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Streszczenie
Termodynamika dostarcza fenomenologicznego opisu właściwości makroskopowych

systemów w równowadze termicznej. Jest to jedna z fundamentalnych teorii służących do
zrozumienia świata fizycznego, która została sformułowana bez podejmowania jakichkol-
wiek założeń dotyczących podstawowej struktury materii. Opisuje bardzo złożone, makro-
skopowe systemy o wielu stopniach swobody za pomocą kilku zmiennych termodynamicz-
nych, takich jak objętość, temperatura, ciśnienie itp., których wartości zmieniają się bardzo
powoli w atomowej skali czasu i są skrajnie gruboziarniste w atomowej skali odległości.

Termodynamika równowagowa zajmuje się makroskopowymi systemami, które skła-
dają się z nieskończonej liczby cząstek. W rezultacie prawa makroskopowej termodynamiki
nie mogą być bezpośrednio stosowane w mikroskopowym zakresie, ponieważ rozmiar sys-
temu jest skończony, co skutkuje możliwością pozostania poza stanem równowagi. Zacho-
wanie systemu nie może być określone przez średnie zmiennych termodynamicznych, po-
nieważ fluktuacje tych zmiennych odgrywają kluczową rolę. Według klasycznej termody-
namiki całkowita ilość pracy, która może zostać wydobyta z systemu, jest określana przez
jego zmianę energii swobodnej, ale jest to prawdziwe tylko w przypadku, gdy mamy do
czynienia z nieskończoną liczbą cząstek. W przypadku mniejszej liczby cząstek ilość pracy,
którą można wydobyć, jest znacznie mniejsza niż zmiana energii swobodnej. Ta dyssypacja
pracy wynika z wpływu fluktuacji na energię swobodną w reżimie skończonej wielkości.

Związek między fluktuacją zmiennej termodynamicznej a jej dyssypacją jest fundamen-
talnym pojęciem w nierównowagowej fizyce statystycznej, znanym jako związek fluktuacja-
dyssypacja. W niniejszej pracy przedstawiamy wersję tego związku w ramach teorii zaso-
bów, która bada optymalne przekształcenia stanów kwantowych poddanych ogranicze-
niom wynikającym z praw termodynamiki. Po pierwsze, charakteryzujemy optymalne
procesy destylacji termodynamicznej i ustalamy związek między swobodną energią dys-
sypowaną w takich procesach a fluktuacjami energii swobodnej początkowego stanu sys-
temu. Otrzymane przez nas związki fluktuacja-dyssypacja pozwalają na określenie opty-
malnej wydajności protokołów termodynamicznych, takich jak ekstrakcja pracy, wymazy-
wanie informacji i termodynamicznie dozwolona komunikacja, z dokładnością do asymp-
tot drugiego rzędu w liczbie przetwarzanych systemów.

Ponadto, niniejsza praca analizuje wpływ efektów skończonych rozmiarów na wydajność
mikroskopowego silnika cieplnego. Tradycyjnie, dziedzina termodynamiki była rozwijana
w celu wyjaśnienia pracy maszyn cieplnych na poziomie makroskopowym, takich jak lo-
dówki, pompy ciepła i silniki cieplne. Jednak podczas opisywania tych maszyn na pozio-
mie mikroskopowym konieczne staje się uwzględnienie efektów skończonych rozmiarów
w opisie pracy i ciepła. Efekty kwantowe takie jak koherencja i korelacja wynikające z efek-
tów skończonych rozmiarów mają istotny wpływ na produkcję pracy i wydajność silnika.
Uogólnienie pojęć pracy i ciepła na poziomie mikroskopowym jest trudne i pozostaje tema-
tem dyskusji, ponieważ wymaga uwzględnienia efektów skończonych rozmiarów. Jedną
z powszechnie stosowanych miar pracy w reżimie mikroskopowym jest ergotropia, która



odnosi się do maksymalnej ilości energii, która może być wyekstrahowana z systemu za
pomocą operacji unitarnej. Rozprawa ta analizuje działanie mikroskopowego silnika ciepl-
nego i demonstruje, jak jego wydajność może być poprawiona poprzez wykorzystanie ko-
relacji z dodatkowym systemem pomocniczym, pełniącym rolę katalizatora.
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Abstract
Thermodynamics provides a phenomenological description of the properties of macro-

scopic systems in thermal equilibrium. This is one of the fundamental theories to under-
stand the physical world which has been formulated without making any assumptions
about the underlying structure of matter. It describes very complex, macroscopic systems
with many degrees of freedom by few simplified thermodynamic variables like volume,
temperature, pressure etc., whose values change very slowly on the atomic scale of time
and are extremely coarse on the atomic scale of distance.

Equilibrium thermodynamics deals with macroscopic systems that consist of an in-
finitely large number of particles. As a result, the laws of macroscopic thermodynamics
cannot be straightforwardly applied to the microscopic regime, as the system’s size is finite
and there is a possibility of it remaining outside of an equilibrium state. The behaviour
of the system cannot be determined by the average of the thermodynamic variables as the
fluctuations in these variables play a pivotal role. According to classical thermodynamics,
the total amount of work that can be extracted from a system is determined by its change in
free energy, but this is only true if we are dealing with infinitely many particles. In the case
of a smaller number of particles, the amount of work that can be extracted is considerably
less than the change in free energy. This dissipation of work arises due to the influence of
fluctuations on free energy in the finite size regime.

The relationship between the fluctuation of a thermodynamic variable and its dissipa-
tion is a fundamental concept in non-equilibrium statistical physics known as the fluctuation-
dissipation relation. In this thesis, we present a version of this relation within a resource-
theoretic framework that explores optimal quantum state transformations subject to con-
straints that arise from the laws of thermodynamics. Firstly, we characterize optimal ther-
modynamic distillation processes and establish a relationship between the free energy dis-
sipated in such processes and the free-energy fluctuations of the initial state of the sys-
tem. The fluctuation-dissipation relations we derive enable us to determine the optimal
performance of thermodynamic protocols, such as work extraction, information erasure,
and thermodynamically free communication, up to second-order asymptotics in the num-
ber of processed systems.

In addition, this thesis analyses how finite-size effects impact the performance of a mi-
croscopic heat engine. Traditionally, the field of thermodynamics was developed to ex-
plain the behaviour of thermal machines on a macroscopic level, such as refrigerators, heat
pumps, and heat engines. However, while describing these machines at a microscopic
level, incorporating finite-size effects into the description of work and heat becomes nec-
essary. Quantum effects such as coherence and correlation that arise due to finite size have
a significant impact on the work production and efficiency of the engine. Generalizing the
notion of work and heat into the microscopic regime is challenging and remains a topic of
debate, as it requires the inclusion of these finite-size effects. One common and widely used
method of describing work in the microscopic regime is through ergotropy, which refers to
the maximum amount of energy that can be extracted from a system via a unitary opera-
tion. This thesis analyzes the operation of a microscopic heat engine and demonstrates how



its performance can be improved by exploitation of correlation with an additional auxiliary
system, serving as a catalyst.
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5.6 Schematic representation of a self-contained heat engine without a cata-
lyst: This diagram depicts the construction and operation of a self-contained
heat engine. The engine comprises hot and cold d-level systems at temper-
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modelled using a translationally invariant weight, as introduced in section
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Introduction

Thermodynamics is a fundamental pillar of our understanding of the physical world. His-
torically, it was developed to analyze the performance of machines like steam engines and
refrigerators [1]. The first theoretical steps towards it’s formulation were taken over two
centuries ago [2, 3, 4, 5, 6, 7], and even today, we continue to apply this theory to study sys-
tems that can help us advance our current available theories. For instance, black holes are
studied in the hope of developing a theory of quantum gravity [8, 9, 10] using principles
of thermodynamics. Thermodynamics was originally formulated as a phenomenological
theory that describes thermal equilibrium. It characterizes a macroscopic system in a state
of equilibrium, possessing numerous degrees of freedom, with the aid of simplified coor-
dinates such as temperature, pressure, volume, and the number of particles. The values of
these coordinates change at an extremely slow rate on the atomic scale of time, and they
are extremely coarse on the atomic scale of length. Furthermore, the manifold of the equi-
librium states is equipped with continuous and differentiable thermodynamic potentials
such as entropy. The central theme of second law thermodynamics is to provide a complete
characterization of interconversion among these equilibrium states utilizing these thermo-
dynamic potentials [11, 12].

Moving from the macroscopic to a scenario consisting of a relatively smaller number
of particles, the systems are more likely to be in a non-equilibrium state. Consequently,
the characterization of conditions for interconversion among these non-equilibrium states
becomes more intricate. In fact, the complete characterization of such inter-conversions
has been a long-standing problem in statistical physics. However, modern thermodynam-
ics has recently made significant progress in understanding the thermodynamics of out-
of-equilibrium and quantum systems by utilizing the concepts from information theory.
There is a long history of research of such thermodynamic entropy-like quantities in infor-
mation theory [13] and matrix analysis [14, 15, 16] where it has been shown that several
information-theoretic quantities exhibit universal features that resemble the second law of
thermodynamics. The mathematical tools originally developed for communications and
cryptography have emerged as fundamental building blocks underlying quantum theory
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and thermodynamics [13, 17]. In a series of papers [18, 19, 20, 21, 22, 23, 24, 25, 26], it has
been established that the entropy of thermodynamics is nothing other than entropy in infor-
mation entropy, which describes the lack of knowledge of the classical probability vector.

Unlike macroscopic systems, when examining small-scale systems, the thermodynamic
quantities are subject to randomness due to the intrinsic stochasticity of the dynamics caused
by the thermal fluctuations of heat baths. This is why modern thermodynamics is connected
with information theory which is based on probability distributions and their transforma-
tion.

There are two main approaches to study small-scale thermodynamics that complements
each other. The first is stochastic thermodynamics which has been developed in the field of
nonequilibrium statistical mechanics. In this approach, relevant thermodynamic quanti-
ties like heat, work, energies etc. are considered stochastic variables and their averages
and fluctuations are taken into account to describe non-equilibrium dynamics that present
in microscopic systems [27, 28, 29]. and has resulted in a modern understanding of the
thermodynamics of information [30, 31](See also chapter Quantum fluctuation theorems of
[32]). Another approach to describe small-scale thermodynamics is the resource theory of
thermodynamics, that is emerged as a branch utilizing the concepts and tools of quantum
information theory that has been developed more recently. This perspective emphasizes
that the second law of thermodynamics quantifies the amount of resources such as work,
needed to complete a thermodynamic task [33, 34, 35, 36]. In contrast to the approach
considered in stochastic thermodynamics, thermodynamic quantities like work are consid-
ered deterministic quantities rather than stochastic one. Resource theory is based on an
information-theoretic framework that quantifies useful resources. The resource theory of en-
tanglement, one of the earliest resource theories in quantum information theory [37, 38, 39]
that shares a similar mathematical structure to the resource theory of thermodynamics. To
formulate a resource theory, we must identify free states and free operations that can be
prepared and performed without cost. In this thesis, we shall describe resource theory in
the thermodynamical framework in detail.

This thesis adopts the resource theoretic approach of thermodynamics to investigate
the consequences of surpassing the thermodynamic limit. Specifically, the study focuses
on finite-size systems, which consist of a limited number of particles. Fluctuations of ther-
modynamic quantities become significant when analyzing the behaviour and transforma-
tion of such systems, particularly in the context of distilling pure energy eigenstates under
thermodynamic constraints. The thesis characterizes optimal thermodynamic distillation
processes and establishes a relationship between the free energy dissipated in such pro-
cesses and the free-energy fluctuations of the initial system state. These results apply to
initial states composed of either asymptotically many identical pure systems or an arbitrary
number of independent energy-incoherent systems and allow for both state transformation
and Hamiltonian change. The derived fluctuation-dissipation relations facilitate the de-
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termination of optimal performance for thermodynamic protocols, including work extrac-
tion, information erasure, and thermodynamically free communication, up to second-order
asymptotics in the number of processed systems.

On other hand, the analysis of thermodynamic machines such as engines, coolers, and
heat pumps differs significantly in the microscopic limit. Beyond the thermodynamic limit,
the fundamental concepts of work and heat become ambiguous and are still the subject of
debate among researchers. Additionally, quantum effects such as coherence and correla-
tions have a significant impact on the behaviour of microscopic heat engines. One popular
approach to quantify work in the microscopic system is through the concept of ergotropy,
which approaches free energy in the thermodynamic limit, aligning with the second law
of thermodynamics. Ergotropy is based on the notion that, even when a system is not in
equilibrium, it is possible to extract useful work from it by applying external fields to in-
duce transitions between different energy levels [40]. This thesis also aims to investigate
the performance of a microscopic heat engine, which operates by inducing ergotropy from
a heat bath and then storing it as work in a battery. This analysis leads us to consider a
more general question: what is the maximum amount of ergotropy that can be induced
in a system via an interaction with a heat bath? This thesis seeks to provide an answer
to this question. Additionally, we explore the potential enhancement of the heat engine’s
performance through the use of a catalyst. This thesis is structured as follows:

Chapter 1 provides an overview of the key tools from information theory that are re-
quired to formulate a resource-theoretic framework for thermodynamics. Two fundamen-
tal concepts are introduced in this chapter: the first is information-theoretic entropies and
divergences that measure the degree of disorder in a probability distribution and quan-
tify the distance between two probability distributions. The second concept is majoriza-
tion (and more generally, relative majorization), which characterizes the transformations
between probability vectors. For further reading we recommend [13, 14, 15, 16].

Chapter 2 establishes the basis for the resource theory of thermodynamics, which is fun-
damental to this thesis. It introduces the concept of thermal operations and their charac-
terization, which is critical to understanding energy transformation. Drawing on the ideas
presented in 1 regarding relative majorization, we introduce the concept of thermomajoriza-
tion to describe the transformation of energy incoherent states via thermal operations. This,
in turn, enables us to define deterministic work using thermomajorization and formulate
the second law of thermodynamics as the upper limit for work extraction. For further read-
ing we shall recommend readers [33, 34, 35, 36, 41, 42, 43]. Moreover, a recent book [44]
covers rigorously the resource theoretic formulation of thermodynamics.

Next chapters 3, 4, and 5 concern the research that I have done during my PhD.
Chapter 3 is built upon the work presented in [45]. We focus on thermodynamic dis-

tillation within the resource theoretic framework developed in Chapter 2 and investigate
quantum state transformations under thermal operations. Our approach involves charac-
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terizing optimal thermodynamic distillation processes and proving a relationship between
the amount of free energy dissipated during such processes and the free-energy fluctua-
tions of the initial state of the system. By deriving fluctuation-dissipation relations, we
can determine the optimal performance of thermodynamic protocols such as work extrac-
tion, information erasure, and thermodynamically free communication, up to second-order
asymptotics in the number of processed systems.

Chapter 4 is based on the paper [46], which investigates the amount of ergotropy that
can be induced in a system as a result of its interaction with a thermal bath, with the goal of
utilizing it as a work source for microscopic machines. We model this interaction between
the system and heat bath via thermal operation. We establish a fundamental upper bound
on the amount of ergotropy that can be extracted from the heat bath via thermal opera-
tion that is expressed in terms of the non-equilibrium free energy difference. This bound
can be attained in the limit of an infinite-dimensional system Hamiltonian. Furthermore,
to support our result, we conduct a numerical simulation of the ergotropy extraction pro-
cess for finite-dimensional systems and approach the obtained bound with the increase of
dimensions.

