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Abstract in English

author: Paweł Barbarski
title: Various generalizations and applications of the Sharkovsky
Theorem on coexistence of periodic orbits of continuous mappings

The Sharkovsky Theorem states what are the possible sets of periods of
periodic points of a continuous real function. Thus, it belongs to the area
of discrete dynamical systems (combinatorial dynamics), but also to the real
functions theory. Nevertheless, multiple directions of generalizations and
applications of the theorem go beyond those areas. Here we concentrate on
two directions of those, thus the results of the dissertation can be divided
into two categories.

Firstly, we formulate some new randomized Sharkovsky-type results and
show their applications. We can extend a discrete dynamical system with
an additional dimension, and assume some measurability conditions on it,
while preserving some continuity conditions on the original dimension. In
such a way we arrive at a notion of a random operator and its random
orbit. In the dissertation we generalize some known randomization results.
We achieve that by significantly generalizing the characterization results on
the random operators (the so called “transformation to the deterministic
case” method), through using stronger measurability arguments, including
selection theorems. Furthermore, we formulate some new kind of Sharkovsky
Theorem analogues and use the results in the area of random differential
inclusions.

Secondly, we analyze algebraic properties of functions fulfilling the as-
sertion of the Sharkovsky Theorem. We solve some published problem in
that area, actually generalizing it significantly. The solution of the problem
is the characterization of all continuous functions belonging to an Aumann
ring generated by any given Darboux function. We arrive at the final solu-
tion through multiple steps providing solutions to some simpler cases of the
problem, and through some real functions theory reasoning.
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Streszczenie w języku polskim

autor: Paweł Barbarski
tytuł: Różne uogólnienia i zastosowania twierdzenia Szarkowskiego
o współwystępowaniu orbit okresowych odwzorowań ciągłych

Twierdzenie Szarkowskiego określa możliwe zbiory okresów punktów okre-
sowych ciągłych funkcji rzeczywistych. Należy ono zatem do teorii dyskret-
nych układów dynamicznych (dynamika kombinatoryczna), ale również do
teorii funcji rzeczywistych. Jednakże różne kierunki uogólnień i zastosowań
twierdzenia wykraczają znacząco poza te dziedziny. Tutaj koncentrujemy się
na dwóch kierunkach, i stąd wyniki rozprawy można podzielić na dwie kate-
gorie.

Po pierwsze, formułujemy pewne nowe wyniki z zakresu randomizacji
twierdzenia Szarkowskiego i pokazujemy ich zastosowanie. Dyskretny układ
dynamiczny można rozszerzyć o dodatkowy wymiar, zakładając na nim pew-
nego rodzaju mierzalność przy jednoczesnym zachowaniu pewnej ciągłości
na pierwotnym wymiarze układu. W ten sposób możemy zdefiniować poję-
cie operatora losowego i jego orbity losowej. W rozprawie uogólniamy pewne
znane wyniki dotyczące randomizacji. Wyniki udaje nam się osiągnąć po-
przez znaczące uogólnienie charakteryzacji operatorów losowych (metoda
tzw. „sprowadzenia do przypadku deterministycznego”), w dowodach wy-
korzystując pewne fakty na temat mierzalności, w szczególności twierdzenia
selekcyjne. Ponadto, formułujemy pewne nowe analogi twierdzenia Szarkow-
skiego oraz stosujemy nasze wyniki w obszarze zrandomizowanych inkluzji
różniczkowych.

Po drugie, analizujemy właściwości algebraiczne funkcji spełniających
tezę twierdzenia Szarkowskiego. Rozwiązujemy pewien opublikowany pro-
blem w tej dziedzinie, a właściwie jego znacząco uogólnioną wersję. Rozwią-
zanie problemu to charakteryzacja wszystkich funkcji ciągłych należących do
pierścienia Aumanna generowanego przez dowolną daną funkcję typu Dar-
boux. Do ostatecznego rozwiązania problemu doprowadza nas szereg kroków
pośrednich, w których rozwiązujemy pewne prostsze przypadki problemu oraz
stosujemy rozumowanie z zakresu teorii funkcji rzeczywistych.
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Summary of the dissertation

1 Introduction
Taking any function from the real line to itself, especially a function belong-
ing to a family defined by some continuity-related property, we can consider
iterations of that function on a given point, and thus arrive at so called “dis-
crete dynamical system”. It’s natural to ask about periodic points of such a
system, those for which some iteration arrives at the starting point. One of
the most inspiring theorems in the area of discrete dynamics of the real func-
tions is the Sharkovsky Theorem. It actually gives a surprising relationship
between existence of periods of periodic points of a continuous function. It
was proven in 1964 ([13]), but did not gain a worldwide recognition until af-
ter the publication of an article by Li and Yorke ([10]), which independently
proved a special case of that theorem. After that publication the original
result of Sharkovsky became an inspiration for further research, and many
articles on generalizations and applications of the theorem were published.

The classical path of generalization is substituting continuity with an-
other related notion, usually revolving somehow around Darboux property
(see [14], [11]), or generalizing the domain of the function, preserving some-
how its continuum characteristic (see [12]), or preserving one-dimensional
characteristic of the function itself (e.g. triangular maps in [6]). Looking on
the families of functions fulfilling the assertion of the theorem can even lead
to consider algebraic properties of such families (see [11]). Other interests
focus on the Sharkovsky Theorem pattern with respect to mappings of other
kind than classical functions. Multifunctions are most natural in that con-
text and a few results goes that way ([2], [3]). The so called “randomization
results” constitute another branch of findings (see [1], [7]). They actually
extend the discrete dynamical system with a random (measurable) dimen-
sion and can be applied e.g. in the area of random differential equations (or
inclusions).

Papers A and B consist of multiple results concerning the randomization
of Sharkovsky-type theorems. As a tool for proving the randomized gener-
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alizations of the theorem we use the characterizations of random operators
having a periodic random orbit, a tool firstly proposed and applied in [1].
These type of characterization is called transformation to deterministic case,
since we express the existence of a random orbit through the existence of the
“deterministic” orbits. They are also results on their own, since in some cases
they have much more general assumptions than the actual Sharkovsky-type
results. Some of the results both on characterization of random operators
and the actual randomizations of Sharkovsky-type theorems are generaliza-
tion of results in [1], some are independent findings. Furthermore, we state
the analogues of Sharkovsky Theorem for spaces of measurable functions as
a mapping domain, and applications of the results in random differential
inclusions.

Paper C shows some of the Sharkovsky functions on the real line (or actu-
ally some function classes related to them) from algebraic perspective. It is
a solution to the problem stated in [11], i.e. characterize all continuous func-
tions belonging to each A-ring of S-function. S-function is a notion related
to first return continuity, whose precise definition is not needed here, since
the paper C actually generalizes the problem to Darboux functions instead of
S-functions. Nevertheless, for all S-functions the classical Sharkovsky Theo-
rem holds (as proven in [11]), thus the results on that particular function class
are a step forward to understand algebraic features of Sharkovsky functions.

2 Preliminaries

2.1 Sets
By N, R, R, I we denote the set of natural numbers, the set of real numbers,
set R∪{−∞, +∞}, and the interval [0, 1], respectively. For finite I ⊆ N, the
symbol LCM I denotes the lowest common multiple of elements of I.

We fix the following denotation: (Ω, Σ) – a measurable space (i.e. a set
with a σ-algebra of some of its subsets), I – a proper σ-ideal on Ω (i.e. Ω /∈ I),
µ – (if it exists) a complete σ-finite nontrivial measure on (Ω, Σ). We say
that Σ is complete if such a measure exists. We say that Σ is nonatomic
with respect to I if for every A ∈ Σ such that A /∈ I, there is a splitting
A = B ∪ C such that B, C ∈ Σ and B, C /∈ I. For σ-algebras Σ1 and Σ2
by Σ1 ⊗ Σ2 we mean the product σ-algebra. For a complete measure space
(Ω, Σ, µ) we denote N (Ω) = {A ⊆ Ω: µ(A) = 0}. For Ω = Rk or Ω = Ik the
symbol L(Ω) denote the σ-algebra of Lebesgue measurable sets on Ω.

We recall the notion of a Suslin family. Let N<N be the set of all finite
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sequences of natural numbers. For a family {As : s ∈ N<N} we put

A{As : s ∈ N<N} =
⋃

σ∈NN

∞⋂
n=0

Aσ↾{0,...,n−1}.

We say that a family F is a Suslin family if AF = F , where AF =
{A{As : s ∈ N<N} : As ∈ F for s ∈ N<N}.

By (X, d) we always denote a metric space. A complete separable metric
space is called a Polish space. A metric space which is a continuous image of
a Polish space is called a Suslin space. For X = Rk or X = Ik the symbol ∥·∥
denotes the Euclidean norm on X, and the symbol d denotes the Euclidean
metric. The symbol B(X) denotes the σ-algebra of Borel sets in X.

2.2 Functions
By BA we denote the family of all functions f : A → B. The image of a
function f on a set C ⊆ A is defined as f(C) = {f(c) : c ∈ C}. For families
of function R1, R2 we denote R1 ◦R2 = {f ◦g : f ∈ R1, g ∈ R2}, where f ◦g
is a composition of functions f and g, i.e. (f ◦ g)(x) = f(g(x)). By idA we
denote an identity function, i.e. idA(x) = x for x ∈ A.

In the dissertation we consider real functions on a real line or compact
interval. By C , B, C, D, P , CP we denote the family of constant functions,
bounded functions, countinuous functions, Darboux functions, polynomials,
and polynomially bounded continuous functions (CP = {f ∈ C : ∃h∈P |f | ≤
h}), respectively.

A function f : I → R (or a function on any other compact interval) is
called absolutely continuous when for each ε > 0 there is δ > 0 such that for
each pairwise disjoint family of intervals (xk, yk) ⊆ I for k < n, if ∑

k<n(yk −
xk) < δ, then ∑

k<n |f(yk) − f(xk)| < ε. A function f : R → R is absolutely
continuous when each restriction of it to a compact interval is absolutely
continuous.

Let ξ ∼ ζ hold for measurable ξ, ζ : Ω → X if and only if {ω ∈ Ω: ξ(ω) ̸=
ζ(ω)} ∈ I. We denote the set of equivalence classes of this relation by:

M(Ω,Σ),I,(X,d) = {ξ : Ω → X : ξ is measurable} /∼.

We will write M instead of M(Ω,Σ),I,(X,d) when Ω, Σ, I, X, and d are clear
from the context. When Ω = Rr or Ω = Ir, Σ = L(Ω), I = N (Ω), and
X = Rk or X = Ik, we also use the standard notation:

Lp(Ω, X) =
{

ξ : Ω → X : ξ is measurable ∧
∫

Ω
∥ξ(ω)∥pdω < +∞

}
/∼
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for p ∈ [1, +∞) and

L+∞(Ω, X) = {ξ : Ω → X : ξ is measurable and bounded} /∼.

The symbol [ξ] stands for the class of equivalence of ξ.
A family of functions R is called an A-ring (Aumann ring) if it fullfills

the conditions:

• C ⊆ R,

• if f, g ∈ R, then f + g, fg ∈ R,

• if (fn)n ⊆ R and fn ⇒ f , then f ∈ R,

• if f, g ∈ R, then max(f, g), min(f, g) ∈ R.

With respect to uniform convergence (⇒) we recall classical result of
Weierstrass (referred to as Stone-Weierstrass Theorem).

Proposition 2.1 (Weierstrass). For any continuous function f : I → R there
is a sequence of polynomials (Pn)n such that Pn ⇒ f .

We denote preimage set of function f as Pf = {f−1({y}) : y ∈ R} \ {∅}.
Pf is a partition of the domain. We say that P1 ≺ P2 for partitions P1 and
P2 if for every A ∈ P1 there is B ∈ P2 such that A ⊆ B. We say that a
partition is closed if it consists only of closed sets. We define the closure
of a partition P (which is the smallest closed partition bigger than P with
respect to relation ≺) as cl(P ) = {clP (A) : A ∈ P}, where clP (A) = ⋂{A′ ⊇
A : A′ ∈ P ′ for some closed P ′ ≻ P} for A ∈ P .

2.3 Multifunctions
We naturally identify a relation φ ⊆ A × B with a function φ : A → P(B).
If we want to emphasize the properties of φ as a subset of A × B, we use the
notion of a graph of φ, which is actually the same set as φ. Furthermore, if
φ ⊆ (A × B) × C, i.e. φ : A × B → P(C), then for any x ∈ A we define the
relation φx = φ(x, ·). A multifunction φ : A ⊸ B is a relation with nonempty
values, i.e. φ : A → P(B) \ {∅}, we identify a function f : A → B with the
multifunction with one-element values fulfilling the condition φ(x) = {f(x)}
for every x ∈ A.

By a superposition of a function f : B → C with a relation φ ⊆ A×B we
mean the relation f ◦ φ ⊆ A × C defined for a ∈ A by (f ◦ φ)(a) = f(φ(a)),
which is the image of f on a set φ(a). By a product of relations Fi ⊆ A × B

12



for i ∈ I we mean the relation ∏
i∈I Fi defined by (∏

i∈I Fi)(a) = ∏
i∈I Fi(a)

for a ∈ A.
We denote by

φ−(B) = {ω ∈ Ω: φ(ω) ∩ B ̸= ∅}

the large preimage of the set B ⊆ X under the relation φ ⊆ Ω×X. A relation
φ ⊆ Ω × X is called measurable if φ−(F ) ∈ Σ for every closed F ⊆ X. It
is called weakly measurable if φ−(G) ∈ Σ for every open G ⊆ X. The
paper [4] contains a thorough analysis of the notion of a measurable relation,
and multiple facts from that paper are used in the proofs of the results of
the dissertation.

We call a function f : Ω → X a selector of a multifunction φ : Ω ⊸ X
and write f ⊆ φ if f(ω) ∈ φ(ω) for each ω ∈ Ω. The selection theorems are
setting sufficient conditions for existence of a selector of a given mulitfunction.

We formulate the selection theorem of Kuratowski and Ryll-Nardzewski
from [8] as follows:

Proposition 2.2 (Kuratowski, Ryll-Nardzewski). If a multifunction φ : Ω⊸
X is weakly measurable and has closed values, then it has a measurable se-
lector f ⊆ φ.

The next selection theorem follows directly from Lemma 2.3.2 in [5]:

Proposition 2.3. Suppose that p ∈ [1, +∞], Ω = Rr or Ω = Ir, X = Rk

or X = Ik. Let a multifunction φ : Ω ⊸ X has a measurable graph, i.e.
φ ∈ L(Ω)⊗B(X) and there is h ∈ Lp(Ω,R) such that infx∈φ(ω) ∥x∥ ≤ h(ω) for
each ω ∈ Ω. Then φ has a measurable selector f ⊆ φ such that f ∈ Lp(Ω, X).

We state also a generalization of the Aumann-von Neumann selection
theorem which is a simple consequence of Corollary to Theorem 7 in [9]:

Proposition 2.4 (Leese). Assume that Σ is a Suslin family and X is a
Suslin space. Let a multifunction φ : Ω ⊸ X has a measurable graph, i.e.
φ ∈ Σ ⊗ B(X). Then it has a measurable selector f ⊆ φ.

Assume that X and Y are metric spaces. A relation φ ⊆ X × Y is called
upper semicontinuous (u.s.c.) if φ−(F ) is closed in X for every closed F ⊆ Y .
It is called lower semicontinuous (l.s.c.) if φ−(G) is open in X for every open
G ⊆ Y . If φ is both l.s.c. and u.s.c., then it is called continuous. In case of
relations with one-element values (i.e. functions) the notion of a lower and
upper continuity coincide with the continuity of a function. An extended
analysis of the notion of continuity of relations can be found in Chapter 1 of
the book [5].

13



2.4 The Sharkovsky theorem
In description of discrete dynamics of multifunctions it is convenient to use
the notion of a periodic orbit instead of the notion of a periodic point.
A sequence (xi)k−1

i=0 ∈ Ak is called a k-orbit of the multimap φ : A ⊸ A
if xi+1 ∈ φ(xi) for i < k − 1, x0 ∈ φ(xk−1), and there is no m < k such that
m | k and xsm+i = xi for i < m and s < k

m
.

We recall the Sharkovsky ordering of the natural numbers:

3 ▷ 5 ▷ 7 ▷ 9 ▷ . . .
2 · 3 ▷ 2 · 5 ▷ 2 · 7 ▷ 2 · 9 ▷ . . .

22 · 3 ▷ 22 · 5 ▷ 22 · 7 ▷ 22 · 9 ▷ . . .
...

. . . ▷ 23 ▷ 22 ▷ 2 ▷ 1

The original Sharkovsky theorem can be stated as follows:

Proposition 2.5. Let f : R → R be a continuous function. If f has an
n-orbit, then f has a k-orbit for every k ◁ n.

The results of the dissertation use the following generalizations of Shar-
kovsky Theorem, which are simple corollaries of Theorem 6 from [2] and
Theorem 2 form [3], respectively:

Proposition 2.6. Let φ : R ⊸ R be a l.s.c. multifunction with compact and
connected values. If φ has an n-orbit, then φ has a k-orbit for every k ◁ n.

Proposition 2.7. Let φ : R ⊸ R be an u.s.c. multifunction with compact
and connected values. If φ has an n-orbit, then φ has a k-orbit for every
k ◁ n with at most two exceptions.

In particular, suppose that φ has an n-orbit (n = 2mq, where q is odd),
and n is the maximal number in the Sharkovsky ordering with that property.

