4] we study algebraic sums of null sets in MB algebras. We provide
[D4, Theorem 7] a sufficient condition on the generating family of MB algebra to
obtain a null set A € A such that A+ A ¢ A. To prove this theorem we construct
[D4, Theorem 6] an almost invariant null set in A.

Then we applied this theorem to obtain (sg)-sets and Miller null sets whose al-
gebraic sums are not measurable in the appropriate sense. These results were also
obtained independently by Kysiak [66].

Discontinuous but measurable additive functions. It is known that if an
additive function is discontinuous then it is Lebesgue nonmeasurable (see e.g. [63]).

In the paper [D5, Theorem 4.2] we proved that it is consistent with ZFC that there
exists a discontinuous additive function which is (s)-measurable (we even proved that
there is a discontinuous linear isomorphism of the vector spaces R™ and R* over the
field Q of rational numbers which is (s)-measurable [D5, Theorem 4.7]).

The above-mentioned functions are constructed under two distinct set-theoretical
assumptions. In the first construction we assume that cov(M) = ¢, and in the second
case we use the axiom CPA (Covering Property Axiom) introduced by Ciesielski
and Pawlikowski [26]. In both constructions the most important ingredient is the
existence of some “nice” Hamel basis (i.e. a basis of the space R over the field Q).
We proved [D5, Theorem 3.19] that such a Hamel basis exists under cov(M) = ,
and it was constructed by Ciesielski and Pawlikowski [25] under CPA. To prove
theorem [D5, Theorem 3.19] we generalized [D5, Theorem 2.3] Mycielski’s theorem
[84] about independent sets in relational systems.

Measurable functions whose graphs are Hamel bases. A function f : R — R
is a Hamel function if the graph of f is a Hamel basis of the vector space R? over
the field Q.

Hamel functions were introduced by Plotka in [90]. Together with Rectaw, he
studied properties of these functions in the papers [91-93]. They proved, among
others, that there exists a Hamel function which can be covered by finitely many
partial continuous functions (it can be shown that there is no continuous Hamel
function).

Hamel function were also examined by Matusik and Natkaniec in the series of
papers [76,77,85,86]. The authors proved, among others, that there are quasi-
continuous Hamel functions and there are no approximately continuous Hamel func-

tions.
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In the paper [90] Plotka proved that every function f: R — R is a sum of two
Hamel function. As a corollary we obtain that there are Hamel functions which are
Lebesgue nonmeasurable, do not have the Baire property or are not (s)-measurable.
Moreover, it can be shown that no Borel function is a Hamel function.

In the paper [P3, Theorem 1 i 2] we proved that there are Hamel functions which
are Lebesgue measurable, have the Baire property or are (s)-measurable.

Iterated versions of Ramsey and Schur’s theorems. In the paper [44] Frankl,
Graham and Rédl proved an iterated version of Ramsey’s theorem which says that
for every finite coloring [N]? = C;U- - -UC, of pairs of natural numbers with r colors
there exists § = d(r) > 0 (which depends on the number of colors) such that for
some ¢ < r we have

i({z: A{y: 2= b b ey € Ch 2 6)) 2 6}) >

where d denotes the upper density.

In the paper [P1, Theorem 3.1] we proved that instead of the upper density in the
above theorem one can put any submeasure of the form ||Al|s = limsup,,_,., ¢(A\
{0,1,...,n}), where ¢ is a lower semicontinuous submeasure (one can show that
the upper density d is of that form). Submeasures of the form || - ||4 are important
since all analytic P-ideals are characterized by Solecki as ideals of zero sets for such
submeasures.

Moreover, in the paper [P2, Corollary 5.7] we proved that if a submeasure || - |4
is not nonatomic, then the number § in the above theorem does not depend on the
number of colors.

In the paper [P2] we also consider some non-iterated versions of Ramsey’s theo-
rem. For instance, we proved [P2, Theorem 4.3] that an ideal 7 has the Bolzano-
Weierstrass property if and only if for any finite coloring [N = C; U --- U C, there
is a set A ¢ Z which is Z-monochromatic (i.e. there is & < r such that for every
a€ Awehave {be A:{a,b} ¢ Cr} €I).

Our study of the above Ramsey-like properties of ideals was continued by Meza-
Alcantara [80] and Kwela [64,65] (among others, the authors solved some problems
poseted in our paper [P2]).