Chapter 5, is based on the work [46] and ongoing projects on microscopic heat engines
that aims to investigate two types of heat engines. The first engine operates through sub-
sequent energy-conserving strokes, where the design incorporates an external control im-
plicitly that regulates the sequence of these strokes. This particular microscopic heat engine
operates by inducing ergotropy to the working body of the engine through interactions with
a thermal bath. This interaction with the heat bath is modelled by thermal operation. The
induced ergotropy is then stored in a battery as work using an energy conserving unitary
operation on the working body and the battery. The second engine involves all compo-
nents evolving by a single energy-conserving stroke, and thus requires no external control
to function. We demonstrate how the laws of thermodynamics manifest in the operation
of these microscopic engines. In addition, we have shown how their performance can be
enhanced through the use of a catalyst. Finally, we have provided a dynamical model that
simulates the performance of a catalyst assisted self-contained heat engine.
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Chapter 1
Mathematical preliminaries

1.1 Introduction

This chapter introduces the fundamental mathematical concepts that are crucial for under-
standing the resource theory of thermodynamics. The key mathematical tools that aid in
comprehending classical states and their transformations in thermodynamics are entropy,
divergence, and majorization. In classical thermodynamics and information theory, en-
tropy measures the degree of disorder in a system [11, 12, 21, 22]. Specifically, entropy fully
characterizes the transformation among equilibrium states when there is no heat reservoir.
Furthermore, divergence functions are used to calculate the distance between classical prob-
ability distributions [47, 48, 49, 44].

As we move away from conventional equilibrium situations, the inter-conversion among
states becomes more complex. To characterize the conversion among different classical
states, the majorization relation is used. Majorization is a comparison tool that allows us to
compare probability distributions based on their ordering. These concepts are essential for
describing classical states and their transformations.

Our exploration begins with defining classical states and dynamics through the use of
finite-dimensional probability vectors and stochastic matrices. This sets the stage for devel-
oping the idea of majorization and relative majorization, which are essential for character-
izing thermodynamic state transitions. Majorization plays a prominent role in the resource
theories of entanglement, coherence, asymmetry, and purity. Meanwhile, the more general
concepts of thermo-majorization and relative majorization are foundational in the resource
theory of thermodynamics. To further our understanding, we provide a detailed expla-
nation of various entropy and divergence functions, such as Shannon Entropy, Kullback-
Leibler (KL) divergence, and α-Renyi entropy and divergence. In later sections, we briefly
touch on additional divergence functions and their properties.
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Chapter 1. Mathematical preliminaries 1.2. Classical state and their transformations

Overall, this chapter lays down the necessary mathematical foundations that helps in
comprehending the complex workings of the resource theoretic framework of thermody-
namics.

1.2 Classical state and their transformations

To build the foundation, we will establish our terminologies and notations from classical
probability theory. To begin with, we shall define the classical states.

Definition 1 (Classical states). We define the classical state as a probability vector

p := (p1, . . . , pd)
T ∈ Pd such that ∀i pi ≥ 0

d∑
i=1

pi = 1, (1.1)

where T denotes the transpose. We shall denote the set of all classical states as P(d).

Here we introduce the classical state as a d-dimensional column vector. In the literature,
the classical state is also known as probability vector or population vector. In this thesis, we
shall use these terminologies with the same meaning. Given N independent classical states
{p}Ni=1 where p ∈ Pdi one can define the joint classical state as

pN :=
N⊗
i=1

pi ∈ Pd1d2...dN . (1.2)

In the special case of the joint classical state of N systems being N independent and
identically distributed (i.i.d.), we represent the joint classical state as p⊗N ∈ PdN . The
support of p, denoted by supp(p), is defined as the set of indices i : pi > 0. Additionally,
we define the rank of p as the cardinality of the support of p, i.e., rank(p) = |supp(p)|.

The transformation of classical states is characterized by the action of a stochastic matrix
that maps one classical state to the other. For simplicity, we assume that the dimension of
the initial and final state is equal to d.

Definition 2 (Stochastic matrix). A d × d stochastic matrix T is defined as a matrix whose
elements are Tij ≥ 0 for all i, j and satisfy

∑d
i=1 Tij = 1. In other words, each column of a

stochastic matrix generates a valid probability vector.

The stochastic matrix T maps a classical state p to p̃ as follows:

p̃ = Tp such that p̃i =
d∑
j=1

Tijpj . (1.3)
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Chapter 1. Mathematical preliminaries 1.3. Entropy and divergence of classical states

If the elements of a stochastic matrix satisfy
∑d

j=1 Tij = 1 for all i, then it is referred as
bistochastic matrix. Bistochastic matrices are those stochastic matrices whose rows generate
a valid probability vector as well. Any bistochastic matrix preserves the uniform classical
state u where u = 1

d(1, . . . , 1). In other words, bistochastic matrix is unital.
Next, we will introduce the concept of closeness between two classical states by intro-

ducing various distance measures on the set of classical states. Several distance measures
have been proposed in the literature [14, 44, 47, 15] to quantify the closeness between two
classical states. However, in this discussion, we will focus on two fundamental distance
measures that are commonly used for classical states: trace distance and infidelity distance
which are defined below:

Definition 3 (Trace Distance). The trace distance between two classical states p, q ∈ Pd is
defined as

DTr(p, q) :=
1

2
∥p− q∥1 =

1

2

d∑
i=1

|pi − qi|. (1.4)

Definition 4 (Infidelity distance). The infidelity distance between two classical states p, q ∈
Pd as

D(p, q) = 1−
( d∑
i=1

√
piqi

)
. (1.5)

Both of the distance measures are valid metrics in Pd as it is obvious to see the distance
measures satisfy symmetry and positivity. Employing Hölder’s inequality [14], it is straight-
forward to see that distance measures satisfy triangle inequality as well. Moreover, the trace
distance and infidelity distance are non-increasing under the transformation induced by a
stochastic matrix T i.e.,

DTr(p, q) ≥ DTr(Tp, Tq) ; D(p, q) ≥ D(Tp, Tq). (1.6)

This is referred to as monotonicity of the distance measures.

1.3 Entropy and divergence of classical states

In this section, we shall elucidate the concept of entropy for classical states and how to
measure the divergence between different classical states. Similar to the distance measures
between the probability vector introduced in the previous section, divergence between two
classical states also captures the notion of closeness between two classical states. But contrary
to the distance measures, we shall observe that divergences don’t satisfy the symmetry. We
prove some properties of entropy employing the characteristics of KL divergence or more
generalized families of divergences. We shall start this section by defining Shannon Entropy
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and the KL Divergence. Later on, we shall use these concepts for a more general notion of
entropies and divergences called α-Rényi entropy and divergences.

1.3.1 Shannon Entropy and the KL Divergence

Definition 5 (Shannon Entropy). For a classical state p ∈ Pd we define the Shannon entropy
as

H(p) = −
d∑
i=1

pi log pi. (1.7)

We shall define 0 log 0 := 0.

Definition 6 (KL divergence or Relative Entropy). For two classical states p , q ∈ Pd, we
define KL divergence or relative entropy as

D(p∥q) =
d∑
i=1

pi

(
log pi − log qi

)
. (1.8)

If supp(p) ⊈ supp(q) we define D(p∥q) := ∞. From the definition, we see relative en-
tropy D(p∥q) is asymmetric. To avoid complexity, we assume always supp(p) ⊆ supp(q).
In the following proposition, we shall prove that relative entropy is always non-negative.

Proposition 1 (Non-negativity of the relative entropy). D(p∥q) ≥ 0, for any two classical
states p, q ∈ P(d).

Proof. Employing the identity log (x−1) ≥ (1−x) we can easily prove the non-negativity of
the relative entropy as D(p∥q) =

∑d
i=1 pi log

(
pi
qi

)
≥
∑d

i=1 pi

(
1− qi

pi

)
= 0.

Moreover, one can relate the relative entropy with Shannon entropy via the following
relation:

H(p) = log d−D(p∥u), (1.9)

where u is uniform classical state i.e., u = 1
d(1 . . . 1). From the non-negativity of the diver-

gence D(p∥u) ≥ 0, we conclude H(p) ≤ log d. Relative entropy, like the distance measures
introduced in Eq. (1.4) and Eq. (1.5) satisfies the monotonicity that is proven in the follow-
ing proposition. In literature this relation sometimes referred as data processing inequality

Proposition 2 (Data processing inequality). For two given classical state p and q and a stochastic
matrix T we have

D(p∥q) ≥ D(Tp∥Tq). (1.10)
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Proof. Let us denote that Tp = p̃ and Tq = q̃. To prove the claim we proceed as follows:

D(p∥q)−D(p̃∥q̃) =

d∑
i=1

pi log
(pi
qi

)
−D(p̃∥q̃)

=
∑
ij

Tjipi log
(Tjipi
Tjiqi

)
−

d∑
j=1

p̃j log
( p̃j
q̃j

)
=

∑
ij

p̃j
Tjipi
p̃j

log
(Tjipi/p̃j
Tjiqi/q̃j

)
=
∑
ij

p̃jD(p̄(j)∥q̄(j)) ≥ 0, (1.11)

where p̄(j)i =
Tjipi
p̃j

and q̄
(j)
i =

Tjiqi
q̃j

. Note that in the last line Eq. (1.11) we have used
non-negativity of relative entropy.

We would like to make two remarks here. First, the converse of the proposition 2 is
not true. Thus, relative entropy is not a complete monotone in the terminology of quantum
resource theory. Second, If T is a bistochastic matrix then its action on uniform classical
state u = 1

d(1, . . . , 1) is invariant i.e., Tu = u. Then

D(p∥u) = log d−H(p) ≥ D(Tp∥u) = log d−H(Tp)

⇒ H(Tp) ≥ H(p), (1.12)

that says Shannon entropy is non-decreasing under a bistochastic map. In particular, from
the relation given in Eq. (1.12) we can infer that Shannon entropy is a concave function over
the set of classical state. Later on, we shall see Shannon entropy is Schur concave (We shall
introduce Schur concavity later in this chapter). We conclude this section by introducing
another important information-theoretic quantity called mutual information.

Definition 7 (Mutual information). Let pAB be a joint distribution of combined system A

and B, and pA and pB is the corresponding marginal distribution of system A and B. The
mutual information is defined as

I(pAB)A:B := D(pAB∥pA ⊗ pB) = H(pA) +H(pB) +H(pAB). (1.13)

Clearly the quantity I(A : B) ≥ 0. The equality holds if and only if the joint classical
state of the system A and B is statistically independent i.e., pAB = pA⊗pB . From data pro-
cessing inequality we immediately see I(pAB)(A:B) ≥ I(TA ⊗ TBpAB)A:B . In the following
sections, we shall discuss more general forms of entropies and divergences.

1.3.2 Rényi Entropy and divergence

In this section, we will be introducing the concept of generalized entropies and divergences,
namely the Rényi α-entropies and divergences for values 0 ≤ α ≤ ∞. These measures are
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essential in both information theory and statistics, and they extend the concepts of Shannon
entropy and Kullback-Leibler divergence to more generalized cases. The Rényi entropy,
with a parameter α, quantifies the degree of uncertainty or randomness in a given prob-
ability distribution, while the Rényi divergence measures the dissimilarity between two
probability distributions, similar to the KL divergences. This section will explore the sev-
eral useful properties of the Rényi entropy and divergence, including the chain rule, data
processing inequality, and convexity. To start off, we will provide definitions for the Rényi
entropy and divergence.

Definition 8 (Rényi Entropy). For a classical state p ∈ Pd, the Renyi α-entropy is defined as

Hα(p) :=
1

1− α
log
( d∑
i=1

pαi

)
, (1.14)

where 0 ≤ α ≤ ∞. Here, Hα(p) for α = 0, 1,∞ is defined by taking the limit. It is
straightforward to see that

H0(p) = log(rank[p]) (1.15)

H∞(p) = − log(max
i

{pi}) (1.16)

We also denote the quatities by Hmin(p) := H∞(p) and Hmax(p) := H0(p), which referred
as min and max entropies, respectively. It is obvious that

Hα(p) ≥ 0. (1.17)

Next, we shall address the limit α → 1 where Renyi Entropy boils down to Shannon en-
tropy.

Proposition 3. In the limit α→ 1 Renyi α- entropy converges to Shannon entropy i.e.,

lim
α→1

Hα(p) = H(p). (1.18)

Proof. Using L’Hospital’s rule we shall calculate this limit limα→1Hα(p) as

lim
α→1

1

1− α
log
( d∑
i=1

pαi

)
= lim

α→1
−
(∑d

i=1 p
α
i log pi∑d

i=1 p
α
i

)
= −

d∑
i=1

pi log pi = H(p). (1.19)

.

We next consider the Renyi α- divergence for classical states p, q ∈ Pd with 0 ≤ α ≤ ∞.

Definition 9 (Renyi α- divergence). For d- dimensional classical state p and q, the Renyi α-
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divergence is defined between p and q as

Dα(p∥q) :=
1

α− 1
log
( d∑
i=1

pαi
qα−1
i

)
. (1.20)

For α = 0, 1,∞, we formulate them by taking the limit. It is easy to see the following:

D0(p∥q) = − log
( ∑
i:pi>0

qi

)
,

D∞(p∥q) = log
(
max
i

{pi
qi

})
. (1.21)

Contrary to the entropy case, as before we shall referDmin(p∥q) = D0(p∥q) andDmax(p∥q) =
D∞(p∥q). Now, we shall calculate the limiting case of α → 1. In this limit we shall show
that Dα(p∥q) converges to KL divergence.

Proposition 4. In the limit α→ 1 Renyi α- divergence converges to relative entropy i.e.,

lim
α→1

Dα(p∥q) := D(p∥q). (1.22)

Proof. We shall use the L’Hospital rule as in proposition 3 to calculate the limit α→ 1

lim
α→1

Dα(p∥q) = lim
α→1

1

α− 1
log
( d∑
i=1

pαi
qα−1
i

)
= lim

α→1

1(∑d
i=1

pαi
qα−1
i

) d

dα

( d∑
i=1

pαi
qα−1
i

)
(1.23)

= lim
α→1

1(∑d
i=1

pαi
qα−1
i

) d∑
i=1

(
q1−αi pαi log pi − pαi q

1−α
i log qi

)
=

d∑
i=1

(pi log pi − pi log qi) = D(p∥q).

To extend this further, one can introduce a more general classes divergences called f -
divergence where f is a real valued convex function. This general classical divergences will
allow us to prove some important properties of Renyi α divergences. We shall start with
the formal definition of convexity and concavity.

Definition 10 (Convex and concave function). A function f : R → R is convex if ∀λ ∈ [0, 1],

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y), (1.24)

and f is concave if
f
(
λx+ (1− λ)y

)
≥ λf(x) + (1− λ)f(y). (1.25)

Moreover, we shall say f is strictly convex (concave) if the inequalities are strict.

Now we shall define f - divergence as follows:

11



Chapter 1. Mathematical preliminaries 1.3. Entropy and divergence of classical states

Definition 11 (f -divergence). Let f : R≥0 → R be a convex function such that f(x) is strictly
convex at x = 1 and f(1) = 0. For two classical states p, q ∈ Pd, f divergence is defined as
follows:

Df (p∥q) =
d∑
i=1

qif
(pi
qi

)
. (1.26)

Employing Jensen’s inequality for convex function one can show the non-negativity of
f -divergence i.e., Df (p∥q) ≥ 0 in the following way:

d∑
i=1

qif
(pi
qi

)
≥ f

( d∑
i=1

qi
pi
qi

)
= f(1) = 0. (1.27)

The equality holds iff p = q. We shall now consider three special cases of convex function
f that leads to the familiar KL divergence, trace and infidelity distances.

1. Taking f(x) = x log x reduces Df (p∥q) to relative entropy D(p∥q).

2. Taking f(x) = 1
2 |x− 1| reduces Df (p∥q) to trace distance DTr(p, q).

3. Taking f(x) = 1−
√
x reduces Df (p∥q) to infidelity distance D(p, q).

Next we shall show that the Data processing inequality does hold for f -divergences.