1. If q > 3, then φ has a k-orbit for every k ◁ n, except possibly for
k = 2m+2.

2. If q = 3, then at least one of the following two cases occurs:

(i) φ has a k-orbit for every k◁n, except possibly for k = 2m+1·3, 2m+2,
(ii) φ has a k-orbit for every k ◁ n, except possibly for k = 2m+1.

3. If q = 1, then φ has a k-orbit for every k ◁ n.

14



2.5 Random operators
We extend the definition of a random operator from [1] (Definition 3) to serve
for a more generalized approach to randomization theorems.

Definition 2.8. A multifunction φ : Ω×X ⊸ X with closed values is called
a random operator if it is weakly measurable with respect to σ-algebra Σ ⊗
B(X). A random operator φ is called u.s.c. if φω is u.s.c. for each ω ∈ Ω, it
is called l.s.c. if φω is l.s.c. for each ω ∈ Ω, and it is called continuous if φω

is continuous for each ω ∈ Ω.

We do the same with the notion of a random orbit. Definition 4 from [1]
can be rephrased in the following way:

Assume that (Ω, Σ, µ) is a complete measurable space, I = N (Ω), and
(X, d) is a Polish space. Let φ : Ω × X ⊸ X be a random operator. A se-
quence of measurable functions (ξi)k−1

i=0 where ξi : Ω → X for i < k is called
a random k-orbit of the operator φ if

(a) ξi+1(ω) ∈ φ(ω, ξi(ω)) for i < k−1 and ξ0(ω) ∈ φ(ω, ξk−1(ω)), for almost
all ω ∈ Ω,

(b) the sequence (ξi)k−1
i=0 is not formed by going p-times around a shorter

subsequence of m consecutive elements (i.e. is not a concatenation of p
identical m-orbits), where mp = k, even for almost all ω ∈ Ω.

We generalize it to the following form:

Definition 2.9. Let φ : Ω × X ⊸ X be a random operator. A sequence of
measurable functions (ξi)k−1

i=0 where ξi : Ω → X for i < k is called a (Σ, I)-
random k-orbit of the operator φ if

(a) Ω \ {ω ∈ Ω: ∀i<k−1 ξi+1(ω) ∈ φ(ω, ξi(ω)) ∧ ξ0(ω) ∈ φ(ω, ξk−1(ω))} ∈ I,

(b) there is no m < k such that m | k and

Ω \ {ω ∈ Ω: ∀s< k
m

i<m

ξsm+i(ω) = ξi(ω)} ∈ I.

We will write shortly “random k-orbit” when Σ and I are fixed.

The definition coincide with the one from [1] if restricted to the assump-
tions given there. Thus, in the definitions from [1] we drop the assumptions of
completeness of the measurable space and completeness of the metric space.
As a result instead of the notion of “almost all ω ∈ Ω” (understood as “all
ω ∈ Ω \ N , where N has measure zero”), we introduce the notion of “all
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ω ∈ Ω \ N , where N ∈ I”, where I is a fixed proper σ-ideal. That notion
is crucial for both versions of definition, especially in condition (b). If we
drop it there, it is usually easy to modify a concatenation of p identical m-
orbits is such a way to fulfill the condition (b) (e.g. just change a value for
one ω in one of the copies of m-orbit), and thus the condition (b) would be
usually redundant. But the condition is needed, since we want to think of k
as the minimal period of a k-orbit, as it is usually formulated in Sharkovsky
Theorem generalizations and analogues.

For a random operator φ : Ω × X ⊸ X and k, m ∈ N, such that m | k, we
define the relation Oφ,k,m ⊆ Ω × Xk as follows:

Oφ,k,m(ω) =
{
(xi)k−1

i=0 ∈ Xk : (xi)m−1
i=0 is an m-orbit of φω ∧ ∀s< k

m
i<m

xsm+i = xi

}
.

Measurability properties of that relation are the main focus in the proofs
leading to the randomization results.

3 Randomization of Sharkovsky-type results

3.1 Characterizations of random operators with orbits
We shall say that Ω has a φ, k-partition if there exists the following partition
of Ω:

Ω = Ω0 ∪
l−1⋃
j=0

Ωij
,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,

• Ω0 ∈ I and Ωij
/∈ I for j < l,

• LCM{ij : j < l} = k,

• φω has an ij-orbit for each ω ∈ Ωij
for j < l.

We can formulate the following characterizations from the two articles:

Theorem 3.1 (A, Theorem 3.4). Assume that:

• X is a σ-compact Polish space,

• (Ω, Σ) is a measurable space,

• I is a proper σ-ideal on Ω,
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• φ : Ω × X ⊸ X is a continuous random operator with compact values.

Then φ has a (Σ, I)-random k-orbit if and only if Ω has a φ, k-partition.

Theorem 3.2 (B, Proposition 3.2). Assume that:

• X is a Suslin space,

• (Ω, Σ) is a measurable space and Σ is a Suslin family,

• I is a proper σ-ideal on Ω,

• φ : Ω × X ⊸ X is a random operator.

Then φ has a (Σ, I)-random k-orbit if and only if Ω has a φ, k-partition.

These results have an analogous structure. In the artice A assumption
on (Ω, Σ) is more general. In the article B the assumptions on X and on φ
are more general (each Polish space is a Suslin space). The characterizations
are analogous to Proposition 2 from [1], but the second one is its strict
generalization, since each Polish space is a Suslin space and each complete
measurable space is a Suslin family.

The result from article A is derived from the Kuratowski-Ryll-Nardzewski
selection theorem (Proposition 2.2), the one from the article B – from the gen-
eralized Aumann-von Neumann selection theorem (Proposition 2.4). Thus
for Theorem 3.1 to be proven the continuity assumption on the operator is
used (the Berge’s Maximum Theorem is actually involved), since the needed
kind of measurability of relation Oφ,k,m is different.

In article A also a new kind of characterization result is introduced,
namely a characterization of operators with orbits from an Lp-space.

Theorem 3.3 (A, Theorem 3.5). Assume that:

• X = R or X = I,

• Σ = L(Ω), where Ω = Rr or Ω = Ir for some r ∈ N,

• I = N (Ω),

• φ : Ω × X ⊸ X is a random operator.

Fix p ∈ [1, +∞]. Then φ has a (Σ, I)-random k-orbit (ξi)k−1
i=0 ∈ Lp(Ω, Xk) if

and only if there is a function h ∈ Lp(Ω,R) and Ω has a φ, k-partition, such
that inf(xi)k−1

i=0 ∈Oφ,k,ij
(ω)

∥∥∥(xi)k−1
i=0

∥∥∥ ≤ h(ω) for each ω ∈ Ωij
, where j < l.
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3.2 Randomized Sharkovsky theorems
Randomizations of Sharkovsky-like results can be proven using the character-
izations from the previous section in combination with some generalizations
of the classical Sharkovsky Theorem. In papers A and B a few randomiza-
tions are presented, especially the following.

Theorem 3.4 (A, Theorem 4.2). Assume that:

• X = R or X = I,

• (Ω, Σ) is a measurable space,

• I is a proper σ-ideal on Ω,

• φ : Ω × X ⊸ X is a continuous random operator with compact and
connected values.

Then if φ has a random n-orbit, then it has a random k-orbit for each k ◁ n.

Theorem 3.5 (B, Theorem 4.1). Assume that:

• X = R or X = I,

• (Ω, Σ) is a measurable space and Σ is a Suslin family,

• I is a proper σ-ideal on Ω,

• φ : Ω×X ⊸ X is a l.s.c. random operator with compact and connected
values.

Then if φ has a random n-orbit, then it has a random k-orbit for each k ◁ n.

Theorem 3.6 (B, Theorem 4.3, Corollary 4.4). Assume that:

• X = R or X = I,

• (Ω, Σ) is a measurable space and Σ is a Suslin family and is nonatomic
with respect to I,

• I is a proper σ-ideal on Ω,

• φ : Ω × X ⊸ X is an u.s.c. random operator with compact and con-
nected values.
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Then if φ has a random n-orbit, then it has a random k-orbit for each k ◁ n
with at most one exception.

In particular, suppose that φ has a random n-orbit (n = 2mq, where q
is odd), and n is the maximal number in the Sharkovsky ordering with that
property. Then:

1. If q > 3, then φ has a random k-orbit for every k ◁ n, except possibly
for k = 2m+2.

2. If q = 3, then at least one of the following two cases occurs:

(i) φ has a random k-orbit for every k ◁ n, except possibly for k =
2m+2,

(ii) φ has a random k-orbit for every k ◁ n, except possibly for k =
2m+1.

3. If q = 1, then φ has a k-orbit for every k ◁ n.

The first one is a result on continuous operators, the second – on l.s.c.
operators, the third – on u.s.c. operators. The first is using Theorem 3.1, the
second and third – Theorem 3.2.

Although both the first and the second result are using the l.s.c. Shar-
kovsky theorem (Proposition 2.6), the first one is restricted to continuous
operators, because of restrictions in its corresponding characterization re-
sult.

The third result is using the u.s.c. Sharkovsky theorem (Proposition
2.7). Although the original “deterministic” theorem allows up to 2 exceptions
in Sharkovsky ordering, in the randomized version it can be limited to 1
exception, because the random orbits can more easily be composed to have
the wanted period by using different basic periods on different partitions of
Ω.

While results from paper B are more general than the one from paper
A with respect to continuity of the random operator, we gain more general
assumptions on measurable space (Ω, Σ) in paper A. The first and the second
result are generalizations of the Andres’s result from [1] (Theorem 1).

Using Theorem 3.3 we also arrive at a Sharkovsky randomization result
for orbits from an Lp-space.

Theorem 3.7 (A, Theorem 4.4). Assume that:

• X = R or X = I,

• Σ = L(Ω), where Ω = Rr or Ω = Ir for some r ∈ N,
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• I = N (Ω),

• f : Ω × X → X is a continuous random operator.

Fix p ∈ [1, +∞]. Then if f has a random n-orbit belonging to the space
Lp(Ω, Xn), then it has a random k-orbit belonging to the space Lp(Ω, Xk) for
each k ◁ n.

The randomized Sharkovsky theorems, when restricted to the case of
multifunctions with one-element values (i.e. functions), usually can be refor-
mulated to have a structure of the classical Sharkovsky Theorem, where the
space R is substituted with the space of measurable functions and a continu-
ous function with a continuous measurable operator. The following examples
are corollaries of Theorem 3.4 and Theorem 3.7, respectively.

Corollary 3.8 (A, Corollary 4.3). Assume that:

• X = R or X = I,

• (Ω, Σ) is a measurable space,

• I is a proper σ-ideal on Ω.

Let the function f : M → M be given by the formula f(ξ)(ω) = f(ω, ξ(ω))
for every ω ∈ Ω and for all [ξ] ∈ M, where f : Ω × X → X is a continuous
random operator. Then if f has an n-orbit, then it has a k-orbit for each
k ◁ n.

Corollary 3.9 (A, Corollary 4.5). Assume that:

• X = R or X = I,

• Σ = L(Ω), where Ω = Rr or Ω = Ir for some r ∈ N,

• I = N (Ω),

Fix p ∈ [1, +∞]. Let the function f : Lp(Ω, X) → Lp(Ω, X) be given by the
formula f(ξ)(ω) = f(ω, ξ(ω)) for every ω ∈ Ω and for each [ξ] ∈ Lp(Ω, X),
where f : Ω × X → X is a continuous random operator. Then if f has an
n-orbit, then it has a k-orbit for each k ◁ n.
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3.3 Random differential inclusions
Characterizations of random orbits can be a powerful tool even outside the
classical Sharkovsky theorem randomization results. As an example the ar-
ticle B presents their application in the random differential inclusions.

The article is using a differential inclusion in the form:

x′(ω, t) ∈ φ(ω, t, x(ω, t)), (Iφ)

where φ : Ω × [0, 1] × R ⊸ R is a random u-Carathéodory map on complete
measure space (Ω, Σ, µ) with proper σ-ideal I and σ-algebra of Lebesgue
measurable sets on R and [0, 1] with σ-ideal of null sets, i.e.:

• φ(·, ·, x) : Ω × [0, 1] ⊸ R is measurable for all x ∈ R,

• φ(ω, t, ·) : R ⊸ R is u.s.c. for almost all (ω, t) ∈ Ω × [0, 1],

• there exists a, b > 0 such that sup{|y| : y ∈ φ(ω, t, x)} ≤ a + b|x| for
almost all (ω, t) ∈ Ω × [0, 1] and all x ∈ R.

φ is extended to Ω×R×R by: φ(ω, t+k, x) = φ(ω, t, x) for ω ∈ Ω, t ∈ [0, 1],
k ∈ Z, and x ∈ R.

Function x : Ω×R → R is a random solution of (Iφ) if x(ω, ·) is absolutely
continuous for almost all ω ∈ Ω, x(·, t) is measurable for each t ∈ R, and the
condition (Iφ) is fulfilled (with differentiation over t) for almost all (ω, t) ∈
Ω×R. It is a random k-periodic subharmonic solution if x(ω, t) = x(ω, t+k)
for almost all (ω, t) ∈ Ω × R and there is no m ∈ N, m < k such that
x(ω, t) = x(ω, t + m) for almost all (ω, t) ∈ Ω × R.

For such inclusions the following theorem is formulated:

Theorem 3.10 (B, Theorem 5.6). If (Iφ) has a random n-periodic subhar-
monic solution for some n > 1, then it has random k-periodic subharmonic
solutions for any k ∈ N.

To leverage the characterization results the deterministic counterpart of
the equation is introduced, namely the family indexed by ω ∈ Ω:

x′(t) ∈ φ(ω, t, x(t)). (Iφω)

Function x : R → R is a solution of (Iφω) if it is absolutely continuous
and the condition (Iφω) is fulfilled for almost all t ∈ R. It is a k-periodic
subharmonic solution if x(t) = x(t + k) for almost all t ∈ R and there is no
m ∈ N, m < k such that x(t) = x(t + m) for almost all t ∈ R.
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With the given inclusion the Poincaré operator Pk : Ω × R × R ⊸ R
defined by:

Pk(ω, t0, x0) = {x(t0 + k) : x is a solution of (Iφω), x(t0) = x0}

is associated. The proof of the theorem is based on translating the hypothesis
and the conclusion into statements on that Poincaré operator and applying
the random operator characterization results from article B to it.

The results on inclusions even do not involve the Sharkovsky ordering –
existence of any nontrivial orbit is equivalent to existence of all possible pe-
riods of orbits – thus the characterization results can be successfully applied
outside of the context of that ordering.

4 Rings of Sharkovsky functions

4.1 Generated A-rings
The article C introduces the notion of an A-ring generated by a family R ⊆
RX , where X = R or X = I. The family

AR(R) =
⋂

{Q ⊆ RX : R ⊆ Q, Q is an A-ring}

is called an A-ring generated by a family R, and is the smallest (with respect
to relation ⊆) A-ring containing R. Thus the problem of the paper can be
expressed as finding AR({f}) ∩ C for f ∈ D.

The article tackles firstly with finding AR({f}) before looking into con-
tinuous functions in that family. This also gives some insight into the al-
gebraic properties of Darboux functions. The simplest case is when f is an
identity function. For identity on I the result follows directly from Stone-
Weierstrass Theorem, and for identity on R it is proven in C. Thus the results
are the following:

Proposition 4.1 (C, Corollary 4.5).

AR({idI}) = C

AR({idR}) = CP

When we take f as any Darboux function on R or I we arrive in article
C at the following representation of the generated A-ring:

Theorem 4.2 (C, Theorem 5.4).

• If f ∈ D, then AR({f}) = CP ◦ {f}.
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• If f ∈ D ∩ B, then AR({f}) = C ◦ {f}.

• For f ∈ II, if f ∈ D, then AR({f}) = C ◦ {f}.

As a consequence the A-ring generated by a Darboux function consists
of only Darboux functions (C, Corollary 5.5).

4.2 Continuous functions in generated A-rings
The set of preimages Pf of function f plays important role in finding the
continuous function in A-ring generated by f . Since Pf is a partition of the
domain, some considerations around partitions apply here. In particular we
make usage of relation ≺ between partitions and the closure of the preimage
set cl(Pf ). The proofs revolve around topological properties of Pf and cl(Pf ),
and the idea of separability of points by a function (which is just an ability
to find a function having a different values on those points). The separability
properties need a couple of non-trivial constructions to be performed to be
proven, mainly levaraging topology of the real line or interval. Finally, we
arrive at the following results:

Theorem 4.3 (C, Theorem 7.3). Assume that f ∈ D.

• If X = I, then

AR({f}) ∩ C = {g ∈ C : cl(Pf ) ≺ Pg}.

• If X = R and f(X) is closed, then

AR({f}) ∩ C = {g ∈ C : cl(Pf ) ≺ Pg, ∃h∈P |g| ≤ h ◦ f}.

The case when the base Darboux function has a real domain and not-
closed image, i.e. an interval (a, b), (a, b], or [a, b) for some a, b ∈ R, is still
open.

In the other cases we can answer the original Pawlak-Pawlak problem
stated in [11] (see Problem 2 there). Theorem 4.3 gives the characterization
of all continuous functions belonging to each A-ring containing f , where
f ∈ D, which is even a more general result than the original formulation of
the problem, where only S-functions (a subfamily of Darboux functions) were
considered. By solving the original problem we gain an insight to algebraic
properties of S-functions, a significant subfamily of Sharkovsky functions, i.e.
functions fulfilling the assertion of the classical Sharkovsky Theorem. With
being able to generalize the solution to all Darboux functions we can apply
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it to other subfamilies of Darboux functions which fulfill the assertion of
the theorem, e.g. functions with connected Gδ graph (it is known they are
Sharkovsky functions from [14]).