The ordinary Schur’s theorem says that for any finite coloring of natural numbers
there are two numbers z,y such that z,y and z + y have the same color. In the
paper [44] Frankl, Graham and R6dl proved some iterated version of Schur’s theorem
which says that for any coloring N = C; U-- - U C; of natural numbers with r colors
there is § = 6(r) > 0 (which depends on the number of colors) such that for some
7 < 7 we have

E({x:ﬁ({y cz,y,t+y € Ci}) > 6}) > 4.

In the paper [P1] we consider iterated version of Schur’s theorem for submeasures
and we obtained similar results as in the case of iterated version of Ramsey’s theo-
rem: [P1, Theorem 3.2] — for any submeasure, [P1, Theorem 4.5] — for not nonatomic
submeasures and independence of § on the number of colors. The only difference
compare with Ramsey’s theorem is that we have to require that submeasures || - ||

are invariant under translations.
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Various kinds of ideal convergence of sequences of functions. In the pa-
pers [P10, P11] we study relationships between various kinds of ideal convergence
(e.g. pointwise, equal, uniform and o-uniform) of sequences of real-valued functions.

This sort of research was started by Das, Dutta and Pal in the paper [29], where
the authors proved some relationships between these kind of convergence and posted
some problems. We solved these problems in the paper [P10, Example 4.7, Corol-
lary 5.4, Corollary 6.5]. For instance, we showed that there exits ideal pointwise
convergent sequence of function which is not ideal equal convergent; and we proved
that ideal equal convergence implies ideal o-uniform convergence if and only if the
ideal is countably generated.

In the paper [P11] we focus only on ideal pointwise and equal convergence. For
instance, we proved [P11, Theorem 5.3] that ideal pointwise convergence implies
ideal equal convergence if and only if the domain of considered functions is not “too
big” in the sense of cardinality. The notion of being not “too big” we expressed in
terms of some cardinal invariant. In the ordinary case (i.e. for the ideal of finite
sets) this cardinal invariant coincides with the bounding number b.

Currently, we keep research on this cardinal invariant. So far we have proved that
this invariant equals b for all P-ideals with the Baire property. For non-P-ideals
we have had only some partial results and we still lack a result that encompasses a
large class of ideals.

Relationships between ideal pointwise and equal convergence is also considered in
a recent paper of Bukovsky, Das and Supina [21].

Ideal version of Arzela-Ascoli, Mazurkiewicz and Helly’s theorems. To
every theorem about convergence of sequences one can ask a question whether this
theorem remains true when the term “convergence” is replaced with “ideal conver-
gence”. One can even ask a more general question about a characterization of ideals
for which this “idealized” theorem holds. For instance, we did so in the case of
“idealized” version of Bolzano-Weierstrass theorem (see Chapter 2 of Part IV of the
presentation).

Problems of this sort for sequences of functions were already considered in the
literature. For instance, Balcerzak, Dems and Komisarski [9] proved that the ideal
version of Egoroff’s theorem holds for the ideal of density zero sets, and Mrozek [82]
generalized this result on all analytic P-ideals (another results concerning Egoroff's
theorem can be found in [54]). Another example is connected with ideal version of
Fatou’s lemma which was considered by Louveau [72], and Solecki [101] characterized
universally measurable ideals for which ideal version of the lemma holds.

In the paper [P5] we study ideal versions of three theorems concerning conver-
gence of sequences of functions: Arzela-Ascoli theorem, Mazurkiewicz’s theorem and
Helly’s theorem.

In the case of the first theorem we proved a characterization [P5, Theorem 3.1]
which says that ideal version of Arzela-Ascoli holds if and only if the ideal has BW
property.

In the paper [79] Mazurkiewicz proved that for any uniformly bounded sequence
of continuous functions f, : X — R there is a perfect set P C X and an infinite

A C N such that the subsequence (f, [ P)nea is uniformly convergent. In this case
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we proved [P5, Theorem 4.1] that ideal version of this theorem holds for every ideal
that can be extended to an F, ideal (the problem of extending ideals to F; ideals is
described in Chapter 3 of Part IV of the presentation).

One can show that every ideal extending to an F, ideal has BW property, and
ideal version of Mazurkiewicz's theorem does not hold for any ideal without BW
property. However, we do not know if BW property characterizes ideals for which
ideal version of Mazurkiewicz’s theorem holds [P5, Problem 4.3].

