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Abstract in English

author: Pawel Barbarski
title: Various generalizations and applications of the Sharkovsky
Theorem on coexistence of periodic orbits of continuous mappings

The Sharkovsky Theorem states what are the possible sets of periods of
periodic points of a continuous real function. Thus, it belongs to the area
of discrete dynamical systems (combinatorial dynamics), but also to the real
functions theory. Nevertheless, multiple directions of generalizations and
applications of the theorem go beyond those areas. Here we concentrate on
two directions of those, thus the results of the dissertation can be divided
into two categories.

Firstly, we formulate some new randomized Sharkovsky-type results and
show their applications. We can extend a discrete dynamical system with
an additional dimension, and assume some measurability conditions on it,
while preserving some continuity conditions on the original dimension. In
such a way we arrive at a notion of a random operator and its random
orbit. In the dissertation we generalize some known randomization results.
We achieve that by significantly generalizing the characterization results on
the random operators (the so called “transformation to the deterministic
case” method), through using stronger measurability arguments, including
selection theorems. Furthermore, we formulate some new kind of Sharkovsky
Theorem analogues and use the results in the area of random differential
inclusions.

Secondly, we analyze algebraic properties of functions fulfilling the as-
sertion of the Sharkovsky Theorem. We solve some published problem in
that area, actually generalizing it significantly. The solution of the problem
is the characterization of all continuous functions belonging to an Aumann
ring generated by any given Darboux function. We arrive at the final solu-
tion through multiple steps providing solutions to some simpler cases of the
problem, and through some real functions theory reasoning.



Streszczenie w jezyku polskim

autor: Pawet Barbarski
tytut: R6zne uogdlnienia i zastosowania twierdzenia Szarkowskiego
o wspolwystepowaniu orbit okresowych odwzorowan cigglych

Twierdzenie Szarkowskiego okresla mozliwe zbiory okreséw punktéw okre-
sowych cigglych funkcji rzeczywistych. Nalezy ono zatem do teorii dyskret-
nych ukladéw dynamicznych (dynamika kombinatoryczna), ale réwniez do
teorii funcji rzeczywistych. Jednakze rézne kierunki uogdlnient i zastosowan
twierdzenia wykraczaja znaczaco poza te dziedziny. Tutaj koncentrujemy sie
na dwoch kierunkach, i stad wyniki rozprawy mozna podzieli¢ na dwie kate-
gorie.

Po pierwsze, formutujemy pewne nowe wyniki z zakresu randomizacji
twierdzenia Szarkowskiego i pokazujemy ich zastosowanie. Dyskretny uktad
dynamiczny mozna rozszerzy¢ o dodatkowy wymiar, zaktadajac na nim pew-
nego rodzaju mierzalno$¢ przy jednoczesnym zachowaniu pewnej ciggtosci
na pierwotnym wymiarze uktadu. W ten sposéb mozemy zdefiniowaé poje-
cie operatora losowego i jego orbity losowej. W rozprawie uogélniamy pewne
znane wyniki dotyczace randomizacji. Wyniki udaje nam si¢ osiagnaé¢ po-
przez znaczace uogdlnienie charakteryzacji operatoréw losowych (metoda
tzw. ,sprowadzenia do przypadku deterministycznego”), w dowodach wy-
korzystujac pewne fakty na temat mierzalnosci, w szczegolnosci twierdzenia
selekcyjne. Ponadto, formutujemy pewne nowe analogi twierdzenia Szarkow-
skiego oraz stosujemy nasze wyniki w obszarze zrandomizowanych inkluzji
rozniczkowych.

Po drugie, analizujemy wtasciwosci algebraiczne funkcji spetniajacych
teze twierdzenia Szarkowskiego. Rozwigzujemy pewien opublikowany pro-
blem w tej dziedzinie, a wladciwie jego znaczaco uogoélniong wersje. Rozwia-
zanie problemu to charakteryzacja wszystkich funkcji ciagtych nalezacych do
pierscienia Aumanna generowanego przez dowolng dang funkcje typu Dar-
boux. Do ostatecznego rozwigzania problemu doprowadza nas szereg krokow
posrednich, w ktorych rozwiazujemy pewne prostsze przypadki problemu oraz
stosujemy rozumowanie z zakresu teorii funkcji rzeczywistych.
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Summary of the dissertation

1 Introduction

Taking any function from the real line to itself, especially a function belong-
ing to a family defined by some continuity-related property, we can consider
iterations of that function on a given point, and thus arrive at so called “dis-
crete dynamical system”. It’s natural to ask about periodic points of such a
system, those for which some iteration arrives at the starting point. One of
the most inspiring theorems in the area of discrete dynamics of the real func-
tions is the Sharkovsky Theorem. It actually gives a surprising relationship
between existence of periods of periodic points of a continuous function. It
was proven in 1964 ([13]), but did not gain a worldwide recognition until af-
ter the publication of an article by Li and Yorke ([10]), which independently
proved a special case of that theorem. After that publication the original
result of Sharkovsky became an inspiration for further research, and many
articles on generalizations and applications of the theorem were published.

The classical path of generalization is substituting continuity with an-
other related notion, usually revolving somehow around Darboux property
(see [14], [11]), or generalizing the domain of the function, preserving some-
how its continuum characteristic (see [12]), or preserving one-dimensional
characteristic of the function itself (e.g. triangular maps in [6]). Looking on
the families of functions fulfilling the assertion of the theorem can even lead
to consider algebraic properties of such families (see [11]). Other interests
focus on the Sharkovsky Theorem pattern with respect to mappings of other
kind than classical functions. Multifunctions are most natural in that con-
text and a few results goes that way ([2], [3]). The so called “randomization
results” constitute another branch of findings (see [1], [7]). They actually
extend the discrete dynamical system with a random (measurable) dimen-
sion and can be applied e.g. in the area of random differential equations (or
inclusions).

Papers A and B consist of multiple results concerning the randomization
of Sharkovsky-type theorems. As a tool for proving the randomized gener-



alizations of the theorem we use the characterizations of random operators
having a periodic random orbit, a tool firstly proposed and applied in [1].
These type of characterization is called transformation to deterministic case,
since we express the existence of a random orbit through the existence of the
“deterministic” orbits. They are also results on their own, since in some cases
they have much more general assumptions than the actual Sharkovsky-type
results. Some of the results both on characterization of random operators
and the actual randomizations of Sharkovsky-type theorems are generaliza-
tion of results in [1], some are independent findings. Furthermore, we state
the analogues of Sharkovsky Theorem for spaces of measurable functions as
a mapping domain, and applications of the results in random differential
inclusions.

Paper C shows some of the Sharkovsky functions on the real line (or actu-
ally some function classes related to them) from algebraic perspective. It is
a solution to the problem stated in [11], i.e. characterize all continuous func-
tions belonging to each A-ring of S-function. S-function is a notion related
to first return continuity, whose precise definition is not needed here, since
the paper C actually generalizes the problem to Darboux functions instead of
S-functions. Nevertheless, for all S-functions the classical Sharkovsky Theo-
rem holds (as proven in [11]), thus the results on that particular function class
are a step forward to understand algebraic features of Sharkovsky functions.

2 Preliminaries

2.1 Sets

By N, R, R, I we denote the set of natural numbers, the set of real numbers,
set RU{—00, 400}, and the interval [0, 1], respectively. For finite I C N, the
symbol LCM I denotes the lowest common multiple of elements of 1.

We fix the following denotation: (€2,%) — a measurable space (i.e. a set
with a o-algebra of some of its subsets), Z — a proper o-ideal on Q2 (i.e. Q ¢ 7),
p — (if it exists) a complete o-finite nontrivial measure on (€2,3). We say
that X is complete if such a measure exists. We say that Y is nonatomic
with respect to Z if for every A € ¥ such that A ¢ Z, there is a splitting
A = BUC such that B,C € ¥ and B,C ¢ Z. For o-algebras ¥; and >,
by 1 ® ¥ we mean the product g-algebra. For a complete measure space
(92,3, 1) we denote N (Q) = {A C Q: u(A) =0}. For Q =R* or Q =1T* the
symbol L£(2) denote the o-algebra of Lebesgue measurable sets on €.

We recall the notion of a Suslin family. Let N<N be the set of all finite
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sequences of natural numbers. For a family {A4,: s € N<N} we put

oceNNn=0

We say that a family F is a Suslin family if AF = F, where AF =
{A{A,: s e NN} A, € F for s € N<NL

By (X, d) we always denote a metric space. A complete separable metric
space is called a Polish space. A metric space which is a continuous image of
a Polish space is called a Suslin space. For X = R* or X = I* the symbol || - ||
denotes the Euclidean norm on X, and the symbol d denotes the Euclidean
metric. The symbol B(X) denotes the o-algebra of Borel sets in X .

2.2 Functions

By B# we denote the family of all functions f: A — B. The image of a
function f on a set C' C A is defined as f(C) = {f(c): ¢ € C'}. For families
of function Ry, Ry we denote RioRy = {fog: f € Ri,9 € Ro}, where fog
is a composition of functions f and g, i.e. (f o g)(z) = f(g(x)). By idy we
denote an identity function, i.e. ids(z) = x for x € A.

In the dissertation we consider real functions on a real line or compact
interval. By €, 4, C, D, P, Cp we denote the family of constant functions,
bounded functions, countinuous functions, Darboux functions, polynomials,
and polynomially bounded continuous functions (Cp = {f € C: Fpep|f] <
h}), respectively.

A function f: I — R (or a function on any other compact interval) is
called absolutely continuous when for each € > 0 there is 6 > 0 such that for
each pairwise disjoint family of intervals (zy,yx) C I for k < n, if > (yx —
xy) < 9§, then >, [ f(yr) — f(zx)] < e. A function f: R — R is absolutely
continuous when each restriction of it to a compact interval is absolutely
continuous.

Let £ ~ ¢ hold for measurable &, (: 2 — X if and only if {w € Q: {(w) #
((w)} € Z. We denote the set of equivalence classes of this relation by:

M) z,xa = 1§ @ — X: & is measurable} /~.

We will write 9 instead of Mo x) 7,(x,q) when , 3, Z, X, and d are clear
from the context. When Q@ = R" or Q = 1", ¥ = L(Q), Z = N (), and

X =RF or X =T*, we also use the standard notation:

LP(Q, X) = {5: Q0 — X: ¢ is measurable A /Q 1€ (W) ||Pdw < —i—oo} [~
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for p € [1,+00) and
LT°(Q, X) = {&: Q — X : £ is measurable and bounded} /~.

The symbol [¢] stands for the class of equivalence of &.
A family of functions R is called an A-ring (Aumann ring) if it fullfills
the conditions:

« ¥ CR,

o if fge R, then f+g,fgeR,

o if (fu)n CR and f, = f, then f € R,

o if f,g € R, then max(f,g), min(f,g) € R.

With respect to uniform convergence (=) we recall classical result of
Weierstrass (referred to as Stone-Weierstrass Theorem).

Proposition 2.1 (Weierstrass). For any continuous function f: 1 — R there
is a sequence of polynomials (P,), such that P, = f.

We denote preimage set of function f as Pr = {f~'({y}): y € R} \ {0}.
Py is a partition of the domain. We say that P, < P, for partitions P, and
P, if for every A € P, there is B € P, such that A C B. We say that a
partition is closed if it consists only of closed sets. We define the closure
of a partition P (which is the smallest closed partition bigger than P with
respect to relation <) as cl(P) = {clp(A): A € P}, where clp(A) =N{A" D
A: A" € P’ for some closed P’ = P} for A€ P.

2.3 Multifunctions

We naturally identify a relation ¢ C A x B with a function ¢: A — P(B).
If we want to emphasize the properties of ¢ as a subset of A x B, we use the
notion of a graph of ¢, which is actually the same set as ¢. Furthermore, if
© C(Ax B)xC,ie ¢: Ax B— P(C), then for any v € A we define the
relation ¢, = ¢(z,-). A multifunction ¢: A — B is a relation with nonempty
values, i.e. p: A — P(B) \ {0}, we identify a function f: A — B with the
multifunction with one-element values fulfilling the condition p(z) = {f(x)}
for every x € A.

By a superposition of a function f: B — C with a relation ¢ C A x B we
mean the relation f oy C A x C defined for a € A by (f o p)(a) = f(¢(a)),
which is the image of f on a set p(a). By a product of relations F; C A x B
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for i € I we mean the relation [[;c; F; defined by ([1,e; Fi)(a) = [Ticr Fi(a)
for a € A.
We denote by

v (B) ={weQ:p(w)N B # 0}

the large preimage of the set B C X under the relation ¢ C Q2 x X. A relation
¢ C Q x X is called measurable if ¢~ (F) € X for every closed F C X. It
is called weakly measurable if ¢~ (G) € ¥ for every open G C X. The
paper [4] contains a thorough analysis of the notion of a measurable relation,
and multiple facts from that paper are used in the proofs of the results of
the dissertation.

We call a function f: 2 — X a selector of a multifunction ¢: 2 — X
and write f C ¢ if f(w) € p(w) for each w € Q. The selection theorems are
setting sufficient conditions for existence of a selector of a given mulitfunction.

We formulate the selection theorem of Kuratowski and Ryll-Nardzewski
from [8] as follows:

Proposition 2.2 (Kuratowski, Ryll-Nardzewski). If a multifunction ¢: )—o
X is weakly measurable and has closed values, then it has a measurable se-
lector f C .

The next selection theorem follows directly from Lemma 2.3.2 in [5]:

Proposition 2.3. Suppose that p € [1,+00], Q =R" or Q =1", X = RF
or X = IF. Let a multifunction ¢: Q — X has a measurable graph, i.e.
© € LN)RB(X) and there is h € LP(2,R) such that inf,c . ||2]] < h(w) for
eachw € Q. Then ¢ has a measurable selector f C ¢ such that f € LP(Q, X).

We state also a generalization of the Aumann-von Neumann selection
theorem which is a simple consequence of Corollary to Theorem 7 in [9]:

Proposition 2.4 (Leese). Assume that ¥ is a Suslin family and X is a
Suslin space. Let a multifunction p: 2 — X has a measurable graph, i.e.
v € X®@B(X). Then it has a measurable selector f C .

Assume that X and Y are metric spaces. A relation ¢ C X x Y is called
upper semicontinuous (u.s.c.) if ¢~ (F) is closed in X for every closed FF C Y.
It is called lower semicontinuous (1.s.c.) if ¢~ (G) is open in X for every open
G CY. If pis both lLs.c. and u.s.c., then it is called continuous. In case of
relations with one-element values (i.e. functions) the notion of a lower and
upper continuity coincide with the continuity of a function. An extended
analysis of the notion of continuity of relations can be found in Chapter 1 of
the book [5].
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2.4 The Sharkovsky theorem

In description of discrete dynamics of multifunctions it is convenient to use
the notion of a periodic orbit instead of the notion of a periodic point.
A sequence (z;)¥2) € A is called a k-orbit of the multimap p: A — A
if x;1 € p(x;) for i <k —1, 2y € p(xk_1), and there is no m < k such that
m |k and zg4y,.; = z; for i <m and s < %

We recall the Sharkovsky ordering of the natural numbers:

3 > 5 > 7 > 9 o
2-3 » 25 > 27T 1> 29 p
22.3 b 225 » 22.7 » 22.9

> 22 22 2 > 1

The original Sharkovsky theorem can be stated as follows:

Proposition 2.5. Let f: R — R be a continuous function. If f has an
n-orbit, then f has a k-orbit for every k <n.

The results of the dissertation use the following generalizations of Shar-
kovsky Theorem, which are simple corollaries of Theorem 6 from [2] and
Theorem 2 form [3], respectively:

Proposition 2.6. Let p: R — R be a [.s.c. multifunction with compact and
connected values. If ¢ has an n-orbit, then ¢ has a k-orbit for every k <an.