Lemma 5. Let f be a convex function and p, q, p̃, q̃ ∈ Pd are classical states where q and q̃ are
full rank. If p̃ = Tp and q̃ = Tq hold for stochastic matrix T , then

Df (p∥q) ≥ Df (p̃∥q̃). (1.28)

Proof. We proceed the proof by noting

p̃j
q̃j

=

d∑
i=1

Tjiqi
q̃j

pi
qi

;

d∑
i=1

Tjiqi
q̃j

= 1. (1.29)

From the convexity of f and employing Jensen’s inequality

Df (p̃∥q̃) =

d∑
j=1

q̃jf
( p̃j
q̃j

)
=

d∑
j=1

q̃jf

(∑d
i=1 Tjipi
q̃j

)

≤
d∑
j=1

d∑
i=1

q̃j
Tjiqi
q̃j

f
( p̃j
q̃j

)
=

d∑
i=1

qif
(pi
qi

)
= Df (p∥q). (1.30)

Next we shall prove some important properties of α-Renyi divergences employing the
properties of f -divergences. We shall prove

12



Chapter 1. Mathematical preliminaries 1.3. Entropy and divergence of classical states

1. Non-negativity.

2. Data processing inequality.

3. Monotonicity under the parameter α.

Proposition 6 (Non-negativity of the Renyi α divergence). For 0 < α ≤ ∞,

Dα(p∥q) ≥ 0. (1.31)

Proof. Consider fα(x) = xα − 1, then fα(x) is convex for 1 < α <∞. Then

Df (p∥q) =
d∑
i=1

qif
(pi
qi

)
=

d∑
i=1

qi

(pi
qi

)α
− 1 =

d∑
i=1

pαi
qα−1
i

− 1 ≥ 0, (1.32)

where the last inequality follows from Df (p∥q) ≥ 0. This implies that

d∑
i=1

pαi
qα−1
i

≥ 1 ⇒ log
( pαi
qα−1
i

)
≥ 0 ⇒ 1

α− 1
log
( pαi
qα−1
i

)
≥ 0

⇒ Dα(p∥q) ≥ 0. (1.33)

For 0 < α < 1, fα is concave, and thus we have the opposite inequality to the above.

Proposition 7 (Data processing inequality for Renyi α-divergence). For any stochastic matrix
T , the Renyi α-divergence with 0 ≤ α ≤ ∞ satisfies

Dα(p∥q) ≥ Dα(Tp∥Tq). (1.34)

Proof. For 0 < α < 1 and 1 < α < ∞, we apply lemma 5 with fα(x) = xα and take the
logarithm of it, by noting the sign of α− 1. For α = 0, 1, ∞, we can take the limit.

It is worth mentioning the connection α entropy and α divergence. Employing the uni-
form distribution u, the α-divergence and α- entropy related as

Hα(p) = log d−Dα(p∥u), (1.35)

from which we obtain Hα(p) ≤ log d. From the monotonicity of α- divergence, we have for
any bistochastic matrix T we can get the monotonicity of α -entropy

Hα(p) ≥ Hα(Tp). (1.36)

Next we shall show that Renyi α- divergence increases with the parameter α.

13
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Proposition 8 (Monotonicity under parameter α). For α ≤ α′, we have

Dα(p∥q) ≤ Dα′(p∥q), (1.37)

and thus
For α ≤ α′, Hα(p) ≥ Hα′(p). (1.38)

Proof. For α < α′ taking f(x) = x
(α−1)

(α′−1) , we see that f(x) is concave when 1 < α < α′ < ∞,
while it is convex for 0 < α < α′ < 1 and 0 < α < 1 < α′. From the Jensen’s inequality, and
noting the sign of α− 1, we obtain

Dα(p∥q) =
1

α− 1
log

(∑
i

pi

(pi
qi

)α−1
)

=
1

α− 1
log

(∑
i

pi

(pi
qi

) α−1
α′−1

(α′−1)
)

≤ 1

α′ − 1
log

(∑
i

pi

(pi
qi

)α′−1
)

= Dα′(p∥q). (1.39)

For α, α′ = 0, 1, ∞ we take the limit. Invoking equality from Eq. (1.35), we immediately
see

For α ≤ α′, Hα(p) ≥ Hα′(p). (1.40)

In the next section we shall describe the interconvertibility among different classical
states using the idea of majorization. Majorization is a mathematical concept that describes
the relationship between two sets of numbers. It is commonly used to compare probabil-
ity distributions, analyze inequalities, and study the properties of quantum systems. The
majorization theory allows us to make quantitative statements about the ordering of dif-
ferent classical states and provide the necessary and sufficient condition for transformation
among different classical states that we shall see shortly.

1.4 Ordering the classical states: majorization and relative majoriza-
tion

In this section, we will describe the fundamentals of majorization and relative majorization,
and their practical applications in interconverting between different classical states. Much
like how the entropy function characterizes the transition between different equilibrium
states, majorization fully characterizes the transition between different non-equilibrium

14
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classical states, either in the absence of a heat bath or when there is a heat bath present
at an infinite temperature. Meanwhile, relative majorization is used to completely charac-
terize the interconversion among different non-equilibrium states in the presence of a heat
bath. We will discuss this in greater detail in the upcoming chapter. For now, we will start
by exploring the majorization of classical states.

1.4.1 Majorization of classical states

When a bistochastic matrix maps a classical state p to q, the Shannon entropy between
the two states satisfies the monotonicity condition, where H(q) ≥ H(p). However, it is
important to note that the converse does not hold true. The Shannon entropy alone cannot
serve as a sufficient condition for the convertibility between non-equilibrium classical states
using a bistochastic matrix. In resource theory, the Shannon entropy of classical states is
classified as a monotone under bistochastic matrix, but it is not a complete monotone.

For a classical states (p1, . . . , pd) := p ∈ Pd we define ordered classical state by arrang-
ing the elements of p in decreasing order as p↓1 ≥ p↓2 ≥ . . . p↓d. Now we shall define the
majorization among classical states.

Definition 12 (Majorization). For two vectors p and p′, we say that p majorizes p′ and write
p ≻ p′, if

k∑
i=1

p↓i ≥
k∑
i=1

p
′↓
i , ∀1 ≤ k ≤ d. (1.41)

where p↓ and p′↓ denote non-increasingly ordered permutations of p and p′.

This definition implies p is more ordered than p′. Any classical states p ∈ Pd satisfies

v ≻ p ≻ u where

v = (1, . . . , 0) ; u =
1

d
(1, . . . , 1). (1.42)

Thus we can say v is the most ordered classical states whereas u is the least ordered classical
states. Next we shall introduce Lorenz curves that will enable us to visualize the idea of
majorization.

Definition 13 (Lorenz curves). Let L(p) be the piecewise linear curve in R2 obtained by
joining the points (k,

∑k
i=1 p

↓
i ) for k = {1, . . . , d}. We say that L(p) ≻ L(q) if and only if the

curve L(p) all lies not below L(q) and the two curves end at the same height.

As an example, here we shall present the Lorenz curves for some classical states in P3.
Now we are in a stage to describe the transition among different classical states and it’s

correspondence with majorization. This is stated in the following theorem:

Theorem 9. Let p and q be the d dimensional classical states. Then following statements are
equivalent.

15
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Figure 1.1: Lorenz curve: In this diagram we present the Lorenz curve of classical states
p̄δ = (0.8, 0.2, 0)
(in orange), p = (0.6, 0.3, 0.1) (in blue), pδ = (0.4, 0.3, 0.3) (in green). This diagram is taken

from [50].

1. p ≻ q.

2. For all t ∈ R,
d∑
i=1

|pi − t| ≥
d∑
i=1

|qi − t|. (1.43)

3. For any convex function f : R≥0 → R

d∑
i=1

f(pi) ≥
d∑
i=1

f(qi). (1.44)

4. There exists a bistochastic matrix T such that Tp = q.

Proof. We shall prove the theorem in the following manner:

Statement 4 ⇒ Statement 3 ⇒ Statement 2 ⇔ Statement 1 ⇒ Statement 4 (1.45)

Statement 4 ⇒ Statement 3
Given q = Tp, we can have the following:

d∑
i=1

f(qi) =

d∑
i=1

f(

d∑
j=1

Tijpj) ≤
d∑
i=1

d∑
j=1

Tijf(pj) =

d∑
j=1

( d∑
i=1

Tij

)
f(pj) =

d∑
j=1

f(pj), (1.46)
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where to write the last equality we use
∑d

i=1 Tij = 1.
Statement 3 ⇒ Statement 2

For any t ∈ R, the function f(x) = |x− t| is convex function. One can simply check this
as follows: For any λ ∈ [0, 1] and x, y ∈ R

f(λx+ (1− λ)y) = |λ(x− t) + (1− λ)(y − t)| ≤ λ|x− t|+ (1− λ)|y − t|

= λf(x) + (1− λ)f(y) (1.47)

Thus, taking the function f(x) = |x− t|, proves the claim.
Statement 2 ⇔ Statement 1

Suppose statement 1 holds true. Let q↓k+1 ≤ t ≤ q↓k. Note that
∑d

i=1 qi =
∑d

i=1 pi = 1.
This implies

d∑
i=1

|qi − t| =
k∑
i=1

(q↓i − t)−
d∑

i=k+1

(q↓i − t) ≤
k∑
i=1

(p↓i − t)−
k+1∑
i=1

(p↓i − t) ≤
d∑
i=1

|pi − t|, (1.48)

that implies statement 2.
Now assume that statement 2 holds true. Since,

∑d
i=1 qi =

∑d
i=1 pi = 1 , taking t = p↓k,

then

d∑
i=1

|pi − t| =
k∑
i=1

(p↓i − t)−
d∑

i=k+1

(p↓i − t) = 2
k∑
i=1

p↓i + (d− 2k)t− 1. (1.49)

On the other hand,

d∑
i=1

|qi − t| ≥
k∑
i=1

(q↓i − t)−
d∑

i=k+1

(q↓i − t) = 2

k∑
i=1

qi + (d− 2k)t− 1. (1.50)

Thus statement 2 leads to the following conclusion:

d∑
i=1

|pi − t| ≥
d∑
i=1

|qi − t|

⇒ 2
k∑
i=1

pi + (d− 2k)t− 1 ≥ 2
k∑
i=1

qi + (d− 2k)t− 1

⇒
k∑
i=1

p↓i ≥
k∑
i=1

q↓i ⇒ p ≻ q, (1.51)

which is statement 1.
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Statement 1 ⇒ Statement 4

We shall prove the implication using the hyperplane separation theorem. Consider B is
the set of d× d bistochastic matrices and define

B(p) = {Tp such that T ∈ B}. (1.52)

Since the convex sum of any two bistochastic matrices is bistochastic, we can conclude that
B(p) is a convex set. We shall do the proof by contradiction. Suppose p ≻ q but q /∈ B(p).
That implies there exists a vector r ∈ R(d) such that for all bistochastic matrix T , we have

(Tp, r) < (q, r), (1.53)

where ( · , · ) denotes the standard inner product or dot product. Since the inequality in Eq.
(1.53) does not change with the addition of a constant vector, thus we can assume all the
components of r are non-negative. Let P and R are permutation matrices such that

p = Pp↓ ; r = Rr↓. (1.54)

Then we have the following:

(p↓, r↓) = (R†P †p, r) = (Xp, r), (1.55)

where X = R†P † is a permutation matrix and thus T is bistochastic. Thus we can write

(p↓, r↓) = (Xp, r) < (q, r) = (R†q, r↓). (1.56)

But in general if x,y ∈ Rd satisfy x ≻ y, then for any z ∈ Rd the following inequality
holds:

(x↓,w↓) ≥ (y↓,w↓). (1.57)

From the statement 1, p ≻ q it follows that p ≻ R†q as R† is a permutation matrix. Employ-
ing Eq. (1.57) we can write

(p↓, r↓) ≥ ((R†q)↓, r↓) ≥ (R†q, r↓). (1.58)

Therefore, inequality in Eq. (1.58) and Eq. (1.56) contradict with each other. Therefore, we
can conclude that q ∈ B(p). In other words, q = Tp where T is a bistochastic matrix.

We shall conclude this section by briefly describing Schur convex functions that are very
useful to analyze the work extraction and performance of the heat engine. We shall see this
in the upcoming chapter. We shall define Schur convexity as follows:
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Definition 14 (Schur Convexity). A function F : Rd → R is said to be Schur convex if

p ≻ q ⇒ F (p) ≥ F (q). (1.59)

On the other hand if p ≻ q ⇒ F (p) ≤ F (q), then F is called Schur concave.
Shannon Entropy is a Schur concave function. This is easy to see as p ≻ q is equivalent to
Tp = q where T is a bistochastic matrix. Entropy is non-decreasing when classical state
is transformed under Bistochastic map which we have seen in Eq. (1.12). Now we shall
introduce the relative majorization for classical states.

1.4.2 Relative majorization of classical states

The focus of this section is to discuss the concept of relative majorization, also known as d-
majorization, which is a generalization of majorization for classical distributions. Relative
majorization was originally introduced in the context of statistical comparison as a tool of
examining convertibility between pairs of distributions. In contrast to ordinary majoriza-
tion, which deals with convertibility from one distribution to another, relative majorization
is concerned with convertibility between pairs of distributions. A specific type of relative
majorization known as thermo-majorization characterizes a necessary and sufficient condi-
tion for state convertibility by thermodynamic processes at finite temperature β > 0.

To define relative majorization we need to introduce the concept of relative Lorenz
curves. This is a generalization of Lorenz curves as introduced in definition 13.

Definition 15 (Relative Lorenz curves). Consider a pair of probability vectors p and q given
by

p = (p1, . . . , pd)
T ; q = (q1, . . . , pd)

T , (1.60)

where q is full rank. We define the permutation π that arranges the components of p and q

in the following way:

pπ(1)

qπ(1)
≥
pπ(2)

qπ(2)
. . . ≥

pπ(d)

qπ(d)
. (1.61)

Let Lq(p) be a piecewise linear curve in R2 obtained by joining
(∑k

i=1 qπ(i),
∑k

i=1 pπ(i)

)
for

k = 1, . . . , n. The curve Lq(p) is referred as relative Lorenz curve of the pair (p, q)

Definition 16 (Relative majorization). Consider two tuple of probaility vectors where (p, q)

and (p̃, q̃) with q and q̃ having full rank

p = (p1, . . . , pd)
T ; q = (q1, . . . , pd)

T ,

p̃ = (p̃1, . . . , p̃d)
T ; q̃ = (q̃1, . . . , q̃d)

T . (1.62)
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We say (p, q) d-majorizes or relatively majorizes (p̃, q̃) i.e., (p, q) ≻ (p̃, q̃) if and only if the
relative Lorenz curve Lq(p) does not lies below the relative Lorenz curve Lq̃(p̃).

Next, we shall describe the tool called embedding that connects the concepts of majoriza-
tion and relative majorization.

1.4.2.1 Embedding: Relative majorization and majorization correspondance

In this section, we shall show the relation between majorization and relative majorization
for classical states using the idea of the embedding map. We shall define the embedding
map w.r.t a classical state q as follows:

Definition 17 (Embedding map). Consider a given classical state q whose elements are ap-
proximated by rational numbers (Since any irrational number can be approximated with
arbitrarily high accuracy with a rational number, this can be assumed without loss of gen-
erality)

q =
(D1

D
, . . . ,

Dd

D

)
, D =

d∑
i=1

Di. (1.63)

Then an embedding map Γq w.r.t. classical state q maps a d-dimensional classical state p

and to D-dimensional classical state p̂ as follows:

Γq : Pd −→ PD
Γq(p) =

( p1
D1

. . .
p1
D1︸ ︷︷ ︸

D1 times

p2
D2

. . .
p2
D2︸ ︷︷ ︸

D2 times

. . .
pd
Dd

. . .
pd
Dd︸ ︷︷ ︸

Dd times

)
:= p̂. (1.64)

It is straightforward to see the embedding map transforms q to q̂ as follows:

q̂ = Γq(q) =
( 1

D
. . .

1

D︸ ︷︷ ︸
D1 times

1

D
. . .

1

D︸ ︷︷ ︸
D2 times

. . .
1

D
. . .

1

D︸ ︷︷ ︸
Dd times

)
. (1.65)

For a d-dimensional classical state s having jth element 1 and all the element 0, the embed-
ded version of the classical state

ŝ = Γq(s) =
(

0 . . . 0︸ ︷︷ ︸
D1 times

0 . . . 0︸ ︷︷ ︸
D2 times

. . .
1

Dj
. . .

1

Dj︸ ︷︷ ︸
Dj times

. . . 0 . . . 0︸ ︷︷ ︸
Dd times

)
. (1.66)

By writing down the matrix representing embedding map Γq explicitly, one can write the
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left inverse as follows:

Γq =



1
D1

0 . . . 0
...