The case when the domain is a compact interval is the simpler one, the
continuous functions in the generated A-ring just need to fulfill natural condi-
tion on their preimage set, which cannot be more granular than the preimage
set of the base function (actually its closure, a consequence of continuity of
functions we are looking for).

In the real line domain case the continuous functions furthermore can-
not be too distant from the base function, which means they need to be
bounded by a polynomially bounded continuous function composed with the
base function. This is actually strongly connected with the results described
in the previous section, when the rings are represented through composition
and polynomial boundedness appears only in the real line case. Polynomial
boundedness naturally appears in the proofs as a result of the finite and al-
gebraic character of the operations in the A-ring definition, which cannot be
broken by closure through uniform convergence.
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a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 May 2010
Available online 24 July 2010
Submitted by M. Mathieu

Keywords:
Sharkovskiı̆ Theorem
Measurable multifunctions
Selection theorems
Continuous multifunctions
Measurable operators
Random operators
Measurable orbits
Random orbits
Spaces of measurable functions
Lp-spaces

We formulate a generalization of the so-called Random Sharkovskiı̆ Theorem from paper
by Jan Andres, which is the randomized version of the classical Sharkovskiı̆ Theorem. We
use the method of transformation to deterministic case involving the Kuratowski–Ryll-
Nardzewski selection theorem, which allows us to omit the assumption of completeness of
the incorporated measurable space. Moreover, we formulate an analogue of the Sharkovskiı̆
Theorem for spaces of measurable functions and for Lp-spaces.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Oleksandr Sharkovskiı̆ formulated his theorem classifying continuous real functions according to periods of periodic
points which they possess in the paper [12] in the year 1964 (translated into English in [13]). This classification is based on
the so-called “Sharkovskiı̆ ordering” on natural numbers defined as follows:

3 � 5 � 7 � 9 � . . .

2 · 3 � 2 · 5 � 2 · 7 � 2 · 9 � . . .

22 · 3 � 22 · 5 � 22 · 7 � 22 · 9 � . . .
...

. . . � 23 � 22 � 2 � 1

The theorem can be generalized in numerous directions. The deterministic generalizations refer to the assumptions about
i.a. function [15], space of points [11,8,14], or allow multifunctions instead of functions [3]. In this paper we state a random
generalization of the theorem. There are few generalizations of this kind: [4,9,2].

The idea of investigating the existence of random fixed points in a deterministic way comes from F.S. DeBlasi,
L. Górniewicz and G. Pianigiani (see [5, Chapter III.31]), and was developed in case of random orbits of a given period
by J. Andres (see [2]). Our main theorem (Theorem 4.2) is a generalization of Theorem 1 from [2], actually we omit the
assumption of measure space completeness in the random version of the Sharkovskiı̆ Theorem. We also state a version of
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the Random Sharkovskiı̆ Theorem for orbits belonging to an L p-space (Theorem 4.4). Moreover, we formulate an analogue
of the Sharkovskiı̆ Theorem for spaces of measurable functions (Corollary 4.3) and for L p-spaces (Corollary 4.5). To obtain
our results we use the method of transformation to deterministic case based on selection theorems for measurable mul-
tifunctions, but we incorporate the selection theorem from paper [10] by K. Kuratowski and C. Ryll-Nardzewski instead of
the theorem of J. von Neumann and R. Aumann used in [2]. This forces us to use some more sophisticated facts about
measurable multifunctions.

2. Preliminaries

By N, R, I we denote the set of natural numbers: 1,2,3, . . . , the set of real numbers, and the interval [0,1], respectively.
For a finite set A ⊂ N, the symbol LCM(A) denotes the lowest common multiple of elements of A. The pair (Ω,Σ) always
denotes a measurable space, i.e. a set Ω with a σ -algebra Σ , I always denotes a σ -ideal on a set Ω such that Ω /∈ I , and
the pair (X,d) always denotes a Polish space, i.e. complete separable metric space. We say that a measurable space (Ω,Σ)

is complete when there exists a complete measure on it. For Y ⊂ X by Y we mean the closure of Y in X . For X = Rk or
X = Ik , the symbol ‖ · ‖ denotes the Euclidean norm on X , and the symbol d denotes the Euclidean metric. For a closed set
B ⊂ X we use the standard notation: d(x, B) = inf{d(x, y): y ∈ B}.

For σ -algebras Σ1 and Σ2 by Σ1 ⊗ Σ2 we mean the product σ -algebra. The symbol B(X) denotes the σ -algebra of
Borel sets in X , and symbols L(Rk), L(Ik), N (Rk), and N (Ik) denote the σ -algebras of Lebesgue measurable sets and the
σ -ideals of Lebesgue measure zero sets in a given space, respectively.

Let ξ ∼ ζ hold for measurable ξ, ζ :Ω → X if and only if {ω ∈ Ω: ξ(ω) 	= ζ(ω)} ∈ I . We denote the set of equivalence
classes of this relation by:

M(Ω,Σ),I,(X,d) = {ξ :Ω → X: ξ is measurable}/∼.

We will write M instead of M(Ω,Σ),I,(X,d) when Ω , Σ , I , X , and d are clear from the context. When Ω = Rr or Ω = Ir ,
Σ =L(Ω), I =N (Ω), and X = Rk or X = Ik , we also use the standard notation:

Lp(Ω, X) =
{
ξ :Ω → X: ξ is measurable ∧

∫
Ω

∥∥ξ(ω)
∥∥p

dω < +∞
}/∼

for p ∈ [1,+∞) and

L+∞(Ω, X) = {ξ : Ω → X: ξ is measurable and bounded}/∼.

The symbol [ξ ] stands for the class of equivalence of ξ .
We naturally identify a relation ϕ ⊂ A × B with a function ϕ : A →P(B). Furthermore, if ϕ ⊂ (A × B)×C , i.e. ϕ : A × B →

P(C), then for any x ∈ A we define the relation ϕx = ϕ(x, ·). A multifunction ϕ : A � B is a relation with nonempty values,
i.e. ϕ : A → P(B) \ {∅}, we identify a function f : A → B with the multifunction with one-element values fulfilling the
condition ϕ(x) = { f (x)} for every x ∈ A.

By a superposition of a function f : B → C with a relation ϕ ⊂ A × B we mean the relation f ◦ ϕ ⊂ A × C defined
by f ◦ ϕ(a) = f (ϕ(a)) for a ∈ A. By a product of relations Fi ⊂ A × B for i ∈ I we mean the relation

∏
i∈I F i defined by

(
∏

i∈I F i)(a) = ∏
i∈I F i(a) for a ∈ A.

The notion of measurability is naturally expanded on relations. We denote by

ϕ−(B) = {
ω ∈ Ω: ϕ(ω) ∩ B 	= ∅}

the large preimage of the set B ⊂ X under the relation ϕ ⊂ Ω × X .

Definition 2.1. A relation ϕ ⊂ Ω × X is called measurable if ϕ−(F ) ∈ Σ for every closed F ⊂ X . It is called weakly measurable
if ϕ−(G) ∈ Σ for every open G ⊂ X .

The paper [6] contains a thorough analysis of the notion of a measurable relation. We shall state here a few facts
from this paper. Every measurable relation is weakly measurable (see Proposition 2.1). The product of at most countably
many weakly measurable relations is weakly measurable (see Proposition 2.3(ii)). For a weakly measurable multifunction ϕ :
X � R the function defined by f (x) = infϕ(x) for x ∈ X is measurable (see Theorem 5.8). The superposition of a continuous
function with a weakly measurable relation is weakly measurable (it is clear from the definition).

Another useful fact is a simple modification of Theorem 6.4 in [6] and its proof is analogical to the original proof.

Proposition 2.2. Assume that X is σ -compact, Y is a metric space, and f : Ω × X → Y is measurable with respect to σ -algebra
Σ ⊗ B(X) and such that fω is continuous for each ω ∈ Ω . Then for every closed set B ⊂ Y the relation F ⊂ Ω × X defined by
F (ω) = f −1

ω (B) is measurable.
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Proof. For n ∈ N put Un = {y ∈ Y : d(y, B) < 1
n }, Bn = {y ∈ Y : d(y, B) � 1

n } and define the relations Fn ⊂ Ω × X by Fn(ω) =
f −1
ω (Un). Clearly B = ⋂

n Un and B = ⋂
n Bn . Since Un is open for each n, the relation Fn is weakly measurable for each

n by [6, Theorem 6.2], and by [6, Proposition 2.6] so is the relation Fn , defined by Fn(ω) = Fn(ω). Since Fn(ω) ⊂ Fn(ω) ⊂
f −1
ω (Un) ⊂ f −1

ω (Bn) for all ω ∈ Ω , F = ⋂
n Fn , and therefore the relation F is measurable by [6, Corollary 4.2]. �

To formulate the selection theorems we use the standard notion of a selector of a multifunction.

Definition 2.3. We call a function f : Ω → X a selector of a multifunction ϕ : Ω � X and write f ⊂ ϕ if f (ω) ∈ ϕ(ω) for
each ω ∈ Ω .

We formulate the selection theorem of Kuratowski and Ryll-Nardzewski from [10] as follows:

Theorem 2.4 (Kuratowski and Ryll-Nardzewski). If a multifunction ϕ : Ω � X is weakly measurable and has closed values, then it
has a measurable selector f ⊂ ϕ .

A selection theorem concerning selectors from an L p-space follows strictly from Lemma 2.3.2 in [7]:

Theorem 2.5. Suppose that p ∈ [1,+∞], Ω = Rr or Ω = Ir , X = Rk or X = Ik. If a multifunction ϕ : Ω � X is such that ϕ ∈
L(Ω) ⊗ B(X) and there is h ∈ L p(Ω,R) such that infx∈ϕ(ω) ‖x‖ � h(ω) for each ω ∈ Ω , then ϕ has a measurable selector f ⊂ ϕ
such that f ∈ L p(Ω, X).

We recall that the notion of continuity can be expanded on relations in the following manner:

Definition 2.6. Let Y be a metric space. A relation ϕ ⊂ X × Y is called upper semicontinuous (u.s.c.) if ϕ−(F ) is closed for
every closed F ⊂ X . It is called lower semicontinuous (l.s.c.) if ϕ−(G) is open for every open G ⊂ X . If ϕ is both l.s.c. and
u.s.c., then it is called continuous.

In case of relations with one-element values (i.e. functions) the notions of a lower and upper continuity coincide. An
extended analysis of the notion of continuity of relations can be found in Chapter 1 of the book [7]. We shall state here
some useful facts from this book. The product of l.s.c. multifunctions is l.s.c. (see Proposition 2.57) and the product of u.s.c.
multifunctions with compact values is u.s.c. (see Proposition 2.58). For a continuous multifunction ϕ : X � X with compact
values and a continuous function u : X × X → R the function defined by v(x) = inf{u(x, y): y ∈ ϕ(x)} for x ∈ X is continuous.
The latter is a trivial consequence of Berge’s Maximum Theorem, since inf{u(x, y): y ∈ ϕ(x)} = − sup{−u(x, y): y ∈ ϕ(x)}
(see Theorem 3.4 in [7, Chapter 1]).

We introduce the notion of a measurable operator as a generalization of the notion of a random operator.

Definition 2.7. A multifunction ϕ : Ω × X � X with closed values is called a measurable operator if it is weakly measurable
with respect to σ -algebra Σ ⊗B(X). If (Ω,Σ) is complete, then ϕ is called a random operator. A measurable operator ϕ is
called u.s.c. if ϕω is u.s.c. for each ω ∈ Ω , it is called l.s.c. if ϕω is l.s.c. for each ω ∈ Ω , and it is called continuous if ϕω is
continuous for each ω ∈ Ω .

In description of discrete dynamics of multifunctions it is convenient to use the notion of a periodic orbit instead of the
notion of a periodic point.

Definition 2.8. Assume that ϕ : A � A. A sequence (xi)
k
i=1 ∈ Ak is called a k-orbit of the multifunction ϕ , if xi+1 ∈ ϕ(xi) for

i � k − 1, x1 ∈ ϕ(xk), and there is no m < k such that m | k and x(s−1)m+i = xi for i � m and s � k
m .

A theorem analogical to the classical Sharkovskiı̆ Theorem holds for the l.s.c. multifunctions. Here we state it in a form
which is a special case of Theorem 6 in [3].

Theorem 2.9. Suppose that X = R or X = I, and ϕ : X � X is a l.s.c. multifunction with compact connected values. Then if ϕ has an
n-orbit, then it has a k-orbit for each k � n.

We shall also need the following theorem which is a simple modification of the classical Sharkovskiı̆ Theorem (see
Remark 2.1.3 in [1]).

Theorem 2.10. Assume that X = R or X = I, f : X → X is a continuous function, k,n ∈ N, and k � n. If (xi)
n
i=1 is an n-orbit of f , then

f has a k-orbit (x′
i)

k
i=1 ⊂ [mini�n xi,maxi�n xi].
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We introduce a notion of a measurable orbit, which is a generalization of a notion of a random orbit for measurable
operators.

Definition 2.11. Let ϕ : Ω × X � X be a measurable operator. A sequence of measurable functions (ξi)
k
i=1 where ξi : Ω → X

for i � k is called a (Σ,I)-measurable k-orbit of the operator ϕ , if

Ω \ {
ω ∈ Ω: ∀i�k−1ξi+1(ω) ∈ ϕ

(
ω,ξi(ω)

) ∧ ξ1(ω) ∈ ϕ
(
ω,ξk(ω)

)} ∈ I,

and there is no m < k such that m | k and

Ω \ {
ω ∈ Ω: ∀s� k

m
∀i�mξ(s−1)m+i(ω) = ξi(ω)

} ∈ I.

We will write shortly “measurable k-orbit” when Σ and I are fixed. If ϕ is a random operator and I is the σ -ideal of null
sets, then (ξi)

k
i=1 is called a random k-orbit.

3. Transformation to the deterministic case

The method of transformation to the deterministic case is based on theorems characterizing measurable operators
possesing measurable orbits of a given period. An example of such a theorem in case of random operators is given in
Proposition 2 in [2]. We give here a theorem for measurable operators mapping into a σ -compact space X .

Firstly, we introduce some useful notation. For a measurable operator ϕ : Ω × X � X , k,m ∈ N such that m | k, S = {p <

m: p | m}, and s = |S| we define the function dϕ,k,m : Ω × Xk → [0,+∞) as follows:

dϕ,k,m
(
ω, (xi)

k
i=1

) = d
(
(xi)

k
i=1,ϕ(ω, xm) × ϕ(ω, x1) × · · · × ϕ(ω, xm−1)

({x1} × {x2} × · · · × {xm}) k
m −1)

,

and the function Dϕ,k,m : Ω × Xk → [0,+∞)1+s as follows:

Dϕ,k,m = (
dϕ,k,m, (dϕ,k,p)p∈S

);
moreover for ω ∈ Ω we denote dϕ,k,m,ω = dϕ,k,m(ω, ·) and Dϕ,k,m,ω = Dϕ,k,m(ω, ·) = (dϕ,k,m,ω, (dϕ,k,p,ω)p∈S ). Furthermore,
we define the relation Oϕ,k,m ⊂ Ω × Xk as follows:

Oϕ,k,m(ω) =
{
(xi)

k
i=1 ∈ Xk: (xi)

m
i=1 is an m-orbit of ϕω ∧ ∀ s� k

m
i�m

x(s−1)m+i = xi

}
.

Now we state some simple lemmas about those functions and relations.

Lemma 3.1. Let ϕ : Ω × X � X be a measurable operator and let k,m ∈ N be such that m | k. Then

Oϕ,k,m(ω) =
{
(xi)

k
i=1 ∈ Xk: dϕ,k,m,ω

(
(xi)

k
i=1

) = 0 ∧ ∀ p<m
p|m

dϕ,k,p,ω

(
(xi)

k
i=1

)
> 0

}
for all ω ∈ Ω .

Proof. For every p � m, such that p | m, dϕ,k,p,ω((xi)
k
i=1) = 0 if and only if xi+1 ∈ ϕ(ω, xi) for i � p − 1, x1 ∈ ϕ(ω, xp), and

x(s−1)p+i = xi for i � p and s � k
p , since the set ϕ(ω, xp) × ϕ(ω, x1) × · · · × ϕ(ω, xp−1) × ({x1} × {x2} × · · · × {xp}) k

p −1 is
closed. The lemma is an immediate consequence of this remark. �
Lemma 3.2. Let ϕ : Ω × X � X be a measurable operator. Then for every k,m ∈ N such that m | k the function dϕ,k,m (and as
a result Dϕ,k,m) is measurable with respect to σ -algebra Σ ⊗ B(Xk). If ϕ is a continuous measurable operator with compact values,
then dϕ,k,m,ω (and as a result Dϕ,k,m,ω) is continuous for each ω ∈ Ω .