Proposition 2.7. Let ¢: R — R be an u.s.c. multifunction with compact
and connected values. If ¢ has an n-orbit, then ¢ has a k-orbit for every
k <an with at most two exceptions.

In particular, suppose that ¢ has an n-orbit (n = 2™q, where q is odd),
and n is the mazximal number in the Sharkovsky ordering with that property.

1. If ¢ > 3, then ¢ has a k-orbit for every k < n, except possibly for
k= 2mt2,

2. If g = 3, then at least one of the following two cases occurs:

(i) © has a k-orbit for every k<n, except possibly for k = 2m+1.3,2m+2
(ii) © has a k-orbit for every k <n, except possibly for k = 2™+,

3. If g =1, then ¢ has a k-orbit for every k <an.
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2.5 Random operators

We extend the definition of a random operator from [1] (Definition 3) to serve
for a more generalized approach to randomization theorems.

Definition 2.8. A multifunction ¢: 2 x X — X with closed values is called
a random operator if it is weakly measurable with respect to o-algebra ¥ ®
B(X). A random operator ¢ is called u.s.c. if ¢, is u.s.c. for each w € Q, it
is called Ls.c. if ¢, is Ls.c. for each w € €2, and it is called continuous if ¢,
is continuous for each w € €.

We do the same with the notion of a random orbit. Definition 4 from [1]
can be rephrased in the following way:

Assume that (€, u) is a complete measurable space, Z = N(Q), and
(X,d) is a Polish space. Let ¢: 2 x X — X be a random operator. A se-
quence of measurable functions (&)= where &: Q — X for i < k is called
a random k-orbit of the operator ¢ if

(a) &1(w) € p(w,&(w)) fori < k—1 and &y(w) € p(w, Ek—1(w)), for almost
all w e Q,

(b) the sequence (&)%Z4 is not formed by going p-times around a shorter
subsequence of m consecutive elements (i.e. is not a concatenation of p
identical m-orbits), where mp = k, even for almost all w € .

We generalize it to the following form:

Definition 2.9. Let ¢: Q x X —o X be a random operator. A sequence of
measurable functions (&)} where &: Q — X for i < k is called a (%, T)-
random k-orbit of the operator ¢ if

(a) 2\ {w € Q: Vigp1&in(w) € p(w, &i(w)) Ado(w) € p(w, &1(w))} €T,
(b) there is no m < k such that m |k and
O\ {weQ: ‘v’8<£ Eomri(lw) =&(w)} € 7.
i<m
We will write shortly “random k-orbit” when X and Z are fixed.

The definition coincide with the one from [1] if restricted to the assump-
tions given there. Thus, in the definitions from [1] we drop the assumptions of
completeness of the measurable space and completeness of the metric space.
As a result instead of the notion of “almost all w € Q7 (understood as “all
w € Q\ N, where N has measure zero”), we introduce the notion of “all
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w € Q\ N, where N € 77, where Z is a fixed proper o-ideal. That notion
is crucial for both versions of definition, especially in condition (b). If we
drop it there, it is usually easy to modify a concatenation of p identical m-
orbits is such a way to fulfill the condition (b) (e.g. just change a value for
one w in one of the copies of m-orbit), and thus the condition (b) would be
usually redundant. But the condition is needed, since we want to think of k
as the minimal period of a k-orbit, as it is usually formulated in Sharkovsky
Theorem generalizations and analogues.

For a random operator ¢: 2 x X — X and k,m € N, such that m | k, we
define the relation O, C Q x X k as follows:

Oy pm(w) = {(:L‘Z)f__ol € X" (zy)," is an m-orbit of ¢, A Ve k Tomii = :L‘Z}
<m

Measurability properties of that relation are the main focus in the proofs
leading to the randomization results.

3 Randomization of Sharkovsky-type results

3.1 Characterizations of random operators with orbits

We shall say that €2 has a ¢, k-partition if there exists the following partition

of
-1

Q=0U ),

=0

where:

o O, € X form=0,i,%1,...,%5_1,

e Qpe€Zand Qy ¢ forj<l,

o« LCM{i;: j <} =k,

* ¢, has an i;-orbit for each w € §2;; for j <.

We can formulate the following characterizations from the two articles:
Theorem 3.1 (A, Theorem 3.4). Assume that:

e X is a o-compact Polish space,

e (Q,3) is a measurable space,

o 7T is a proper o-ideal on €2,

16



o v: QO x X — X is a continuous random operator with compact values.
Then ¢ has a (X, Z)-random k-orbit if and only if Q has a ¢, k-partition.
Theorem 3.2 (B, Proposition 3.2). Assume that:

o X is a Suslin space,

e (Q,3) is a measurable space and ¥ is a Suslin family,

o 7T is a proper o-ideal on €2,

e 0: Qx X — X is a random operator.

Then ¢ has a (X,Z)-random k-orbit if and only if Q has a @, k-partition.

These results have an analogous structure. In the artice A assumption
on (§2,%) is more general. In the article B the assumptions on X and on ¢
are more general (each Polish space is a Suslin space). The characterizations
are analogous to Proposition 2 from [1], but the second one is its strict
generalization, since each Polish space is a Suslin space and each complete
measurable space is a Suslin family.

The result from article A is derived from the Kuratowski-Ryll-Nardzewski
selection theorem (Proposition 2.2), the one from the article B — from the gen-
eralized Aumann-von Neumann selection theorem (Proposition 2.4). Thus
for Theorem 3.1 to be proven the continuity assumption on the operator is
used (the Berge’s Maximum Theorem is actually involved), since the needed
kind of measurability of relation O, is different.

In article A also a new kind of characterization result is introduced,
namely a characterization of operators with orbits from an LP-space.

Theorem 3.3 (A, Theorem 3.5). Assume that:
e X=RorX =1,
e X=L(Q), where Q=R" or Q =1" for some r € N,
o« T=N(Q),
e p: Q2 x X —o X is a random operator.

Fizp € [1,+00]. Then ¢ has a (3,T)-random k-orbit (&)} € LP(Q, X*) if
and only if there is a function h € LP(2,R) and Q2 has a @, k-partition, such
that inf(xi)?;geo%mj(w) “(Iz>f;()l‘) < h(w) for each w € €, where j <.
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3.2 Randomized Sharkovsky theorems

Randomizations of Sharkovsky-like results can be proven using the character-
izations from the previous section in combination with some generalizations
of the classical Sharkovsky Theorem. In papers A and B a few randomiza-
tions are presented, especially the following.

Theorem 3.4 (A, Theorem 4.2). Assume that:
e X=RorX=1,
e (Q,) is a measurable space,
o 7T is a proper o-ideal on €2,

e 0: O x X — X is a continuous random operator with compact and
connected values.

Then if ¢ has a random n-orbit, then it has a random k-orbit for each k<n.
Theorem 3.5 (B, Theorem 4.1). Assume that:

e X=RorX =1,

e (2,%) is a measurable space and ¥ is a Suslin family,

o T is a proper o-ideal on (1,

o 0: OxX —o X isals.c. random operator with compact and connected
values.

Then if ¢ has a random n-orbit, then it has a random k-orbit for each k<n.
Theorem 3.6 (B, Theorem 4.3, Corollary 4.4). Assume that:
e X =R orX =1,

e (Q,%) is a measurable space and ¥ is a Suslin family and is nonatomic
with respect to I,

o 7T is a proper o-ideal on €2,

e 0:Qx X —o X is an wu.s.c. random operator with compact and con-
nected values.
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Then if ¢ has a random n-orbit, then it has a random k-orbit for each k<an
with at most one exception.

In particular, suppose that ¢ has a random n-orbit (n = 2™q, where q
is odd), and n is the mazimal number in the Sharkovsky ordering with that
property. Then:

1. If ¢ > 3, then ¢ has a random k-orbit for every k < n, except possibly
for k = 2m+2,

2. If g = 3, then at least one of the following two cases occurs:

(i) ¢ has a random k-orbit for every k <n, except possibly for k =
2m+2;

(ii) ¢ has a random k-orbit for every k <n, except possibly for k =
2mtl

3. If g =1, then ¢ has a k-orbit for every k <n.

The first one is a result on continuous operators, the second — on Ls.c.
operators, the third — on u.s.c. operators. The first is using Theorem 3.1, the
second and third — Theorem 3.2.

Although both the first and the second result are using the l.s.c. Shar-
kovsky theorem (Proposition 2.6), the first one is restricted to continuous
operators, because of restrictions in its corresponding characterization re-
sult.

The third result is using the u.s.c. Sharkovsky theorem (Proposition
2.7). Although the original “deterministic” theorem allows up to 2 exceptions
in Sharkovsky ordering, in the randomized version it can be limited to 1
exception, because the random orbits can more easily be composed to have
the wanted period by using different basic periods on different partitions of
Q.

While results from paper B are more general than the one from paper
A with respect to continuity of the random operator, we gain more general
assumptions on measurable space (€2, ¥) in paper A. The first and the second
result are generalizations of the Andres’s result from [1] (Theorem 1).

Using Theorem 3.3 we also arrive at a Sharkovsky randomization result
for orbits from an LP-space.

Theorem 3.7 (A, Theorem 4.4). Assume that:
e X=RorX= ]I,

e X=L(Q), where Q=R" or Q =1" for some r € N,
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« IT=N(Q),
e f:Qx X — X is a continuous random operator.

Fiz p € [1,+00]. Then if f has a random n-orbit belonging to the space
LP(Q, X™), then it has a random k-orbit belonging to the space LP(2, X*) for
each k<an.

The randomized Sharkovsky theorems, when restricted to the case of
multifunctions with one-element values (i.e. functions), usually can be refor-
mulated to have a structure of the classical Sharkovsky Theorem, where the
space R is substituted with the space of measurable functions and a continu-
ous function with a continuous measurable operator. The following examples
are corollaries of Theorem 3.4 and Theorem 3.7, respectively.

Corollary 3.8 (A, Corollary 4.3). Assume that:
e X=RorX =1,
e (Q,) is a measurable space,

o 7T is a proper o-ideal on S2.

Let the function §: I — M be given by the formula §(§)(w) = f(w,&(w))
for every w € Q and for all [£] € M, where f: Q x X — X is a continuous
random operator. Then if § has an n-orbit, then it has a k-orbit for each
k<an.

Corollary 3.9 (A, Corollary 4.5). Assume that:
e X=RorX =1,
o X =L(Q), where Q =R" or Q =1" for some r € N,
« T=N(Q),

Fix p € [1,+00]. Let the function §: LP(Q, X) — LP(Q, X) be given by the
formula §(§)(w) = f(w,&(w)) for every w € Q and for each [§] € LP(Q, X),
where f: Q x X — X is a continuous random operator. Then if | has an
n-orbit, then it has a k-orbit for each k<n.
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3.3 Random differential inclusions

Characterizations of random orbits can be a powerful tool even outside the
classical Sharkovsky theorem randomization results. As an example the ar-
ticle B presents their application in the random differential inclusions.

The article is using a differential inclusion in the form:

2(,) € plw,t, 2(w, 1)), (1,)

where ¢: Q x [0,1] X R — R is a random u-Carathéodory map on complete
measure space (£, %, u) with proper o-ideal Z and o-algebra of Lebesgue
measurable sets on R and [0, 1] with o-ideal of null sets, i.e.:

o (- x): 2x]0,1] — R is measurable for all z € R,
e p(w,t,-): R — Ris us.c. for almost all (w,t) € Q x [0, 1],

o there exists a,b > 0 such that sup{|y|: y € p(w,t,2)} < a + b|z| for
almost all (w,t) € Q x [0,1] and all z € R.

v is extended to Q X R X R by: p(w,t+k,x) = p(w,t,x) forw € Q, t € [0, 1],
ke Z,and x € R.

Function z: QxR — R is a random solution of (1,,) if z(w, -) is absolutely
continuous for almost all w € €2, x(-,t) is measurable for each ¢t € R, and the
condition (I,) is fulfilled (with differentiation over ¢) for almost all (w,t) €
QO xR. It is a random k-periodic subharmonic solution if z(w,t) = z(w, t+ k)
for almost all (w,t) € © x R and there is no m € N, m < k such that
z(w,t) = z(w,t 4+ m) for almost all (w,t) € 2 x R.

For such inclusions the following theorem is formulated:

Theorem 3.10 (B, Theorem 5.6). If (1,) has a random n-periodic subhar-
monic solution for some n > 1, then it has random k-periodic subharmonic
solutions for any k € N.

To leverage the characterization results the deterministic counterpart of
the equation is introduced, namely the family indexed by w € :

7' (t) € p(w,t,z(t)). (I,.)

Function z: R — R is a solution of (1) if it is absolutely continuous
and the condition (I,,) is fulfilled for almost all ¢ € R. It is a k-periodic
subharmonic solution if z(¢) = z(t 4+ k) for almost all ¢ € R and there is no
m € N, m < k such that x(t) = z(t + m) for almost all ¢t € R.
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With the given inclusion the Poincaré operator P,: 2 x R x R — R
defined by:

Py(w, to, ) = {x(to + k): x is a solution of (I, ), z(ty) = o}

is associated. The proof of the theorem is based on translating the hypothesis
and the conclusion into statements on that Poincaré operator and applying
the random operator characterization results from article B to it.

The results on inclusions even do not involve the Sharkovsky ordering —
existence of any nontrivial orbit is equivalent to existence of all possible pe-
riods of orbits — thus the characterization results can be successfully applied
outside of the context of that ordering.

4 Rings of Sharkovsky functions

4.1 Generated A-rings

The article C introduces the notion of an A-ring generated by a family R C
RX, where X = R or X = I. The family

ARR) =({Q CR*: R C Q,Q is an A-ring}

is called an A-ring generated by a family R, and is the smallest (with respect
to relation C) A-ring containing R. Thus the problem of the paper can be
expressed as finding AR({f})NC for f € D.

The article tackles firstly with finding AR({f}) before looking into con-
tinuous functions in that family. This also gives some insight into the al-
gebraic properties of Darboux functions. The simplest case is when f is an
identity function. For identity on I the result follows directly from Stone-
Weierstrass Theorem, and for identity on R it is proven in C. Thus the results
are the following:

Proposition 4.1 (C, Corollary 4.5).
AR{idr}) =C
AR({idr}) = Cp

When we take f as any Darboux function on R or I we arrive in article
C at the following representation of the generated A-ring:

Theorem 4.2 (C, Theorem 5.4).
 If f €D, then AR({f}) =Cpo{f}.
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o If feDNA, then AR({f}) =Co{f}.
o For fell, if feD, then AR({f}) =Co{f}.

As a consequence the A-ring generated by a Darboux function consists
of only Darboux functions (C, Corollary 5.5).

4.2 Continuous functions in generated A-rings

The set of preimages P; of function f plays important role in finding the
continuous function in A-ring generated by f. Since Py is a partition of the
domain, some considerations around partitions apply here. In particular we
make usage of relation < between partitions and the closure of the preimage
set cl(Py). The proofs revolve around topological properties of Py and cl(Py),
and the idea of separability of points by a function (which is just an ability
to find a function having a different values on those points). The separability
properties need a couple of non-trivial constructions to be performed to be
proven, mainly levaraging topology of the real line or interval. Finally, we
arrive at the following results:

Theorem 4.3 (C, Theorem 7.3). Assume that f € D.
o If X =1, then

AR{fHNC={geC: cd(P;) < P,}.

o If X =R and f(X) is closed, then

AR({f})NC={g €C: cl(P;) < Py, Fneplg| < ho f}.

The case when the base Darboux function has a real domain and not-
closed image, i.e. an interval (a,b), (a,b], or [a,b) for some a,b € R, is still
open.