... . . . 0

1
D1

... . . . 0

0 1
D2

. . . 0
...

... . . . 0

0 1
D2

. . . 0
...

... . . .
...

0 0 . . . 1
Dd

...
... . . .

...

0
... . . . 1

Dd



, Γ−1
q =


1 . . . 1 0 . . . 0 . . . . . . . . . 0

0 . . . 0 1 . . . 1 . . . . . . . . . 0
...

...
...

...
...

...
...

...
...

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1

 . (1.67)

where in each column i of Γq and each row i of Γ−1
q there are Di non-zero elements. The

following theorem characterizes the transformation of pair of classical states via stochastic
matrix in terms majorization of embedded classical states.

Theorem 10. Consider two pairs of classical states (p, q) and (p̃, q̃) such that

p̃ = Tp ; q̃ = Tq, (1.68)

where T is a stochastic matrix. Then Γqp ≻ Γq̃p̃.

Proof. We shall prove this theorem via constructing a bistochastic matrixB such thatBΓq(p) =

Γq̃(p̃). We define B = Γq̃TΓ
−1
q . It is straight forward to check that

BΓqp = Γq̃TΓ
−1
q Γqp = Γq̃Tp = Γq̃p̃. (1.69)

Next we shall show that B is bistochastic. To do show, we first show that B is stochastic. It
is easy to check this by summing all the elements of a column in computational basis |i⟩ i.e.,

For fixed j,
∑
i

⟨i|Γq̃TΓ
−1
q |j⟩ = 1. (1.70)

Since any stochastic matrix preserves a uniform classical state is bistochastic, we shall show
Bu = u where u is the uniform classical state.

Bu = Γq̃TΓ
−1
q u = Γq̃TΓ

−1
q Γqq = Γq̃Tq = Γq̃q̃ = u. (1.71)

Now we shall establish the connection between relative majorization and majorization
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in the following theorem.

Theorem 11 (Blackwell’s theorem). Let p, q, p̃, q̃ are d- dimensional probability vector where q
and q̃ have full rank. Then the following statements are equivalent.

1. (p, q) ≻ (p̃, q̃).

2. ∀t ∈ R we have
d∑
i=1

|pi − tqi| ≥
d∑
i=1

|p̃i − tq̃i|. (1.72)

3. For every real-valued convex function f : R → R we have

d∑
i=1

qif

(
pi
qi

)
≥

d∑
i=1

q̃if

(
p̃i
q̃i

)
. (1.73)

4. There exists a stochastic matrix T such that p̃ = Tp and q̃ = Tq.

Proof. This theorem is analogous to theorem 9 in the majorization picture. We shall see that
part of the proof of this theorem overlaps with the proof of theorem 9. We shall prove the
theorem in the following manner:

Statement 4 ⇒ Statement 3 ⇒ Statement 2 ⇔ Statement 1

Statement 2 ⇔ Statement 4 (1.74)

Statement 4 ⇒ Statement 3

It follows straightforwardly from lemma 5.
Statement 3 ⇒ Statement 2

It is easy to prove that by taking f(x) = |x−t| for t ∈ R. We showed that the f(x) = |x−t|
is convex in the proof of theorem 9.

Statement 2 ⇔ Statement 1

Let π and π̃ are the permutation that orders the component in the following way:

pπ(1)

qπ(1)
≥
pπ(2)

qπ(2)
. . . ≥

pπ(d)

qπ(d)
,

p̃π̃(1)

q̃π̃(1)
≥
p̃π̃(2)

q̃π̃(2)
. . . ≥

p̃π̃(d)

q̃π̃(d)
. (1.75)
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Note that,

[0, qπ(1)), [qπ(1), qπ(1) + qπ(2)), . . . [qπ(1) + . . .+ qπ(d−1), 1],

[0, q̃π̃(1)), [q̃π̃(1), q̃π̃(1) + q̃π̃(2)), . . . [q̃π̃(1) + . . .+ q̃π̃(d−1), 1], (1.76)

are partition of the interval [0, 1]. Take q′ = (q′1, . . . q
′
d′−1) such that

[0, q′1), [q
′
1, q

′
1 + q′2), . . . [q

′
1 + . . .+ q′d′−1, 1], (1.77)

gives refinement of both partition given in Eq. (1.76) of the interval [0, 1].
Now we shall take the probabiity vector p′ and p̃′ such that relative Lorenz curves for

(p, q) is same with (p′, q′) and relative Lorenz curves for (p̃, q̃) is same with (p̃′, q̃′) i.e

Lq(p) = Lq′(p′) ; Lq̃(p̃) = Lq′(p̃′). (1.78)

Therefore, it is sufficient to show that statement 1 is equivalent to statement 2 for the pair
(p′, q′) and (p̃′, q′) since (p, q) ≻ (p̃, q̃) ⇔ (p′, q′) ≻ (p̃′, q′). We shall prove it in the same
way as theorem 9.

Suppose statement 1 holds true i.e., (p′, q′) ≻ (p̃′, q′). Consider π′ and π̃′ is the permu-
tation that leads to following ordering:

p′π′(1)

q′π′(1)

≥
p′π′(2)

q′π′(2)

. . . ≥
p′π′(d′)

q′π′(d′)

,

p̃′π̃(1)

q′π̃′(1)

≥
p̃′π̃(2)

q′π̃′(2)

. . . ≥
p̃′π̃(d′)

q′π̃′(d′)

. (1.79)

Let
p̃π̃′(k+1)

q′
π̃′(k+1)

≤ t ≤ p̃π̃′(k)
q′
π′(k)

. Note that
∑d

i=1 qi =
∑d

i=1 pi = 1. This implies

d∑
i=1

|p̃′i − tq′i| =
d∑
i=1

q′i

∣∣∣ p̃′i
q′i

− t
∣∣∣ = k∑

i=1

q′π̃′(i)

( p̃π̃′(i)

q′π̃′(i)

− t
)
−

d∑
i=k+1

q′π̃′(i)

( p̃π̃′(i)

q′π̃′(i)

− t
)

≤
k∑
i=1

q′π′(i)

(p′π′(i)

q′π′(i)

− t
)
−

d∑
i=k+1

q′π′(i)

(p′π′(i)

q′π′(i)

− t
)

≤
d∑
i=1

q′i

∣∣∣p′i
q′i

− t
∣∣∣ =∑

i

|p′i − tq′i|, (1.80)

that implies statement 2. Other part of the proof can be done in the same manner of the
theorem 9.

Statement 2 ⇒ Statement 4
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Now we shall prove the non-trivial part of this theorem. Let q and q̃ as

q =
1

D
(D1 D2 . . . Dd) ; q̃ =

1

D
(D̃1 D̃2 . . . D̃d), (1.81)

where
∑

i=1Di =
∑

i=1 D̃i = D which we can assume without loss of generality. Let Γq(p)

and Γq̃(p̃) are embedded version of p and p̃ respectively i.e.,

Γq(p) =
( p1
D1

. . .
p1
D1︸ ︷︷ ︸

D1 times

p2
D2

. . .
p2
D2︸ ︷︷ ︸

D2 times

. . .
pd
Dd

. . .
pd
Dd︸ ︷︷ ︸

Dd times

)
:= p̂,

Γq̃(p̃) =
( p̃1

D̃1

. . .
p̃1

D̃1︸ ︷︷ ︸
D̃1 times

p̃2

D̃2

. . .
p̃2

D̃2︸ ︷︷ ︸
D̃2 times

. . .
p̃d

D̃d

. . .
p̃d

D̃d︸ ︷︷ ︸
D̃d times

)
:= ˆ̃p. (1.82)

Taking from statement 2 of the theorem we can write ∀t ∈ R

D∑
i=1

∣∣∣ ˆ̃pi − t

D

∣∣∣ ≤ D∑
i=1

∣∣∣p̂i − t

D

∣∣∣. (1.83)

Defining t/M = ϵ we have for all ∀ϵ ∈ R
∑D

i=1 | ˆ̃pi− ϵ| ≤
∑D

i=1 |p̂i− ϵ|. From theorem 9 we
conclude

ˆ̃p = Γqp ≻ Γq̃p = ˆ̃p, (1.84)

and thus
BΓqp = Γq̃p, (1.85)

for a D × D bistochastic matrix B. Then it is easy to see from Eq. (1.82) and invoking
unitality of bistochastic matrix, that the map

Γ−1
q̃ BΓqq = q̃ ; Γ−1

q̃ BΓqp = p̃. (1.86)

Moreover from the matrix representation of stochastic map given in Eq. (1.67) we can show
that Γ−1

q̃ BΓq is a stochastic matrix by showing all the entries in each of the column of matrix
representation of Γ−1

q̃ BΓq added to 1 as follows:

For fixed j,
∑
i

⟨i|Γ−1
q̃ BΓq|j⟩ = ⟨u|BΓq|j⟩ = ⟨u|Γq|j⟩ = 1, (1.87)

where |u⟩ is a uniform column vector with all the elements 1 and {|i⟩}di=1 is the compu-
tational basis in d dimension.

Next, we shall provide the conditions for state transformations in terms of min and max
divergences.
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Figure 1.2: The Lorenz curve of (p, q) can be graphically represented alongside two diver-
gences: D0(p∥q) and D∞(p∥q), where eD0(p∥q) =

∑
i:pi>0 qi and e−D∞(p∥q) = maxi{piqi }

Theorem 12 (Conditions for state conversion). 1. If (p, q) ≻ (p̃, q̃), then

D0(p∥q) ≥ D0(p̃∥q̃) D∞(p∥q) ≥ D∞(p̃∥q̃) (1.88)

2. (p, q) ≻ (p̃, q̃) holds, if
D0(p∥q) ≥ D∞(p̃∥q̃) (1.89)

Proof. These are obvious from Fig. 1.2. We note that statement 1 is nothing but the mono-
tonicity of D0(p∥q) and D∞(p∥q), as shown in theorem 11

We shall conclude this section with a special case of relative majorization called ther-
momajorization. This is a crucial building block for the resource theory of thermodynamics.
Consider a relative majorization (p, q) ≻ (p̃, q̃) such that q = q̃. Such a relative majorization
is referred to as thermomajorization.

From the definition 16 of relative majorization, we know that q have full rank. More-
over, any full rank classical state q can be understood as classical state that arises from the
diagonal elements of a Gibbs state with some Hamiltonian i.e.,

∀q ∈ Pd with rank(q) = d ∃ Hamiltonian H and inverse temperature β > 0

such that q = Diag
( e−βH

Tre−βH
)

(1.90)
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that justifies the name thermomajorisation. Thus, we shall define formally thermomajoriza-
tion as

Definition 18 (Thermomajorization). Let p, p̃, q are d-dimensional classical state. We say
p thermomajorizes p̃ if (p, q) ≻ (p̃, q).

We shall talk about thermo-majorization in more detail in the next chapter to describe
thermal operations. In the next section, we shall talk about majorization and relative ma-
jorization in presence of a catalyst.

1.5 Catalytic Majorization

In this section, we shall discuss majorization in presence of a catalyst. The concept of cat-
alytic majorization involves the idea of a catalyst, a classical state that enables the transfor-
mation of a quantum state into another state, and provides necessary and sufficient condi-
tions of the extent to which one state can be transformed into another with the help of a
catalyst.

Definition 19 (Catalytic Majorization). Consider p and p̃ are classical states in d-dimension.
We say that p catalytically majorizes p̃, or p trumped into p̃, if there is a classical state
c ∈ PdC such that

p⊗ c ≻ p̃⊗ c. (1.91)

We shall show a non-trivial example of trumping. Consider classical state p and p̃

p =
( 4

10

4

10

1

10

1

10

)T
; p̃ =

(1
2

1

4

1

4
0
)T

; . (1.92)

One can check easily that p ≻ p̃ does not hold. But p can be trumped into p̃ with the aid of
a catalyst c is given by

c =
( 6

10

4

10

)
. (1.93)

The necessary and sufficient condition for catalytic majorization or trumping is proven in
[51, 52] that can be stated as follows.

Theorem 13. Consider p and q are classical states with full rank in d-dimensions, and p↓ ̸= q↓.
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Then, it is possible to transform p into q if and only if fα(p) > fα(q) for all α ∈ (−∞,+∞), where

fα(p) =



log
(∑

i p
α
i

)
, for α > 1∑

i pi log pi, for α = 1

−
∑

i log pi, for α = 0

−
∑

i log pi, for α = 0

log
(∑

i p
α
i

)
, for 0 < α < 1

−
∑

i log pi, for α < 0


(1.94)

The statement in theorem 13 is that fα is equal to the Renyi α-entropy (including nega-
tive α) up to a negative coefficient, except for α = 0. To obtain the Renyi 0-entropy, a slight
deviation in the final state is allowed for the α = 0 case.

Lemma 14 (Proposition 4 of [34]). Consider the classical state p, p̃ ∈ Pd . Then, the following are
equivalent.

1. For all δ > 0, there is a classical state p̃δ such that p̃ can be trumped into p̃δ such that
D(p̃, p̃δ) ≤ δ.

2. Hα(p) ≥ Hα(p̃) holds true for all α ∈ (−∞,+∞).

In [34], authors present an alternative definition of approximate trumping, in which the
required and sufficient condition is given by Hα(p) ≤ Hα(p̃) but only for α values ranging
from 1 to ∞.

Definition 20 (Relative catalytic majorization). Consider the classical states p, q, p̃, q̃ ∈ Pd.
We say that (p, q) relatively majorizes (p̃, q̃) with the assistance of a catalyst if there exist d′

dimensional classical states b, c such that

(p⊗ b, q ⊗ c) ≻ (p̃⊗ b, q̃ ⊗ c). (1.95)

In the above definition, it is often possible to take b and c as the uniform classical state
u. In the case of thermomajorization, this implies the Hamiltonian of the catalyst is trivial.

The theorem 9 can be further generalized to the following form.

Theorem 15 (Theorem 17 of [34]). Let p, q, p̃, q̃ ∈ Pd are full rank classical states. Then the
following statements are equivalent.

1. For any δ > 0, there exists a classical state p′
δ ∈ Pd such that (p, q) relatively catalytically

majorizes (p̃δ, q̃) such that DTr(p̃,pδ) ≤ δ.

2. Dα(p∥q) ≤ Dα(p̃∥q̃) for all α ∈ (−∞,+∞).

Moreover, the classical state of the catalyst can be taken as a uniform state.
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The above theorem implies that the α-divergences with −∞ < α < +∞ constitute a
complete set of monotones in the presence of a catalyst.

If we remove the constraint that the catalyst must return to its initial state without any
correlation with the system, the characterization of state convertibility changes significantly.
According to [53], any state conversion is achievable when this requirement is absent, re-
gardless of the system and catalyst sizes, provided that the error in the final state is negligi-
ble and unrelated to their sizes. In other words, the presence of a non-exact catalyst causes
the majorization structure to become trivial, resulting in what is known as the embezzling
phenomenon. In the domain of thermodynamics [34], this phenomenon suggests that an
auxiliary system whose operation is not precisely cyclic can be "embezzled" to surpass the
standard thermodynamic limit and produce more work.

Theorem 16 (Main result of [53]). For any δ > 0 and any classical states p, q ∈ Pd, there exists a
catalyst in the state c ∈ Pd′ and a classical state r ∈ Pdd′ such that p⊗c ≻ r andDTr(r, q⊗c) < δ.

It has been established that there are various ways to create a nontrivial non-exact ma-
jorization structure by modifying the setup from the embezzling phenomenon. In this sce-
nario, we assume that the change in the catalyst state is almost exact. Interestingly, the
KL divergence is often a single complete monotone for such setups, as explained below.
Consequently, when there is such a modestly non-exact catalyst present, the standard KL
divergence can entirely characterize thermodynamic transformation. In [34] it was demon-
strated that if the approximation error is modestly scaled with the dimension of the catalyst,
then the majorization condition is only determined by the Shannon entropy with small cor-
rection terms.

Theorem 17. Let us consider classical state p, p̃ ∈ Pd.