Proof. Measurability. For each i � m the relation ϕ i defined by ϕ i(ω, (xi)
k
i=1) = ϕ(ω, xi) is clearly weakly measurable with

respect to σ -algebra Σ ⊗ B(Xk), since ϕ is weakly measurable. The relation P i defined by P i(ω, (xi)
k
i=1) = {xi} is weakly

measurable for each i � k. Therefore the relation ϕk,m = ∏k
i=1 P i ×ϕm ×ϕ1 × · · · ×ϕm−1 × (

∏m
i=1 P i)

k
m −1 is weakly measur-

able. Since dϕ,k,m(ω, (xi)
k
i=1) = inf d ◦ ϕk,m(ω, (xi)

k
i=1) and d is continuous, dϕ,k,m is measurable.

Continuity. For each i � m the relation ϕ i
ω is clearly l.s.c., since ϕω is l.s.c. Also P i

ω is l.s.c., and therefore the relation

ϕω,k,m = ϕm
ω ×ϕ1

ω ×· · ·×ϕm−1
ω × (

∏m
i=1 P i

ω)
k
m −1 is l.s.c. By an analogical reasoning ϕω,k,m is also u.s.c. Thus it is continuous.

Since dϕ,k,m,ω((xi)
k
i=1) = inf{d((xi)

k
i=1, (yi)

k
i=1): (yi)

k
i=1 ∈ ϕω,k,m((xi)

k
i=1)}, dϕ,k,m,ω is continuous. �

We shall need also the following lemma:
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Lemma 3.3. Suppose that ϕ : Ω × X � X is a measurable operator, and k ∈ N. If ϕ has a measurable k-orbit ξ = (ξi)
k
i=1 , then the

following splitting of Ω exists:

Ω = Ω0 ∪
l⋃

j=1

Ωi j ,

where:

• Ωm ∈ Σ for m = 0, i1, i2, . . . , il ,
• Ω0 ∈ I and Ωi j /∈ I for j � l,
• LCM{i j: j � l} = k,
• ϕω has an i j-orbit for each ω ∈ Ωi j , where j � l,
• ξ(ω) ∈Oϕ,k,i j (ω) for each ω ∈ Ωi j , where j � l.

Proof. The proof is a simple modification of the “Only if” part of the proof of Proposition 2 in [2]. The only difference is that
we use measurable orbits instead of random orbits and we write Ωm ∈ I and Ωm /∈ I instead of μ(Ωm) = 0 and μ(Ωm) > 0
respectively. (In fact μ(Ωm) = 0 is equivalent to Ωm ∈N (Rk) or Ωm ∈N (Ik).) �

Now we are ready to formulate the characterization.

Theorem 3.4. Suppose that X is σ -compact, ϕ : Ω × X � X is a continuous measurable operator with compact values, and k ∈ N.
ϕ has a measurable k-orbit if and only if the following splitting of Ω exists:

Ω = Ω0 ∪
l⋃

j=1

Ωi j ,

where:

• Ωm ∈ Σ for m = 0, i1, i2, . . . , il ,
• Ω0 ∈ I and Ωi j /∈ I for j � l,
• LCM{i j: j � l} = k,
• ϕω has an i j-orbit for each ω ∈ Ωi j , where j � l.

Proof. By Lemma 3.3 it is enough to show the implication to the left. Fix j � l and t ∈ N, and denote m = i j , S = {p < m:
p | m}, and s = |S|. We define the relation Oϕ,k,m,t : Ω � Xk as follows:

Oϕ,k,m,t(ω) = D−1
ϕ,k,m,ω

(
{0} ×

[
1

t
,+∞

)s)
.

Since the set {0} × [ 1
t ,+∞)s is closed in the metric space Y = [0,+∞)1+s , and by virtue of Lemma 3.2 and Proposition 2.2,

the relation Oϕ,k,m,t is measurable.
By Lemma 3.1 Oϕ,k,m = ⋃

t Oϕ,k,m,t . Since ϕω has m-orbit for each ω ∈ Ωm , Oϕ,k,m(ω) is nonempty for each ω ∈ Ωm .
Hence for each ω ∈ Ωm there is t such that Oϕ,k,m,t(ω) is nonempty. Let tω be the least such t . We denote Ωm,t = {ω ∈
Ωm: tω = t}. The family {Ωm,t : t ∈ N} is disjoint and Ωm = ⋃

t Ωm,t . Moreover,

Ωm,t = {
ω ∈ Ωm: Oϕ,k,m,t(ω) 	= ∅ ∧ ∀t′<tOϕ,k,m,t′(ω) = ∅}

= O−
ϕ,k,m,t

(
Xk) \

⋃
t′<t

O−
ϕ,k,m,t′

(
Xk) ∈ Σ.

We define the multifunction Oϕ,k : Ω � Xk as follows:

Oϕ,k(ω) =
{

Xk for ω ∈ Ω0,

Oϕ,k,i j,t(ω) for ω ∈ Ωi j ,t for some j � l and t ∈ N.

The relation Oϕ,k is clearly measurable, and consequently also weakly measurable. Furthermore, it has closed values. Hence
by virtue of Theorem 2.4 it has a measurable selector (ξi)

k
i=1 : Ω → Xk .

For every j � l and ω ∈ Ωi j there is t ∈ N such that ω ∈ Ωi j ,t , and consequently (ξi(ω))k
i=1 ∈Oϕ,k,i j (ω). Hence (ξi(ω))

i j

i=1

is an i j-orbit of ϕω . Since Ω0 ∈ I , Ωi j /∈ I for j � l, and LCM{i j: j � l} = k, (ξi)
k
i=1 is a measurable k-orbit of the opera-

tor ϕ . �
We may also formulate an analogous theorem for orbits from an L p-space.
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Theorem 3.5. Suppose that Ω = Rr or Ω = Ir for some r ∈ N, Σ = L(Ω), I = N (Ω), X = R or X = I, ϕ : Ω × X � X is a mea-
surable operator, k ∈ N, and p ∈ [1,+∞]. ϕ has a measurable k-orbit ξ = (ξi)

k
i=1 ∈ L p(Ω, Xk) if and only of there is a function

h ∈ L p(Ω,R) and the following splitting of Ω:

Ω = Ω0 ∪
l⋃

j=1

Ωi j ,

where:

• Ωm ∈ Σ for m = 0, i1, i2, . . . , il ,
• Ω0 ∈ I and Ωi j /∈ I for j � l,
• LCM{i j: j � l} = k,
• ϕω has an i j -orbit for each ω ∈ Ωi j , where j � l,

• inf
(xi)

k
i=1∈Oϕ,k,i j

(ω)
‖(xi)

k
i=1‖ � h(ω) for each ω ∈ Ωi j , where j � l.

Proof. “⇐”. This is a slight modification of the “If” part of the proof of [2, Proposition 2]. It is clear that Oϕ,k,i j (ω) 	= ∅ for

each ω ∈ Ωi j . We define the multifunction Oϕ,k : Ω � Xk as follows:

Oϕ,k(ω) =
{

Xk for ω ∈ Ω0,

Oϕ,k,i j (ω) for ω ∈ Ωi j for some j � l.

Fix j � l and denote m = i j , S = {t < m: t | m}, and s = |S|. Since Oϕ,k,m = D−1
ϕ,k,m({0} × (0,+∞)s), by virtue of Lemma 3.2

Oϕ,k,m ∈L(Ω)⊗B(Xk). Moreover Ω0 × Xk ∈L(Ω)⊗B(Xk), and consequently Oϕ,k ∈L(Ω)⊗B(Xk). Hence by Theorem 2.5
the multifunction Oϕ,k has a measurable selector (ξi)

k
i=1 : Ω → Xk such that (ξi)

k
i=1 ∈ L p(Ω, Xk).

For every j � l and ω ∈ Ωi j , (ξi(ω))k
i=1 ∈Oϕ,k,i j (ω). Hence (ξi(ω))

i j

i=1 is an i j -orbit of ϕω . Since Ω0 ∈ I , Ωi j /∈ I for j � l,

and LCM{i j: j � l} = k, (ξi)
k
i=1 is a measurable k-orbit of the operator ϕ .

“⇒”. By Lemma 3.3 it is enough to show that there is a function h ∈ L p(Ω,R) such that inf
(xi)

k
i=1∈Oϕ,k,i j

(ω)
‖(xi)

k
i=1‖ �

h(ω) for each ω ∈ Ωi j .

We define the function h by equality h(ω) = ‖ξ(ω)‖. ξ ∈ L p(Ω, Xk), thus h ∈ L p(Ω,R). Fix j � l and ω ∈ Ωi j . Then

inf
(xi)

k
i=1∈Oϕ,k,i j

(ω)
‖(xi)

k
i=1‖ � h(ω), since ξ(ω) ∈Oϕ,k,i j (ω). �

4. The Sharkovskiı̆ Theorem

In this section we give the main results of the paper. We shall use the theorems from the previous section and a version
of the Sharkovskiı̆ Theorem stated in form of Theorem 2.9.

Before we state the main theorems, we state a simple lemma.

Lemma 4.1. If LCM{i j: j � l} = n and k � n, then there is j′ � l such that k � i j′ .

Proof. If n = 2q for some q ∈ N, then there is j′ � l such that i j′ = n, thus k � i j′ .
If n = p · 2q for some q ∈ N and odd p > 1, then for each j � l there is q j � q and odd p j � p such that i j = p j · 2q j .

Clearly there is j′ � l such that p j′ > 1. Then k � n � i j′ . �
We state here the theorem which we may call the Measurable Sharkovskiı̆ Theorem for continuous measurable oper-

ators. It is a generalization of the Random Sharkovskiı̆ Theorem (Theorem 1 from [2]). Here we omit the assumption of
completeness of the measurable space (Ω,Σ), which is present in Andres’s version.

Theorem 4.2 (Measurable Sharkovskiı̆ Theorem). Assume that (Ω,Σ) is a measurable space, I is a σ -ideal on Ω such that Ω /∈
I , X = R or X = I, and ϕ : Ω × X � X is a continuous measurable operator with compact and connected values. Then if ϕ has
a measurable n-orbit, then it has a measurable k-orbit for each k � n.

Proof. The proof is analogical to that of Theorem 1 in [2], but we paraphrase it for completeness. Suppose that ϕ has
a measurable n-orbit. There is a splitting of Ω as in Theorem 3.4. Fix k � n. By Lemma 4.1 there is j′ � l such that k � i j′ .
Moreover, 1 � i j for each j � l and j 	= j′ . Since ϕω has an i j-orbit for each ω ∈ Ωi j and every j � l, by Theorem 2.9 ϕω

has a k-orbit for each ω ∈ Ωi j′ and a 1-orbit for each ω ∈ Ωi j and every j � l and j 	= j′ . Put Ω ′
k = Ωi j′ , Ω ′

1 = ⋃{Ωi j : j �
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l ∧ j 	= j′}, and Ω ′
0 = Ω0. As a result we get the following splitting of Ω: Ω = Ω ′

0 ∪ Ω ′
k if l = 1, or Ω = Ω ′

0 ∪ Ω ′
k ∪ Ω ′

1 if
l > 1. By Theorem 3.4 ϕ has a measurable k-orbit. �

The Measurable Sharkovskiı̆ Theorem in the case of multifunctions with one-element values (i.e. functions) can be refor-
mulated so that it will have a structure analogical to the structure of the classical Sharkovskiı̆ Theorem where in place of the
space R or I we put a space of measurable functions and in place of continuous function we put a continuous measurable
operator.

Corollary 4.3. Assume that (Ω,Σ) is a measurable space, I is a σ -ideal on Ω such that Ω /∈ I , and X = R or X = I. Let the function
f : M → M be given by the formula f(ξ)(ω) = f (ω, ξ(ω)) for every ω ∈ Ω and for all [ξ ] ∈ M, where f : Ω × X → X is a continuous
measurable operator. Then if f has an n-orbit, then it has a k-orbit for each k � n.

We also state a version of the Random Sharkovskiı̆ Theorem for orbits from an L p-space.

Theorem 4.4. Assume that Ω = Rr or Ω = Ir for some r ∈ N, Σ =L(Ω), I =N (Ω), X = R or X = I, f : Ω× X → X is a continuous
measurable operator, and p ∈ [1,+∞]. Then if f has a measurable n-orbit belonging to the space L p(Ω, Xn), then it has a measurable
k-orbit belonging to the space L p(Ω, Xk) for each k � n.

Proof. Suppose that f has a measurable n-orbit belonging to the space L p(Ω, Xn). There is a function h ∈ L p(Ω,R) and
a splitting of Ω as in Theorem 3.5. Fix k � n. By Lemma 4.1 there is j′ � l such that k � i j′ . We get a splitting of Ω as in the
proof of Theorem 4.2 Ω = Ω ′

0 ∪ Ω ′
k if l = 1, or Ω = Ω ′

0 ∪ Ω ′
k ∪ Ω ′

1 if l > 1.

Let h′ : Ω → R be such that h′(ω) = √
k · h(ω) for each ω ∈ Ω . Then h′ ∈ L p(Ω,R). Fix ω ∈ Ω ′

k . Then ω ∈ Ωi j′ . Hence

inf(xi)
n
i=1∈O f ,n,i j′ (ω) ‖(xi)

n
i=1‖ � h(ω). Fix ε > 0. Let (x′

i)
n
i=1 ∈O f ,n,i j′ (ω) be such that ‖(x′

i)
n
i=1‖ < h(ω)+ ε√

k
. Then (x′

i)
i j′
i=1 is an

i j′ -orbit of fω . Since k� i j′ , by Theorem 2.10 there is a k-orbit (x′′
i )k

i=1 of fω such that (x′′
i )k

i=1 ⊂ [mini�i j′ x′
i,maxi�i j′ x′

i]. Then

(x′′
i )k

i=1 ∈ O f ,k,k(ω). Hence inf
(xi)

k
i=1∈O f ,k,k(ω)

‖(xi)
k
i=1‖ � ‖(x′′

i )k
i=1‖ �

√
k · maxi�i j′ ‖x′

i‖ �
√

k · ‖(x′
i)

n
i=1‖ <

√
k · h(ω) + ε, and

consequently inf
(xi)

k
i=1∈O f ,k,k(ω)

‖(xi)
k
i=1‖ �

√
k · h(ω) = h′(ω). Analogically for ω ∈ Ω ′

1 we have inf
(xi)

k
i=1∈O f ,k,1(ω)

‖(xi)
k
i=1‖ �

h′(ω).
By Theorem 3.5 f has a measurable k-orbit belonging to the space L p(Ω, Xk). �
This version can be also reformulated so that it will have a form of Sharkovskiı̆ Theorem for L p-spaces.

Corollary 4.5. Assume that Ω = Rr or Ω = Ir for some r ∈ N, Σ = L(Ω), I = N (Ω), X = R or X = I, and p ∈ [1,+∞]. Let the
function f : L p(Ω, X) → L p(Ω, X) be given by the formula f(ξ)(ω) = f (ω, ξ(ω)) for every ω ∈ Ω and for each [ξ ] ∈ L p(Ω, X),
where f : Ω × X → X is a continuous measurable operator. Then if f has an n-orbit, then has a k-orbit for each k � n.
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RANDOMIZED SHARKOVSKY-TYPE RESULTS

AND RANDOM SUBHARMONIC SOLUTIONS

OF DIFFERENTIAL INCLUSIONS
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(Communicated by Yingfei Yi)

Abstract. Two multivalued deterministic versions of the celebrated Sharkov-
sky cycle coexistence theorem are randomized in terms of very general random
periodic orbits. It is also shown that nontrivial subharmonics of scalar random
upper-Carathéodory differential inclusions imply the coexistence of random
subharmonics of all orders.

1. Introduction

The aim of the present paper is to randomize: (i) two multivalued deterministic
Sharkovsky-type theorems (cf. [20]) obtained by the authors in [3, 7] and (ii) the
deterministic theorem for scalar differential equations and inclusions, saying that
the existence of a pure (nontrivial) subharmonic solution implies the coexistence of
subharmonic solutions of all orders, whose various proofs can be found in [2, 4, 18,
19, 21].

The first goal is related to the existence of random periodic orbits rather than
random periodic points (cf. [9,10]) and there are quite rare results in this field (see
[1,6,8,16,23]). The main technique, Proposition 3.2 below, will be developed for a
very general class of multivalued random operators in a Suslin space. In this way,
all our earlier results in [1, 6, 8] will be generalized both as a method in Section 3
as well as its application to Sharkovsky-type theorems in Section 4.

As concerns the second goal, the forcing property for the subharmonic solutions
of random differential inclusions was already studied by the authors in [4] and [6],
but the proofs were either only indicated in [4] or incomplete in [6]. Here, full proofs
of the related Theorem 5.6 below will be given in Section 5. Although random
periodic solutions of differential equations have been investigated as random fixed
points of the associated random operators (see e.g. [11, 12, 22]), as far as we know,
there are no further results for random subharmonic solutions considered as random
periodic orbits of the associated random operators.

Received by the editors May 7, 2015.
2010 Mathematics Subject Classification. Primary 37H10, 47H40; Secondary 37E05, 37E15,

47H04.
Key words and phrases. Randomization, Sharkovsky’s Theorem, multivalued maps, selection

theorems, Suslin space, Suslin family, random operators, random orbits, random differential in-
clusions, subharmonic solutions, Poincaré operator.
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Although the proofs of the statements might seem to be rather technical (some
preliminaries are therefore recalled in Section 2), the main randomized theorems
are formulated in an extremely simple and transparent way. Moreover, since the
developed randomization technique is quite universal and powerful, it can be easily
applied elsewhere.