In the other cases we can answer the original Pawlak-Pawlak problem
stated in [11] (see Problem 2 there). Theorem 4.3 gives the characterization
of all continuous functions belonging to each A-ring containing f, where
f € D, which is even a more general result than the original formulation of
the problem, where only S-functions (a subfamily of Darboux functions) were
considered. By solving the original problem we gain an insight to algebraic
properties of S-functions, a significant subfamily of Sharkovsky functions, i.e.
functions fulfilling the assertion of the classical Sharkovsky Theorem. With
being able to generalize the solution to all Darboux functions we can apply
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it to other subfamilies of Darboux functions which fulfill the assertion of
the theorem, e.g. functions with connected Gy graph (it is known they are
Sharkovsky functions from [14]).

The case when the domain is a compact interval is the simpler one, the
continuous functions in the generated A-ring just need to fulfill natural condi-
tion on their preimage set, which cannot be more granular than the preimage
set of the base function (actually its closure, a consequence of continuity of
functions we are looking for).

In the real line domain case the continuous functions furthermore can-
not be too distant from the base function, which means they need to be
bounded by a polynomially bounded continuous function composed with the
base function. This is actually strongly connected with the results described
in the previous section, when the rings are represented through composition
and polynomial boundedness appears only in the real line case. Polynomial
boundedness naturally appears in the proofs as a result of the finite and al-
gebraic character of the operations in the A-ring definition, which cannot be
broken by closure through uniform convergence.
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1. Introduction

Oleksandr Sharkovskii formulated his theorem classifying continuous real functions according to periods of periodic
points which they possess in the paper [12] in the year 1964 (translated into English in [13]). This classification is based on
the so-called “Sharkovskii ordering” on natural numbers defined as follows:

3 > 5 > 7 > 9 »
23 » 251> 275> 29 >
22.3 » 22.5 » 22.7 » 22.9 »

> 23 22 2 > 1

The theorem can be generalized in numerous directions. The deterministic generalizations refer to the assumptions about
i.a. function [15], space of points [11,8,14], or allow multifunctions instead of functions [3]. In this paper we state a random
generalization of the theorem. There are few generalizations of this kind: [4,9,2].

The idea of investigating the existence of random fixed points in a deterministic way comes from FES. DeBlasi,
L. Gérniewicz and G. Pianigiani (see [5, Chapter 1I1.31]), and was developed in case of random orbits of a given period
by J. Andres (see [2]). Our main theorem (Theorem 4.2) is a generalization of Theorem 1 from [2], actually we omit the
assumption of measure space completeness in the random version of the Sharkovskil Theorem. We also state a version of
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the Random Sharkovskil Theorem for orbits belonging to an LP-space (Theorem 4.4). Moreover, we formulate an analogue
of the Sharkovskii Theorem for spaces of measurable functions (Corollary 4.3) and for LP-spaces (Corollary 4.5). To obtain
our results we use the method of transformation to deterministic case based on selection theorems for measurable mul-
tifunctions, but we incorporate the selection theorem from paper [10] by K. Kuratowski and C. Ryll-Nardzewski instead of
the theorem of J. von Neumann and R. Aumann used in [2]. This forces us to use some more sophisticated facts about
measurable multifunctions.

2. Preliminaries

By N, R, I we denote the set of natural numbers: 1, 2, 3, ..., the set of real numbers, and the interval [0, 1], respectively.
For a finite set A C N, the symbol LCM(A) denotes the lowest common multiple of elements of A. The pair (§2, X) always
denotes a measurable space, i.e. a set £2 with a o-algebra X', 7 always denotes a o-ideal on a set £2 such that 2 ¢ Z, and
the pair (X, d) always denotes a Polish space, i.e. complete separable metric space. We say that a measurable space (£2, X)
is complete when there exists a complete measure on it. For Y ¢ X by Y we mean the closure of Y in X. For X =Rk or
X =T, the symbol || - || denotes the Euclidean norm on X, and the symbol d denotes the Euclidean metric. For a closed set
B c X we use the standard notation: d(x, B) = inf{d(x, y): y € B}.

For o-algebras X1 and X by X7 ® X» we mean the product o-algebra. The symbol B(X) denotes the o-algebra of
Borel sets in X, and symbols £(R¥), £(I¥), AV/(R¥), and N (I¥) denote the o-algebras of Lebesgue measurable sets and the
o-ideals of Lebesgue measure zero sets in a given space, respectively.

Let & ~ ¢ hold for measurable &, ¢: 2 — X if and only if {w € 2: &(w) # ¢{(w)} € Z. We denote the set of equivalence
classes of this relation by:

M2, 5).7.x.d = 1§ : 2 — X: & is measurable}/~.

We will write 91 instead of M, 5y 7,(x.qy When £2, ¥, 7, X, and d are clear from the context. When 2 = R or 2 =1,
¥ =L(2), T=N(£2), and X =Rk or X =IF, we also use the standard notation:

LP(2,X) = {S:Q — X: £1is measurable/\/Hf(w)dew < +oo}/~
2

for p € [1, +00) and

LT%°(£2, X) = {£ : 2 — X: & is measurable and bounded}/~.

The symbol [£] stands for the class of equivalence of &.

We naturally identify a relation ¢ C A x B with a function ¢ : A — P(B). Furthermore, if ¢ C(AxB)xC,ie.¢:AxB —
P(C), then for any x € A we define the relation ¢y = @(x, -). A multifunction ¢ : A — B is a relation with nonempty values,
i.e. ¢ : A— P(B)\ {4}, we identify a function f: A — B with the multifunction with one-element values fulfilling the
condition ¢(x) = {f(x)} for every x € A.

By a superposition of a function f: B — C with a relation ¢ C A x B we mean the relation f o C A x C defined
by fo@(a) = f(p(a)) for a € A. By a product of relations F; C A x B for i € I we mean the relation [[;., F; defined by
([ Ticr F)(@) =[T1ie Fi(a) for a € A.

The notion of measurability is naturally expanded on relations. We denote by

¢~ (B)={w e 2: p(w) N B # 0}

the large preimage of the set B C X under the relation ¢ C £2 x X.

Definition 2.1. A relation ¢ C §2 x X is called measurable if ¢~ (F) € ¥ for every closed F C X. It is called weakly measurable
if 97 (G) € X for every open G C X.

The paper [6] contains a thorough analysis of the notion of a measurable relation. We shall state here a few facts
from this paper. Every measurable relation is weakly measurable (see Proposition 2.1). The product of at most countably
many weakly measurable relations is weakly measurable (see Proposition 2.3(ii)). For a weakly measurable multifunction ¢ :
X — R the function defined by f(x) =inf¢(x) for x € X is measurable (see Theorem 5.8). The superposition of a continuous
function with a weakly measurable relation is weakly measurable (it is clear from the definition).

Another useful fact is a simple modification of Theorem 6.4 in [6] and its proof is analogical to the original proof.

Proposition 2.2. Assume that X is o-compact, Y is a metric space, and f : £ x X — Y is measurable with respect to o -algebra
Y ® B(X) and such that f, is continuous for each w € £2. Then for every closed set B C Y the relation F C £2 x X defined by
F(w) = f, ' (B) is measurable.
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Proof. Forne N put U, ={y €Y: d(y,B) < %}, Bp={yeY: d(y,B) < %} and define the relations F, C 2 x X by Fp(w) =
f;l(Un). Clearly B=(),Us and B =("), Bs. Since Uy is open for each n, the relation F, is weakly measurable for each
n by [6, Theorem 6.2], and by [6, Proposition 2.6] so is the relation Fp, defined by Fn(w) = Fp(w). Since Fp(w) C Fp(w) C
fc;l(Un) C f(;](Bn) for all w € §2, F =("), Fx, and therefore the relation F is measurable by [6, Corollary 4.2]. O

To formulate the selection theorems we use the standard notion of a selector of a multifunction.

Definition 2.3. We call a function f: £ — X a selector of a multifunction ¢ : £2 — X and write f C ¢ if f(w) € p(w) for
each w € 2.

We formulate the selection theorem of Kuratowski and Ryll-Nardzewski from [10] as follows:

Theorem 2.4 (Kuratowski and Ryll-Nardzewski). If a multifunction ¢ : 2 — X is weakly measurable and has closed values, then it
has a measurable selector f C ¢.

A selection theorem concerning selectors from an LP-space follows strictly from Lemma 2.3.2 in [7]:

Theorem 2.5. Suppose that p € [1,4+00], 2 =R or 2 =1, X = R or X = I¥. If a multifunction ¢ : 2 — X is such that ¢ €
L(£2) ® B(X) and there is h € LP(£2, R) such that infyegw) 1XI| < h(w) for each @ € £2, then ¢ has a measurable selector f C ¢
such that f € LP(£2, X).

We recall that the notion of continuity can be expanded on relations in the following manner:

Definition 2.6. Let Y be a metric space. A relation ¢ C X x Y is called upper semicontinuous (u.s.c.) if ¢ ~(F) is closed for
every closed F C X. It is called lower semicontinuous (Ls.c.) if ¢ ~(G) is open for every open G C X. If ¢ is both ls.c. and
u.s.c., then it is called continuous.

In case of relations with one-element values (i.e. functions) the notions of a lower and upper continuity coincide. An
extended analysis of the notion of continuity of relations can be found in Chapter 1 of the book [7]. We shall state here
some useful facts from this book. The product of l.s.c. multifunctions is l.s.c. (see Proposition 2.57) and the product of u.s.c.
multifunctions with compact values is u.s.c. (see Proposition 2.58). For a continuous multifunction ¢ : X — X with compact
values and a continuous function u : X x X — R the function defined by v(x) = inf{u(x, y): y € ¢(x)} for x € X is continuous.
The latter is a trivial consequence of Berge’s Maximum Theorem, since inf{u(x, y): y € ¢(x)} = —sup{—u(x, ¥): y € ¢(X)}
(see Theorem 3.4 in [7, Chapter 1]).

We introduce the notion of a measurable operator as a generalization of the notion of a random operator.

Definition 2.7. A multifunction ¢ : 2 x X — X with closed values is called a measurable operator if it is weakly measurable
with respect to o-algebra ¥ ® B(X). If (£2, X) is complete, then ¢ is called a random operator. A measurable operator ¢ is
called u.s.c. if ¢, is u.s.c. for each w € £2, it is called Ls.c. if ¢, is l.s.c. for each w € §2, and it is called continuous if ¢, is
continuous for each w € £2.

In description of discrete dynamics of multifunctions it is convenient to use the notion of a periodic orbit instead of the
notion of a periodic point.

Definition 2.8. Assume that ¢ : A — A. A sequence (x,-)i.‘:] € Ak is called a k-orbit of the multifunction @, if x;41 € p(x;) for
i<k—1,x €@(x), and there is no m <k such that m | k and x_1ym+; = x; for i <m and s < IE{

A theorem analogical to the classical Sharkovskii Theorem holds for the l.s.c. multifunctions. Here we state it in a form
which is a special case of Theorem 6 in [3].

Theorem 2.9. Suppose that X =R or X =1, and ¢ : X —o X is a Ls.c. multifunction with compact connected values. Then if ¢ has an
n-orbit, then it has a k-orbit for each k < n.

We shall also need the following theorem which is a simple modification of the classical Sharkovskii Theorem (see
Remark 2.1.3 in [1]).

Theorem 2.10. Assume that X =R or X =1, f : X — X is a continuous function, k,n € N, and k <n. If (x;){_, is an n-orbit of f, then
f has a k-orbit (xg)é‘ 1 C [min; gy x;, max;¢p X4
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We introduce a notion of a measurable orbit, which is a generalization of a notion of a random orbit for measurable
operators.

Definition 2.11. Let ¢ : 2 x X — X be a measurable operator. A sequence of measurable functions (Si){.‘zl where & : 2 —> X
for i <k is called a (¥, Z)-measurable k-orbit of the operator ¢, if

2\ {we 2: Vick 15i411(0) € 9(0, &i(w) A1 (w) € p(w, & ()} €T,

and there is no m < k such that m | k and

2\{we 2: Vo k Vigmés—m+i(@) = E(w)} el

k
We will write shortly “measurable k-orbit” when ¥ and Z are fixed. If ¢ is a random operator and Z is the o -ideal of null
sets, then (s,'){.‘ ; is called a random k-orbit.

3. Transformation to the deterministic case

The method of transformation to the deterministic case is based on theorems characterizing measurable operators
possesing measurable orbits of a given period. An example of such a theorem in case of random operators is given in
Proposition 2 in [2]. We give here a theorem for measurable operators mapping into a o-compact space X.

Firstly, we introduce some useful notation. For a measurable operator ¢ : £2 x X — X, k,m € N such that m |k, S={p <
m: p |m}, and s = |S| we define the function dy  m : £2 x Xk = [0, +00) as follows:

k _
d(p,k,m(a)7 (Xi)li(:1) :d((xi){‘(:p Y@, Xm) X p(w,X1) X --- X GD(U),Xm—])({Xl} X {xa} x - x {Xm})m 1),

and the function Dy y m : 2 ¥ XK = [0, 400)!*S as follows:

D(p,k,m = (d(p,k,mv (dw,k,p)pes);

moreover for w € £ we denote dy km,w = dp km(@, ) and Dy km.o = Dy km(@, -) = (g km,w> ([dg k,p,w)pes). Furthermore,
we define the relation Oy m C £2 x Xk as follows:

Oy k,m(®) = {(xi)i-‘:] e xk: (%)L, is an m-orbit of @, A VS<% X(s—1ym+i = xi}.
i<m

Now we state some simple lemmas about those functions and relations.

Lemma 3.1. Let ¢ : £2 x X — X be a measurable operator and let k, m € N be such that m | k. Then

O(p,k,m(a)) = {(Xi)z'(:1 e xk: d(p,k,m,a)((xi)z'{:1) =0n VI;TTT d(p,k,p,a)((xi){'czl) > O}

forallw e £2.

Proof. For every p <m, such that p |m, dw,k,p,w((xi)f:l) =0 if and only if xj11 € p(w,x;) for i <p—1, X1 € p(w,xp), and
<

k
Xs—1)p+i =% for i<p and s < %, since the set ¢(w, xp) x @(w,X1) X -+ x @(w, Xp—1) % ({X1} % {X2} x --- X {xp})T1 is
closed. The lemma is an immediate consequence of this remark. O

Lemma 3.2. Let ¢ : £2 x X —o X be a measurable operator. Then for every k,m € N such that m | k the function dy \m (and as

a result Dy, . m) is measurable with respect to o -algebra ¥ ® B(X¥). If ¢ is a continuous measurable operator with compact values,
then dy . m,«» (and as a result Dy k m,») is continuous for each w € 2.

Proof. Measurability. For each i < m the relation (pi defined by (pi(w, (Xi)?:ﬂ = @(w, x;) is clearly weakly measurable with
respect to o-algebra X ® B(X¥), since ¢ is weakly measurable. The relation P! defined by P!(w, (xi)i.‘zl) = {x;} is weakly
measurable for each i < k. Therefore the relation ¢k™ = ]_[f=1 Pix oM x @l x - x ™1 x ([T, P")r%’1 is weakly measur-
able. Since dy k,m(w, (x,-)g‘zl) =infd o @™ (w, (x,-)i.‘:]) and d is continuous, dy j ;; is measurable.