Helly’s theorem [49)] says that any uniformly bounded sequence of monotone func-
tions has a poinwise convergent subsequence. In this case we also proved [P5, Theo-
rem 5.8] that ideal version of this theorem holds for every ideal that can be extended
to an F, ideal and we still do not know if BW property characterizes ideals for which
ideal version of Helly’s theorem holds [P5, Problem 5.10]. In the case of van der
Waerden ideal (the definition of this ideal is below), ideal version of Helly’s theorem
was earlier proved by Kojman [60].

Hindman and van der Waerden spaces. The paper [P9] is a continuation of the
paper [H5]. In this paper, beside Hindman spaces, we also study van der Waerden
spaces introduced by Kojman [60].

Van der Waerden’s theorem [105] says that for every finite partition N = A4; U
... U A, there is i+ < n such that A; contains arbitrarily long finite arithmetic
progressions. Van der Waerden ideal is a family of such subsets A C N for which
van der Waerden'’s theorem does not hold if we replace N with A.

A topological space X has hBW property with respect to an ideal T if every se-
quence (T,)nea in X with A ¢ T has T-convergent subsequence defined on a set
from outside the ideal ([H1]).

Two main results from the paper [P9, Theorems 3.3 and 4.5] say that BW property
and hBW property with respect to Hindman (van der Waerden, resp.) ideal are
equivalent for any topological space.

Katétov order. The Katétov order <y (see Chapter 3 of Part IV of the presenta-
tion for the definition) was used by Katétov in the paper [57] to study ideal limits
of sequences of continuous functions.

Laczkovich and Rectaw [70] and independently Debs and Saint Raymond [31]
proved that ideal limits of sequences of continuous functions are of the ordinary
Baire class one if and only if the ideal Z does not contain an isomorphic copy of the
ideal Fin x Fin (in short: Fin x Fin Z 7).

In the paper [H4, Theorem 6.2] we proved that Fin x Fin Z Z if and only if
Fin x Fin € Z for every ideal Z. This result was the starting point to study other
ideals J (beside Fin x Fin) that have a similar property: J <x Z <= J C T for
every ideal Z. In this case we say that the ideal J has the Katétov property.

In the paper [P7, Theorem 3.4] we proved a characterization of the Katétov prop-
erty: an ideal J has the Katdtov property if and only if J C J x 0. Moreover
we showed [P7, Proposition 3.6 that if an ideal has the Katétov property then it is
a local Q-ideal, and we proved [P7, Proposition 3.10] that the Katétov property is

closed under the Fubini products of ideals.
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Extending the ideal NWD to a P-ideal. In the paper [32] Dow proved that
assuming the Continuum Hypothesis the ideal NWD of nowhere dense subsets of Q
can be extended to a P-ideal.

In the paper [P6, Corollary 1.3 and 2.2] we proved that the above extension cannot
be “too nice” (namely the ideal NWD cannot be extended to any analytic P-ideal)
and it cannot be “too large” (namely NWD cannot be extended to a maximal P-
ideal).

The ideal of uniform density zero sets. In the paper [P4] we study the ideal Z,
of sets of uniform density zero. The starting point for this paper was an observation
that in the paper of Baldz and Saldt [4] the authors assumed wrongly that Z, is a
P-ideal.

We also proved [P4, Theorem 1] that if a submeasure is nonatomic then the ideal
of zero sets does not have BW property. Then, using this result, we showed that
the ideal Z,, does not have BW property. Moreover we proved [P4, Theorem 2| that
the ideal Z, is F,s and is not Gs,.

Last but not least. The paper [P8] is a chapter in the monograph , Traditional
and present-day topics in real analysis” dedicated to Professor Jan Lipinski on the
occasion of his 90th birthday. Our chapter is a survey that focuses on three aspects
of ideal convergence. In the first part we consider ideal convergence of bounded
sequences (in other words this part is devoted to ideals with the Bolzano-Weierstrass
property). The second part deals with ideal convergence of sequences of continuous
functions (i.e. we consider ideal Baire classes of functions). The last part contains
results about the set of points where a sequence of functions is convergent (i.e. we
consider ideal versions of the so-called Lunina’s 7-tuples [73]). The research on ideal
version of Lunina’s 7-tuples was started by Borzestowski and Rectaw [18], and it
was continued by Rectaw [95] and Natkaniec and Wesotowska [88].
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