2. Preliminaries

By N, R, I, we denote the set of natural numbers, the set of real numbers, and
the interval [0, 1], respectively. For finite I ⊂ N, the symbol LCM I denotes the
lowest common multiple of elements of I. We denote D(n) = {p < n : p|n} and
d(n) = |D(n)|, for n ∈ N. We also fix the following notation: (Ω, Σ) is a measurable
space, I is a proper σ-ideal on Ω (i.e. Ω /∈ I), and μ (if it exists) is a complete
σ-finite nontrivial measure on (Ω, Σ). We say that Σ is complete if such a measure
exists. We say that Σ is nonatomic with respect to I if for every A ∈ Σ such that
A /∈ I, there is a splitting A = B ∪ C such that B, C ∈ Σ and B, C /∈ I.

We recall the notion of a Suslin family. Let S be the set of all finite se-
quences of natural numbers. For a family {As : s ∈ S} we put A{As : s ∈ S} =⋃

σ∈NN
⋂∞

n=0 Aσ�n. We say that a family F is a Suslin family if AF = F , where
AF = {A{As : s ∈ S} : As ∈ F for s ∈ S}.

By (X, d), we always understand a metric space. A metric space which is a
continuous image of a Polish space is called a Suslin space. Each Suslin space is
separable. For Y ⊂ X, by Y we mean the closure of Y in X. For X = Rk or
X = Ik, the symbol d denotes the Euclidean metric. For a closed set B ⊂ X, we
use the standard notation: d(x, B) = inf{d(x, y) : y ∈ B}.

For σ-algebras Σ1 and Σ2, by Σ1 ⊗ Σ2 we mean their product σ-algebra. The
symbol B(X) denotes the σ-algebra of Borel sets in X. If X1, X2 are separable,
then B(X1 × X2) = B(X1) ⊗ B(X2). For a complete measure space (Ω, Σ, μ), we
denote N (Ω) = {A ⊂ Ω: μ(A) = 0}. For Ω = Rk or Ω = Ik, the symbol L(Ω)
denotes the σ-algebra of Lebesgue measurable sets on Ω.

We naturally identify a relation ϕ ⊂ A × B with a map ϕ : A → P(B), where
P(B) stands for all subsets of B. If we want to emphasize the properties of ϕ as a
subset of A × B, we use the notion of a graph Γϕ, where Γϕ = {(a, b) ∈ A × B : b ∈
ϕ(a)}. Furthermore, if Γϕ ⊂ (A × B) × C, i.e. ϕ : A × B → P(C), then for any
x ∈ A, we define the relation ϕx = ϕ(x, ·). A multivalued map ϕ : A � B is
a relation with nonempty values, i.e., ϕ : A → P(B) \ {∅}. For single valued maps,
we identify a map f : A → B with the multivalued map with one-element values
fulfilling the condition ϕ(x) = {f(x)}, for every x ∈ A.

By a superposition of a map f : B → C with a relation ϕ ⊂ A × B, we mean
the relation f ◦ ϕ ⊂ A × C, defined by f ◦ ϕ(a) = f(ϕ(a)), for a ∈ A. By a prod-
uct of relations Fi ⊂ A × B for i ∈ I, we mean the relation

∏
i∈I Fi defined by

(
∏

i∈I Fi)(a) =
∏

i∈I Fi(a), for a ∈ A.
We denote by

ϕ−(B) = {ω ∈ Ω: ϕ(ω) ∩ B 
= ∅}
the large preimage of the set B ⊂ X under the relation ϕ ⊂ Ω × X. A relation
ϕ ⊂ Ω × X is called measurable if ϕ−(F ) ∈ Σ, for every closed F ⊂ X. It is
called weakly measurable if ϕ−(G) ∈ Σ, for every open G ⊂ X. The paper [14]
contains a thorough analysis of the notion of a measurable relation. We shall state
several facts from that paper here. Every measurable relation is weakly measurable
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(see [14, Proposition 2.1]). If Σ is complete and X is a Suslin space, the notions
of measurability, weak measurability and a measurable graph coincide for a rela-
tion with closed values (see [14, Theorem 3.5]). The countable sum of measurable
relations is measurable (see [14, Proposition 2.3(i)]). If a codomain is separable,
then the product of at most countably many weakly measurable relations is weakly
measurable (see [14, Proposition 2.3(ii)]). For a weakly measurable multivalued
map ϕ : Ω � R, the map defined by f(ω) = inf ϕ(ω), for ω ∈ Ω, is measurable
(see [14, Theorem 5.8]). The superposition of a continuous map with a weakly
measurable relation is weakly measurable (which is clear from the definition).

Assume that X and Y are metric spaces. A relation ϕ ⊂ X × Y is called upper
semicontinuous (u.s.c.) if ϕ−(F ) is closed in X, for every closed F ⊂ Y . It is called
lower semicontinuous (l.s.c.) if ϕ−(G) is open in X, for every open G ⊂ Y . If ϕ is
both l.s.c. and u.s.c., then it is called continuous.

We call a map f : Ω → X a selection of a multivalued map ϕ : Ω � X and
write f ⊂ ϕ if f(ω) ∈ ϕ(ω), for each ω ∈ Ω. We shall use a generalization of
the Aumann-von Neumann selection theorem which is a simple consequence of
Corollary to Theorem 7 in the article [17] by Leese. We state it as follows:

Lemma 2.1. Assume that Σ is a Suslin family and X is a Suslin space. Let
ϕ : Ω � X have a measurable graph, i.e. Γϕ ∈ Σ⊗B(X). Then it has a measurable
selection f ⊂ ϕ.

Another fact is a simple consequence of [17, Lemma 3].

Lemma 2.2. Assume that Σ is a Suslin family and X is a Suslin space. Then
every ϕ : Ω � X with a measurable graph is measurable.

A sequence (xi)
k−1
i=0 ∈ Ak is called a k-orbit of the multivalued map ϕ : A � A

if xi+1 ∈ ϕ(xi), for i < k − 1, x0 ∈ ϕ(xk−1), and there is no m < k such that m|k
and xsm+i = xi, for i < m and s < k

m .
We recall the Sharkovsky ordering of natural numbers [20]:

3 � 5 � 7 � 9 � . . .
2 · 3 � 2 · 5 � 2 · 7 � 2 · 9 � . . .

22 · 3 � 22 · 5 � 22 · 7 � 22 · 9 � . . .
...

. . . � 23 � 22 � 2 � 1.

We state here a simple fact about this ordering (cf. [8, Lemma 4.1]):

Lemma 2.3. If LCM{ij : j < l} = n and k � n, then there is j′ < l such that
k � ij′ .

We also recall here some generalizations of Sharkovsky’s Theorem which are
simple corollaries of Theorem 6 from [3] and Theorem 2 form [7], respectively.

Proposition 2.4. Let ϕ : R � R be an l.s.c. multivalued map with compact and
convex values. If ϕ has an n-orbit, then ϕ has a k-orbit, for every k � n.

Proposition 2.5. Let ϕ : R � R be a u.s.c. multivalued map with compact and
convex values. Suppose that ϕ has an n-orbit (n = 2mq, where q is odd), and n is
the maximal number in the Sharkovsky ordering with that property.

(1) If q > 3, then ϕ has a k-orbit for every k � n, except possibly for k = 2m+2.
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(2) If q = 3, then at least one of the following two cases occurs:
(i) ϕ has a k-orbit for every k � n, except possibly for k = 2m+1 · 3, 2m+2,
(ii) ϕ has a k-orbit for every k � n, except possibly for k = 2m+1.

(3) If q = 1, then ϕ has a k-orbit for every k � n.

We recall here the definition of a random operator after [1].

Definition 2.6. Let ϕ : Ω×X � X be a multivalued map with closed values. We
say that ϕ is a random operator if it is weakly measurable with respect to σ-algebra
Σ ⊗ B(X). We call it an l.s.c. (u.s.c.) random operator if ϕω, i.e., ϕ(ω, ·), is l.s.c.
(u.s.c., respectively), for almost all ω ∈ Ω.

Remark 2.7. For the definition of a random operator, it is usually still required that
ϕ be compact-valued (cf. [13]), and ϕ(ω, ·) : X � X to be u.s.c. (cf. again [13]) or
Hausdorff-continuous (cf. [15, Chapter 5.6]), for almost all ω ∈ Ω. We omit these
additional assumptions and introduce here a more general approach.

For a random operator ϕ : Ω × X � X and k, m ∈ N, we define the function
dϕ,k,m : Ω × Xk → [0, +∞) as follows (cf. [1]):

dϕ,k,m

(
ω, (xi)

k−1
i=0

)
= d

(
(xi)

k−1
i=0 , ϕ(ω, xm−1) × ϕ(ω, x0) × . . . × ϕ(ω, xm−2)

× ({x0} × {x1} × . . . × {xm−1})
k
m −1

)
,

and the function Dϕ,k,m : Ω × Xk → [0, +∞)1+d(m) as follows:

Dϕ,k,m =
(
dϕ,k,m, (dϕ,k,p)p∈D(m)

)
.

Moreover, for ω ∈ Ω, we denote dϕ,k,m,ω = dϕ,k,m(ω, ·) and

Dϕ,k,m,ω = Dϕ,k,m(ω, ·) =
(
dϕ,k,m,ω, (dϕ,k,p,ω)p∈D(m)

)
.

We also define the relation Oϕ,k,m ⊂ Ω × Xk as follows:

Oϕ,k,m(ω) =

{
(xi)

k−1
i=0 ∈ Xk : (xi)

m−1
i=0 is an m-orbit of ϕω ∧ ∀s< k

m
i<m

xsm+i = xi

}
,

and set Δϕ,k = {ω ∈ Ω: ϕω has a k-orbit}.
The following simple facts from the paper (cf. [8, Lemmas 3.1 and 3.2]) will be

useful.

Lemma 2.8. Assume that X is separable. Let ϕ : Ω × X � X be a random
operator. Then, for every k, m ∈ N such that m|k, the function dϕ,k,m (and as
a result Dϕ,k,m) is measurable with respect to σ-algebra Σ ⊗ B(Xk).

Lemma 2.9. Let ϕ : Ω × X � X be a random operator and let k, m ∈ N be such
that m|k. Then

Oϕ,k,m(ω)=

{
(xi)

k−1
i=0 ∈ Xk : dϕ,k,m,ω

(
(xi)

k−1
i=0

)
=0 ∧ ∀p<m

p|m
dϕ,k,p,ω

(
(xi)

k−1
i=0

)
> 0

}
,

for all ω ∈ Ω.

Remark 2.10. Equivalently we can write:

Oϕ,k,m(ω) = D−1
ϕ,k,m,ω

(
{0} × (0, +∞)d(m)

)
,

or simply:

ΓOϕ,k,m
= D−1

ϕ,k,m

(
{0} × (0, +∞)d(m)

)
.
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As a result:
ΓOϕ,k,m

∈ Σ ⊗ B(Xk).

Thus, if Σ is a Suslin family and X is a Suslin space, then, by Lemma 2.2, Oϕ,k,m is
measurable, and its domain O−

ϕ,k,m(Rk) ∈ Σ. In particular, Δϕ,k = O−
ϕ,k,k(Rk) ∈ Σ.

Now, we can state the crucial definition of a random orbit.

Definition 2.11. Let ϕ : Ω × X � X be a random operator. A sequence of
measurable functions (ξi)

k−1
i=0 , where ξi : Ω → X, for i = 0, . . . , k − 1, is called a

random k-orbit of the operator ϕ if

(a) Ω \ {ω ∈ Ω: ∀i<k−1 ξi+1(ω) ∈ ϕ(ω, ξi(ω)) ∧ ξ0(ω) ∈ ϕ(ω, ξk−1(ω))} ∈ I,
(b) there is no m < k such that m|k and

Ω \ {ω ∈ Ω: ∀s< k
m

∀i<m ξsm+i(ω) = ξi(ω)} ∈ I.

Remark 2.12. If we assume that (Ω, Σ, μ) is a complete measure space, I = N (Ω),
and (X, d) is a Polish space, then the definition of a random orbit coincides with
the definition given in [1], i.e.:

Let ϕ : Ω × X � X be a random operator. A sequence of measurable functions
(ξi)

k−1
i=0 , where ξi : Ω → X, for i = 0, . . . , k − 1, is called a random k-orbit of the

operator ϕ if

(a) ξi+1(ω) ∈ ϕ(ω, ξi(ω)), for i = 0, . . . , k − 2 and ξ0(ω) ∈ ϕ(ω, ξk−1(ω)), for
almost all ω ∈ Ω,

(b) the sequence (ξi)
k−1
i=0 is not formed by going p-times around a shorter sub-

sequence of m consecutive elements (i.e. it is not a concatenation), where
mp = k (for almost all ω ∈ Ω).

Equivalently:

(a) μ (Ω \ {ω ∈ Ω: ∀i<k−1 ξi+1(ω) ∈ ϕ(ω, ξi(ω)) ∧ ξ0(ω) ∈ ϕ(ω, ξk−1(ω))}) = 0,
(b) there is no m < k such that m|k and

μ
(
Ω \ {ω ∈ Ω: ∀s< k

m
∀i<m ξsm+i(ω) = ξi(ω)}

)
= 0.

3. Characterization of operators with random orbits

Lemma 3.1. Assume that X is separable. Let ϕ : Ω × X � X be a random
operator. If ϕ has a random k-orbit, then there exists a partition of Ω such that

Ω = Ω0 ∪
l−1⋃

j=0

Ωij
,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• Ω0 ∈ I and Ωij

/∈ I for j = 0, . . . , l − 1,
• LCM{ij : j = 0, . . . , l − 1} = k,
• ϕω has an ij-orbit for each ω ∈ Ωij

for j < l.

Proof. Let:
Ωm = {ω ∈ Ω: (ξi(ω))k−1

i=0 ∈ Oϕ,k,m(ω)},

for any m|k. Let {ij : j < l} = {m|k : Ωm /∈ I}, and:

Ω0 = Ω \
l−1⋃

j=0

Ωij
.
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The sets Ωm for m = 0, i0, i1, . . . , il−1 are disjoint.
For all m = i0, i1, . . . , il−1, we have:

Ωm =

{
ω ∈ Ω: dϕ,k,m

(
ω, (ξi(ω))k−1

i=0

)
= 0 ∧ ∀p<m

p|m
dϕ,k,p

(
ω, (ξi(ω))k−1

i=0

)
> 0

}
.

Let ξ′ =
(
idΩ, (ξi)

k−1
i=0

)
. Then:

Ωm = (Dϕ,k,m ◦ ξ′)
−1

(
{0} × (0, +∞)d(m)

)
.

The function Dϕ,k,m is measurable with respect to σ-algebra Σ ⊗ B(Xk). Hence,

D−1
ϕ,k,m({0} × (0, +∞)d(m)) ∈ Σ ⊗ B(Xk). Since X is separable, the σ-algebra

Σ ⊗ B(Xk) is generated by the sets M × ∏k−1
i=0 Bi, where M ∈ Σ and Bi ∈ B(X)

for i < k. Fix such a set M × ∏k−1
i=0 Bi. Then:

ξ′−1

(
M ×

k−1∏

i=0

Bi

)
= M ∩

k−1⋂

i=0

ξ−1
i (Bi) ∈ Σ,

because functions ξi, for i < k, are measurable. Thus, ξ′−1(B) ∈ Σ, for any
B ∈ Σ ⊗ B(Xk), and subsequently:

Ωm = ξ′−1
(
D−1

ϕ,k,m({0} × (0, +∞)d(m))
)

∈ Σ,

for any m = i0, i1, . . . , il−1. Therefore, Ω0 ∈ Σ. Clearly, Ωij
/∈ I, for any j < l. By

the condition (a), we have Ω \ ⋃
m|k Ωm ∈ I, and since

Ω0 =

⎛
⎝Ω \

⋃

m|k
Ωm

⎞
⎠ ∪

⋃
{Ωm : Ωm ∈ I ∧ m|k},

we get Ω0 ∈ I.
Suppose that k′ = LCM{ij : j < l} < k. Obviously, k′|k. Then ξsm+i(ω) =

ξi(ω), for any s < k
k′ and i < k′, and ω ∈ Ω \ Ω0, which contradicts the condition

(b). Hence, LCM{ij : j < l} = k. �

Proposition 3.2. Assume that Σ is a Suslin family and X is a Suslin space. Let
ϕ : Ω×X � X be a random operator. Then ϕ has a random k-orbit iff there exists
a partition of Ω such that

Ω = Ω0 ∪
l−1⋃

j=0

Ωij
,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• Ω0 ∈ I and Ωij

/∈ I for j = 0, . . . , l − 1,
• LCM{ij : j = 0, . . . , l − 1} = k,
• ϕω has an ij-orbit for each ω ∈ Ωij

for j < l.

Proof. By Lemma 3.1, it is enough to show the implication to the left. We define
the multivalued map Oϕ,k : Ω → Xk as follows:

Oϕ,k(ω) =

{
Xk for ω ∈ Ω0,
Oϕ,k,ij

(ω) for ω ∈ Ωij
for j < l and t ∈ N.
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By Remark 2.10, we get ΓOϕ,k
∈ Σ⊗B(Xk). By Lemma 2.1, we receive a measurable

function ξ : Ω → Xk such that ξ ⊂ Oϕ,k.

The sequence (ξi)
k−1
i=0 is a random k-orbit of ϕ. To see this, first observe that each

ξi is measurable, because ξ is measurable and B(X)k = B(Xk). For each ω ∈ Ωij
,

where j < l, we have ξi+1(ω) ∈ ϕ(ω, ξi(ω)), for i < k−1, and ξ0(ω) ∈ ϕ(ω, ξk−1(ω)).
Thus, the condition (a) is fulfilled. Suppose that there is m < k such that m|k and

Ω \ {ω ∈ Ω: ∀s< k
m

∀i<m ξsm+i(ω) = ξi(ω)} ∈ I.