Continuity. For each i < m the relation ¢, is clearly Ls.c,, since ¢, is ls.c. Also P}, is ls.c, and therefore the relation
P@km = oM ol % x 1 x ([T Pi))%‘] is L.s.c. By an analogical reasoning ¢®*™ is also u.s.c. Thus it is continuous.
Since dg .m0 ((1)i_y) = INfld(()_y, VDI WD € PF ™ (D))}, dg kmw is continuous. O

We shall need also the following lemma:
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Lemma 3.3. Suppose that ¢ : 2 x X — X is a measurable operator, and k € N. If ¢ has a measurable k-orbit & = (§; 2‘:1, then the
following splitting of §2 exists:

I
2=l
j=1

where:

nme X form=0,iq,iy,...,1,

$20€Zand $2i; ¢ 7 for j <1,

LCM(ij: j <1} =k,

@w has an ij-orbit for each w Qi where j <|,
§(w) € Oy ki;(w) for each w € £2;;, where j <.

Proof. The proof is a simple modification of the “Only if” part of the proof of Proposition 2 in [2]. The only difference is that
we use measurable orbits instead of random orbits and we write 2, € Z and 2, ¢ Z instead of ((£2y) =0 and w(2y) >0
respectively. (In fact (£2m) = 0 is equivalent to £2,, € N'(R¥) or 2, e N(I¥).) O

Now we are ready to formulate the characterization.

Theorem 3.4. Suppose that X is o -compact, ¢ : £2 x X —o X is a continuous measurable operator with compact values, and k € N.
@ has a measurable k-orbit if and only if the following splitting of §2 exists:

I

2=2ul ;.
j=1

where:
Qne X form=0,iq,iy,...,1,
20 € Zand 2i; ¢ T for j <1,
LCM{i;: j<I} =k,
®w has an ij-orbit for each w € $2;;, where j <.

Proof. By Lemma 3.3 it is enough to show the implication to the left. Fix j <l and t € N, and denote m=ij, S={p <m:
p I m}, and s = |S|. We define the relation Oy m, : §2 —o Xk as follows:

_ 1 )
Opime@ =D3L <{0} x [?, +oo> )

Since the set {0} x [%, +00)* is closed in the metric space Y = [0, +00)1*%, and by virtue of Lemma 3.2 and Proposition 2.2,
the relation Oy i m ¢ is measurable.

By Lemma 3.1 Oy xm = U; Oy k,m,c. Since ¢, has m-orbit for each w € 2m, Oy m(w) is nonempty for each w € 2.
Hence for each w € £y, there is t such that Oy y m (@) is nonempty. Let t, be the least such t. We denote 2y, ={w e
Qm: ty =t}. The family {2, t € N} is disjoint and §2, = |J; £2im,c. Moreover,

2t = {w € 2m: Oy g m,t(@) # VAV (O k. m,r (@) = B}
_ - k - k
- O(p,k,m,t(x ) \ U O(p,k,m,t’ (X ) SP
t' <t
We define the multifunction Oy : 2 — X* as follows:

Xk for w € 2,

Opk(w) =
o k(@) Og k.ij.t(®) forw e it for some j <landt e N.

The relation Oy, is clearly measurable, and consequently also weakly measurable. Furthermore, it has closed values. Hence
by virtue of Theorem 2.4 it has a measurable selector (g,-)ﬁ.‘:] 12— Xk

For every j <! and w € £2;; there is t € N such that w € £ r, and consequently (& (co))if:] € Ow,k,,-j (w). Hence (&; (a)))ﬁil
is an ij-orbit of ¢,. Since 29 € Z, $2i; ¢ 1 for j<I and LCM{ij: j<Il} =k, (Si){.‘zl is a measurable k-orbit of the opera-
tor . O

We may also formulate an analogous theorem for orbits from an LP-space.
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Theorem 3.5. Suppose that 2 =R" or 2 =1" forsomer e N, ¥ = L(2), ZT=N(2), X=Ror X =1, ¢ : 2 x X — X is a mea-
surable operator, k € N, and p € [1, +00]. ¢ has a measurable k-orbit & = (Ei)i.‘:] € LP(£2, X*) if and only of there is a function
h € LP(£2, R) and the following splitting of §2:

1
Q=20U U.Q,-j,
j=1

where:

Q2me X form=0,iq,iy,...,1,
20€ZTand 2i; ¢TI for j<I,

LCM{i;: j <} =Kk,

%o has an ij-orbit for each € §2;;, where j <1,

inf(Xf){f:]€O¢,,<,fj © Ix)%_, I < h(w) for each w € £2i;, where j <L
Proof. “<=". This is a slight modification of the “If" part of the proof of [2, Proposition 2]. It is clear that Oy x ;;(w) # @ for

each w € £2;;. We define the multifunction Oy : £2 —o Xk as follows:

Xk for w € §29,
O k(W) = .
Og kij (@) forw e 2i; for some j <.

Fix j <!l and denote m=ij, S={t <m: t|mj}, and s =|S|. Since Oy m = D;lk m ({0} x (0, +00)*), by virtue of Lemma 3.2

Oy km € L(£2) ® B(X¥). Moreover 2o x X* € £(£2) ® B(X*), and consequently O, € £(£22) ® B(X¥). Hence by Theorem 2.5
the multifunction Oy, x has a measurable selector (&)X, : 2 — X¥ such that (&)¥_, e LP(£2, X¥).

For every j<land w e .Q,'j, (S,'(a)))i.‘:1 € (’)(p,k,ij (w). Hence (f;‘i(a))):.j:1 is an ij-orbit of ¢,,. Since 29 € Z, .Qij ¢ T for j<I,
and LCM{i;: j <1} =k, (Si)le is a measurable k-orbit of the operator ¢.

“=". By Lemma 3.3 it is enough to show that there is a function h € L?(£2,R) such that inf(x_)k cO L lxdk ) <

i)i=1 @.k.ij (@) i=1

h(w) for each w € .Qij.

We define the function h by equality h(w) = |E(w)]|. & € LP(2, X¥), thus h € LP(22,R). Fix j <l and w € £2i;. Then
i)t 0 (o0 | DI | < (@), since £@) € Oy iy(@). O

4. The Sharkovskii Theorem

In this section we give the main results of the paper. We shall use the theorems from the previous section and a version
of the Sharkovskil Theorem stated in form of Theorem 2.9.
Before we state the main theorems, we state a simple lemma.

Lemma 4.1. If LCM{i;: j <} =nand k <n, then there is j' <lsuchthatk < ij.

Proof. If n =29 for some q € N, then there is j’ <I such that i =n, thus k<ij.
If n=p-29 for some q € N and odd p > 1, then for each j <! there is q; < q and odd p; < p such that i; =p; - 29,
Clearly there is j’ <! such that py > 1. Then k<an<iy. O

We state here the theorem which we may call the Measurable Sharkovskii Theorem for continuous measurable oper-
ators. It is a generalization of the Random Sharkovskii Theorem (Theorem 1 from [2]). Here we omit the assumption of
completeness of the measurable space (£2, X'), which is present in Andres’s version.

Theorem 4.2 (Measurable Sharkovskii Theorem). Assume that (§2, X') is a measurable space, T is a o -ideal on §2 such that $2 ¢
I, X=Ror X=1,and ¢ : 2 x X — X is a continuous measurable operator with compact and connected values. Then if ¢ has
a measurable n-orbit, then it has a measurable k-orbit for each k < n.

Proof. The proof is analogical to that of Theorem 1 in [2], but we paraphrase it for completeness. Suppose that ¢ has
a measurable n-orbit. There is a splitting of £2 as in Theorem 3.4. Fix k <n. By Lemma 4.1 there is j’ <! such that k<ij.
Moreover, 1 <i; for each j <! and j# j'. Since ¢, has an ij-orbit for each w € $2i; and every j <[, by Theorem 2.9 ¢,
has a k-orbit for each w € 2, and a 1-orbit for each w € £2;; and every j <l and j# j'. Put £, = 2i;, Q21 =U2i;: j<
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IAj#j'}), and £ = £2. As a result we get the following splitting of 2: 2 =QjU 2, if =1, or 2 =£2)U 2, U] if
I > 1. By Theorem 3.4 ¢ has a measurable k-orbit. O

The Measurable Sharkovskil Theorem in the case of multifunctions with one-element values (i.e. functions) can be refor-
mulated so that it will have a structure analogical to the structure of the classical Sharkovskii Theorem where in place of the
space R or I we put a space of measurable functions and in place of continuous function we put a continuous measurable
operator.

Corollary 4.3. Assume that (§2, X') is a measurable space, T is a o -ideal on $2 such that 2 ¢ Z, and X =R or X = L. Let the function
f : 90t — 90 be given by the formula §(§)(w) = f(w, §(w)) for every w € §2 and for all [§] € N, where f : £2 x X — X is a continuous
measurable operator. Then if § has an n-orbit, then it has a k-orbit for each k <« n.

We also state a version of the Random Sharkovskii Theorem for orbits from an LP-space.

Theorem 4.4. Assume that 2 =R " or 2 =1" forsomer e N, X = L(2),T=N(2),X=RorX =1, f : 2 x X — X is acontinuous
measurable operator, and p € [1, +oc]. Then if f has a measurable n-orbit belonging to the space LP (£2, X™), then it has a measurable
k-orbit belonging to the space LP (2, X¥) for each k < n.

Proof. Suppose that f has a measurable n-orbit belonging to the space LP(£2, X"). There is a function h € LP(£2,R) and
a splitting of £2 as in Theorem 3.5. Fix k <n. By Lemma 4.1 there is j' <! such that k<iy. We get a splitting of £2 as in the
proof of Theorem 4.2 2 =2,V 2, if [=1,0or 2 =2,U 2 UL if[>1.

Let h': 2 — R be such that h'(®w) = vk - h(w) for each w € 2. Then I’ € LP(2,R). Fix w € 2,. Then w € £2;,. Hence

. . iy .
lnf(Xz)?:1eOf,n,ij, @ 1) || < h(w). Fix & > 0. Let (x))7_; € Of,n,,'j, (w) be such that [|(x))T_, [l < h(w) + % Then (x});_, is an
ij-orbit of f,. Since k<ij, by Theorem 2.10 there is a k-orbit (xg/){.‘:] of f, such that (xg’){.‘:] C [min,-g,'j, X, max;gi, x;]. Then
(i1 € Opk(@). Hence infy o 10D I ST I < V- maxicy, 161 < V- IGDIL 1| < V- h(w) + ¢, and
; Ak _ ; : N/
consequently 1nf(xi)?:]eof'k.k(w) ()i, Il < Vk - h(w) = I (w). Analogically for w € £2{ we have lnf(xi)?zlgof,k,l(w) [IEES

h (w).
By Theorem 3.5 f has a measurable k-orbit belonging to the space LP(2, X¥). O

This version can be also reformulated so that it will have a form of Sharkovskii Theorem for LP-spaces.

Corollary 4.5. Assume that 2 =R" or 2 =1" forsomereN, ¥ = L(2), T =N (), X=Ror X =1, and p € [1, +oc]. Let the
function f: LP(£2, X) — LP (2, X) be given by the formula §(¢)(w) = f(w, §(w)) for every w € 2 and for each [£] € LP(£2, X),
where f : £2 x X — X is a continuous measurable operator. Then if f has an n-orbit, then has a k-orbit for each k < n.
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ABSTRACT. Two multivalued deterministic versions of the celebrated Sharkov-
sky cycle coexistence theorem are randomized in terms of very general random
periodic orbits. It is also shown that nontrivial subharmonics of scalar random
upper-Carathéodory differential inclusions imply the coexistence of random
subharmonics of all orders.

1. INTRODUCTION

The aim of the present paper is to randomize: (i) two multivalued deterministic
Sharkovsky-type theorems (cf. [20]) obtained by the authors in [3,7] and (ii) the
deterministic theorem for scalar differential equations and inclusions, saying that
the existence of a pure (nontrivial) subharmonic solution implies the coexistence of
subharmonic solutions of all orders, whose various proofs can be found in [2,4,18,
19,21].

The first goal is related to the existence of random periodic orbits rather than
random periodic points (cf. [9,10]) and there are quite rare results in this field (see
[1,6,8,16,23]). The main technique, Proposition 3.2 below, will be developed for a
very general class of multivalued random operators in a Suslin space. In this way,
all our earlier results in [1,6,8] will be generalized both as a method in Section 3
as well as its application to Sharkovsky-type theorems in Section 4.

As concerns the second goal, the forcing property for the subharmonic solutions
of random differential inclusions was already studied by the authors in [4] and [6],
but the proofs were either only indicated in [4] or incomplete in [6]. Here, full proofs
of the related Theorem 5.6 below will be given in Section 5. Although random
periodic solutions of differential equations have been investigated as random fixed
points of the associated random operators (see e.g. [11,12,22]), as far as we know,
there are no further results for random subharmonic solutions considered as random
periodic orbits of the associated random operators.
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Although the proofs of the statements might seem to be rather technical (some
preliminaries are therefore recalled in Section 2), the main randomized theorems
are formulated in an extremely simple and transparent way. Moreover, since the
developed randomization technique is quite universal and powerful, it can be easily
applied elsewhere.

2. PRELIMINARIES

By N, R, I, we denote the set of natural numbers, the set of real numbers, and
the interval [0, 1], respectively. For finite I C N, the symbol LCM I denotes the
lowest common multiple of elements of I. We denote D(n) = {p < n: p/n} and
d(n) = |D(n)|, for n € N. We also fix the following notation: (£2,3) is a measurable
space, Z is a proper o-ideal on  (i.e. Q ¢ 7), and p (if it exists) is a complete
o-finite nontrivial measure on (€2, ¥). We say that X is complete if such a measure
exists. We say that X is nonatomic with respect to Z if for every A € ¥ such that
A ¢ T, there is a splitting A = BU C such that B,C € ¥ and B,C ¢ T.

We recall the notion of a Suslin family. Let S be the set of all finite se-
quences of natural numbers. For a family {As: s € S} we put A{As: s € S} =
Usent Nneo Aoin- We say that a family F is a Suslin family if AF = F, where
AF = {A{A;: s € S}: A, € F for s € S}.

By (X,d), we always understand a metric space. A metric space which is a
continuous image of a Polish space is called a Suslin space. Each Suslin space is
separable. For Y C X, by Y we mean the closure of Y in X. For X = R”* or
X =TI*, the symbol d denotes the Euclidean metric. For a closed set B C X, we
use the standard notation: d(x, B) = inf{d(z,y): y € B}.

For o-algebras Y1 and X5, by ¥; ® Y5 we mean their product o-algebra. The
symbol B(X) denotes the o-algebra of Borel sets in X. If X;, X5 are separable,
then B(X; x X5) = B(X;) ® B(X5). For a complete measure space (2, %, u), we
denote N'(2) = {A C Q: u(A) = 0}. For Q = R*¥ or Q = I*, the symbol £()
denotes the o-algebra of Lebesgue measurable sets on €.

We naturally identify a relation ¢ C A x B with a map ¢: A — P(B), where
P(B) stands for all subsets of B. If we want to emphasize the properties of ¢ as a
subset of A x B, we use the notion of a graph I',, where I', = {(a,b) € Ax B: b€
¢(a)}. Furthermore, if I'y C (A x B) x C, i.e. ¢: A x B — P(C), then for any
x € A, we define the relation ¢, = ¢(z,-). A multivalued map ¢: A — B is
a relation with nonempty values, i.e., p: A — P(B) \ {0}. For single valued maps,
we identify a map f: A — B with the multivalued map with one-element values
fulfilling the condition ¢(x) = {f(x)}, for every z € A.

By a superposition of a map f: B — C with a relation ¢ C A x B, we mean
the relation f oy C A x C, defined by f o p(a) = f(¢(a)), for a € A. By a prod-
uct of relations F; C A x B for ¢ € I, we mean the relation [[,.; F; defined by
(ILe; Fi)(a) = [Lie; Fi(a), for a € A.