1. Let δ ≥ 0. If there exist a classical state r ∈ PN of a catalyst and a classical state r̃ ∈ PdN

such that r̃ ≺ p⊗ r and DTr(r̃, p̃⊗ r) ≤ δ
2 lnN , then

H(p) ≤ H(p̃)−
(
δ +

δ

ln d
+ h

(
δ

lnN

))
, (1.96)

where h(x) := −x lnx− (1− x) ln(1− x) is the binary entropy function.

2. If H(p) < H(p̃), then for any sufficiently large N , there exist a classical state r ∈ PN of a
catalyst and a classical state r̃ ∈ PdN such that r̃ ≺ p⊗r andDTr(r̃, p̃⊗r) ≤ exp(−c lnN)

for some constant c > 0.

Now we will explore a situation where several subsystems within the catalyst can gener-
ate correlations in the ultimate state [54, 55]. Consequently, the autonomy of the subsystems
within the catalyst can be utilized as a means of transforming the state. The following the-
orem serves as an instance of the majorization case (for the thermo-majorization case, refer
to theorem 1 in [54]).
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Theorem 18. (Theorem 1 of [55]) Consider classical states p, p̃ ∈ Pd with p↓ ̸= p̃↓. The following
are equivalent:

1. There exist classical state r1, r2, . . . , rk ∈ PN of a k-partite catalyst and a distribution r ∈
PkN with marginals r1, r2, . . . , rk such that p̃⊗ r ≺ p⊗ r1 ⊗ r2 ⊗ · · · ⊗ rk.

2. H0(p) ≤ H0(p̃) and H(p) < H(p̃) hold.

Moreover, one can choose k = 3.

Finally, we briefly examine the case where a limited amount of correlation between the
system and the catalyst is permitted in the final state, while the catalyst’s marginal state
must remain identical to the initial state. This transformation is known as correlated-catalytic
transformation [56, 57].

Theorem 19. Consider classical state p, p̃ ∈ Pd with p ̸= p̃. The following are equivalent:

1. There exists a distribution r ∈ PN of a catalyst and a classical state r̃ ∈ PdN such that
r̃ ≺ p⊗ r and the marginal classical state of r̃ equal p̃ and r.

2. The inequalities H0(p) ≤ H0(p̃) and H(p) < H(p̃) satisfies.

Moreover, for any δ > 0, one can take r̃ with which the mutual information between the
system and the catalyst is smaller than δ.

This theorem has further been extended to relative majorization in theorem 1 of [58], and
to approximate relative majorization, as demonstrated in theorem 7 of [59] and theorem 2
of [58]. Notably, the characterization of approximate relative majorization is solely based
on the KL divergence.

Theorem 20. Let p, p̃, q, q̃ ∈ Pd are classical states and suppose that q, q̃ have full rank. Then, the
following statements are equivalent.

1. For any δ > 0, there exist a classical state p̃δ ∈ Pd, and a classical state rδ, s ∈ PN of a
catalyst, and a classical state r̃δ ∈ PdN , such that (r̃δ, q⊗s) ≺ (p⊗rδ, q⊗s), the marginals
of r̃δ equal p̃δ and rδ, and DTr(p̃, p̃δ) ≤ δ.

2. D(p∥q) ≤ D(p̃∥q̃) holds.

Moreover, in statement 1, we can take s as the uniform classical state u. Also, for all δ > 0, one
can take r̃δ (for a given δ) for which the mutual information between the system and the catalyst is
smaller than δ.

This above-stated theorem 20 can be readily extended to the quantum setting, where
quantum majorization is considered [59, 60]. The quantum version of theorem 19 has also
been established [54], with the catalyst state (denoted as s in the classical case) being set to
a uniform classical state. The proof in [54] employs the asymptotic settings where the KL
divergence appears as a single complete monotone.
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Chapter 2
Resource theory of athermality

2.1 Introduction

The term resource refers to a quantity that is useful for accomplishing tasks by an agent that
is limited by certain physical constraints. An agent with unlimited power and no physical
limitations would not recognize anything as a resource. For instance, a hypothetical user
who can transmit signals faster than the speed of light would not view digital communi-
cation systems as a resource. In the real world, where we cannot transmit signals faster
than the speed of light, digital communication systems are an essential resource for send-
ing messages. Similarly, if the objective is to store information obtained from a source, the
size of the memory becomes a relevant resource.

Resource theories are abstract mathematical framework inspired by information theory
that enables the quantification and management of resources. In a laboratory experiment
where an agent is limited in performing certain types of operations, any quantity that can-
not be created from these operations is considered a resource. Therefore, a general resource
theory is determined by two fundamental elements:

1. Free Operations: A set of operations that can be executed without incurring any costs.

2. Free States: A set of states that can be generated and used without any costs.

States that are not free are identified as resources. Therefore, a specific resource theory is
fully characterized by specifying the set of free operations and free states.

In this thesis, we are concerned with the resource theory of thermodynamics described
in the quantum mechanical framework. The central question that is addressed in the quan-
tum resource theoretic framework often referred to as state interconversion problem is the
following:
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If an agent is given with a quantum state ρ, what are the set of states the agent can access from ρ

employing the free states and free operations only? In a broader aspect, the state interconversion
problem has been studied mainly in three different regimes for different resource theory:

1. The asymptotic regime, which deals with the problem when an infinitely large number
of copies of initial states are available [39, 35, 61, 62].

2. The single shot regime, which takes into account only a single copy of the initial state
[33, 34, 44].

3. The intermediate regime, where the state interconversion problem is addressed when
a finitely large number of copies of initial states are available [63]. In chapter 3 of
the thermodynamic framework, we will examine the state interconversion problem
in this regime.

That motivates to characterize the set of necessary and sufficient conditions for state
interconversion problem i.e., the state ρ can be converted to σ using free operations if and
only if a functions forming a particular set {fi} decrease in the transition i.e., ρ Free−−→ σ ⇔
∀i fi(ρ) ≥ fi(σ). The set {fi} is referred to as the complete set of monotones.

An example of a resource theory in quantum information involves identifying entan-
glement between quantum states as a valuable resource. The scenario involves two exper-
imenters, Alice and Bob, located in separate labs A and B, respectively. Alice and Bob are
permitted to create any local quantum state and perform any arbitrary complete positive
trace non-increasing transformation on the state in their respective labs. Additionally, they
can communicate with each other via a classical channel, such as a telephone. These con-
straints constitute a set of operations referred to as local operation assisted with classical
communication (LOCC) transformation. According to [64, 65, 66, 67, 68, 69], entanglement
cannot be created using LOCC transformation. Therefore, the combined state of Alice and
Bob is separable, and any a priori shared entangled state is deemed a valuable resource.
Shared entanglement, when combined with classical communication, can be employed to
execute teleportation, the transfer of a quantum state. Thus, the resource theory of entan-
glement is established with a separable state as a free state and LOCC operations as free
operations.

Prior to introducing the resource theoretic framework of thermodynamics, let us first
provide an overview of the underlying structures of different resource theories. Table 2.1,
taken from chapter 26 of [32], presents the key characteristics of various quantum resource
theories.

Although entanglement theory has been widely studied, its mathematical framework
shares many similarities with other resource theories, enabling researchers to extend results
across different domains. In the case of entanglement resource theory, for instance, the set
of local operation assisted with classical communication (LOCC) operations is considered
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Resource theory Free Operations Free states State interconvertibility
condition

Entanglement LOCC Any separable |ψ⟩ LOCC−−−−→ |ϕ⟩ ⇔
Theory Operations state Eig(TrA(|ϕ⟩⟨ϕ|)) ≻ Eig(TrA(|ψ⟩⟨ψ|)

(Bipartite) ρsep =
∑

i piρ
A
i ⊗ ρBi This condition implies

that S(TrA(|ϕ⟩⟨ϕ|) ≥ S(TrA(|ψ⟩⟨ψ|)
where S( · ) denotes the
von Neumann entropy
which is a monotone.

Asymmetry CPTP map TG Any state ρ ρ→ σ only if
w.r.t a fixed such that such that SymG(ρ) ⊆ SymG(σ)

group G for any unitary ∀Ug , UgρU
†
g = ρ where SymG(ρ) =

representation of G
{
g ∈ G : UgρU

†
g = ρ

}
∀g ∈ G , TG

[
Ug( · )U †

g

]
and SymG(σ) =

= UgTG( · )U †
g

{
g ∈ G : UgσU

†
g = σ

}
Coherence in a Incoherent operation Any ρ ∈ I ρ→ σ only if

fixed basis Λ s.t Λ(ρ) ∈ I diagonal in the CRE(ρ) ≤ CRE(σ) where
{|j⟩}dj=1 where I is the basis {|j⟩}dj=1 CRE(ρ) = minδ∈ID(ρ∥δ).

set of states Here D(ρ∥δ) is KL divergence
that are diagonal D(ρ∥δ) = Tr[ρ(logρ− logσ)]

in the basis {|j⟩}dj=1

Purity Unitary operations Maximally mixed Majorization: ρ→ σ

state I
d iff Eig(ρ) ≻ Eig(σ)

Thermodynamics Energy conserving Thermal state γS Thermo-majorization: we shall
unitary operation at inverse discuss this in detail

temperature β

Table 2.1: This table is taken from chapter 26 of [32] that summarizes the structure of differ-
ent resource theory

as free operations, while separable states are regarded as free states. Consequently, any
state that contains entanglement is considered a valuable resource. In the upcoming sec-
tions, we will outline the fundamental components of the thermodynamic resource theory
framework.

2.2 Resource theory of athermality

After introducing the generic resource theory framework, we will now establish the re-
source theoretic framework of athermality [33, 70, 71]. The goal of this theory is to provide
a comprehensive and precise approach to understanding state transformations in a manner
that is thermodynamically free. To clarify, we will define what we mean by the phrase ther-
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modynamically free and identify the operations that qualify as free in the resource theory of
athermality. The natural and straightforward answer to this question is operations that ad-
here to the laws of thermodynamics. For instance, in classical equilibrium thermodynamics,
we consider a box filled with an ideal gas possessing internal energy U , volume V , and a
number of particles N , in contact with a heat bath at temperature T . These three variables
determine the equilibrium state, which we denote as Y := Y (U, V,N, T ). A continuous and
differentiable function known as entropy or a more general thermodynamic potential S is
defined over the set of all equilibrium states. The central question of thermodynamics is to
determine the set of accessible equilibrium states from a given state Y . The second law of
thermodynamics provides the answer.

Equilibrium state Ỹ is accessible from Y if and only if S(Y ) ≤ S(Ỹ ). (2.1)

The assumption of comparability between equilibrium states, i.e., the idea that either
the equilibrium state Ỹ can be reached from Y or vice versa, is often referred to as the
comparison hypothesis [11, 12]. However, characterizing accessibility relations in non-
equilibrium thermodynamics is considerably more complex task. The absence of a com-
plete order makes it difficult to extend the concept of entropy to non-equilibrium states in
a unique way. To develop a resource theory for a non-equilibrium scenario, we must first
establish the following:

1. A precise definition of a thermodynamic process that can be formalized within the
resource theory framework.

2. A characterization of the partial ordering that emerges in the set of non-equilibrium
states, which is determined by the chosen concept of thermodynamic processes. This
will involve the refinement of the standard constraint of entropy increase, as pre-
sented in Eq. (2.1).

This second point naturally requires the tools from partial ordering that we have described
in the previous chapter. We shall use them to build the resource theory of thermodynamics.

After introducing the concept of resource theory and the formalism of state transition
in equilibrium thermodynamics, we would like to offer two comments. Firstly, it’s impor-
tant to note that the goal of this theory is not to establish a definitive set of axioms, as
there are other approaches that may be more suitable for certain practical situations. For
instance, resource theory struggles with handling time-varying Hamiltonians and incorpo-
rating quantum effects of large-scale systems like phase transitions. Secondly, if both the
system and bath are small enough to enable a complete solution of their dynamics, then
quantum mechanics alone suffices. The resource theory approach is expected to be most
valuable in cases where a small number of quantum systems interact with an extensive or,
in some cases, an intractable environment. This scenario is relevant to open quantum sys-
tem dynamics, and we anticipate that the two approaches are interconnected. Although
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the resource theory approach encompasses some typical master equation treatments, such
as Davies maps, it does not rely on a master equation representation and can be viewed
as a non-Markovian extension of conventional approaches. The open system approach and
resource-theoretical approach differ in the problems they address and the methods they em-
ploy. The resource theory approach allows for the quantification of certain thermodynamic
properties from a quantum information perspective, seeking new insights into the role of
non-equilibrium states as resources for performing tasks. This includes characterizing the
structure of non-equilibrium states, utilizing their quantum properties, identifying the op-
timal strategy for a thermodynamic task, pinpointing quantum advantages, and investi-
gating the intersection between thermodynamics and information theory. This approach
can be compared to the resource-theoretical classification and manipulation of entangle-
ment, which complements but does not replace the study of entanglement in many-body
systems or experimental generation and manipulation of highly entangled states. While
the resource theory approach may have potential applications, its relevance is not yet fully
established, and some obstacles still need to be overcome (see the last sections of [32]).

In the next section, we shall proceed to describe the framework of the resource theory
of thermodynamics.

2.3 Towards Thermodynamically free operation

The theory of thermodynamics deals with the change of energy and entropy in states when
a heat bath is present, as shown in Eq. (2.1). In cases where the heat bath has a completely
degenerate Hamiltonian, energy exchange with the heat bath is impossible, and operations
involve only changes in entropy. Before delving into the full thermodynamic scenario with
various heat baths, it is useful to first examine this simplified model. In the following sec-
tion, we shall describe the noisy operations which can be generalized further to the resource
theory of thermodynamics.

2.3.1 Noisy Operation

Definition 21 (Resource theory of purity).

1. Free states are maximally mixed states of arbitrary finite dimension, expressed as I
dR

.

2. Free operations are the so-called noisy operations, defined as all unitary transforma-
tions followed by a partial trace i.e.,

ρS
ENoisy−−−→ ρ̃S ⇔ ENoisy(ρS) := TrR

[
USR

(
ρS ⊗ I

dR

)
U †
SR

]
. (2.2)
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The concept of purity as a resource in the Noisy Operations theory can be easily grasped
as the maximum disorder (entropy) is present in free states. This disorder is preserved by
unitary transformations and cannot be reduced by partial trace operations. Thus, quantum
states with higher purity are considered to be more valuable under noisy operations.

Noisy Operations differs from traditional thermodynamics in that it centers on the in-
formation contained in systems rather than energy. It has been accepted as the resource
theory of informational nonequilibrium or the resource theory of purity for this reason.
Initially presented in [72], this thermodynamic toy model originates from the challenge of
eliminating Maxwell’s demon [18, 73] and draws inspiration from the resource theory of
entanglement manipulations [74, 75, 76, 77]

We would like to highlight two important properties of noisy operations. Firstly, the
expectation value of a noisy operation always preserves the maximally mixed state ρS = I

dS
,

thereby making it an unital channel. Secondly, since all unitary operations can be performed
without any cost, it is sufficient to consider the case where both ρS and ρ̃S are diagonal in
the same basis. Let us denote the eigenvalues of ρS and ρ̃S as classical state or probability
vectors p = Eig(ρS) and p̃ = Eig(ρ̃S), respectively.

Now we are going to establish an equivalence between the noisy operation and proba-
bilistic mixing of the elements of p in the following theorem:

Theorem 21. The following statements are equivalent:

1. There exists a Noisy operation ENoisy such that ENoisy(ρS) = ρ̃S .

2. There exists a Bistochastic matrix BNoisy such that BNoisyp = p̃.

Proof. The proof straightforwardly emerges as a special case of theorem 22. We shall discuss
about this after the proof of theorem 22.