Fix any j < l. Then Ωij
∩ {ω ∈ Ω: ∀s< k

m
∀i<m ξsm+i(ω) = ξi(ω)} 
= ∅, because

Ωij
/∈ I. Thus, ij |m, and LCM{ij : j < l} ≤ m < k, a contradiction. Consequently,

the condition (b) is fulfilled. �

Remark 3.3. The above proposition is a generalization of Proposition 2 in [1].

4. Randomized Sharkovsky-type results

Now we can state two randomized versions of the Sharkovsky Theorem, whose
proofs are based on the above Proposition 3.2.

Theorem 4.1. Assume that Σ is a Suslin family, I is a proper σ-ideal, and ϕ : Ω×
R � R is an l.s.c. random operator with compact and connected values. If ϕ has
a random n-orbit, then it has a random k-orbit, for each k � n.

Proof. Suppose that ϕ has a random n-orbit. There is a splitting of Ω as in Propo-
sition 3.2. Fix k � n. By Lemma 2.3, there is j′ < l such that k � ij′ . Moreover,
1�ij for each j < l and j 
= j′. Since ϕω has an ij-orbit, for each ω ∈ Ωij

and every
j < l, by Proposition 2.4, ϕω has a k-orbit, for each ω ∈ Ωij′ and a 1-orbit, for each

ω ∈ Ωij
and every j < l and j 
= j′. Put Ω′

k = Ωij′ , Ω′
1 =

⋃{Ωij
: j ≤ l ∧ j 
= j′},

and Ω′
0 = Ω0. As a consequence, we get the following splitting of Ω: Ω = Ω′

0 ∪Ω′
k if

l = 1, or Ω = Ω′
0 ∪Ω′

k ∪Ω′
1 if l > 1. By Proposition 3.2, ϕ has a random k-orbit. �

As a special single-valued case of Theorem 4.1, we obtain the following random-
ization of the classical Sharkovsky theorem in [20].

Corollary 4.2. Assume that Σ is a Suslin family, I is a proper σ-ideal, and f : Ω×
R → R is a continuous random operator. If f has a random n-orbit, then it has a
random k-orbit, for each k � n.

Theorem 4.3. Assume that Σ is a Suslin family which is nonatomic with respect
to a proper σ-ideal I, and ϕ : Ω × R � R is a u.s.c. random operator with compact
and connected values. Suppose that ϕ has a random n-orbit (n = 2mq, where q is
odd), and n is the maximal number in the Sharkovsky ordering with that property.

(1) If q > 3, then ϕ has a random k-orbit for every k � n, except possibly for
k = 2m+2.

(2) If q = 3, then at least one of the following two cases occurs:
(i) ϕ has a random k-orbit for every k � n, except possibly for k = 2m+2,
(ii) ϕ has a random k-orbit for every k � n, except possibly for k = 2m+1.

(3) If q = 1, then ϕ has a k-orbit for every k � n.

Proof. There is a splitting of Ω as in Proposition 3.2.
Recall that Δϕ,k ∈ Σ, for any k.
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First, fix k � n, k 
= n. Suppose that Δϕ,k /∈ I. Then we can take Ω′
0 = Ω0,

Ω′
k = Δϕ,k \ Ω0, and Ω′

1 = Ω \ (Ω′
k ∪ Ω′

0), and by Proposition 3.2, we get a random
k-orbit for ϕ which contradicts the maximality of n. Thus, Δϕ,k ∈ I.

Let Ω′′
0 =

⋃
k�n Δϕ,k ∪ Ω0. Then Ω′′

0 ∈ Σ and Ω′′
0 ∈ I. Moreover, ϕω has no

k-orbit with k � n and k 
= n, for every ω ∈ Ω \ Ω′′
0 . Fix j = 0, . . . , l − 1. Since

Ωij
\Ω′′

0 
= ∅, ij �n. Furthermore, ij |n. Hence, ij = n or ij = 2mj (where mj ≤ m),
and there is j′ < l such that ij′ = n. Let Ω′′

n = Ωn \Ω′′
0 . Thus, Ω′′

n ∈ Σ, Ω′′
n /∈ I, and

for every ω ∈ Ω′′
n, ϕω has n-orbit, and n is the maximal number in the Sharkovsky

ordering with that property.
Suppose that q > 3. Fix k � n, k 
= 2m+2. By Proposition 2.5, for every ω ∈ Ωn,

ϕω has a k-orbit. Now, take Ω′
k = Ω′′

n, Ω′
0 = Ω′′

0 , Ω′
1 = Ω \ (Ω′

k ∪ Ω′
0). Then by

Proposition 3.2, ϕ has a random k-orbit.
Suppose that q = 3. For k � n, k 
= 2m+1 · 3, k 
= 2m+2, k 
= 2m+1, we

proceed analogously to the previous paragraph. By Proposition 2.5, Ω′′
n ⊂ Δϕ,2m+1∪(

Δϕ,2m+1·3 ∩ Δϕ,2m+2

)
. Then Δϕ,2m+1 ∩Ω′′

n /∈ I or
(
Δϕ,2m+1·3 ∩ Δϕ,2m+2

)
∩Ω′′

n /∈ I.

Suppose that Δϕ,2m+1 ∩ Ω′′
n /∈ I. Let k = 2m+1. Now, take Ω′

0 = Ω′′
0 , Ω′

k =(
Δϕ,2m+1 ∩ Ω′′

n

)
\ Ω′

0, Ω′
1 = Ω \ (Ω′

k ∪ Ω′
0). Then, by Proposition 3.2, ϕ has a

random k-orbit. Let k = 2m+1 · 3. For every ω ∈ Ω′′
n, ϕω has an n-orbit, i.e.,

2m·3 -orbit. There is a splitting Δ2m+1∩Ω′′
n =Ω′∪Ω′′ such that Ω′, Ω′′ ∈Σ, Ω′, Ω′′ /∈I.

Take Ω′
0 = Ω0, Ω′

2m+1 = Ω′, Ω′
2m·3 = Ω′′, and Ω′

1 = Ω \ (Ω′
2m+1 ∪ Ω′

2m·3 ∪ Ω′
0). Since

LCM{2m+1, 2m · 3, 1} = 2m+1 · 3 = k, by Proposition 3.2, ϕ has a random k-orbit.
Suppose that

(
Δϕ,2m+1·3 ∩ Δϕ,2m+2

)
∩ Ω′′

n /∈ I. Then Δϕ,2m+1·3 ∩ Ω′′
n /∈ I, and

Δϕ,2m+2 ∩ Ω′′
n /∈ I. For k = 2m+1 · 3 and k = 2m+2, we proceed quite analogously

as for k = 2m+1 in the previous paragraph.
The case when q = 1 is analogous to the case, when q > 3. �

Corollary 4.4. Assume that Σ is a Suslin family which is nonatomic with respect
to a proper σ-ideal I, and ϕ : Ω× R � R is a u.s.c. random operator with compact
and connected values. If ϕ has a random n-orbit, then it has a random k-orbit for
each k � n with at most one exception.

Remark 4.5. Observe that in the case (2)(i), unlike in the deterministic Proposition
2.5, we have a larger area for manipulation in the randomized Theorem 4.3. We
can namely divide Ω into two parts (by nonatomicity) and take the period 2m+1

on one side and 2m · 3 on the other one. Thus, the period 2m+1 · 3 occurs by
their combination via Proposition 3.2, and subsequently 2m+1 · 3 is no longer an
exception. In particular, the maximal number of exceptional cases reduces to one,
as stated in Corollary 4.4.

5. Subharmonics of random differential inclusions

Assume that (Ω, Σ, μ) is a complete measure space and I is a proper σ-ideal
on Ω. On R and [0, 1], we use the σ-algebra of Lebesgue measurable sets and the
σ-ideal of null sets. Assume that ϕ : Ω× [0, 1]×R � R is a random u-Carathéodory
map, i.e.:

• ϕ(·, ·, x) : Ω × [0, 1] � R is measurable, for all x ∈ R,
• ϕ(ω, t, ·) : R � R is u.s.c., for almost all (ω, t) ∈ Ω × [0, 1],
• there exists a, b > 0 such that sup{|y| : y ∈ ϕ(ω, t, x)} ≤ a+ b|x|, for almost

all (ω, t) ∈ Ω × [0, 1] and all x ∈ R.
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We extend ϕ to Ω × R × R in the following manner: ϕ(ω, t + k, x) = ϕ(ω, t, x), for
ω ∈ Ω, t ∈ [0, 1], k ∈ Z, and x ∈ R. Let ϕω(t, x) = ϕ(ω, t, x). We shall consider the
random differential inclusion:

(Iϕ) x′(ω, t) ∈ ϕ(ω, t, x(ω, t)) [≡ ϕ(ω, t + 1, x(ω, t))]

and a one-parameter family of deterministic differential inclusions:

(Iϕω
) x′(t) ∈ ϕω(t, x(t)) [≡ ϕω(t + 1, x(t))] .

We say that x : Ω × R → R is a random solution of (Iϕ) if x(ω, ·) is absolutely
continuous, for almost all ω ∈ Ω, x(·, t) is measurable, for each t ∈ R, and the
condition (Iϕ) is fulfilled (where the differentiation is over t), for almost all (ω, t) ∈
Ω × R. For k ∈ N, we say that a solution is a random k-periodic subharmonic
solution if x(ω, t) = x(ω, t+k), for almost all (ω, t) ∈ Ω×R and there is no m ∈ N,
m < k such that x(ω, t) = x(ω, t + m), for almost all (ω, t) ∈ Ω × R.

We say that x : R → R is a solution of (Iϕω
) if, for a fixed ω ∈ Ω, it is absolutely

continuous and the condition (Iϕω
) is fulfilled, for almost all t ∈ R. For k ∈ N,

we say that a solution is a k-periodic subharmonic solution if x(t) = x(t + k), for
almost all t ∈ R, and there is no m ∈ N, m < k such that x(t) = x(t + m), for
almost all t ∈ R. For k = 1, we also speak about (random) harmonic solutions.
Thus, for k > 1, we can speak about pure or nontrivial (random) subharmonics.

We define the (random, cf. [6, Proposition 4.3]) Poincaré operator Pk : Ω × R ×
R � R associated with (Iϕ) as follows:

Pk(ω, t0, x0) = {x(t0 + k) : x is a solution of (Iϕω
), x(t0) = x0}.

It is known that Pk = P k
1 . For more details and properties of the random Poincaré

operators, see [5, Chapter III,4,E] and [6]. We shall also use the following notation:
Pk,ω,t0(x0) = Pk(ω, t0, x0) and Pk,t0(ω, x0) = Pk(ω, t0, x0).

We can now draw a diagram of implications between certain sentences. In that
diagram, we assume that n, k > 1. By “∃⋃m

i Ωi = Ω ∀ωΦ”, we mean that there
exists a partition of Ω such that

Ω = Ω0 ∪
l−1⋃

j=0

Ωij
,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• μ(Ω0) = 0 and μ(Ωij

) > 0 for j = 0, . . . , l − 1,
• LCM{ij : j = 0, . . . , l − 1} = m,
• for i = ij and for all ω ∈ Ωi, Φ.

The implications in the diagram are proved or cited below. Theorem 2 from [2]
will be stated here in the form of the following proposition.

Proposition 5.1. Let ϕ : R � R be a multivalued mapping with nonempty con-
nected values whose margins, i.e., ϕ∗(x) = sup{y : y ∈ ϕ(x)} and ϕ∗(x) =
inf{y : y ∈ ϕ(x)}, are nondecreasing. If ϕ has an n-orbit with n > 1, then it
also has a k-orbit, for every k ∈ N.

Remark 5.2. We know (see [2] and [4]) that the Poincaré operators associated
with (Iϕω

) are u.s.c. maps with compact, connected values and their margins are
nondecreasing. In particular, they satisfy the assumptions of Proposition 5.1.
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∃⋃n
i Ωi = Ω

∀ω∃ deterministic
i-periodic solution

∃ random
n-periodic solution

∃t0∃
⋃n

i Ωi = Ω
∀ω∃ deterministic

i-orbit for t0

∃t0∃ random
n-orbit for t0

∃t0∃
⋃k

i Ωi = Ω
∀ω∃ deterministic

i-orbit for t0

∃t0∃ random
k-orbit for t0

∃⋃k
i Ωi = Ω

∀ω∃ deterministic
i-periodic solution

∃ random
k-periodic solution

Prop. 5.3

Prop. 3.2

Lemma 3.1

Prop. 3.2

Lemma 3.1

Prop. 5.3

Lemma 5.4

Prop. 5.1 Prop. 5.1

Lemma 5.4

Prop. 5.5

Prop. 5.5

Figure 1. Diagram of implications among various sentences about
the given inclusion (Iϕ)

Proposition 5.3. If the inclusion (Iϕ) has a random n-periodic subharmonic so-
lution (where n ∈ N, n > 1), then there is a partition of Ω such that

Ω = Ω0 ∪
l−1⋃

j=0

Ωij
,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• μ(Ω0) = 0 and μ(Ωij

) > 0 for j < l,
• LCM{ij : j < l} = n,
• (Iϕω

) has an ij-periodic solution for each ω ∈ Ωij
, j < l.

Proof. Let x be a random n-periodic subharmonic solution of (Iϕ). Let

Ωi = {ω ∈ Ω: xω is i-periodic subharmonic solution of (Iϕω
)},
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for i|n, i ∈ N. Then

Ωi = {ω ∈ Ω: ∀tx(ω, t) = x(ω, t + i)} \
⋃

j|n
j<i

{ω ∈ Ω: ∀tx(ω, t) = x(ω, t + j)}

= {ω ∈ Ω: ∀q∈Qx(ω, q) = x(ω, q + i)} \
⋃

j|n
j<i

{ω ∈ Ω: ∀q∈Qx(ω, q) = x(ω, q + j)}

=
⋂

q∈Q
{ω ∈ Ω: x(ω, q) = x(ω, q + i)} \

⋃

j|n
j<i

⋂

q∈Q
{ω ∈ Ω: x(ω, q) = x(ω, q + j)}.

Hence, Ωi ∈ Σ, for any i|n, i ∈ N. Furthermore, μ(Ω \ ⋃
i|n Ωi) = 0. Let {ij : j <

l} = {i|n : μ(Ωi) > 0} and Ω0 = Ω \ ⋃
j<l Ωij

. Clearly, Ω0 ∈ Σ and μ(Ω0) = 0. At

the same time, LCM{ij : j < l} = n, because otherwise LCM{ij : j < l} = k < n,
and for almost all ω ∈ Ω, xω has some period i|k, by which x has some period i|k,
a contradiction. �

Lemma 5.4. If there exists a partition of Ω such that

Ω = Ω0 ∪
l−1⋃

j=0

Ωij
,

where:

• Ωm ∈ Σ for m = 0, i0, i1, . . . , il−1,
• μ(Ω0) = 0 and μ(Ωij

) > 0 for j < l,
• LCM{ij : j < l} = n,
• (Iϕω

) has an ij-periodic solution for each ω ∈ Ωij
, j < l,

then there is t0 ∈ [0, n) and a partition of Ω such that

Ω = Ω′
0 ∪ Ω′

1 ∪ Ω′
n,

where:

• Ω′
m ∈ Σ for m = 0, 1, n,

• μ(Ω′
0) = 0 and μ(Ω′

n) > 0,
• P1,ω,t0 has an n-orbit for each ω ∈ Ω′

n.

Proof. Since n > 1, there is j0 < l such that ij0 > 1. Fix ω ∈ Ωji0
. (Iϕω

) has a

ji0-periodic solution xω : R → R. The set Aω = {t : xω(t) 
= xω(t + 1)} is open and

nonempty, because otherwise n = 1. Take qω ∈ Q ∩ Aω. Then (xω(qω + s))i0−1
s=0

is an orbit of P1,ω,qω
or a concatenation of identical orbits of period larger than 1.

Thus, P1,ω,qω
has an l-orbit for some l > 1. Let

Ω′′
q = {ω ∈ Ω: P1,ω,q has an l-orbit for some l > 1} ,

for q ∈ Q ∩ [0, n).

Ω′′
q =

∞⋃

p=2

O−
P1,q,p,p(R

n).

The relation OP1,q,p,p is measurable. Hence, Ω′′
q ∈ Σ. Since

⋃
q∈Q∩[0,n) Ω′′

q ⊃ Ωij′ ,

there is q0 ∈ Q∩[0, n) such that μ(Ω′′
q0

) > 0. Now, take t0 = q0, Ω′
0 = Ω0, Ω′

n = Ω′′
q0

,
Ω′

1 = Ω \ (Ω′
0 ∪ Ω′

n). Then P1,ω,t0 has an n-orbit, for each ω ∈ Ω′
n, by Proposition

5.1. �
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In Proposition 5.6 in [4], we can find the proof of the following fact.

Proposition 5.5. (Iϕ) has a random n-periodic subharmonic solution, provided
P1,t0 has a random n-orbit, for some t0 ∈ [0, 1].

As a result of commutativity of the diagram, we can state the following main
theorem of this section.

Theorem 5.6. If (Iϕ) has a random n-periodic subharmonic solution, for some
n > 1, then it has random k-periodic subharmonic solutions, for all k ∈ N.