We denote by

el

¢~ (B) ={weQ: p(w)N B # 0}
the large preimage of the set B C X under the relation ¢ C 2 x X. A relation
v C Q x X is called measurable if ¢~ (F') € X, for every closed F' C X. It is
called weakly measurable if ¢~ (G) € X, for every open G C X. The paper [14]
contains a thorough analysis of the notion of a measurable relation. We shall state
several facts from that paper here. Every measurable relation is weakly measurable
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(see [14, Proposition 2.1]). If ¥ is complete and X is a Suslin space, the notions
of measurability, weak measurability and a measurable graph coincide for a rela-
tion with closed values (see [14, Theorem 3.5]). The countable sum of measurable
relations is measurable (see [14, Proposition 2.3(i)]). If a codomain is separable,
then the product of at most countably many weakly measurable relations is weakly
measurable (see [14, Proposition 2.3(ii)]). For a weakly measurable multivalued
map ¢: 2 — R, the map defined by f(w) = inf p(w), for w € €, is measurable
(see [14, Theorem 5.8]). The superposition of a continuous map with a weakly
measurable relation is weakly measurable (which is clear from the definition).

Assume that X and Y are metric spaces. A relation ¢ C X x Y is called upper
semicontinuous (u.s.c.) if ¢~ (F') is closed in X, for every closed F' C Y. It is called
lower semicontinuous (l.s.c.) if ¢~ (G) is open in X, for every open G C Y. If ¢ is
both l.s.c. and u.s.c., then it is called continuous.

We call a map f: @ — X a selection of a multivalued map ¢: 0 — X and
write f C ¢ if f(w) € p(w), for each w € 2. We shall use a generalization of
the Aumann-von Neumann selection theorem which is a simple consequence of
Corollary to Theorem 7 in the article [17] by Leese. We state it as follows:

Lemma 2.1. Assume that ¥ is a Suslin family and X is a Suslin space. Let
@: Q — X have a measurable graph, i.e. I', € Y®B(X). Then it has a measurable
selection [ C .

Another fact is a simple consequence of [17, Lemma 3].

Lemma 2.2. Assume that ¥ is a Suslin family and X is a Suslin space. Then
every ¢: ) — X with a measurable graph is measurable.

A sequence (z;)"~)} € A* is called a k-orbit of the multivalued map p: A — A
if z;41 € p(x;), for i <k —1, zy € p(xk—1), and there is no m < k such that m|k
and T4 = x;, for i <m and s < %

We recall the Sharkovsky ordering of natural numbers [20]:

3 > 5 > 7T > 9 »
2-3 0 25 > 27 > 29 p
22.3 » 22.5 p 22.7 » 22.9

> 2 > 22 > 2 > 1.

We state here a simple fact about this ordering (cf. [8, Lemma 4.1]):

Lemma 2.3. If LCM{i;: j < I} = n and k < n, then there is j' < | such that
k< ’ij/.

We also recall here some generalizations of Sharkovsky’s Theorem which are
simple corollaries of Theorem 6 from [3] and Theorem 2 form [7], respectively.

Proposition 2.4. Let ¢: R — R be an l.s.c. multivalued map with compact and
convex values. If ¢ has an n-orbit, then ¢ has a k-orbit, for every k < n.

Proposition 2.5. Let p: R — R be a u.s.c. multivalued map with compact and
convex values. Suppose that ¢ has an n-orbit (n = 2™q, where q is odd), and n is
the maximal number in the Sharkovsky ordering with that property.

(1) If g > 3, then o has a k-orbit for every k < n, except possibly for k = 2m+2,
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(2) If ¢ = 3, then at least one of the following two cases occurs:
(i) ¢ has a k-orbit for every k < n, except possibly for k = 2m+1.3 2m+2
(ii) ¢ has a k-orbit for every k < n, except possibly for k = 2m*1,
(3) If g =1, then ¢ has a k-orbit for every k < n.
We recall here the definition of a random operator after [1].

Definition 2.6. Let ¢: 2 x X — X be a multivalued map with closed values. We
say that ¢ is a random operator if it is weakly measurable with respect to o-algebra
Y@ B(X). We call it an l.s.c. (u.s.c.) random operator if ¢, i.e., p(w,-), is Ls.c.
(u.s.c., respectively), for almost all w € Q.

Remark 2.7. For the definition of a random operator, it is usually still required that
¢ be compact-valued (cf. [13]), and ¢(w,-): X — X to be u.s.c. (cf. again [13]) or
Hausdorff-continuous (cf. [15, Chapter 5.6]), for almost all w € 2. We omit these
additional assumptions and introduce here a more general approach.

For a random operator ¢: 2 x X — X and k,m € N, we define the function
dpkm: Q@ x X¥ — [0, +00) as follows (cf. [1]):

dpeom (@0, (20)}50) = A((@)25, (w0, Bm-1) X (@, 70) X . X (w0, Tm—2)

x ({0} x {@1} x oo x {wma )™ ),
and the function Dy g 1 Q x X* — [0, +00)1T4™) as follows:

DLp,k,m = (dcp,kmw <d<p,k,p)p€D(m)) .
Moreover, for w € €2, we denote dy, k. m,w = dyp k,m(w, ) and
Dgo,k,m,w — an,k,m(wa > - (dtp,k,m,wa (dtp,k,p,w)peD(m)) .
We also define the relation Oy k. m C Q x X* as follows:
O om(w) = {(xz)z 0 € Xk (:L‘Z-);-ZBI is an m-orbit of Y, AV, & Tepmii = l‘i},
i<m
and set Ay, = {w € Q: ¢, has a k-orbit}.

The following simple facts from the paper (cf. [8, Lemmas 3.1 and 3.2]) will be
useful.

Lemma 2.8. Assume that X is separable. Let p: Q2 x X — X be a random
operator. Then, for every k,m € N such that m|k, the function dy, i m (and as
a result Dy k.m) is measurable with respect to o-algebra ¥ @ B(X¥).

Lemma 2.9. Let p: Q x X — X be a random operator and let k,m € N be such
that m|k. Then

O%’c,m(‘*’) {<x1>1 0o € X" dip ko, mw ((mz)f;()l) =0 A Vp<mdy kpw ((xl)z 0) > 0}

plm
for all w € Q.

Remark 2.10. Equivalently we can write:

Op () = Dy} ({0} % (0,400
or simply:
To., =D ({o} % (0 +oo)d<m>)
v, k,m P, k ,m ? °
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As a result:

Lo, ... €X®B(X").
Thus, if 3 is a Suslin family and X is a Suslin space, then, by Lemma 2.2, O . ., is
measurable, and its domain O;?k,m(]Rk) € X. In particular, A, = (’);k?k(Rk) ex.

Now, we can state the crucial definition of a random orbit.

Definition 2.11. Let ¢: Q2 x X — X be a random operator. A sequence of
measurable functions (fi)fz_ol, where &: Q — X, for i = 0,...,k — 1, is called a
random k-orbit of the operator ¢ if

(a) Q\{w e Q:Vicg-1&i41(w) € p(w,&i(W)) Ao(w) € p(w, Er-1(w))} €T,
(b) there is no m < k such that m|k and

Q \ {w € Q: VS<%V¢<m fsmﬂ-(w) = Ez(w)} el

Remark 2.12. If we assume that (2,3, ) is a complete measure space, Z = N (Q),
and (X, d) is a Polish space, then the definition of a random orbit coincides with
the definition given in [1], i.e.:

Let ¢: 2 x X — X be a random operator. A sequence of measurable functions
(&)fz_ol, where &;: Q — X, for i = 0,...,k — 1, is called a random k-orbit of the
operator  if

(a) &it1(w) € p(w,&(w)), for i =0,....k — 2 and §(w) € p(w,&p—1(w)), for
almost all w € Q,

(b) the sequence (£)¥= is not formed by going p-times around a shorter sub-
sequence of m consecutive elements (i.e. it is not a concatenation), where
mp = k (for almost all w € ).

Equivalently:

(a) p(Q\{w € Q: Vicg1 &1 (W) € p(w, &i(w)) Ado(w) € p(w, E-1(w))}) =0,
(b) there is no m < k such that m|k and

{2\ {w € Q1 ¥, Vicm Eomri(w) = &()}) = 0.
3. CHARACTERIZATION OF OPERATORS WITH RANDOM ORBITS

Lemma 3.1. Assume that X is separable. Let p: Q2 x X — X be a random
operator. If ¢ has a random k-orbit, then there exists a partition of ) such that

-1
Q=0U ),
§=0
where:
o O, €X form=0,i0,%1,...,%_1,
e VoeTandy, ¢ forj=0,...,1-1,
o LCM{i;: j=0,...,1—1} =k,
® ., has an ij-orbit for each w € Y, for j <.
Proof. Let:

Q= {w € Q: (&(W))iZ0 € Opoim (@)},
for any m|k. Let {i;: j <} = {m|k: Q,, ¢ T}, and:
-1
Qo =0\ |J 9,
§=0
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The sets €, for m = 0,19, %1,...,%_1 are disjoint.
For all m = 4g,%1,...,%_1, we have:

0, = {w € Ot dy o (. (E(W)EZD) = 0 A Vocmdi by (w0, (6:(w)50) > o} .

pm

Let ¢ = (idg, (&)=, ). Then:
U = (Dot &)™ ({0} x (0, +oo)d(””) .

The function D,k is measurable with respect to o-algebra ¥ @ B(X*). Hence,
D;}C’m({O} x (0,+00)™) € ¥ ® B(X*). Since X is separable, the o-algebra
Y ® B(XF) is generated by the sets M x Hf:ol B;, where M € ¥ and B; € B(X)

for i < k. Fix such a set M x H;:Ol B;. Then:

k—1 k—1
g1 (M < 1 Bi> =Mn ()& (B) e,
1=0 =0

because functions &;, for i < k, are measurable. Thus, ¢~}(B) € X, for any
B € ¥ ® B(X*), and subsequently:
Q= & (D74 ({0} % (0, 400)10™) ) € %,

»,k,m

for any m =g, i1,...,9-1. Therefore, Qo € X. Clearly, Q;, ¢ Z, for any j <[. By
the condition (a), we have Q\ U, ;, 4 € Z, and since

Qo= [\ | U | U H{Qm: Q@ € T Am|E},
m|k

we get y € Z.

Suppose that &' = LCM{4,: j < I} < k. Obviously, k'|k. Then &spti(w) =
¢i(w), for any s < % and i < k', and w € Q \ Qp, which contradicts the condition
(b). Hence, LCM{i;: j <1} = k. O

Proposition 3.2. Assume that X is a Suslin family and X is a Suslin space. Let
p: QA x X — X be a random operator. Then ¢ has a random k-orbit iff there exists
a partition of ) such that

-1
Q=00 ),
§=0
where:
° QmEEfOTmZO,io,il,...,’il_l,
e QgcZandy, ¢ 1 forj=0,...,1—-1,
o LCM{i;: j=0,...,l -1} =k,
[ ]

$w has an ij-orbit for each w € C;; for j <.

Proof. By Lemma 3.1, it is enough to show the implication to the left. We define
the multivalued map O, 1 : Q — X* as follows:

O p(w) = Xk for w € Qo,
ook | Opikyi;(w) for we €y, for j <landteN.
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By Remark 2.10, we get I'o, , € Y®B(X*). By Lemma 2.1, we receive a measurable
function £: Q — X% such that £ C O, .

The sequence (ﬁl)f:_ol is a random k-orbit of . To see this, first observe that each
& is measurable, because ¢ is measurable and B(X)F = B(X*). For each w € Q;,
where j < [, we have §;11(w) € p(w,&(w)), fori < k—1, and &H(w) € p(w, Ek—1(w)).
Thus, the condition (a) is fulfilled. Suppose that there is m < k such that m|k and

Q \ {w e Q: VS<%Vi<m §5m+i(w) = {Z(w)} cT.

Fix any j < I. Then Q;, N{w € Q: V& Vicwm Eomyi(w) = &i(w)} # 0, because
Q;, ¢ Z. Thus, ijlm, and LCM{3;: j <1} <m <k, a contradiction. Consequently,
the condition (b) is fulfilled. O

Remark 3.3. The above proposition is a generalization of Proposition 2 in [1].

4. RANDOMIZED SHARKOVSKY-TYPE RESULTS

Now we can state two randomized versions of the Sharkovsky Theorem, whose
proofs are based on the above Proposition 3.2.

Theorem 4.1. Assume that 3 is a Suslin family, T is a proper o-ideal, and ¢: €2 X
R — R #s an l.s.c. random operator with compact and connected values. If ¢ has
a random n-orbit, then it has a random k-orbit, for each k <n.

Proof. Suppose that ¢ has a random n-orbit. There is a splitting of 2 as in Propo-
sition 3.2. Fix k < n. By Lemma 2.3, there is j/ < [ such that k < i;;. Moreover,
Lai; for each j <l and j # j'. Since ¢, has an i;-orbit, for each w € €2;; and every
j <, by Proposition 2.4, ¢, has a k-orbit, for each w € QZ ,and a 1- orblt for each
w € €; and every j <l and j # j'. Put Q) =Q; ,, Q) = U{Q 2] <INj#]5},
and Q) = Qg. As a consequence, we get the followmg splitting of Q Q=QuQy if
l=1,0r Q=Q,UQUQ  if [ > 1. By Proposition 3.2, ¢ has a random k:—orblt O

As a special single-valued case of Theorem 4.1, we obtain the following random-
ization of the classical Sharkovsky theorem in [20].

Corollary 4.2. Assume that X is a Suslin family, Z is a proper o-ideal, and f: 2 x
R — R is a continuous random operator. If f has a random n-orbit, then it has a
random k-orbit, for each k<n.

Theorem 4.3. Assume that 3 is a Suslin family which is nonatomic with respect
to a proper o-ideal Z, and ¢: Q2 X R —o R is a u.s.c. random operator with compact
and connected values. Suppose that ¢ has a random n-orbit (n = 2™q, where q is
odd), and n is the mazimal number in the Sharkovsky ordering with that property.
(1) If ¢ > 3, then ¢ has a random k-orbit for every k <amn, except possibly for
k=2mt2,
(2) If ¢ = 3, then at least one of the following two cases occurs:
(i) ¢ has a random k-orbit for every k <n, except possibly for k = 2m+2,
(ii) ¢ has a random k-orbit for every k <n, except possibly for k = 2m+1,
(3) If g =1, then ¢ has a k-orbit for every k<n.

Proof. There is a splitting of €2 as in Proposition 3.2.
Recall that A, ;, € 3, for any k.
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First, fix k>n, k # n. Suppose that A, ¢ Z. Then we can take Qp = Q,
QL =Auk \Qo, and Q] = Q\ (), U€), and by Proposition 3.2, we get a random
k-orbit for ¢ which contradicts the maximality of n. Thus, A, € Z.

Let Qf = Uppn Bgk U Qo. Then Qf € ¥ and Qg € Z. Moreover, ¢,, has no
k-orbit with k> n and k # n, for every w € Q\ . Fix j = 0,...,0l — 1. Since
Qi, \ QG # 0, ij an. Furthermore, i;|n. Hence, i; = n or i; = 2" (where m; < m),
and there is j' < [ such that i;; = n. Let Q! = Q,\Q(. Thus, Q) € ¥, Q" ¢ 7, and
for every w € 2, ¢, has n-orbit, and n is the maximal number in the Sharkovsky
ordering with that property.

Suppose that ¢ > 3. Fix k<n, k # 2m*2. By Proposition 2.5, for every w € €,,,
¢, has a k-orbit. Now, take Q) = QI Q) = Qg, Q) = Q\ (2, U Q). Then by
Proposition 3.2, ¢ has a random k-orbit.