This theorem 21 tells us that the state transition conditions for noisy operations depen-
dent solely on the eigenvalues of initial and target quantum states. Moreover, employing
theorem 9, we can say p ≻ p̃ since BNoisyp = p̃. In addition, the theorem 9 implies that
von Neumann entropy of the state ρS is a monotone under noisy operation since p ≻ p̃, we
have

S(ρS) := −Tr(ρS log ρS) = H(p) ≥ H(p̃) = −Tr(ρ̃ log ρ̃) = S(ρ̃S), (2.3)

where S( · ) and H( · ) are von Neumann and Shannon entropy and the inequality follows
from Eq. (1.12). More generally any α-Renyi entropy is non-decreasing under noisy op-
eration. This follows from statement 3 of theorem 9 simply by taking f( · ) = ( · )α. In a
nutshell, the condition that ρS can be transformed into ρ̃S via noisy operations, therefore,
boils down to a simple condition about the classical states:

ρ̃S = ENoisy(ρS) ⇐⇒ p ≻ p̃. (2.4)
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To conclude this section, we would like to note that for any initial state ρS , simulating the
full range of possible transformations via noisy operations requires the ancilla dimension
dR to be as large as dS [78]. In the next section, we will build upon this framework of
noisy operations and consider a scenario where a non-trivial heat bath is present, enabling
energy exchange between the system and its environment. This will allow us to describe
thermodynamically free transformations, also referred to as thermal operations.

2.3.2 Motivation and formulation of resource theory of athermality

The maximally mixed state, which serves as the free state of the resource theory of purity,
possesses unique characteristics. It exhibits the highest von Neumann entropy and is in-
variant under any noisy operation, resembling the concise formulation of the second law
of classical thermodynamics that dictates the impossibility of a decrease in entropy/disor-
der in an isolated system. In thermodynamics, the canonical Gibbs ensemble results from a
statistical inference that assumes maximum entropy due to a lack of knowledge regarding
the system state, under the constraints of known macroscopic variables or conserved quan-
tities such as the average total energy. In scenarios where the Hamiltonian of the system
is completely degenerate and all microstates have the same energy, the maximally mixed
state becomes equivalent to the Gibbs state. Having established this, we will now introduce
the resource theory of athermality.

Definition 22 (Resource theory of athermality). Resource theory of athermality is formu-
lated by taking

1. Free state as Gibbs state of the system at the temperature of the heat bath i.e.,

γS =
e−βHS

Tr(e−βHS )
, (2.5)

where HS is the Hamiltonian of the system and β = 1
kBT

.

2. Free operation as thermal operation which is defined as follows:

E(ρ) = TrE
[
U(ρ⊗ γB)U

†
]
, (2.6)

where HB is the Hamiltonian of the bath and U is an energy-conserving unitary is th
i.e., [U,HS +HB] = 0, and

γB =
e−βHB

ZB
. (2.7)

Thus resource theoretic framework addresses the following question: What is the set of
final states attinable from a given initial state through thermal operation?.

Below we present a motivation for the formulation of resource theory of athermality.
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Why the Gibbs state of the system only considered as free state in the framework? The proposed
framework defines free states as those that can be prepared without consuming any work
in the presence of an environment at temperature T . A Gibbs state at temperature T ′ ̸=
T can generate heat flow that can be exploited to extract work, whereas a Gibbs state at
temperature T does not generate any heat flow. Therefore, any Gibbs state that is not at the
temperature of the environment can be seen as a resource. To formalize this argument, let
us consider a system S with Hamiltonian HS in thermal equilibrium with its surrounding
environment at temperature T . The state of the system, γS , can be expressed as

γS =
e−βHS

Tr(e−βHS )
. (2.8)

We argue that only γS can be considered a free state. Suppose σS is another free state such
that σS ̸= γS . This implies that N copies of σS , denoted as σ⊗NS , can also be prepared
without any work for arbitrary values of N . However, it can be shown that there exist
sufficiently large values of N for which σ⊗NS is active. This means that it is possible to
extract work from it via a unitary transformation. More specifically, there exists a unitary U
such that

Tr(H(N)
S σ⊗NS )− Tr(H(N)

S Uσ⊗NS U †) > 0, (2.9)

where H(N)
S =

∑N
i=1HS,i with HS,i = I1 ⊗ . . . ⊗ Ii−1 ⊗ HS ⊗ Ii+1 ⊗ IN . The unitary U

can be understood as being generated due to a time-dependent Hamiltonian that starts in
H

(N)
S at the beginning of the protocol and returns H(N)

S at the end. The drop in energy,
Tr(H(N)

S σ⊗NS )− Tr(H(N)
S Uσ⊗NS U †), can be stored as work in the form of an increment in the

average energy of a harmonic oscillator. This argument naturally extends to the fact that the
preparation of an active state requires some work and thus cannot be considered free [79].
On the other hand, for any arbitrary values of N , γ⊗NS is not active and can be considered
free. It is well-known from [40] that it is possible to extract work from an active state, while
a passive state cannot generate any work. Further discussion of active and passive states
will be provided in chapter 3.

Why only energy conserving unitaries are considered to be free? We will now describe the
reason why only energy-conserving unitaries are regarded as free operations. This is mo-
tivated from the first law of thermodynamics. Systems are described by quantum states,
and as such, their evolution should be described by unitary evolutions U across the closed
system S and environment E. Additionally, the thermodynamic process described must
preserve energy over the entire system that demands

[U,HS +HB] = 0. (2.10)

On the other hand, suppose we consider a unitary operation, denoted as V , that does not
conserve energy. In such a scenario, the action of the non-energy-conserving unitary V on
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the state γS ⊗ γB can be expressed as follows:

V (γS ⊗ γB)V
† ̸= γS ⊗ γB. (2.11)

Hence, unitary V can generate several copies of athermal states by acting on (γS ⊗ γB)
⊗N ,

leading to the preparation of an active state when N is sufficiently large. As previously
noted, work can be extracted from active states, thereby allowing any arbitrary unitary V
to be considered a free operation in the framework, leading to the creation of active states
for free. To prevent this, we require V (γS ⊗ γB)V

† = γS ⊗ γB . This can be rewritten as

V e−β(HS+HB)V † = e−β(HS+HB) ⇒ e−βV (HS+HB)V †
= e−β(HS+HB)

⇒ [V,HS +HB] = 0. (2.12)

Here, the equation above requires that the commutator of V with the sum of the system and
environment Hamiltonians, HS +HB , must be equal to zero.

In the next section, we would like to describe about the structure of the heat bath that is
compatible with the thermal operation.

2.3.3 The structure of heat bath compatible with thermal operation

In many physical contexts, a system exists in the presence of an environment that is a large
system in thermal equilibrium. The initial state of the system is generally not in equilibrium
with the bath, but the joint dynamics will drive it towards equilibrium. Our objective is to
describe this situation using a framework, for which we first need to specify the heat bath
or environment that surrounds the system.

In this section, we start by making the assumption that the bath has a limited size [41, 80]
and investigate the constraints that come with it. Afterwards, we will explore the limits to
take the limit of an infinite size heat baths. To begin with, we shall define the heat bath as
follows:

Definition 23 (Heat bath). A heat bath is defined as a large system as compared to system
in concern (although not necessarily infinite), described within a Hilbert space HB . It pos-
sesses a effectively continious number of states represented by g(E, V ) = eS(E,V ), where
S(E, V ) is the entropy in the microcanonical ensemble for a given energy E and dimen-
sionless volume V (e.g., the total number of particles) such that following assumptions are
hold:

1. The entropy S(E, V ) is extensive: S(kE, kV ) = kS(E, V ) for all k > 0.

2. The dimensionless volume V is large.

3. The bath is in a Gibbs state with a given inverse temperature β. Therefore, a microstate
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of energy E has a probability 1
ZB
e−βE . This indicates that it is in equilibrium with a

larger bath.

Let us describe the motivation behind this set of assumptions. We can envision this bath
as an extensive system that is a constituent of an even bigger system with an effectively
infinite volume. Both systems have been interacting for a longer period of time resulting
in thermal equilibrium. However, the interaction time with the system is finite, and it can
only interact with a limited but sizable portion of the bath within this time. As a result,
we assume that the interactions within the bath possess a light-cone structure, possibly
described by Lieb-Robinson bounds, which restrict the rate at which information can prop-
agate through locally interacting many-body systems.

Assumption 1, which states the extensivity of the entropy function, enables us to express
the entropy S(E, V ) as

S(E, V ) = V f(u), (2.13)

where f(u) is a function of the energy density u = E
V . Consequently, the probability distri-

bution for u can be written as

p(u) ∝ g(E, V )e−βE = eS(E,V )e−βE = eV (f(u)−βu). (2.14)

In the large V limit, we can employ the saddle-point approximation. Denoting uβ the point
at which the function f(u)− βu reaches a maximum, we write

p(u) ∝ eV
(
f(uβ)+

1
2
f ′′(uβ)(u−uβ)2

)
. (2.15)

This implies that

f ′(uβ) = β, (2.16)

f ′′(uβ) < 0. (2.17)

As eV f(uβ) is a constant on u, we obtain p(u) proportional to a normal distribution with
mean ⟨u⟩ = uβ and variance ⟨(u− ⟨u⟩)2⟩ = V |f ′′(uβ)|−1:

p(u) ∝ e−
V
2
|f ′′(uβ)|(u−uβ)2 . (2.18)

We can relate f ′′(uβ) to the heat capacity C that is defined below:

C := V
d⟨u⟩
dT

= − V

T 2

d⟨u⟩
dβ

. (2.19)

By differentiating Eq. (2.16) with respect to β, we obtain f ′′(uβ)
duβ
dβ = 1, which can be
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substituted into Eq. (2.19) to give

C = − V

T 2

1

f ′′(uβ)
. (2.20)

We note that the heat capacity is positive, as is always the case in ordinary matter. Fur-
thermore, C scales linearly with V since f(uβ) is independent of V , which implies that the
fluctuations of u are given by

√
⟨(u− ⟨u⟩)2⟩ = T

√
C

V
∝ 1√

V
. (2.21)

This expression is small when V is large. Thus we can write the density of states as

g(E, V ) = eS(E,V ) = eV βueV
(
f(u)−βu

)
= eβEeV

(
f(uβ)+

1
2
f ′′(uβ)(u−uβ)2)

)
,

= eβEeV
(
f(uβ)− V

T2C
(u−uβ)2)

)
. (2.22)

Denoting δ = 1/CT 2 as the inverse of the heat capacity, we finally obtain

g(E, V ) ∝ e(βE− δE2

2
). (2.23)

We make the assumption that the energy scales of the system interacting with the bath
are much smaller than the energy fluctuation of the bath. This assumption is accurate when
the bath is sufficiently large, such that for all i we have Ei is smaller than 1

δ , where Ei
denotes the spectrum of the Hamiltonian of the system. This results the density of states
obtained in Eq. (2.23)

g(E − Ei) ≃ g(E)e−Ei(β−δE) (2.24)

Considering the limit when volume V of bath goes to ∞ results in infinite heat capacity
C as C ∝ V . This implies δ → 0 and

g(E − Ei) ≃ g(E)e−βEi . (2.25)

We shall use this result for the characterization of action of thermal operation on states
that are block diagonal in the eigenbasis of HS .

2.3.4 Thermodynamics of energy incoherent states

The energy eigenbasis, denoted by {|Ei⟩}di=1, is a significant basis in a d-dimensional Hilbert
space. It is given by the eigenstates of the Hamiltonian, HS =

∑d
i=1Ei|Ei⟩⟨Ei|, which gov-

erns the evolution of the system. Any state ρ that is diagonal in this basis will evolve triv-
ially in time under the free evolution of the system, i.e., e−iHStρe+iHSt = ρ. These states are
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known as time-translation invariant states or energy incoherent states. This is in sharp con-
trast to generic quantum states that possess coherence between energy eigenstates, where
even complete knowledge about a state may leave one uncertain about its energy. Formally,
we thus define the following

Definition 24 (Energy incoherent states). Consider a d- dimensional system described by
Hamiltonian H =

∑d
i=1Ei|Ei⟩⟨Ei|. A state ρ of a system will be called energy-incoherent if

it is diagonal in the energy eigenbasis, i.e., if ⟨Ei|ρ|Ej⟩ = 0 for all i ̸= j. Such a state will be
equivalently represented by a d-dimensional classical state p ∈ Pd with pi = ⟨Ei|ρ|Ei⟩.

Now we would like establish the connection between transformation of energy incoher-
ent state ρ via a thermal operation on one hand, and a transformation of a classical state p

under a stochastic matrix which preserves the classical state constructed from Gibbs state
of the system on the other hand.

Theorem 22 (Characterization of thermal operations by a Gibbs stochastic matrices [33, 36]).
Consider ρS and σS to be two energy incoherent states i.e., [ρS ,HS ] = 0 and [σS ,HS ] = 0 with
corresponding classical states p and q constructed from diagonals of ρS and σS . We denote the γS
as the classical state generated from the diagonal of the Gibbs state of the system γS = e−βHS

Tr(e−βHS )
.

Then the following statements are equivalent:

1. There exists a thermal operation E such that σS = E(ρS).

2. The classical states p and q are related as follows:

q = T Ep ; γS = T EγS , (2.26)

where T E is a stochastic matrix referred as Gibbs stochastic matrix.

Proof. We begin by showing that statement 1 implies statement 2. From [ρS ,HS ] = 0, we
can write

ρS =

d∑
i=1

pi|ESi ⟩⟨ESi |. (2.27)

where {ESi }di=1 denotes the energy eigenbasis for Hamiltonian HS . From the defintion of
thermal operation given in Eq. (2.6) we can see that E is trace preserving. Let us define a
stochastic matrix T E as follows:

T E
(i,j) := ⟨ESj |E

(
|ESi ⟩⟨ESi |

)
|ESj ⟩. (2.28)

From E(γS) = γS we can check from Eq. (2.28) that T EγS = γS . It is straight-forward
to check that T E is a stochastic matrix by adding the elements of the columns for matrix
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representation T E

∀i,
d∑
j=1

T E
(i,j) =

d∑
j=1

⟨ESj |E
(
|ESi ⟩⟨ESi |

)
|ESj ⟩ = Tr

(
E
(
|ESi ⟩⟨ESi |

))
= 1. (2.29)

where the equality follows from the fact that E is trace preserving. It is easy to check that

qj = ⟨ESj |E(ρ)|ESj ⟩ = ⟨ESj |E
(∑

i

pi|ESi ⟩⟨Ei|
)
|ESj ⟩ =

∑
i

pi⟨ESj |E(|ESi ⟩⟨ESi |)|ESj ⟩

=
∑
i

T E
(i,j)pi ⇒ q = T Ep. (2.30)

The converse is based on an explicit construction of a thermal operation. Since [ρS ,HS ] =

0 then

ρS =

d∑
i=1

pi|ESi ⟩⟨ESi |. (2.31)

Taking Hamiltonian of the bath HB =
∑d

j=1

∑g(EB
j )

g=1 EBj |EBj ⟩⟨EBj |, where g(EBj ) is the de-
generacy of energy EBj , the state of the bath will be

γB =
1

ZB

d∑
j=1

e−βE
B
j

g(EB
j )∑

g=1

|EBj , g⟩⟨EBj , g|, (2.32)

with ZB = Tr(e−βHB ). Then, setting E = ESi + EBj and summing over E and ESi rather
than ESi and EBj we can write ρS ⊗ γB

ρS ⊗ γB =

d∑
i=1

d∑
j=1

g(EB
j )∑

g=1

pi
e−βE

B
j

ZB
|ESi ⟩⟨ESi | ⊗ |EBj , g⟩⟨EBj , g| (2.33)

=
∑
E

∑
i

g(E−ES
i )∑

g=1

pi
e−β(E−ES

i )

ZB
|E,ES

i , g⟩⟨E,ES
i , g|. (2.34)

Introducing normalisation factor N(E) = g(E) e
−βE

ZB
and exponential degeneracy (as given

in Eq. (2.25)) Di(E) := g(E − ESi ) = g(E)e−βE
S
i , we can rewrite the above as follows:

ρS ⊗ γB =
∑
E

N(E)|E⟩⟨E| ⊗
∑
i

Di(E)∑
g=1

pi
Di(E)

|ESi , g⟩⟨ESi , g|

=
∑
E

N(E)|E⟩⟨E| ⊗ ρE , (2.35)

where ρE =
∑

i

∑Di
g=1

pi
Di(E) |E

S
i , g⟩⟨ESi , g| are normalised states that encode relative degrees
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of freedom for a fixed total energy E. Note that thermal operations allow any energy-
preserving unitary on every subspace of constant energy E i.e., ⊕EUE .