Remark 5.7. Although the diagram in Figure 1 does not explicitly contain all im-
plications indicated there by the arrows, it is completely commutative. In other
words, the missing arrows can be completed.
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theorem holds with at most two exceptions, J. Fixed Point Theory Appl. 2 (2007), no. 1,
153–170, DOI 10.1007/s11784-007-0029-2. MR2336505 (2008j:37076)
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CONTINUOUS FUNCTIONS IN RINGS
GENERATED BY A SINGLE DARBOUX

FUNCTION

Abstract

The problem of characterizing continuous functions belonging to each
A-ring containing a fixed Darboux function is fully solved for a compact
interval domain and solved with some minor exception for a real line
domain. Many properties of generated A-rings and their continuous
functions are stated.

1 Introduction

Continuous functions are widely researched in the context of dynamical sys-
tems (see [1]). The Sharkovsky Theorem on the coexistence of periodical
orbits of continuous functions (see [17]) is the fundamental result of the dis-
crete dynamics. It has many generalizations (e.g. [11], [16], [4], [2], [6], [3]).
The Darboux-like functions as a superset of continuous functions which still
preserve many interesting properties of continuous functions are the natural
candidate to consider in generalizing the discrete-dynamics results (see e.g.
[18], [8]). On the other hand we can equip the sets of functions with algebraic
structures (see [9] and its citations). Algebraic considerations can also expose
some properties of Darboux-like functions (see e.g. [7], [10], [12], [14]).

An example of Darboux-like functions which can be considered in algebraic
structures and have some interesting dynamics are the first return limiting
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notions functions. In [13] authors consider the relationship between special
kind of them, called S-functions, and Sharkovsky Theorem. In particular
they state a theorem that every S-function is a Sharkovsky function ([13,
Th. 3.3]). Moreover, they prove some facts about special kind of rings of S-
function in this context, but also formulate some problems. We shall discuss
one of them, namely: Characterize continuous functions belonging to each A-
ring of S-functions containing some f ∈ S (see [13, Problem 2]). Actually, we
shall consider its generalization to all Darboux functions.

After some preliminaries we consider what are the generated A-rings in
general. We also reformulate the considered problem in terms of A-rings gen-
erated by a single function. We generalize the problem for a Darboux function
instead of S-function. We state the problem both for functions with domain
and codomain which is a compact interval and for the real line case. After-
wards we discuss the properties of A-rings generated by identity and by any
single Darboux function. Then we can look into the continuous functions in
those rings. In the last section we state the main results of the paper, namely
the solution of the problem. The solution is full in case of compact interval
domain of the function. In case of real line domain we state the solution only
for function with image which is a closed interval (in particular the real line),
thus leaving the remaining cases of open interval and one-side-open interval
as an open problem.

2 Preliminaries

By N, R, R, I we denote the set of natural numbers, the set of real numbers,
the set R ∪ {−∞,+∞}, and the closed unit interval in R, respectively. By
ω1 we denote the first uncountable ordinal number. For A ⊆ R, by cl(A) we
denote a closure of set A. We use the following notation:

{0, 1}<ω = {s : {1, . . . , n} → {0, 1} : n ∈ N},
{0, 1}<n = {s : {1, . . . , k} → {0, 1} : k < n}

for n ∈ N. For s : {1, . . . , n} → {0, 1} we define len(s) = n.

We consider functions f : X → R, where X is R or I (or equivalently any
other compact non-degenerated interval). The family of all such functions
we denote by RX . Let C (X), P(X), C(X), B(X), D(X), B1(X) denote its
subfamilies of all constant functions, all polynomials, all continuous functions,
all bounded functions, all Darboux functions, and all Baire class one functions,
respectively. Let DB1(X) = D(X)∩B1(X). For families of functionsR1 ⊆ RR,
R2 ⊆ RX we shall denote R1 ◦R2 = {f ◦g : f ∈ R1, g ∈ R2}. By idX : X → R
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we denote identity function; i.e. id(x) = x. We shall omit X if it is clear from
the context.

In [13] authors consider the family of all S(R)-functions (a kind of a return
limiting notion). By Theorem 2.2 and Proposition 2.3 from [13] it is clear
that:

C(R) ⊆ DB1(R) ⊆ S(R) ⊆ D(R).

We omit the definition of a S-function here, since we will generalize the men-
tioned problem to all Darboux functions.

We also adapt the following definitions from the mentioned paper. Let
R denote some family of functions from X to R. We consider the following
conditions:

1. C ⊆ R,

2. if f, g ∈ R, then f + g, fg ∈ R,

3. if (fn)n ⊆ R and fn ⇒ f , then f ∈ R,

4. if f, g ∈ R, then max(f, g),min(f, g) ∈ R,

R is called an A-ring (Aumann ring, notion inspired by [5]) if it fulfills con-
ditions (1) – (4).

Remark. Assume condition (1). Condition (2) is equivalent to R being a ring
and to R being an algebra. Condition (3) is equivalent to R being uniformly
closed. In that contex an A-ring is a uniformly closed algebra closed under
max and min operations.

The original problem from [13] is to characterize continuous functions be-
longing to each A-ring of S(R)-functions containing some fixed f ∈ S(R). We
shall reformulate the problem and generalize it to Darboux functions in the
following section.

3 Generated A-Rings

Consider the following fact:

Proposition 3.1. Let X be R or a compact interval. Let R ⊆ RX . The
family

AR(R) =
⋂
{Q ⊆ RX : R ⊆ Q,Q is an A-ring of functions}

is the smallest A-ring containing R.
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We shall call the set from the proposition the A-ring generated by R. For
every f ∈ S(R), we have AR({f}) ⊆ S(R) by [13, Theorem 3.3]. Now the
problem can be reformulated and generalized in the following form:

Problem 1. Let X be R or I and f ∈ D. Find AR({f}) ∩ C.
Since C is an A-ring, it is clear that AR(C) = C and AR(P) = AR({id}) ⊆

C. Let R ⊆ RX . Denote

cl(R) = {f : fn ⇒ f for some (fn)n∈N ⊆ R},
A(R) = {f + g, fg,min(f, g),max(f, g) : f, g ∈ R} ∪ cl(R),

A0(R) = R∪ C ,

Aα+1(R) = A(Aα(R)) for ordinal α ∈ ω1,

Aα(R) =
⋃

β<α

Aβ(R) for limit ordinal α ∈ ω1 ∪ {ω1}.

We formulate a useful characterization of generated A-rings.

Lemma 3.2. Let R ⊆ RX , then

AR(R) = Aω1(R).

Proof. Firstly, Aω1(R) is an A-ring containing R. Clearly R,C ⊆ A0(R) ⊆
Aω1

(R) and the sequence (Aα(R))α is increasing. To see conditions (2) and
(4), take f, g ∈ Aω1

(R). There are α, β such that f ∈ Aα(R) and g ∈ Aβ(R),
thus f, g ∈ Amax(α,β)(R), and f+g, fg,max(f, g),min(f, g) ∈ Amax(α,β)+1(R).
To see condition (3), take (fn)n ⊆ Aω1

(R) with fn ⇒ f . Since there is no
countable set of ordinals cofinal with ω1, there is some α < ω1 such that
{fn}n ⊆ Aα(R). Hence f ∈ Aα+1(R).

Secondly, Aω1
(R) is the smallest such A-ring. Take an A-ring R′ ⊇ R

Certainly, R′ ⊇ A1(R) by conditions (1) – (4) for R′. Analogically, when
Aα(R) ⊆ R′, then Aα+1(R) ⊆ R′. Thus, inductively we can see that
Aω1(R) ⊆ R′.

4 A-Rings Generated by Identity

By the Stone-Weierstrass Theorem it is clear that AR({idI}) = C(I). Let us
find the set AR({idR}). We will consider all polynomially bounded continuous
functions; i.e.

CP = {f ∈ C(R) : ∃P∈P(R)|f | ≤ P}.
Proposition 4.1. CP is an A-ring.
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Proof. Clearly C (R) ⊆ CP . Take f, g such that |f | < P1 and |g| < P2 for
P1, P2 ∈ P(R). Then

|f + g| ≤ |f |+ |g| < P1 + P2,

|fg| = |f ||g| < P1P2,

|min(f, g)|, |max(f, g)| ≤ max(|f |, |g|) < P1 + P2.

Take fn ⇒ f with (fn)n ⊆ CP . There is n such that |fn − f | ≤ 1, and there
is P ∈ P such that |fn| < P . Thus we have |f | ≤ |fn|+ 1 ≤ P + 1.

Let X be R or a compact interval. For h : X → R and a, b ∈ R such that
(a, b) ⊆ X define ha,b : R→ R as

ha,b(x) =





h(a) for x ≤ a
h(x) for x ∈ (a, b)
h(b) for x ≥ b

.

Lemma 4.2. If h ∈ AR({idX}), then ha,b ∈ AR({idR}).

Proof. It is sufficient to prove that the family {h : ha,b ∈ AR({idR})} is anA-
ring containing idX . Firstly, for c ∈ C (X) we have ca,b ∈ C (R) ⊆ AR({idR})
and (idX)a,b = max(min(idR, b), a) ∈ AR({idR}). Secondly, for fa,b, ga,b ∈
AR({idR}), we have (f+g)a,b = fa,b+ga,b, (fg)a,b = fa,bga,b, (min(f, g))a,b =
min(fa,b, ga,b), (max(f, g))a,b = max(fa,b, ga,b), and all of those functions be-
long to AR({idR}). Finally, for fn ⇒ f , where (fn)a,b ∈ AR({idR}), we have
(fn)a,b ⇒ fa,b, thus fa,b ∈ AR({idR}).
Lemma 4.3. Assume that a, b ∈ R, a < b. If h ∈ C(R), then ha,b ∈
AR({idR}).
Proof. Clearly, h � [a, b] ∈ C([a, b]) = AR

({
id[a,b]

})
. We get the conclusion

by Lemma 4.2, since ha,b = (h� [a, b])a,b.

Proposition 4.4.
AR({idR}) = CP .

Proof. By Proposition 4.1 it is sufficient to prove the “⊇” inclusion.

Suppose that |f | ≤ P for P ∈ P. Define g(x) = f(x)
1+x2P (x) . Then g ∈

C(R). Thus g−m,m ∈ AR({idR}) for any m ∈ N by Lemma 4.3. Furthermore,
g−m,m ⇒ g, since g(x) → 0 for x → ∞ or x → −∞. Since f(x) = g(x)(1 +
x2P (x)), we have f ∈ AR({idR}).
Corollary 4.5.

AR({idI}) = C(I)
AR({idR}) = CP
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5 A-Rings Generated by a Darboux Function

Let X be R or I. Suppose f ∈ D. Then there are mf ,Mf ∈ R such that
(mf ,Mf ) ⊆ f(X) ⊆ [mf ,Mf ].

Proposition 5.1. Suppose that f ∈ D. Then

AR({f}) = AR({idR}) ◦ {f}

Proof. “⊆”. Let Q = AR({idR}) ◦ {f} = {h ◦ f : h ∈ AR({idR})}. Then
{f} ⊆ Q, since f = idR ◦f ∈ Q.

We shall show that Q is an A-ring. Since c ∈ AR({idR}) for every c ∈ C
and c = c◦f , the condition (1) is fulfilled. Since h1 ◦f +h2 ◦f = (h1 +h2)◦f ,
(h1 ◦ f)(h2 ◦ f) = h1h2 ◦ f , max(h1 ◦ f, h2 ◦ f) = max(h1, h2) ◦ f , min(h1 ◦
f, h2 ◦ f) = min(h1, h2) ◦ f and AR({idR}) is an A-ring, the conditions (2)
and (4) are also fulfilled.

For (3) take hn ◦ f ⇒ g, where {hn}n ⊆ AR({idR}). Thus for any ε > 0
there is N such that for n,m > N

sup
x∈X
|hn ◦ f(x)− hm ◦ f(x)| < ε,

and
sup

y∈f(X)

|hn(y)− hm(y)| < ε,

hence
sup

y∈[mf ,Mf ]

|hn(y)− hm(y)| ≤ ε,

and as a result

sup
y∈R
|(hn)mf ,Mf

(y)− (hm)mf ,Mf
(y)| ≤ ε.

Consequently there is h such that (hn)mf ,Mf
⇒ h, and h ∈ AR({idR}) by

Lemma 4.2. Thus for any ε > 0 there is N such that for n > N

sup
y∈R
|(hn)mf ,Mf

(y)− h(y)| ≤ ε,

and
sup
x∈X
|(hn)mf ,Mf

◦ f(x)− h ◦ f(x)| ≤ ε.

Finally, hn ◦ f = (hn)mf ,Mf
◦ f ⇒ h ◦ f , and g = h ◦ f ∈ Q.
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“⊇”. Clearly, id ◦f = f ∈ AR({f}), C ◦ f = C ⊆ AR({f}). By Lemma
3.2, AR({idR}) = Aω1({idR}). Thus we can proceed inductively. Assume
that Aα({idR}) ◦ {f} ⊆ AR({f}). We shall prove that Aα+1({idR}) ◦ {f} ⊆
AR({f}). Since operations +, ·,max,min commutate with operation ◦ (as
was shown in the previous part of the proof) it is sufficient to discuss only the
uniform convergence.

Take h ∈ Aα+1({idR}) and hn ⇒ h, where hn ∈ Aα({idR}). Thus for any
ε > 0 there is N such that for n > N

sup
y∈R
|hn(y)− h(y)| < ε,

hence
sup
x∈X
|hn(f(x))− h(f(x))| < ε,

thus hn ◦ f ⇒ h ◦ f . Since hn ◦ f ∈ AR({f}), h ◦ f ∈ AR({f}).

Lemma 5.2.

AR({f}) ⊇ {h ◦max(y1,min(y2, f)) : y1, y2 ∈ R, h : [y1, y2]→ R, h ∈ C}

Proof. Clearly g = max(y1,min(y2, f)) ∈ AR({f}). By Theorem 7.26 in
[15] there is a sequence of polynomials (Pn)n such that Pn � [y1, y2] ⇒ h.
Thus supy∈[y1,y2] |Pn(y)− h(y)| → 0, hence supx∈X |Pn(g(x))− h(g(x))| → 0,

since g(X) ⊆ [y1, y2]. Therefore Pn ◦ g ⇒ h ◦ g. Let Pn(y) =
∑kn
i=0 cn,iy

i for

every y ∈ [y1, y2]. Then Pn ◦ g =
∑kn
i=0 cn,ig

i, hence Pn ◦ g ∈ AR({f}), and
consequently h ◦ g ∈ AR({f}).

Lemma 5.3. Suppose that f ∈ B ∩ D. Then

AR({f}) = {h ◦ f : h ∈ C, h : [mf ,Mf ]→ R}.

Proof. Since f(X) ⊆ [mf ,Mf ] and AR({idR}) ⊆ C, the proof of the inclu-
sion “⊆” is trivial by Proposition 5.1. By Lemma 5.2 we get the inclusion
“⊇”.

Theorem 5.4. Assume that X is I or R.

• If f ∈ D, then AR({f}) = CP ◦ {f}.

• If f ∈ D ∩ B, then AR({f}) = C(R) ◦ {f}.
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In particular if f : I→ I and f ∈ D, then AR({f}) = C(I) ◦ {f}.

Proof. The first case follows from Proposition 5.1 with Corollary 4.5, the
second one from Lemma 5.3.

Corollary 5.5. Assume that f ∈ D. Then AR({f}) ⊆ D.

Proof. It is clear from Theorem 5.4, since the composition of continuous
function (actually even a Darboux function) with a Darboux function is a
Darboux function.

6 Continuous Functions in A-Rings

For a Darboux function f : X → R (where X is I or R) denote

Pf = {f−1({y}) : y ∈ R} \ {∅}.

Pf is a partition of X. If f ∈ C, then every element of Pf is closed.

Proposition 6.1. Let P be a partition of X and R be a family of functions.
Suppose that f �A is constant for every f ∈ R and every A ∈ P . Then f �A
is constant for every f ∈ AR(R) and every A ∈ P .

Proof. Suppose that A ∈ P and f �A, g �A are constant. Then (f + g) �
A, (fg) �A,min(f, g) �A,max(f, g) �A are constant. Suppose that fn �A are
constant and fn ⇒ f . Then f �A is constant. By induction using Lemma 3.2
we get the assertion.

Corollary 6.2.

AR({f}) ∩ C ⊆ {g ∈ C : g �A is constant for every A ∈ Pf}.

For partitions P1, P2 we shall write P1 ≺ P2 when for every A ∈ P1 there
is B ∈ P2 such that A ⊆ B. We shall say that a partition is closed if it has
only closed elements.

For a partition P and A ∈ P let

clP (A) =
⋂
{A′ ⊇ A : A′ ∈ P ′ for some closed P ′ � P}.

and
cl(P ) = {clP (A) : A ∈ P} .

Proposition 6.3. Let P be a partition of X. Then cl(P ) is the smallest (in
the sense of the ordering ≺) closed partition which is bigger than P .
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Proof. It is clear that the elements of cl(P ) are closed. Suppose clP (A) 6=
clP (B) for some A,B ∈ P . Then there are A′, B′ ∈ P ′ for some closed P ′ � P
such that A ⊆ A′, B ⊆ B′, and A′ 6= B′. Thus A′ ∩B′ = ∅, hence A ∩B = ∅.
Consequently, cl(P ) is a closed partition.