Suppose that ¢ = 3. For k<n, k # 2™+ .3, k £ 2m+2 | £ 2mHl we
proceed analogously to the previous paragraph. By Proposition 2.5, ;) C A, om+1U
(A¢,2m+1.3 N A¢,2m+2). Then Atp,2m+1 ﬂQZ ¢ T or (A¢’2m+1.3 N A¢72m+2) QQZ ¢ T

Suppose that Ay om+1 N Q) ¢ Z. Let k = 2™ Now, take Q) = Qf, Q) =
(Apames N\ Q), Q) = Q\ (Q, UQ)). Then, by Proposition 3.2, ¢ has a
random k-orbit. Let k = 2™ . 3. For every w € Q7 ¢, has an n-orbit, i.e.,
2.3 -orbit. There is a splitting Agm+1NQ =Q'UQ" such that ', Q" eX, O, Q" ¢ 7.
Take Q) = Qo, Qi1 = ', Qo5 = Q7 and Q) = QN (5,11 UQ5m 5 UQg). Since
LCM{2m+L 2m .3 1} = 2m*1.3 = k. by Proposition 3.2, ¢ has a random k-orbit.

Suppose that (A¢72m+1.3 N A¢,2m+z) NQy ¢ Z. Then A, om+1.3NQ; ¢ T, and
Ayomi2 N ¢ I. For k=2m"!.3 and k = 2™"2, we proceed quite analogously
as for k = 2™*! in the previous paragraph.

The case when ¢ = 1 is analogous to the case, when ¢ > 3. O

Corollary 4.4. Assume that 3 is a Suslin family which is nonatomic with respect
to a proper o-ideal Z, and ¢: Q2 xR — R s a u.s.c. random operator with compact
and connected values. If ¢ has a random n-orbit, then it has a random k-orbit for
each k <n with at most one exception.

Remark 4.5. Observe that in the case (2)(i), unlike in the deterministic Proposition
2.5, we have a larger area for manipulation in the randomized Theorem 4.3. We
can namely divide  into two parts (by nonatomicity) and take the period 2m+!
on one side and 2™ - 3 on the other one. Thus, the period 2™*! . 3 occurs by
their combination via Proposition 3.2, and subsequently 2™*! . 3 is no longer an
exception. In particular, the maximal number of exceptional cases reduces to one,
as stated in Corollary 4.4.

5. SUBHARMONICS OF RANDOM DIFFERENTIAL INCLUSIONS

Assume that (2, %, ) is a complete measure space and Z is a proper o-ideal
on ©. On R and [0, 1], we use the o-algebra of Lebesgue measurable sets and the
o-ideal of null sets. Assume that ¢: Q x[0,1] xR — R is a random u-Carathéodory
map, i.e.:

e o(--,x): Qx[0,1] — R is measurable, for all € R,

e o(w,t,:): R — R is us.c., for almost all (w,t) € Q x [0, 1],

e there exists a,b > 0 such that sup{|y|: y € p(w,t,x)} < a+b|x|, for almost
all (w,t) € Q2 x[0,1] and all x € R.
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We extend ¢ to 2 x R x R in the following manner: p(w,t+ k,z) = ¢p(w,t,x), for
we te|0,1], k€ Z,and z € R. Let ¢, (t,z) = p(w,t,x). We shall consider the
random differential inclusion:

(1,) 2 (w,t) € plw b x(w,t) [ plw,t+ 1w, )
and a one-parameter family of deterministic differential inclusions:
(Zy.,) 2'(t) € pu(t,2(t)  [= pult+1,3(8))].

We say that z: Q x R — R is a random solution of (I,) if z(w, ) is absolutely
continuous, for almost all w € Q, x(-,t) is measurable, for each ¢ € R, and the
condition (I,) is fulfilled (where the differentiation is over t), for almost all (w,t) €
Q x R. For k£ € N, we say that a solution is a random k-periodic subharmonic
solution if x(w,t) = x(w,t+ k), for almost all (w,?) € Q@ xR and there is no m € N,
m < k such that z(w,t) = z(w,t + m), for almost all (w,t) € Q x R.

We say that : R — R is a solution of (I,,) if, for a fixed w € €, it is absolutely
continuous and the condition (I,,) is fulfilled, for almost all ¢ € R. For k € N,
we say that a solution is a k-periodic subharmonic solution if x(t) = x(t + k), for
almost all t € R, and there is no m € N, m < k such that z(t) = z(t + m), for
almost all t € R. For k = 1, we also speak about (random) harmonic solutions.
Thus, for k£ > 1, we can speak about pure or nontrivial (random) subharmonics.

We define the (random, cf. [6, Proposition 4.3]) Poincaré operator Pj: Q x R x
R —o R associated with (I,) as follows:

Py (w, to, zo) = {x(to + k): x is a solution of (I, ), x(to) = zo}.

It is known that P, = PF. For more details and properties of the random Poincaré
operators, see [5, Chapter I11,4,E] and [6]. We shall also use the following notation:
Py .t (20) = Pr(w,to,z0) and Py 4o (w, z0) = Pr(w,to, xo).

We can now draw a diagram of implications between certain sentences. In that
diagram, we assume that n,k > 1. By “3J;" Q; = Q V,®”, we mean that there
exists a partition of ) such that

-1
Q=0U ),
§=0
where:

e O, X form=0,%,%1,...,%_1,

o 11(Q0) =0 and pu(€2;) >0 for j=0,...,0—1,

e LCM{i;: j=0,...,l -1} =m,

e for ¢ =i; and for all w € ;, P.

The implications in the diagram are proved or cited below. Theorem 2 from [2]
will be stated here in the form of the following proposition.

Proposition 5.1. Let ¢: R — R be a multivalued mapping with nonempty con-
nected values whose margins, i.e., p*(x) = sup{y: y € ¢(x)} and @ (zr) =
inf{y: y € o(z)}, are nondecreasing. If ¢ has an n-orbit with n > 1, then it
also has a k-orbit, for every k € N.

Remark 5.2. We know (see [2] and [4]) that the Poincaré operators associated
with (I,,) are u.s.c. maps with compact, connected values and their margins are
nondecreasing. In particular, they satisfy the assumptions of Proposition 5.1.
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E]U? Q; =0 Prop. 5.3
V,,3 deterministic
i-periodic solution

3 random
n-periodic solution

A

Lemma 5.4l TPTOP' 5.5

1, U QZZ Q. Prop. 3.2 3;,3 random
V., 3 deterministic 0= %
Lemma 3.1 n-orbit for tg

Y

A

i-orbit for tg

Prop. 5.1 lT Prop. 5.1

Y

A

Vw?I det.ermlnlstlc Tomma 31 k-orbit for ¢
1-orbit for t,

TLemma 5.4 Prop. 5.51

I =0
V,, 3 deterministic
i-periodic solution

d random
Prop. 5.3 k-periodic solution

A

k
‘ Fip U i = Prop. 3.2 3,3 random

Ficure 1. Diagram of implications among various sentences about
the given inclusion (1)

Proposition 5.3. If the inclusion (I,) has a random n-periodic subharmonic so-
lution (where n € N, n > 1), then there is a partition of  such that

-1
Q=00 ),

J=0

where:

O, €X form =0,%0,21,.--,%-1,

(o) = 0 and p(S2;) >0 for j <1,

LCM{i;: j < I} = n,

(I,,) has an i;-periodic solution for each w € €, j <.

Proof. Let x be a random n-periodic subharmonic solution of (I,). Let

Q; = {w € Q: z, is i-periodic subharmonic solution of (I,)},
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for i|n, i € N. Then
Q ={we Q: Vizx(w,t) =x(w, t+17)}\ U{w € Q:Vz(w,t) =z(w,t+7)}

<
= {w € Q: Vyeqr(w,q) = z(w,q + )} \ [J{w € 2: Vyequ(w, q) = z(w,q + )}
<
= ﬂ{wEQ: z(w,q) ::L‘(w,q—l—i)}\U ﬂ{wEQ: z(w,q) = x(w,q+j)}-
qeQ j|<72q6<@

Hence, Q; € ¥, for any i|n, i € N. Furthermore, pu(2\ Ui‘n ;) =0. Let {ij: j <
1} = {iln: p(Q;) > 0} and Qo = Q\ U;; ;. Clearly, Qo € X and u($20) = 0. At
the same time, LCM{i;: j < I} = n, because otherwise LCM{3;: j < (} =k < n,
and for almost all w € €2, z,, has some period i|k, by which x has some period ik,
a contradiction. 0

Lemma 5.4. If there exists a partition of 2 such that

-1

Q=00 ),

j=0
where:
Qm €3 form=0,i0,01,...,%_1,
(o) =0 and pu(Q2;;) >0 for j <1,
LCM{i;: j <1} =mn,
(I,,,) has an ij-periodic solution for each w € ;,, j <,
then there is ty € [0,n) and a partition of Q such that

Q=Q,UQ UQ,

where:
e U €X form=0,1,n,
o 1(0%) =0 and p(5%,) > 0,
e P, has an n-orbit for each w € €2,.

Proof. Since n > 1, there is jo < [ such that ij, > 1. Fix w € Qj, . (I,,) has a
Jio-periodic solution z,,: R — R. The set A, = {t: z,(t) # x,(t + 1)} is open and
nonempty, because otherwise n = 1. Take ¢, € QN A,. Then (z,(q, + s))?:_ol
is an orbit of P, 4, oOr a concatenation of identical orbits of period larger than 1.

Thus, P 4, has an [-orbit for some [ > 1. Let
Q, = {w € Q: Py, has an l-orbit for some [ > 1},
for g e QN [0,n).

O = U Op, oo ®™).
p=2

The relation Op, , p,p is measurable. Hence, Qf € X. Since U, cqno.n) 24 2 Qi
there is go € QN[0,n) such that p(2; ) > 0. Now, take tg = qo, 25 = Qo, €, = Qf ,
Q) =0\ (QyuUQ). Then Py, has an n-orbit, for each w € €2/,, by Proposition

5.1 U
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In Proposition 5.6 in [4], we can find the proof of the following fact.

Proposition 5.5. (I,) has a random n-periodic subharmonic solution, provided
P 1, has a random n-orbit, for some to € [0, 1].

As a result of commutativity of the diagram, we can state the following main
theorem of this section.

Theorem 5.6. If (I,) has a random n-periodic subharmonic solution, for some
n > 1, then it has random k-periodic subharmonic solutions, for all k € N.

Remark 5.7. Although the diagram in Figure 1 does not explicitly contain all im-
plications indicated there by the arrows, it is completely commutative. In other
words, the missing arrows can be completed.

REFERENCES

[1] J. Andres, Randomization of Sharkovskii-type theorems, Proc. Amer. Math. Soc. 136 (2008),
no. 4, 1385-1395, Erratum, Proc. Amer. Math. Soc. 136 (2008), no. 10, 3733-3734.

[2] Jan Andres, Tom&s First, and Karel Pastor, Period two implies all periods for a class of
ODEs: a multivalued map approach, Proc. Amer. Math. Soc. 1385 (2007), no. 10, 3187-3191,
DOI 10.1090/S0002-9939-07-08885-5. MR2322749 (2008e:34021)

[3] Jan Andres, Tom&s First, and Karel Pastor, Full analogy of Sharkovsky’s theorem for
lower semicontinuous maps, J. Math. Anal. Appl. 340 (2008), no. 2, 1132-1144, DOI
10.1016/j.jmaa.2007.09.046. MR2390917 (2009h:37086)

[4] Jan Andres, Tom4s Fiirst, and Karel Pastor, Sharkovskii’s theorem, differential inclusions,
and beyond, Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 149-168. MR2512960
(2010e:34016)

[6] Jan Andres and Lech Gérniewicz, Topological fixed point principles for boundary value prob-
lems, Topological Fixed Point Theory and Its Applications, vol. 1, Kluwer Academic Pub-
lishers, Dordrecht, 2003. MR1998968 (2005a:47102)

[6] Jan Andres and Lech Goérniewicz, Random topological degree and random differential inclu-
sions, Topol. Methods Nonlinear Anal. 40 (2012), no. 2, 337-358. MR3074469

[7] Jan Andres, Karel Pastor, and Pavla Snyrychovéa, A multivalued version of Sharkovskii’s
theorem holds with at most two exceptions, J. Fixed Point Theory Appl. 2 (2007), no. 1,
153-170, DOI 10.1007/s11784-007-0029-2. MR2336505 (2008j:37076)

[8] Pawel Barbarski, The Sharkovskii theorem for spaces of measurable functions, J. Math.
Anal. Appl. 373 (2011), no. 2, 414-421, DOI 10.1016/j.jmaa.2010.07.033. MR2720692
(2012a:37075)

[9] Ismat Beg and Mujahid Abbas, Periodic points of random multivalued operators, Nonlinear
Stud. 19 (2012), no. 1, 87-92. MR2932799

[10] Ismat Beg, Mujahid Abbas, and Akbar Azam, Periodic fixed points of random operators,
Ann. Math. Inform. 37 (2010), 39-49. MR2753025 (2011k:47102)

[11] Chunrong Feng and Huaizhong Zhao, Random periodic solutions of SPDEs via integral equa-
tions and Wiener-Sobolev compact embedding, J. Funct. Anal. 262 (2012), no. 10, 4377-4422,
DOI 10.1016/j.jfa.2012.02.024. MR2900470

[12] Chunrong Feng, Huaizhong Zhao, and Bo Zhou, Pathwise random periodic solutions of sto-
chastic differential equations, J. Differential Equations 251 (2011), no. 1, 119-149, DOI
10.1016/j.jde.2011.03.019. MR2793266 (2012d:60164)

[13] Lech Gérniewicz, Topological fixed point theory of multivalued mappings, 2nd ed., Topological
Fixed Point Theory and Its Applications, vol. 4, Springer, Dordrecht, 2006. MR2238622
(2007£:58014)

[14] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. MRO0367142
(51 #3384)

[15] Shouchuan Hu and Nikolas S. Papageorgiou, Handbook of multivalued analysis. Vol. I, Math-
ematics and its Applications, vol. 419, Kluwer Academic Publishers, Dordrecht, 1997. Theory.
MR1485775 (98k:47001)

[16] Marc Kliinger, Periodicity and Sharkovsky’s theorem for random dynamical systems, Stoch.
Dyn. 1 (2001), no. 3, 299-338, DOI 10.1142/S0219493701000199. MR 1859009 (2002g:37064)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RANDOMIZED SHARKOVSKY-TYPE RESULTS 1983

[17] S. J. Leese, Multifunctions of Souslin type, Bull. Austral. Math. Soc. 11 (1974), 395-411.
MRO0417365 (54 #5418a)

[18] Franco Obersnel and Pierpaolo Omari, Period two implies chaos for a class of ODEs, Proc.
Amer. Math. Soc. 135 (2007), no. 7, 2055—2058 (electronic), DOI 10.1090/S0002-9939-07-
08700-X. MR2299480 (2008a:37026)

[19] Marina Pireddu, Period two implies chaos for a class of ODEs: a dynamical system approach,
Rend. Istit. Mat. Univ. Trieste 41 (2009), 43-54 (2010). MR2676964 (2011f:37061)

[20] A. N. Sharkovskil, Coezistence of cycles of a continuous map of the line into itself, Pro-
ceedings of the Conference “Thirty Years after Sharkovskii’s Theorem: New Perspectives”
(Murcia, 1994), Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), no. 5, 1263-1273, DOI
10.1142/S0218127495000934. Translated from the Russian [Ukrain. Mat. Zh. 16 (1964), no.
1, 61-71; MR0159905 (28 #3121)] by J. Tolosa. MR1361914 (96j:58058)

[21] Stanistaw Sedziwy, Periodic solutions of scalar differential equations without uniqueness,
Boll. Unione Mat. Ital. (9) 2 (2009), no. 2, 445-448. MR2537280

[22] Huaizhong Zhao and Zuo-Huan Zheng, Random periodic solutions of random dynamical sys-
tems, J. Differential Equations 246 (2009), no. 5, 2020-2038, DOI 10.1016/j.jde.2008.10.011.
MR2494697 (2010c:37121)

[23] Hicham Zmarrou and Ale Jan Homburg, Dynamics and bifurcations of random circle
diffeomorphisms, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), no. 2-3, 719-731, DOI
10.3934/dcdsb.2008.10.719. MR2425065 (2009k:37092)

DEPARTMENT OF MATHEMATICAL ANALYSIS AND APPLICATION OF MATHEMATICS, FACULTY OF
SCIENCE, PALACKY UNIVERSITY, 17. LISTOPADU 12, 771 46 OLomouc, CZECH REPUBLIC
E-mail address: jan.andres@upol.cz

INSTITUTE OF MATHEMATICS, UNIVERSITY OF GDANSK, UL. WITA STWOSZA 57, 80-952 GDANSK,
PorLAnD
E-mail address: barbarski.pawel@gmail.com

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use






Real Analysis Exchange

RESEARCH Vol. 46(1), 2021, pp. 83-98

DOI: 10.14321/realanalexch.46.1.0083

Pawet Barbarski, Institute of Mathematics, University of Gdansk, ul. Wita
Stwosza 57, 80-952 Gdansk, Poland. email: barbarski.pawel@gmail.com

CONTINUOUS FUNCTIONS IN RINGS
GENERATED BY A SINGLE DARBOUX
FUNCTION

Abstract

The problem of characterizing continuous functions belonging to each
A-ring containing a fixed Darboux function is fully solved for a compact
interval domain and solved with some minor exception for a real line
domain. Many properties of generated A-rings and their continuous
functions are stated.