Consider the normalized state ρE =
∑

i

∑Di
g=1

pi
Di(E) |E

S
i , g⟩⟨ESi , g|. The state ρE has

groups of Di(E) copies of each eigenvalue pi/Di(E). We chose UE that are permutations
between these groups, moving Ni|j eigenvalues from group j to group i. This results the
following condition:

d∑
i=1

Ni|j = Dj ;
d∑
j=1

Ni|j = Di. (2.36)

Then the state ρS ⊗ γB transformed under such an unitary as

∑
E

N(E)|E⟩⟨E| ⊗ UEρEU
†
E =

∑
E

N(E)|E⟩⟨E| ⊗ UE

(∑
i

∑
j

Ni|j(E)

Dj(E)
pj |ESi , g⟩⟨ESi , g|

)
.g

(2.37)
We chose

T̃ E
(i,j) =

Ni|j

Dj
, (2.38)

acting on the classical state p. We can check from Eq. (2.36) T̃ E is stochastic and preserve
the classical state constructed from diagonal of γS as follows

d∑
i=1

T̃ E
(i,j) = 1,

d∑
j=1

T̃ E
(i,j)γj =

d∑
j=1

Ni|j(E)

Dj(E)
e−βE

S
j =

d∑
j=1

Ni|j(E)

g(E)e−βE
S
j

e−βE
S
j =

Di(E)

g(E)
= e−βE

S
i . (2.39)

Moreover, it is possible to obtain any rational approximation of transition probabilities that
generate a Gibbs stochastic matrix by selecting a large enough value for the function g(E).
This implies that T̃ E can be made arbitrarily close to any Gibbs stochastic matrix. To ensure
that the Gibbs stochastic matrix is applied within each block of total energy E, we can
appropriately choose Di(E) and Ni|j(E) for each E. Consequently, we can conclude that
any Gibbs stochastic matrix G can be well approximated by T̃ E with sufficient accuracy.

Now let us analyze some important remarks that follow from this result.

1. Thermal operation and thermo-majorization correspondence: Employing theorem 11 we see
that for states with [ρS ,HS ] = [σS ,HS ] = 0 we have the following equivalence:

ρS
Thermal operation
−−−−−−−−−−−→ σS ⇔ q = T Ep ; γS = T EγS ⇔ (p,γS) ≻ (q,γS),

(2.40)
where p and q constructed from diagonals of ρS and σS . We defined the relation as
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thermomajorization in the previous chapter in the definition 18. Therefore, energy
incoherent state ρS can be transformed to σS if and only if classical state p thermoma-
jorizes q i.e., (p,γS) ≻ (q,γS). Moreover, from theorem 10 of the chapter 1 we see that
(p,γS) ≻ (q,γS) is equivalent to ΓγS (p) ≻ ΓγS (q) where ΓγS is the embedding map
wrt. classical state γS .

2. Monotonicity properties: Combining with statement 3 of theorem 11, we obtain if an
energy incoherent state ρ can be transformed to energy incoherent state σ then for
any real valued convex function f

Df (p∥γ) ≥ Df (q∥γ). (2.41)

where p and q are classical state corresponding to energy incoherent state ρS and
σS . As mentioned earlier, this Eq. (2.41) referred as monotonicity of f -divergence.
In particular, we can say that any α- Renyi divergence is a monotone under thermal
operation. But this holds true in general as any f -divergence is a monotone under a
complete positive trace preserving map.

3. Noisy operation: It is straight-foreward to see noisy operation can be realized as a spe-
cial case of thermal operation considering the Hamiltionian of the bath trivial or fully
degenerate. Then the Gibbs state of the bath reduces to I

d . Then according to the
theorem , in this case 22 we have

E(ρS) = σS ⇔ T E(p) = q ; T E(u) = u, (2.42)

where u is the uniform classical state with all the elements 1
d . The condition T E(u) = u

implies the matrix T E is bistochastic. From theorem 9 we can say that p ≻ q since q

can be obtained from p via bistochastic matrix T E . Hence we have seen theorem 21 as
a consequence of theorem 22.

We have establish the abstract framework for thermal operations. In the next section,
we shall consider a physical scenario with Jaynes-Cummings interaction that corresponds
to thermal operations.

2.3.5 Jaynes Cummings model as a thermal operations

The Jaynes-Cummings model is a quantum mechanical model that describes the interac-
tion between a two-level system, known as a qubit, and a harmonic oscillator, which is
typically a cavity or a resonator. One important simplification that is often used in the
Jaynes-Cummings model is the rotating wave approximation (RWA). The RWA is a widely
used method in quantum optics, which involves neglecting rapidly oscillating terms in the
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Hamiltonian. In this essay, we will discuss the RWA and its connection to thermal opera-
tions in the qubit Jaynes-Cummings model.

The Jaynes-Cummings Hamiltonian in the most general form is given by

H =
1

2
ω0σz + ωca

†a+ g(σ+ + σ−)(a+ a†), (2.43)

where a and a† are the annihilation and creation operators for the harmonic oscillator mode,
σ+ and σ− are the annihilation and creation operators of qubit, σz is the Pauli Z matrix for
the qubit. The coupling strength between the qubit and the harmonic oscillator is denoted
by g, while ω and ω0 is the frequencies of the oscillator and the qubit respectively. We denote
free Hamiltonian and interaction Hamiltonian as

H0 =
1

2
ω0σZ + ωCa

†a,

Hint = g(σ+ + σ−)(a+ a†). (2.44)

Then in the interaction picture we have the

e−iH0tH0e
+iH0t = H0, (2.45)

e−iH0tHinte
+iH0t = ig

(
e−i(ωC−ω0)taσ+ + ei(ωC−ω0)ta†σ−

)
+ ig

(
e−i(ωC+ω0)taσ− + ei(ωC+ω0)ta†σ+

)
, (2.46)

We see the first term in Eq. (2.46) is slowly oscillates whereas second term oscillates faster.The
RWA consists of ignoring faster oscillating term

(
e−i(ωC+ω0)taσ− + ei(ωC+ω0)ta†σ+

)
in the

Eq. (2.46) which holds if we made the assumption that interaction strength g is smaller
than frequency of the qubit ω0 and the frequency of the oscillator ωC and ω0 ∼ ωC . In this
approximation, we can write the interaction Hamiltonian as

Hint = ℏg(σ+a+ σ−a
†). (2.47)

The approximation is justified because the rapidly oscillating terms in the original in-
teraction Hamiltonian average out to zero when integrated over a period of the oscillator
frequency. The type of interaction in Eq. (2.47) introduces a special symmetry to the prob-
lem. Namely, it conserves the number of quanta in the system i.e.,

[H, a†a+ σz] = 0. (2.48)

If we assume the resonant condition which is given by ω0 = ωC , we have [H0,Hint] = 0. If
U = e−iHt with the Hamiltonian in Eq. (2.43), then under the resonant condition and taking
RWA we have [U,H0] = 0. Therefore, this description can be considered as a physical model
for transformation of states under thermal operation.
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From the GKSL master equation we have [81]

dρ

dt
= −i

[ω0

2
σz, ρ

]
+ γ(N + 1)D[σ−] + γ(N)D[σ+], (2.49)

with

N =
1

eβω0 − 1
where β =

1

kBT
,

D(A) = AρA† − 1

2
A†A, ρ. (2.50)

The Hamiltonian part induces the qubit to precess around the z axis. If there was no dissi-
pation the spin would precess indefinitely. But in the presence of dissipation, it precesses
and is also damped towards the z axis. After a long time has elapsed the system will tend
to a steady-state, which is the solution of

dρ

dt
= 0, (2.51)

is given by ρsteady state =

(
N

2N+1 0

0 N+1
2N+1

)
. This corresponds to a thermal equilibrium density

matrix. In the lower temperature limit any thermal operation on a two level system can be
realized via Jaynes-Cummings interaction [82]. In the next section, we shall discuss few
properties of thermal operation that we shall use in the later parts of this thesis.

2.3.6 Properties of thermal operation

The set of all thermal operations forms a convex set. This can be inferred from the following
theorem:

Theorem 23 (Convexity of thermal operations [83]). The set of states that can be achieved via
thermal operation from a fixed state ρ forms a convex set.

Proof. Consider σ1 = E1(ρ) and σ2 = E2(ρ) where E1 and E2 are thermal operation. In order
to construct a thermal operation E such that

E(ρ) = pσ1 + (1− p)σ2 ∀p ∈ [0, 1]. (2.52)

From the definition

E1(ρ) = TrE1U1 (ρ⊗ γE1)U
†
1 where [U1,HS +HE1 ] = 0, (2.53)

E2(ρ) = TrE2U2 (ρ⊗ γE2)U
†
2 where [U2,HS +HE2 ] = 0. (2.54)

We introduce a n-dimensional ancillary bath state γA with Hamiltonian HA = In and a joint
unitary acting on system, the two environments, and the ancilla. The total Hamiltonian of
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this joint system is H = HS +HE1 +HE2 +HA. We introduce the controlled unitary

U := Π1 ⊗ U1 +Π2 ⊗ U2, (2.55)

where Π1 and Π2 is a projector with rank k and n − k, respectively and Π1 + Π2 = In . We
choose k in such a way that k

n is arbitrarily close to p. Thus we have for i = 1, 2

[Πi ⊗ Ui,H] = [Πi ⊗ Ui,HS +Hi]

= Πi ⊗ [Ui,HS +Hi] = 0, (2.56)

which makes [U,HS +HE1 +HE2 +HA] = 0. We finally have

TrA,E1,E2(U (ρ⊗ γA ⊗ γE1 ⊗ γE2)U
†)

=
1

n

2∑
i=1

TrA,Ei [Πi ⊗ Ui(ρ⊗ In ⊗ γi)Π⊗ U †
i ]

=
k

n
E1(ρ) + (1− k

n
)E2(ρ). (2.57)

Then from the previous theorem we can see the set of achievable states from a fixed state
ρ via thermal operation is convex.

Definition 25 (Thermal cone). The set of states that can be achieved via thermal operation
from a given state ρ by T (ρ). This set is called thermal cone of the state ρ.

The definition of thermal operation straightforwardly leads to the following two impor-
tant properties that stated in the following two propositions:

Proposition 24 (Invariance of thermal state under thermal operation). Let E be a thermal
operation on the system S with Hamiltonian HS in presence of the bath at inverse temperature. The
thermal state of the system

γS =
e−βHS

ZS
where ZS = Tr(e−βHS ), (2.58)

is invariant under E i.e.,
E(γS) = γS (2.59)

47



Chapter 2. Resource theory of athermality 2.3. Towards Thermodynamically free operation

Proof. From the definition of thermal operation E we can write E(γS) as

E(γS) = TrE
(
U(γS ⊗ γB)U

†
)
= TrE

[
U
(e−βHS

ZS
⊗ e−βHB

ZB

)
U †

]

= TrE

[
U
e−β(HS+HB)

ZSZB
U †

]
= TrE

[
e−β(HS+HB)

ZSZB
UU †

]
(2.60)

= TrE

[
e−β(HS+HB)

ZSZB

]
=
e−βHS

ZS
= γS , (2.61)

where we use [U,HS +HB] = 0 to write the Eq. (2.60).

Proposition 25 (Time-translation invariance). Let us define the unitary quantum channel on
the Hilbert space of the system S representing time translation as GSt ( · ) = e−iHSt( · )e+iHSt. The
action of thermal operation on the system S commutes with these time translation i.e.,

E(GSt ( · )) = GSt (E( · )) (2.62)

Proof. Similarly as previous proposition 24, we shall use the energy preserving property of
the unitary U to prove the claim.

E(GSt (ρ)) = TrE

[
U
(
e−itHSρeitHS ⊗ γB

)
U †

]
= TrE

[
U
(
e−itHSρeitHS ⊗ e−itHBγBe

−itHB

)
U †

]

= TrE

[
U
(
e−it(HS+HB)(ρ⊗ γB)e

it(HS+HB)
)
U †

]
(2.63)

= TrE

[
e−it(HS+HB)

(
U(ρ⊗ γB)U

†
)
eit(HS+HB)

]
(2.64)

= e−itHS TrE
[
U
(
ρ⊗ γB

)
U †
]
e+itHS = GSt (E(ρ)), (2.65)

where we use [U,HS +HB] = 0 to write from Eq. (2.63) to Eq. (2.64).

As a consequence of above mentioned theorem

Proposition 26 (Covariance of dephasing map). The action of thermal operation E commutes
with the dephasing map D acting on the state ρ i.e.,

E(D(ρ)) = D(E(ρ)) (2.66)

where
D(ρ) = lim

s→∞

1

s

∫ s

0
e−itHSρe+itHS (2.67)
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Proof. We shall easily see this from the following:

E(D(ρ)) = lim
s→∞

1

s

∫ s

0
E
(
e−itHSρe+itHS

)
= lim

s→∞

1

s

∫ s

0
e−itHSE(ρ)e+itHS = D(E(ρ)), (2.68)

where in the last line we use result of theorem 25 to write the second equality.

These properties given in proposition 25 and 26 has some important implications for
the action of thermal operations on states. In particular, we proceed to show that it allows
us to restrict ourselves to the set of quantum states that do not have coherences in the
energy eigenbasis to describe work and heat, which are significantly easier to deal with.
The problem of dealing with coherence in this approach to quantum thermodynamics is a
very important one, but fewer results exist regarding which transitions between states are
possible. We outline some of the most important ones in section 2.5. In any case, most of
the work presented here will focus on that subset of states that do not have coherence in the
energy eigenbasis.

2.4 Describing the notion of work

In this section, we will delve into the concept of work, which is another fundamental as-
pect of classical thermodynamics, after discussing the thermodynamic ordering between
classical states. Initially, we will elucidate the significance of free energy in traditional ther-
modynamic transitions between equilibrium states. It acts as a limiting factor on the max-
imum work that can be extracted or invested during the process. Subsequently, we will
demonstrate how this idea can be generalized to include general classical states that are not
in equilibrium, emphasizing the importance of information in the energetics of such states.
We will then introduce the resource-theoretic approach to work extraction, discussing the
notions of average, deterministic, and single-shot work extraction protocols. Finally, we
will use the findings of this section to argue for the uniqueness of the thermal Gibbs state as
the only permissible free state in the resource theory of thermodynamics. It is important to
note that the results we present here are limited to classical states. This result has been ex-
tended to a quantum scenario where the coherence is present [84]. We shall proceed briefly
overviewing the work extraction in equilibrium and non-equilibrium scenarios.