Clearly clP (A) ⊇ A for each A ∈ P , thus P ≺ cl(P ).
Fix a closed partition P ′ � P and fix A ∈ P . There is A′ ∈ P ′ such that

A′ ⊇ A. Then clP (A) ⊆ A′. Hence cl(P ) ≺ P ′.

Corollary 6.4.

AR({f}) ∩ C ⊆ {g ∈ C : g �A is constant for every A ∈ cl(Pf )}.

Definition 6.5. Let P be a partition of X. We say that a family of functions
R separates the elements of the partition P , if for each A,B ∈ P and A 6= B
and for every x1 ∈ A and x2 ∈ B there is a function f ∈ R such that
f(x1) 6= f(x2).

Lemma 6.6. Let P be a partition of X. Suppose that R is an algebra of
functions which separates the elements of the partition P and C ⊆ R. Let
A,B ∈ P , A 6= B, x1 ∈ A, x2 ∈ B, and c1, c2 ∈ R. Then there is a function
f ∈ R such that f(x1) = c1 and f(x2) = c2.

Proof. There is a function g ∈ R such that g(x1) 6= g(x2). Let

f(x) =
c1(g(x)− g(x2))− c2(g(x)− g(x1))

g(x1)− g(x2)
.

Then f ∈ R, f(x1) = c1, and f(x2) = c2.

Proposition 6.7. Assume that P is a partition of I and R ⊆ C(I) separates
the elements of the partition P . Then

AR(R) ⊇ {f ∈ C(I) : f �A is constant for each A ∈ P}.

Proof. We procede analogically as in Steps 3 and 4 of the proof of Theorem
7.32 from [15].

Let Q = AR(R). Let f be continuous such that f �A is constant for each
A ∈ P . We shall define a family {gx,y : x, y ∈ I} of functions from Q in the
following way.

Fix x ∈ I. There is Ax ∈ P such that x ∈ Ax. R ⊆ Q, thus Q is an algebra
which separates the elements of the partition P and C (I) ⊆ Q ⊆ C(I). Let
y ∈ I.

If y ∈ I \ Ax, then by Lemma 6.6 there is a function gx,y ∈ Q such that
gx,y(x) = f(x) and gx,y(y) = f(y).
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If y ∈ Ax, then f(x) = f(y), and we put gx,y(t) = f(x) for each t ∈ I.
Obviously, gx,y ∈ Q.

Clearly, gx,y ∈ C(I) for each y ∈ I, thus for each ε > 0 there exists an open
set Jx,y containing y such that gx,y(t) > f(t) − ε for each t ∈ Jx,y. By the
compactness of I there exist y1, . . . , yn such that I ⊆ Jx,y1 ∪ . . . ∪ Jx,yn . Put
gx = max(gx,y1 , . . . , gx,yn). Thus gx ∈ Q. It is clear that gx(x) = f(x) and
gx(t) > f(t) − ε for each t ∈ I. Since gx ∈ C(I), there exists an open set Ix
containing x such that gx(t) < f(t)+ε for each t ∈ Ix. By the compactness of I
there exist x1, . . . , xm such that I ⊆ Ix1∪. . .∪Ixm . Put g = min (gx1 , . . . , gxm).
Thus g ∈ Q and |g(t)− f(t)| < ε for each t ∈ I. Finally, f ∈ Q, because Q is
a uniformly closed algebra.

Lemma 6.8. Assume that f ∈ D. For each A ∈ cl(Pf ) there are a, b ∈ R
such that a ≤ b and one of the following occurs:

1. f(A) = [a, b],

2. f(A) = [a, b) and b /∈ f(X),

3. f(A) = (a, b] and a /∈ f(X),

4. f(A) = (a, b) and a, b /∈ f(X).

Proof. Let A ∈ cl(Pf ). It is enough to prove that f(A) is connected and
closed in f(X). Suppose that there is y /∈ f(A) such that f(A)∩ (−∞, y) 6= ∅
and f(A)∩(y,+∞) 6= ∅. Let A1 = f−1(f(A)∩(−∞, y)) and A2 = f−1(f(A)∩
(y,+∞)). Then A = A1∪A2 and A1∩A2 = ∅. We shall show that A1 and A2

are closed. Take a sequence xn → x such that xn ∈ A1. Clearly x ∈ A, since
A is closed. Suppose x ∈ A2. Then for each n we have f(xn) < y < f(x).
Thus there is x′n between xn and x such that f(x′n) = y. Hence x′n → x and
y /∈ f(A), so there is A′ ∈ cl(Pf ) such that A′ 6= A and x′n ∈ A′. Therefore
x ∈ A′, and consequently x /∈ A, which is a contradiction. Thus x ∈ A1

and A1 is closed. Analogically we can prove that A2 is closed. Therefore
P ′ = (cl(Pf ) \ {A}) ∪ {A1, A2} is a partition with closed elements and P ′ ≺
cl(Pf ), which is a contradiction. Hence f(A) is connected. Therefore there
are a, b ∈ R such that a ≤ b and (a, b) ⊆ f(A) ⊆ [a, b].

Suppose that b ∈ f(X) and b /∈ f(A). Let B ∈ cl(Pf ) be such that
b ∈ f(B). Since f(B) is connected, f(B) ⊆ [b,+∞). Take x1 ∈ A and
x2 ∈ B. Without loss of generality we can assume that x1 < x2. Let x3 =
supA ∩ (−∞, x2]. Then x3 ∈ A and x3 < x2. Since f(x3) ∈ f(A) and

f(x2) ∈ f(B), f(x3) < b and f(x2) ≥ b. Let y = f(x3)+b
2 . Then y ∈ f(A) and

f(x3) < y < f(x2). Hence there is x such that x3 < x < x2 and f(x) = y, and
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therefore x ∈ A, which is a contradiction. Thus if b ∈ f(X), then b ∈ f(A).
The proof of the fact that a ∈ f(X) implies a ∈ f(A) is analogical.

Lemma 6.9. Assume that f ∈ D. There is a family R which separates the
elements of partition cl(Pf ) such that R ⊆ AR({f}) ∩ C.

Proof. Fix A,B ∈ cl(Pf ), A 6= B, x1 ∈ A and x2 ∈ B. Without loss
of generality we can assume that f(x1) < f(x2). By Lemma 6.8 f(A) ∩
[f(x1), f(x2)] = [f(x1), a0] and f(B) ∩ [f(x1), f(x2)] = [b0, f(x2)] for some
a0, b0 such that f(x1) ≤ a0 < b0 ≤ f(x2). Furthermore for any C ∈ cl(Pf )
other than A or B if f(C) ∩ (a0, b0) 6= ∅, then f(C) ⊆ (a0, b0). Let

If =
⋃
{f(C) ⊆ (a0, b0) : C ∈ cl(Pf ) ∧ |f(C)| > 1}.

Cleary If ⊆ (a0, b0). We shall consider two cases:

1. If is not dense in (a0, b0),

2. If is dense in (a0, b0).

Case 1. There exist y1, y2 such that a0 < y1 < y2 < b0 and y /∈ If for each
y ∈ (y1, y2). Fix such y. Certainly y ∈ f(X), since f ∈ D, and there is
C ∈ cl(Pf ) such that y ∈ f(C). Clearly f(C) has exactly one element. Hence
f(C) = {y}. Since C ∈ cl(Pf ), we have f−1({y}) = C ∈ cl(Pf ), and therefore
f−1({y}) is closed for each y ∈ (y1, y2). Put gx1,x2

= max(y1,min(y2, f)).
Then gx1,x2 ∈ AR({f}) and gx1,x2(x1) = y1 6= y2 = gx1,x2(x2).

Put g = gx1,x2
. We shall show that g ∈ C. Suppose there is a sequence

(tn)n ⊆ X such that tn → t and g(tn) 9 g(t). There is ε > 0 and a sub-
sequence (tkn)n such that g(tkn) > g(t) + ε or g(tkn) < g(t) − ε. With-
out loss of generality we can assume the former. For each n there is un
between tkn and t such that g(un) = g(t) + ε

2 . Thus un → t. Moreover,
g−1({g(t) + ε

2}) = f−1({g(t) + ε
2}) is closed, since g(t) + ε

2 ∈ (y1, y2). Conse-
quently, g(t) = g(t) + ε

2 , which is a contradiction. Thus g ∈ C.

Case 2. By Lemma 6.8 and definition If is a sum of disjoint closed nonde-
generate intervals. By the density of If , number of those intervals is infinite.
By the separability of R number of those intervals is countable. Let enu-
merate them as ([an, bn])n. We shall inductively enumerate that family of
intervals by finite sequences of zeros and ones: {[cs, ds] : s ∈ {0, 1}<ω}. Let
[c∅, d∅] = [a1, b1]. Suppose that intervals [cs, ds] for s ∈ {0, 1}<n are given.
Let

c′s = max
({
dr : r ∈ {0, 1}<n ∧ dr < cs

}
∪ {a0}

)
,
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and let [csa0, dsa0] be the first interval from the sequence ([an, bn])n laying
between c′s and cs. Let

d′s = min
({
cr : r ∈ {0, 1}<n ∪

(
{0, 1}<n × {0}

)
∧ cr > ds

}
∪ {b0}

)
,

and let [csa1, dsa1] be the first interval from the sequence ([an, bn])n laying
between ds and d′s. It is clear that {[an, bn] : n ∈ N} = {[cs, ds] : s ∈ {0, 1}<ω}.
We shall define a sequence of functions (hn : [a0, b0]→ [a0, b0])n. Let

ys =
1

2len(s)+1
+

len(s)∑

k=1

s(k) · 1

2k

and put hn(x) = ys for x ∈ [cs, ds] for s ∈ {0, 1}<n, hn(a0) = 0, hn(b0) = 1,
and let hn be linear between neighboring intervals [cs, ds], between point a0

and its neighboring interval, and between point b0 and its neighboring interval.
It is clear that each hn is non-decreasing and continuous. We shall show

that (hn)n is uniformly convergent. Fix ε > 0. Let N ∈ N be such that
1

2N < ε. For each n,m > N hn � [cs, ds] = hm � [cs, ds] for each s ∈
{0, 1}<N . Hence supx∈I |hn(x) − hm(x)| ≤ 1

2N < ε. Thus there is h ∈ C
such that hn ⇒ h. It is clear that h(x) = ys if and only if x ∈ [cs, ds]. Put
gx1,x2

= h ◦max(a0,min(b0, f)). By Lemma 5.2 gx1,x2
∈ AR({f}). Moreover,

gx1,x2
(x1) = h(a0) = 0 6= 1 = h(b0) = gx1,x2

(x2).
Put g = gx1,x2

. Clearly g ∈ D by Corollary 5.5. We shall prove that g ∈ C.
As in Case 1 suppose there is a sequence (tn)n ⊆ I such that tn → t and
g(tn) 9 g(t). There is ε > 0 and a subsequence (tkn)n such that g(tkn) >
g(t) + ε or g(tkn) < g(t) − ε. Without loss of generality we can assume the
former. There is s ∈ {0, 1}<ω such that ys ∈ (g(t), g(t)+ε). For each n there is
un between tkn and t such that g(un) = ys. Thus un → t and f(un) ∈ [cs, ds].
There is As ∈ cl(Pf ) such that f(As) = [cs, ds]. Consequently, un ∈ As and
by the closeness of As we have that t ∈ As. Thus g(t) = ys > g(t), which is a
contradiction. Hence g ∈ C.

Let R = {gx1,x2 : x1 ∈ A, x2 ∈ B for some A,B ∈ cl(Pf ), A 6= B}. Then
R ⊆ AR({f}) ∩ C and R separates the elements of the partition cl(Pf ).

Theorem 6.10. Assume that X = I and f ∈ D. Then

AR({f}) ∩ C(I) = {g ∈ C(I) : g �A is constant for every A ∈ cl(Pf )}.
Proof. By Corollary 6.4 we only have to prove the inclusion “⊇”. By Lemma
6.9 there is a family R which separates the elements of cl(Pf ) such that R ⊆
AR({f}) ∩ C(I). By Proposition 6.7

AR(R) ⊇ {g ∈ C(I) : g �A is constant for each A ∈ cl(Pf )}.
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Furthermore, AR(R) ⊆ AR({f}) ∩ C(I).

7 Final Results

Assume that X is R or I and f : X → R.

Lemma 7.1. Assume that f ∈ D. Then f(U) is open in f(X) for every open
U such that for every A ∈ cl(Pf ), either A ∩ U = ∅, or A ⊆ U .

Proof. When f ∈ C , it is trivial, hence we can assume that f is not constant.

Take U fulfilling the assumption. Since U is open, it is an at most countable
sum of pairwise disjoint open intervals Un for n ∈ N. Thus f(Un) are intervals.
We shall prove that none of them can be degenerate.

On the contrary, assume that f(Un) has only one element for some n.
Then f is constant on Un, and there is B ∈ Pf such that Un ⊆ B. Since
Pf ≺ cl(Pf ), there exists A ∈ cl(Pf ) such that B ⊆ A. Thus Un ⊆ A, hence
cl(Un) ⊆ A, since A is closed. Consequently, A ∩ U 6= ∅, since Un ⊆ U . Then
by the assumption we reason that A ⊆ U , thus cl(Un) ⊆ U . Since the sets
Un are pairwise disjoint, we conclude that Un = X. But then f is a constant
function, which contradicts the assumption from the first paragraph of the
proof.

Suppose that f(U) is not open in f(X). There exists y0 ∈ f(U) which is
not an internal element of f(U) in f(X), and it cannot be an internal element
of any f(Un) (with respect to f(X)). Thus it can be only an endpoint of
some of intervals f(Un) (and not an endpoint of f(X)), and always an upper
endpoint or always a lower endpoint. Without loss of generality assume that
it is an upper endpoint. Take any x0 such that f(x0) = y0. There is some
interval Un 3 x0. Take any y1 > y0 such that y1 ∈ f(X) \ f(U) and x1 such
that f(x1) = y1, without loss of generality we can assume that x0 < x1. Let
s = inf{x > x0 : f(x) > y0}. Since sup f(Un) = y0 and x0 ∈ Un, s > x0.

Suppose that f(s) > y0. Then there should exist x such that x0 < x < s

and f(x) = y0+f(s)
2 > y0, a contradiction with the definition of s.

Suppose that f(s) = y0. Then s ∈ U . Let Um 3 s. But y0 = sup f(Um),
thus f(x) ≤ y0 for every x ∈ Um, a contradiction with the definition of s.

Suppose that f(s) < y0. By the definition of s there should be an infinite
descending sequence (sn)n such that sn → s and f(sn) > y0. Thus there also
should be a descending sequence (xn)n such that xn → s and f(xn) = y0.
Thus cl ({xn}n) ⊆ U , and s ∈ U , and we conclude with a contradiction as in
the previous case.

Consequently, f(U) is open.
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Proposition 7.2. For any f ∈ D(X) and any g ∈ C(X) such that cl(Pf ) ≺
Pg, there exists h ∈ C(f(X)) such that g = h ◦ f .

Proof. For each y ∈ f(X) define h(y) = g(x), where x ∈ f−1({y}). Function
h is properly defined on f(X), since by assumption cl(Pf ) ≺ Pg there is only
one element of the set g(f−1({y})) = {g(x) : x ∈ f−1({y})}.

Let U be an open set. Then h−1(U) = f(g−1(U)), since cl(Pf ) ≺ Pg.
Moreover, g−1(U) is open. By the assumption for every A ∈ cl(Pf ), A ⊆ B
for some B ∈ Pg, thus either A ∩ g−1(U) = ∅, or A ⊆ g−1(U). By Lemma 7.1
f(g−1(U)) is open in f(X).

Theorem 7.3. Assume that f ∈ D.

• If X = I, then

AR({f}) ∩ C = {g ∈ C : cl(Pf ) ≺ Pg}.

• If X = R and f(X) is closed, then

AR({f}) ∩ C = {g ∈ C : cl(Pf ) ≺ Pg,∃P∈P |g| ≤ P ◦ f}.

Proof. The first case follows from Theorem 6.10.
For the second case, by Theorem 5.4 it is sufficient to prove that

(CP ◦ {f}) ∩ C = {g ∈ C : cl(Pf ) ≺ Pg,∃P∈P |g| ≤ P ◦ f}.

Take g belonging to the set on the left side. Then g = h◦f , where h ∈ CP .
It is clear that Pf ≺ Ph◦f , and since g ∈ C, also cl(Pf ) ≺ Ph◦f . There is
P ∈ P such that |h| ≤ P . Hence |g(x)| = |h(f(x))| ≤ P (f(x)).

Take g belonging to the set on the right side. By Proposition 7.2 there
exists h ∈ C(f(X)) such that g = h ◦ f . Clearly f(X) = [a, b] for some
a, b ∈ R. Then g = ha,b ◦ f and |ha,b(f(x))| ≤ P (f(x)) for any x ∈ X. Thus
|ha,b(y)| ≤ P (y) for any y ∈ f(X), and |ha,b(y)| ≤ P (y) + |h(a)| + |h(b)| for
any y ∈ R (for finite a, b; for infinite — we can skip h(a) and h(b), respectively,
in the inequality). Hence ha,b ∈ CP .

Problem 2. Let f : R → R, f ∈ D and f(R) is not closed (i.e. f(R) is one
of (a, b), (a, b], [a, b) for some a, b ∈ R). Characterize continuous functions
belonging to each A-ring containing f : R→ R, i.e. find AR({f}) ∩ C.
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