1 Introduction

Continuous functions are widely researched in the context of dynamical sys-
tems (see [1]). The Sharkovsky Theorem on the coexistence of periodical
orbits of continuous functions (see [17]) is the fundamental result of the dis-
crete dynamics. It has many generalizations (e.g. [11], [16], [4], [2], [6], [3])-
The Darboux-like functions as a superset of continuous functions which still
preserve many interesting properties of continuous functions are the natural
candidate to consider in generalizing the discrete-dynamics results (see e.g.
(18], [8]). On the other hand we can equip the sets of functions with algebraic
structures (see [9] and its citations). Algebraic considerations can also expose
some properties of Darboux-like functions (see e.g. [7], [10], [12], [14]).

An example of Darboux-like functions which can be considered in algebraic
structures and have some interesting dynamics are the first return limiting
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notions functions. In [13] authors consider the relationship between special
kind of them, called S-functions, and Sharkovsky Theorem. In particular
they state a theorem that every S-function is a Sharkovsky function ([13,
Th. 3.3]). Moreover, they prove some facts about special kind of rings of S-
function in this context, but also formulate some problems. We shall discuss
one of them, namely: Characterize continuous functions belonging to each .A-
ring of S-functions containing some f € S (see [13, Problem 2]). Actually, we
shall consider its generalization to all Darboux functions.

After some preliminaries we consider what are the generated A-rings in
general. We also reformulate the considered problem in terms of A-rings gen-
erated by a single function. We generalize the problem for a Darboux function
instead of S-function. We state the problem both for functions with domain
and codomain which is a compact interval and for the real line case. After-
wards we discuss the properties of A-rings generated by identity and by any
single Darboux function. Then we can look into the continuous functions in
those rings. In the last section we state the main results of the paper, namely
the solution of the problem. The solution is full in case of compact interval
domain of the function. In case of real line domain we state the solution only
for function with image which is a closed interval (in particular the real line),
thus leaving the remaining cases of open interval and one-side-open interval
as an open problem.

2 Preliminaries

By N, R, R, I we denote the set of natural numbers, the set of real numbers,
the set R U {—o00, +00}, and the closed unit interval in R, respectively. By
w1 we denote the first uncountable ordinal number. For A C R, by cl(A) we
denote a closure of set A. We use the following notation:

{0,1}=% = {s: {1,...,n} = {0,1}: n € N},
{0,1}°" ={s: {1,...,k} = {0,1}: k <n}

for n € N. For s: {1,...,n} — {0,1} we define len(s) = n.

We consider functions f: X — R, where X is R or I (or equivalently any
other compact non-degenerated interval). The family of all such functions
we denote by RX. Let €(X), P(X), C(X), B(X), D(X), B1(X) denote its
subfamilies of all constant functions, all polynomials, all continuous functions,
all bounded functions, all Darboux functions, and all Baire class one functions,
respectively. Let DB (X) = D(X)NB;(X). For families of functions Ry C RE,
Ro C RX we shall denote R1oRy = {fog: fER1, g€ R2}. Byidx: X - R
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we denote identity function; i.e. id(z) = x. We shall omit X if it is clear from
the context.

In [13] authors consider the family of all S(R)-functions (a kind of a return
limiting notion). By Theorem 2.2 and Proposition 2.3 from [13] it is clear
that:

C(R) C DB, (R) € S(R) C D(R).

We omit the definition of a S-function here, since we will generalize the men-
tioned problem to all Darboux functions.

We also adapt the following definitions from the mentioned paper. Let
R denote some family of functions from X to R. We consider the following
conditions:

1. € CR,

2. if f,ge R, then f +g,fg € R,

3. if (fu)n CR and f,, = f, then f € R,

4. if f,g € R, then max(f,g), min(f,g) € R,

R is called an A-ring (Aumann ring, notion inspired by [5]) if it fulfills con-
ditions (1) — (4).

Remark. Assume condition (1). Condition (2) is equivalent to R being a ring
and to R being an algebra. Condition (3) is equivalent to R being uniformly
closed. In that contex an A-ring is a uniformly closed algebra closed under
max and min operations.

The original problem from [13] is to characterize continuous functions be-
longing to each A-ring of S(R)-functions containing some fixed f € S(R). We
shall reformulate the problem and generalize it to Darboux functions in the
following section.

3 Generated A-Rings

Consider the following fact:

Proposition 3.1. Let X be R or a compact interval. Let R C RX. The
family

AR(R) = ﬂ{Q CRY: R C Q,Q is an A-ring of functions}

is the smallest A-ring containing R.
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We shall call the set from the proposition the A-ring generated by R. For
every f € S(R), we have AR({f}) C S(R) by [13, Theorem 3.3]. Now the
problem can be reformulated and generalized in the following form:

Problem 1. Let X be Ror I and f € D. Find AR({f})NC.

Since C is an A-ring, it is clear that AR(C) = C and AR(P) = AR({id}) C
C. Let R C R¥. Denote

c(R)=A{f: fn = [ for some (fn)nen C R},
A(R) ={f + g, fg,min(f, 9), max(f,g): f,g € R} Ucl(R),
Ap(R) =RUET,
Aat1(R) = A(AL(R)) for ordinal « € wy,
)

As(R U Ag(R) for limit ordinal o € wy U {ws }.
B<a

We formulate a useful characterization of generated A-rings.

Lemma 3.2. Let R C RX, then
AR(R) = A, (R).

PRrROOF. Firstly, Ay, (R) is an A-ring containing R. Clearly R, % C Ag(R) C
A, (R) and the sequence (A, (R)), is increasing. To see conditions (2) and
(4), take f,g € Au, (R). There are o, 8 such that f € A, (R) and g € Ag(R),
thus f,g € -Amax(oc,ﬁ) (R)7 and f+g, fg, max(f, g)v HliIl(f7 g) € Amax(a,ﬁ)+1(R)'
To see condition (3), take (f,)n C A, (R) with f,, = f. Since there is no
countable set of ordinals cofinal with w;, there is some o < w; such that
{fn}n - Aa(R)- Hence f € Aoz+1(R)'

Secondly, A, (R) is the smallest such A-ring. Take an A-ring R’ O R
Certainly, R" 2 A;(R) by conditions (1) — (4) for R’. Analogically, when
Ao(R) € R/, then Ay11(R) € R’. Thus, inductively we can see that
A, (R)CR. O

4 A-Rings Generated by Identity

By the Stone-Weierstrass Theorem it is clear that AR({id;}) = C(I). Let us
find the set AR ({idg}). We will consider all polynomially bounded continuous
functions; i.e.

Cp ={f €CR): Ipepm)|f| < P}

Proposition 4.1. Cp is an A-ring.
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PrOOF. Clearly ¢(R) C Cp. Take f,g such that |f| < P, and |g| < P, for
Py, P, € P(R). Then

If + gl <[f]+ 9] < Pr+ P,

|fgl = |fllg] < PPy,
| min(f, g)[, | max(f, g)| <max(|f],[g]) < P + Px.

Take fp, = f with (f)n C Cp. There is n such that |f, — f| < 1, and there
is P € P such that |f,| < P. Thus we have |f| < |fn|+1 < P+ 1. O

Let X be R or a compact interval. For h: X — R and a,b € R such that
(a,b) € X define hqp: R — R as

ha) forz<a
hap(x) =< h(z) forz € (a,b)
h(b) forxz>b

Lemma 4.2. If h € AR({idx}), then hyp € AR({idr}).

PrOOF. It is sufficient to prove that the family {h: h, € AR({idr})} is an A-
ring containing idx. Firstly, for ¢ € € (X) we have ¢ € €(R) C AR({idr})
and (idx)er = max(min(idg,b),a) € AR({idr}). Secondly, for fup,9ap €
AR({idR})7 we have (f+g)a,b = fa,b+ga,ba (fg)a,b = fa,bga,ba (min(fv g))a,b =
min(fo b, ga.p)s (Max(f, g))ap = max(fa,p, gab), and all of those functions be-
long to AR({idr}). Finally, for f, = f, where (fn)ap € AR({idr}), we have
(frn)ap = fap, thus fop € AR({idr}). 0

Lemma 4.3. Assume that a,b € R, a < b. If h € C(R), then h,yp €
AR({idr}).

PRrOOF. Clearly, h | [a,b] € C([a,b]) = AR ({id[4}). We get the conclusion
by Lemma 4.2, since hqp = (h[[a,])q.b- O

Proposition 4.4.
AR({idr}) = Cp.
PRrROOF. By Proposition 4.1 it is sufficient to prove the “2” inclusion.
Suppose that |f| < P for P € P. Define g(z) = Higi%. Then g €
C(R). Thus g—m,m € AR({idr}) for any m € N by Lemma 4.3. Furthermore,
J—m,m =2 g, since g(x) — 0 for © — oo or & — —oo. Since f(z) = g(z)(1 +
22P(x)), we have f € AR({idg}). 0

Corollary 4.5.
AR({idi}) = C(I)
AR({idr}) = Cp
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5 A-Rings Generated by a Darboux Function

Let X be R or I. Suppose f € D. Then there are ms, My € R such that
(mg, My) © f(X) C [my, My].

Proposition 5.1. Suppose that f € D. Then

AR({S}) = AR({idz}) o {f}

Proor. “C”. Let Q = AR({idg}) o {f} = {ho f: h € AR({idg})}. Then
{f} € Q,since f =idgof € Q.

We shall show that Q is an A-ring. Since ¢ € AR({idr}) for every ¢ € ¢
and ¢ = co f, the condition (1) is fulfilled. Since hyo f+hso f = (h1+hs2)of,
(hy o f)(ha o f) = hihs o f, max(hy o f,ha o f) = max(hy, h2) o f, min(h; o
fihao f) = min(hy, he) o f and AR({idr}) is an A-ring, the conditions (2)
and (4) are also fulfilled.

For (3) take h, o f = g, where {hy}, € AR({idr}). Thus for any ¢ > 0
there is N such that for n,m > N

sup |hy o f(x) — hy o f(z)] < &,

zeX

and

sup [hn(y) — hin(y)| <e,
yef(X)

hence

sup  |hn(y) —hm(y)| <,
y€[my,My]

and as a result

sup ‘(hn)"nf1Mf (y) - (hm)mf,Mf (y)‘ <e.
yeR

Consequently there is h such that (hn)m,; m, = h, and h € AR({idr}) by
Lemma 4.2. Thus for any € > 0 there is NV such that for n > N

sup |(hn)mf,Mf (y) - h(y)l <e,
yeR

and

sup |(hp)m, ;0 f(x) —ho f(z)| <e.
reX

Finally, hy o f = (hp)msm; 0 f 2 hof,and g=ho f € Q.
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“27. Clearly, idof = f € AR({f}), € o f =% C AR({f}). By Lemma
3.2, AR({idg}) = A,,({idg}). Thus we can proceed inductively. Assume
that A, ({idr}) o {f} € AR({f}). We shall prove that A,+1({idg}) o {f} C
AR({f}). Since operations +,-, max, min commutate with operation o (as
was shown in the previous part of the proof) it is sufficient to discuss only the
uniform convergence.

Take h € Ay+1({idr}) and h,, = h, where h,, € A,({idr}). Thus for any
€ > 0 there is N such that for n > N

sup [hy (y) — h(y)| <e,

yeR
hence
sup [hn (f(2)) = h(f(2))] <&,
reX
thus hy, o f = ho f. Since hy, o f € AR({f}), ho f € AR({f}). O

Lemma 5.2.

AR({f}) 2 {h o max(ylymin(y27 f)) Y1,Y2 S R7 h: [yhy?] — R7 h € C}

PrOOF. Clearly g = max(y;, min(ys, f)) € AR({f}). By Theorem 7.26 in
[15] there is a sequence of polynomials (P,), such that P, | [y1,y2] = h.
Thus supyey, 4] [Pn(y) = h(y)| = 0, hence sup, ¢ x [Pa(g(x)) — h(g(2))| — 0,

since g(X) C [y1,y2]. Therefore P, 0g = hog. Let P,(y) = Zf;() Cn.iy' for
every y € [y1,y2]. Then P, og = Zf;o Cn,ig', hence P, 0 g € AR({f}), and
consequently hog € AR({f}). O

Lemma 5.3. Suppose that f € BND. Then

AR({f}) ={ho f: he€C, h: [ms, Ms] — R}.
PrOOF. Since f(X) C [my, M;] and AR({idr}) C C, the proof of the inclu-
sion “C” is trivial by Proposition 5.1. By Lemma 5.2 we get the inclusion
“277' D

Theorem 5.4. Assume that X is1 or R.

o If feD, then AR({f}) =Cpo{f}.
o If fe DNB, then AR({f}) =CR) o {f}.
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In particular if f: 1 —1 and f € D, then AR({f}) =C(I) o {f}.

ProOOF. The first case follows from Proposition 5.1 with Corollary 4.5, the
second one from Lemma 5.3. O

Corollary 5.5. Assume that f € D. Then AR({f}) C D.

PrOOF. It is clear from Theorem 5.4, since the composition of continuous
function (actually even a Darboux function) with a Darboux function is a
Darboux function. O

6 Continuous Functions in A-Rings

For a Darboux function f: X — R (where X is T or R) denote

Pr={f""({y}): y e R} \ {0}.
Py is a partition of X. If f € C, then every element of Py is closed.

Proposition 6.1. Let P be a partition of X and R be a family of functions.
Suppose that f | A is constant for every f € R and every A € P. Then f] A
is constant for every f € AR(R) and every A € P.

PROOF. Suppose that A € P and f [ A, g [ A are constant. Then (f + g) |
A, (fg) | A,min(f,g) | A,max(f,g) | A are constant. Suppose that f, [ A are
constant and f, = f. Then f [ A is constant. By induction using Lemma 3.2
we get the assertion. O

Corollary 6.2.
AR{f})NC C{geC:glA is constant for every A € Py}.

For partitions P;, P, we shall write Py < P, when for every A € P; there
is B € P, such that A C B. We shall say that a partition is closed if it has
only closed elements.

For a partition P and A € P let

clp(A) = ﬂ{A’ D A: A’ € P’ for some closed P’ > P}.

and
cl(P) = {clp(A): A€ P}.

Proposition 6.3. Let P be a partition of X. Then cl(P) is the smallest (in
the sense of the ordering <) closed partition which is bigger than P.



CONTINUOUS FUNCTIONS IN RINGS 91

PROOF. It is clear that the elements of cl(P) are closed. Suppose clp(A) #
clp(B) for some A, B € P. Then there are A’, B’ € P’ for some closed P’ > P
such that A C A’, BC B’, and A’ # B’. Thus A’N B’ =, hence AN B = .
Consequently, cl(P) is a closed partition.

Clearly clp(A) D A for each A € P, thus P < cl(P).

Fix a closed partition P’ = P and fix A € P. There is A’ € P’ such that
A’ D A. Then clp(A4) C A’. Hence cl(P) < P'. O

Corollary 6.4.
AR{fH)NC C{geC:glA is constant for every A € cl(Py)}.

Definition 6.5. Let P be a partition of X. We say that a family of functions
R separates the elements of the partition P, if for each A,B € P and A # B
and for every ;1 € A and x5 € B there is a function f € R such that

f(x1) # f2).

Lemma 6.6. Let P be a partition of X. Suppose that R is an algebra of
functions which separates the elements of the partition P and € C R. Let
A Be P, A#%B,x €A, xo0 € B, and c1,co € R. Then there is a function
f € R such that f(z1) = c1 and f(z2) = co.

PROOF. There is a function g € R such that g(z1) # g(x2). Let

_ alg(@) —g(@2)) — ca(g(x) — g(21))
f@) = 9(331> —g(x2) '

Then f € R, f(x1) = c1, and f(x2) = co. O

Proposition 6.7. Assume that P is a partition of I and R C C(I) separates
the elements of the partition P. Then

AR(R) D {f € C(I): f|A is constant for each A € P}.

PRrOOF. We procede analogically as in Steps 3 and 4 of the proof of Theorem
7.32 from [15].

Let @ = AR(R). Let f be continuous such that f[A is constant for each
A € P. We shall define a family {g,,: z,y € I} of functions from Q in the
following way.

Fix x € . Thereis A, € P such that x € A,. R C Q, thus Q is an algebra
which separates the elements of the partition P and € (I) C Q C C(I). Let
yel

If y € I\ A, then by Lemma 6.6 there is a function g, , € Q such that

gm,y(‘r) = f(z) and gx,y(y) = f(y)-
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If y € A, then f(z) = f(y), and we put gy ,(t) = f(z) for each ¢t € L
Obviously, g, € Q.

Clearly, g, € C(I) for each y € I, thus for each € > 0 there exists an open
set Jy, containing y such that g, ,(t) > f(t) — € for each t € J,,. By the
compactness of I there exist yi,...,y, such that 1 C J, ,, U...UJg,, . Put
9o = Max(ge,ys,-- -9y, ). Thus g, € Q. It is clear that g,(z) = f(x) and
9x(t) > f(t) — e for each ¢t € I. Since g, € C(I), there exists an open set I,
containing x such that g, (t) < f(¢)+e for each ¢ € I,. By the compactness of I
there exist 1,...,Zy, such that I C I, U...Ul,, . Put g = min(gs,,..., gz, )-
Thus g € Q and |g(t) — f(t)| < € for each ¢ € I. Finally, f € Q, because Q is
a uniformly closed algebra. O

Lemma 6.8. Assume that f € D. For each A € cl(Py) there are a,b € R
such that a < b and one of the following occurs:

A4) = la,b],
A) = [a,b) and b ¢ f(X),

A) = (a,b] and a ¢ f(X),

i
i
I
f(A) = (a,b) and a,b ¢ f(X).
PROOF. Let A € cl(Py). It is enough to prove that f(A) is connected and
closed in f(X). Suppose that there is y ¢ f(A) such that f(A) N (—oo,y) # 0
and £(A)(y, +00) # 0. Let Ay = £~ (F(A)1(=00,y)) and Az = f1(F(A)N
(y,+00)). Then A = A;UAs and A; N Ay = (). We shall show that A; and Ay
are closed. Take a sequence x,, — x such that x, € A;. Clearly = € A, since
A is closed. Suppose © € As. Then for each n we have f(z,) <y < f(z).
Thus there is ], between z,, and x such that f(z]) = y. Hence z, — z and
y ¢ f(A), so there is A’ € cl(Pf) such that A" # A and z], € A’. Therefore
x € A’, and consequently z ¢ A, which is a contradiction. Thus z € A,
and A; is closed. Analogically we can prove that As is closed. Therefore

= (cl(Pf) \ {A}) U{A4;, Ao} is a partition with closed elements and P’ <
cl(Py), which is a contradiction. Hence f(A) is connected. Therefore there
are a,b € R such that a« < b and (a,b) C f(4) C [a,]].

Suppose that b € f(X) and b ¢ f(A). Let B € cl(Pf) be such that
b € f(B). Since f(B) is connected, f(B) C [b,400). Take z; € A and
To € B. Without loss of generality we can assume that 1 < x5. Let 3 =
sup A N (—oo,z2]. Then x5 € A and z3 < x9. Since f(z3) € f(A4) and
f(z2) € f(B), f(x3) <band f(x2) >b. Let y = w. Then y € f(A) and
f(z3) <y < f(zz2). Hence there is = such that z3 < < x2 and f(z) =y, and
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therefore x € A, which is a contradiction. Thus if b € f(X), then b € f(A).
The proof of the fact that a € f(X) implies a € f(A) is analogical. O

Lemma 6.9. Assume that f € D. There is a family R which separates the
elements of partition cl(Py) such that R C AR({f})NC.

ProOF. Fix A,B € cl(Py), A # B, 1 € A and z; € B. Without loss
of generality we can assume that f(x1) < f(z2). By Lemma 6.8 f(A) N
(1), F(z2)] = [f(@1), a0] and F(B) N [f(@1), £(@2)] = [bo, f(ws)] for some
ag, b such that f(z1) < ag < by < f(x2). Furthermore for any C' € cl(Py)
other than A or B if f(C) N (ag,bo) # 0, then f(C) C (ag,bo). Let

Iy = J{f(C) C (a0, b): C € cl(Pr) A|F(C)] > 1}.
Cleary Iy C (ag,bo). We shall consider two cases:
1. Iy is not dense in (ag, bo),
2. Iy is dense in (ao, bo).

CASE 1. There exist y1,y2 such that ag < y1 < y2 < by and y ¢ I for each
y € (y1,y2). Fix such y. Certainly y € f(X), since f € D, and there is
C € cl(Py) such that y € f(C). Clearly f(C) has exactly one element. Hence
f(C) ={y}. Since C € cl(Py), we have f~1({y}) = C € cl(Ps), and therefore
F-1({y}) is closed for each y € (y1,y2). Put g 4y = max(yr, min(ye, £)).
Then Gz1,20 € AR({f}> and 1,20 (xl) = 7£ Y2 = Gay 2 (172)

Put g = ¢z, 2,- We shall show that g € C. Suppose there is a sequence
(tn)n € X such that ¢, — t and g(t,) - g(t). There is € > 0 and a sub-
sequence (tg, )n such that g(tg,) > g(t) +¢€ or g(ty,) < g(t) —e. With-
out loss of generality we can assume the former. For each n there is u,
between ¢y, and ¢ such that g(u,) = g(t) + 5. Thus w, — t. Moreover,
g {gt) + £} = f1({g(t) + 5}) is closed, since g(t) + 5 € (y1,y2). Conse-
quently, g(t) = g(t) + 5, which is a contradiction. Thus g € C.

CASE 2. By Lemma 6.8 and definition Iy is a sum of disjoint closed nonde-
generate intervals. By the density of Iy, number of those intervals is infinite.
By the separability of R number of those intervals is countable. Let enu-
merate them as ([an,by])n. We shall inductively enumerate that family of
intervals by finite sequences of zeros and ones: {[cs,ds]: s € {0,1}<%}. Let
[cg,dg] = [a1,b1]. Suppose that intervals [cq,ds] for s € {0,1}<™ are given.
Let
dy =max ({d,: 7 € {0,1}" A d, < ¢s} U{ao}),
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and let [c,~g,dg~¢] be the first interval from the sequence ([ay,by]), laying
between ¢/, and c;. Let

d’, = min ({CTZ re{0,1}<"u ({0, 13" x {0}) Acp > ds} U {bo}) ,

and let [cs~1,d;~1] be the first interval from the sequence ([ay,by]), laying
between dg and d.. It is clear that {[a,,b,]: n € N} = {[cs,ds]: s € {0,1}<¢}.
We shall define a sequence of functions (h,,: [ag, bo] — [ao, bo])n. Let

1 len(s) 1
Ys = 9len(s)+1 + Z S(k) ' ?
k=1

and put h,(x) = ys for x € [cs,ds] for s € {0,1}<", hy(ag) = 0, hy,(by) = 1,
and let h,, be linear between neighboring intervals [cs, ds], between point ag
and its neighboring interval, and between point by and its neighboring interval.

It is clear that each h,, is non-decreasing and continuous. We shall show
that (hn)n is uniformly convergent. Fix e > 0. Let N € N be such that
2% < e. For each n,m > N hy, | [cs,ds] = hm | [cs,ds] for each s €
{0,1}<N. Hence sup,¢q |hn(2) — hin(z)| < 5% < e. Thus there is h € C
such that h, = h. It is clear that h(z) = y, if and only if & € [cs,ds]. Put
9y 2, = homax(ag, min(bg, f)). By Lemma 5.2 g5, 4, € AR({f}). Moreover,
9z1,22 (‘Z'l) = h(ao) =0 7& 1= h(bo) = g$17‘732(:1:2)'

Put g = g4, 4,. Clearly g € D by Corollary 5.5. We shall prove that g € C.
As in Case 1 suppose there is a sequence (t), C I such that ¢, — ¢ and
g(tn) - g(t). There is € > 0 and a subsequence (t, ), such that g(ts,) >
g(t) + € or g(tx,) < g(t) — . Without loss of generality we can assume the
former. There is s € {0,1}<% such that y, € (g(t), g(t)+¢). For each n there is
uy, between ¢, and t such that g(u,) = ys. Thus u,, — ¢t and f(u,) € [cs, ds)-
There is A, € cl(Py) such that f(As) = [c,,ds]. Consequently, u,, € As and
by the closeness of A we have that t € A;. Thus ¢(t) = ys > g(t), which is a
contradiction. Hence g € C.

Let R = {gay,2,: ©1 € A,xz2 € B for some A, B € cl(Pf),A # B}. Then
R C AR({f}) NC and R separates the elements of the partition cl(Py). O

Theorem 6.10. Assume that X =1 and f € D. Then
AR{f})NC(I) = {g € C(I): gl A is constant for every A € cl(Py)}.

Proor. By Corollary 6.4 we only have to prove the inclusion “2”. By Lemma
6.9 there is a family R which separates the elements of cl(Py) such that R C
AR({f}) N C(I). By Proposition 6.7

AR(R) D {g € C(I): g[ A is constant for each A € cl(Py)}.
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Furthermore, AR(R) C AR({f}) NC(I). O

7 Final Results
Assume that X is Ror I and f: X — R.

Lemma 7.1. Assume that f € D. Then f(U) is open in f(X) for every open
U such that for every A € cl(Py), either ANU =0, or ACU.

PrOOF. When f € ¥, it is trivial, hence we can assume that f is not constant.

Take U fulfilling the assumption. Since U is open, it is an at most countable
sum of pairwise disjoint open intervals U,, for n € N. Thus f(U,,) are intervals.
We shall prove that none of them can be degenerate.

On the contrary, assume that f(U,) has only one element for some n.
Then f is constant on U, and there is B € Py such that U, € B. Since
Py < cl(Py), there exists A € cl(Py) such that B C A. Thus U,, C A, hence
cl(U,) C A, since A is closed. Consequently, ANU # @, since U,, C U. Then
by the assumption we reason that A C U, thus cl(U,) C U. Since the sets
U,, are pairwise disjoint, we conclude that U,, = X. But then f is a constant
function, which contradicts the assumption from the first paragraph of the
proof.

Suppose that f(U) is not open in f(X). There exists yo € f(U) which is
not an internal element of f(U) in f(X), and it cannot be an internal element
of any f(U,) (with respect to f(X)). Thus it can be only an endpoint of
some of intervals f(U,) (and not an endpoint of f(X)), and always an upper
endpoint or always a lower endpoint. Without loss of generality assume that
it is an upper endpoint. Take any zy such that f(zg) = yo. There is some
interval U,, 3 zp. Take any y; > yo such that y; € f(X)\ f(U) and x; such
that f(z1) = y1, without loss of generality we can assume that zo < x1. Let
s=inf{z > zo: f(x) > yo}. Since sup f(Un) = yo and z¢ € Uy, s > xg.

Suppose that f(s) > yo. Then there should exist z such that g < x < s
and f(z) = %’((S) > 19, a contradiction with the definition of s.

Suppose that f(s) = yo. Then s € U. Let Uy, > s. But yo = sup f(Un),
thus f(z) < yo for every z € U,,, a contradiction with the definition of s.

Suppose that f(s) < yo. By the definition of s there should be an infinite
descending sequence (s, )p such that s, — s and f(s,) > yo. Thus there also
should be a descending sequence (x,)n such that z, — s and f(z,) = yo.
Thus cl ({z,}n) C U, and s € U, and we conclude with a contradiction as in
the previous case.

Consequently, f(U) is open. O
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Proposition 7.2. For any f € D(X) and any g € C(X) such that cl(Py) <
P,, there exists h € C(f(X)) such that g=ho f.

PROOF. For each y € f(X) define h(y) = g(x), where z € f~!({y}). Function
h is properly defined on f(X), since by assumption cl(Py) < Py there is only

one element of the set g(f~1({y})) = {g(z): z € fF~1({y})}.

Let U be an open set. Then h='(U) = f(g~'(U)), since cl(Pf) < P,.
Moreover, g~!(U) is open. By the assumption for every A € cl(Pf), A C B
for some B € P,, thus either ANg~'(U) =0, or AC g~ '(U). By Lemma 7.1

f(g71(U)) is open in f(X). O
Theorem 7.3. Assume that f € D.
o If X =1, then

AR{fHNC={geC: cl(Pf) < P}

e If X =R and f(X) is closed, then

AR({f})NC = {g € C: cI(Py) < Pp.3peplgl < Po f}.

PRrROOF. The first case follows from Theorem 6.10.
For the second case, by Theorem 5.4 it is sufficient to prove that

(Cpo{f})NC={g€C: dA(Py) < Py, 3peplgl < Po f}.

Take g belonging to the set on the left side. Then g = ho f, where h € Cp.
It is clear that Py < Phos, and since g € C, also cl(Pf) < Puoy. There is
P € P such that |h| < P. Hence |g(z)| = |h(f(z))] < P(f(z)).

Take g belonging to the set on the right side. By Proposition 7.2 there
exists h € C(f(X)) such that ¢ = ho f. Clearly f(X) = [a,b] for some
a,b € R. Then g = hypo f and |hap(f(2))| < P(f()) for any x € X. Thus
lhab(y)| < P(y) for any y € f(X), and |hap(y)| < P(y) + |h(a)| + |h(b)| for
any y € R (for finite a, b; for infinite — we can skip h(a) and h(b), respectively,
in the inequality). Hence hqp € Cp. O

Problem 2. Let f: R — R, f € D and f(R) is not closed (i.e. f(R) is one
of (a,b), (a,b], [a,b) for some a,b € R). Characterize continuous functions
belonging to each A-ring containing f: R — R, i.e. find AR({f}) NC.
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