2.4.1 Equilibrium scenario

In this section, we will explain how to determine the amount of work performed on a sys-
tem that is in contact with a thermal equilibrium bath, while external control parameters
such as volume or magnetic field change over a specific period of time. To accomplish this,
we will use the notation x = (q, p) to refer to a point in the position-momentum phase
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space of the system. The system’s Hamiltonian is represented by H(x, α), where α ∈ [0, 1]

represents the path ϕ in the external parameter space. Assuming a constant switching rate,
dλ
dt = 1/τ , where τ is the total duration of the process, we can determine the work done on
the system by measuring the change in energy along the trajectory, starting with the initial
state x0, as

Wx0 :=

∫ τ

0
dt
dλ

dt

∂

∂α
H(x(t), α). (2.69)

Assuming the system is in thermal equilibrium, we can express the probability density
function as:

p(x, α) =
e−βH(x,α)

Z(α)
;where Z(λ) =

∫
dxe−βH(x,λ). (2.70)

Using this, we can calculate the average amount of work done on the system initially in
equilibrium as:

⟨W ⟩ =
∫ 1

0
dα

∫
dx
e−βH(x,α)

Z(α)

∂

∂α
H(x, α), (2.71)

which can be rewritten as:

⟨W ⟩ =

∫ 1

0
dα

∫
dx

− 1
β
d
dαe

−βH(x,α)

Z(α)
= − 1

β

∫ 1

0
dα

d
dα

∫
dxe−βH(x,α)

Z(α)

= − 1

β

∫ 1

0
dα

d
dαZ(α)

Z(α)
= − 1

β

∫ 1

0
dα

d

dα
log(Z(α)) = − 1

β
(log

(Z(1)
Z(0)

)
. (2.72)

We can define the free energy function as:

F (α) = E(α)− 1

β
S(α), (2.73)

where E(α) and S(α) denote the average energy and entropy of the system, respectively.
The free energy can then be calculated as:

E(α) =

∫
dx
e−βH(x,α)

Z(α)
H(x, α) =

∂
∂β

∫
dxe−βH(x,α)

Z(α)
= − ∂

∂β
logZ(α),

1

β
S(α) = − 1

β

∫
dx
e−βH(x,α)

Z(α)
log
(e−βH(x,α)

Z(α)

)
= E(α) +

1

β
log(Z(α)). (2.74)

This allows us to obtain the free energy as:

F (α) = E(α)− 1

β
S(α) = − 1

β
log(Z(α)). (2.75)

We observe see that in an infinitely slow driving process, the work done on the system
is equal to the difference in free energy between the final and initial states. However,
for a finite driving speed, the process becomes irreversible. By using Jarzynski’s equal-
ity e−β∆F = ⟨e−βW ⟩ from [27] and applying Jensen’s inequality, we arrive at the following
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expression:

⟨W ⟩ ≥ ∆F. (2.76)

This expression essentially restates the second law of thermodynamics. According to
this law, when work is done on a system, the minimum amount of work required for the
transformation is at least equal to δF , and hence ⟨W ⟩ ≥ 0. Conversely, when a system
performs work, the maximum amount of work that can be extracted is limited by |δF |, and
⟨W ⟩ ≥ 0. In other words, the change in free energy sets the upper limit on the work that
can be extracted from the system.

2.4.2 Non-equilibrium scenario

The concept of free energy F (α) is initially only applied to thermal equilibrium states.
However, by examining its operational significance, we can extend its definition to encom-
pass non-equilibrium states as well. In particular, we show that the conventional expres-
sion F (α) = E(α) − 1

βS(β), when suitably generalized, measures the maximum average
work that can be extracted from an out-of-equilibrium system. Rather than studying clas-
sical continuous systems with states represented by points x = (q, p) in phase space, we
will connect to the resource-theoretic framework that deals with finite-dimensional sys-
tems. Consequently, the state space will become discrete, with states identified by the
set {j}. The Hamiltonian, which is parametrized by an external parameter α, will then
take on values Ei(α), while the classical states p will indicate the distribution of energy
states. This is precisely equivalent to a quantum system described by the Hamiltonian
H(α) =

∑
iEi(α)|Ei(α)⟩⟨Ei(α)| when we limit ourselves to states that are diagonal in the

energy eigenbasis, with the diagonal elements given by the classical state p. The eigenval-
ues of the Gibbs state is given by the expression

γi(α) =
e−βEi(α)

Z(α)
, (2.77)

where Z(α) is the partition function. The average energy and entropy of the classical state
p is given by

E(p, α) =
∑
i

piEi(α), ; S(p, α) = S(p) = −
∑
i

pi log pi. (2.78)

Thus, we can extend the notion of free energy to non-equilibrium states as follows:

F (p, α) = E(p, α)− 1

β
S(p, α) =

∑
i

piEi(α) +
1

β

∑
i

pi log pi =
1

β
D(p∥γ(α)− log(Z(α))),

(2.79)
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where we have an information theoretic notion of relative entropy as

D(p∥γ(α)) :=
∑
i

pi log
( pi
γi(α)

)
=
∑
i

pi log pi + β
∑
i

piEi(α) + log(Z(α)). (2.80)

In the previous chapter, we observed that D(p∥γ(α)) is always non-negative, and equal-
ity is achieved only if γ(α) = p. Therefore, the free energy is minimized at the thermal
equilibrium state. The current assertion is that the maximum work extractable during a
transformation from a system with a Hamiltonian H(0) and in a classical state p to a sys-
tem described by the final Hamiltonian H(1) and a classical state q, is given by

⟨W ⟩ = F (p, 0)− F (q, 1). (2.81)

Assuming that the initial and final Hamiltonians are the same, representing a cyclic process,
we aim to maximize the extracted work while reaching a thermal final state that minimizes
free energy. This objective leads to the following equality:

⟨W ⟩(p) = ∆F (p) := F (p, 0)− F (γ, 0) =
1

β
S(p|γ). (2.82)

To illustrate how this can be achieved, we present examples for a qubit in box 2.1. This
protocol will be employed to explain work extraction in the resource-theoretic framework
in the next section.

In the example discussed in box 2.1, it was observed that even the ground state of a
system possesses energy when a heat bath is present, indicating that information about
the system state carries energy. This observation was first made by Szilard [85, 86], who
developed an engine that converts information about the occupied degenerate state (i.e., 1
bit) into log 2

β work. The relationship between thermodynamics and information becomes
even more apparent in Eq. (2.82), where the amount of work extracted is proportional to
the relative entropy, which quantifies the information lost when the thermal distribution γ
is used to estimate the system state p.

The qubit result shown in box 2.1 can be generalized to systems of any dimension d. In
[87], it was demonstrated that by performing a sequence of level transformations (while the
system remains isolated from the heat bath) and complete thermalization, we can extract
work that approaches the free energy difference. Suppose we have an initial Hamiltonian
H(0), its corresponding thermal Gibbs state γ(0), and an initial system state p. To extract
work, we follow these steps. First, we modify the Hamiltonian to H(1) such that the new
thermal state γ(1) matches the initial state p. Then, we connect the system to the heat bath
and gradually change the Hamiltonian back to H(0). By the end of the process, the system
will be in the thermal state of the original Hamiltonian, and we will extract 1

βD(p∥γ(0))
work. Note that these are the same steps outlined in the qubit example of box 2.1, with the

52



Chapter 2. Resource theory of athermality 2.4. Describing the notion of work

Box 2.1: Work extraction from incoherent qubit state

Let’s consider a qubit system initially described by a Hamiltonian H(0, E) = E|1⟩⟨1|
and prepared in the excited state |E⟩⟨E|, which can be represented by a classical state
p = (0 1)T . The maximum change in free energy can be obtained through the following
equation:

∆F (p) = E +
1

β
logZ. (2.83)

To extract the amount of work given by the above expression, a specific protocol can be
implemented which is outlined below.

1. Quench: Firstly, the initial step involves a rapid transformation of the Hamiltonian
H toH(0, 0), either at any speed or by isolating the system from the thermal bath.
The resulting Hamiltonian has the same eigenstates as H but with degenerate
eigenvalues equal to zero. The system’s state remains represented by p, but its
energy decreases by E. This process corresponds to the energetic aspect of the
extracted work.

2. Relaxation: The second step entails altering the Hamiltonian to H(∞, 0) while the
system remains isolated from the thermal bath, with ∞ denoting an eigenvalue
much greater than 1

β . Since only the energy of an unoccupied level is modified
without any impact on the distribution, the system’s energy remains constant.
Subsequently, the system is gradually connected to the thermal bath, and the
Hamiltonian is slowly changed from E = ∞ to E. This results in the following
amount of extracted work:

−
∫ E

∞
γ0(E, 0)dE =

∫ ∞

E

e−βE

1 + e−βE
dE =

1

β
logZ(0, E), (2.84)

which represents the information part of the extracted work.

exception of a constant shift in the energy spectrum.

2.4.3 Resource theoretic analysis of work extraction

Up to this point, we have highlighted the significance of generalised free energy as a metric
to gauge the maximum feasible work that can be drawn from a system. The work extrac-
tion methods described thus far rely on controlling and altering the external parameters
that specify the system’s Hamiltonian. However, in a resource theoretic approach to ther-
modynamics, we try to avoid the use of external systems in order to prevent the bringing
free resources and explicitly model everything. Hence, it is unclear whether one can ob-
tain the amount of work equivalent to the system’s free energy variation within a resource
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theory framework. In this regard, we will provide a brief explanation of how this can be
accomplished for average work extraction and introduce the concepts of deterministic and
single-shot work extractions.

The work in resource theoretic approach differs from the previous section by incorpo-
rating a work storage device or battery as an integral part of the system, along with a clock
capable of simulating effectively the time-dependent nature of the system’s Hamiltonian.
As a result, the Hamiltonian governing the entire system becomes time-dependent. The
system now comprises three components: the work storage system denoted asW , the clock
designated asC, and the system under consideration represented as S, and follows a Gibbs-
preserving map of the collective Hamiltonian SCW .

We denote the Gibbs state of system S is denoted by γS , where γS,i is given as e−βES
i

ZS
.

Here, {Ei}di=1 represents the spectrum of the Hamiltonian of system S, and ZS denotes the
partition function. We consider the Hamiltonian of the work storage W as a qubit, (also
referred as the wit), with an energy gap of w, which can be expressed as HW = w|1⟩⟨1|. We
write the Gibbs state of W as rGibbs such that

rGibbs =
1

1 + e−βw

(
1

e−βw

)
:=

(
r0

rW

)
. (2.85)

The concept of deterministic work extraction describes where the initial and final ener-
gies of battery are restricted to either 0 or w. Furthermore, the energy alteration of battery
is always either equal to w or −w, with a probability one, depending on the specific context
being studied.

2.4.3.1 Work of formation

Let us begin by examining the minimum work necessary to generate a non-equilibrium
classical state p from the equilibrium classical state γS , under the assumption that the initial
and final Hamiltonians of the system are the same. Hence, there is no need to explicitly
include the clock C in the framework. Moreover, we suppose that w is a positive quantity.

The initial classical state of the system S and work storage W are γS and rup := (0, 1)T ,
respectively. The final classical state of the system S and work storage is p and rdown. The
Fig. 2.1 shows the relative Lorenz curves of initial and final classical state of the combined
system SW , alongwith the the relevant ∞ - divergences. From the fig. 2.1, we see that state
conversion is possible, if and only if

eD∞(γS⊗rup∥γS⊗rGibbs) ≤ eD∞(p⊗rdown∥γS⊗rGibbs). (2.86)
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Figure 2.1: The relative Lorenz curves depict the transformation of system S’s Gibbs state,
γS , to a non-equilibrium state, p, at a cost of w > 0. This conversion is feasible only if
γS ⊗ rup thermo-majorizes p ⊗ rdown. It is essential to note that the shape of the Lorenz
curve for p⊗ rdown has been intentionally selected to be simplistic, rather than generic.

This Eq. (2.86) further reduces to

e−βw

1 + e−βw
≥ e−βw

1 + e−βw
e−D∞(p∥γS). (2.87)

Thus, we obtain the necessary and sufficient condition for the state conversion as

w ≥ 1

β
D∞(p∥γS), (2.88)

that gives the lower bound of the necessary work.

2.4.3.2 Work extraction

Let us now consider how much work can be maximally extracted from the initial classical
state p of S, assuming that the initial and final Hamiltonians of S remain the same, which
means that the clock C does not need to be explicitly considered. Let us assume that the
value of w is negative.

The initial state of work storage W is rdown = (1, 0)T , while the final classical state of
S is γS and that of W is rup = (0, 1)T , so the final distribution of SW is γS ⊗ rup. In this
setting, −w > 0 represents the work that is extracted from system S and finally stored in
work storage W .
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Figure 2.2: The relative Lorenz curves depict the transformation of an arbitrary initial state
p of system S into the Gibbs state γS via a work extraction of −w > 0. For this conversion
to occur, it is necessary and sufficient that p ⊗ rdown thermo-majorizes γS ⊗ rup. Note that
the Lorenz curve for p⊗ rdown is chosen to be simple, rather than general.

The Lorenz curves of the initial and final classical states of system and work storage SW
are presented in Fig. 2.2, along with their 0-divergences. The state conversion is feasible
only if the following inequality holds:

e−D0(p⊗rdown∥γS⊗rGibbs) ≤ e−D0(γS⊗rup∥γS⊗rGibbs), (2.89)

which can be simplified to

e−βw

1 + e−βw
e−D0(p∥γS) ≤ 1

1 + e−βw
. (2.90)

Thus, we can obtain the necessary and sufficient condition for the state conversion:

−w ≤ 1

β
D0(p∥γS), (2.91)

which sets an upper limit on the extracted work −w.
The protocol proposed in Ref. [87] described in box 2.1 achieves the equality in Eq.

(2.91). The work storage W and clock C are not explicitly taken into account. The protocol
consists of two steps:

1. Quench: In the first step, the energy level of i is raised to infinity while keeping all
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other energy levels constant. This process, called a quench, instantly increases the
energy level i with population pi = 0, and hence no work is performed on system S.

2. Relaxation: Once we have allowed for the relaxation of system S, we proceed to grad-
ually restore the previously raised energy level back to its original values through a
quasi-static process.

The amount of work that can be extracted during a quasi-static process is equal to the
change in the system’s equilibrium free energies, which is given by

−w = − 1

β
log
(Z0

Z

)
= − 1

β
log
( ∑
i:pi>0

γS,i

)
=

1

β
D0(p∥γS), (2.92)

where Z0 :=
∑

i:pi>0 e
−βEi . The work does not fluctuate in the entire process, making it

a single-shot protocol.

2.4.3.3 Equilibrium transition

Finally, Let us consider the transitions between the Gibbs state of system S by modifying
its Hamiltonian from an initial state to a final state with the aid of the clock C. Through this
specific configuration, we can reproduce the conventional expression of the second law as
denoted by Eq. (2.76), which is identified by the equilibrium free energies of the system.

We make the assumption that the energy levels Ei describe the Hamiltonian of system
S when the clock displays "0" and Ẽi when it displays "1". The Gibbs states of the initial
and final Hamiltonians correspond to the initial and final classical states of S, which are
represented by p and p̃, respectively. These Gibbs states are defined as pi = 1

Z e
−βEi and

p̃i =
1
Z̃
e−βẼi , where Z and Z̃ are the partition functions. To simplify the notation, we will

omit the superscript "Gibbs" from p and p̃. The free energies associated with these Gibbs
states are expressed as F := −β−1 logZ and F̃ := − 1

β log Z̃.
To simplify our analysis, we assume that clock C has only two possible states, namely

"0" and "1". The classical state of C is represented by the vector (c0, c1)T in general. In this
case, we consider the classical state of C to be c = (1, 0)T , while the final state is denoted by
c̃ = (0, 1)T . By noting that clock C is coupled to S such that clock C induces the change of
the Hamiltonian of HS , the total Gibbs state of system and clock SC should be given by

pGibbs
SC =

Z

Z + Z̃
p⊗ c+

Z̃

Z + Z̃
p̃⊗ c̃. (2.93)

Suppose that the initial and final states of W are respectively given by

rdown := (0, 1)T ; rup := (0, 1)T . (2.94)

Here, we supposed that w > 0 (i.e., the case of work extraction), while this is not actually
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Figure 2.3: This figure illustrates relative Lorenz curves for a transition between Gibbs state
of S. The state conversion is possible, if and only if p⊗c⊗rdown thermomajorizes p̃⊗c̃⊗rup

necessary for the following argument.
The Gibbs state of the combined system, which includes the clock and weight, denoted

as SCW , can be expressed as pGibbs
SC ⊗ rGibbs. The entire SCW system undergoes a transfor-

mation through a map that maintains the total Gibbs state qGibbs := pGibbs
SC ⊗ rGibbs. In this

situation, the initial and final Lorenz curves are comprised of a straight and horizontal line,
as shown in Fig. 2.3. Hence, Dα(p⊗ c⊗ rdown∥pGibbs

SC ⊗ rGibbs) reduces to a single value for
all 0 ≤ α ≤ ∞. Specifically, when α = 1, the KL divergence is equivalent to all other Renyi
divergences with different values of α. Therefore, from the Lorenz curves depicted in Fig.
2.3, the conversion of states is feasible if and only if

e−D(p⊗c⊗rdown∥pGibbs
SC ⊗rGibbs) ≤ e−D(p̃⊗c̃⊗rup∥pGibbs

SC ⊗rGibbs). (2.95)

Furthermore, we can write

e−D(p⊗c⊗rdown∥pGibbs
SC ⊗rGibbs) =

Z

(Z + Z̃)
× e−βw

1 + e−βw
(2.96)

e−D(p̃⊗c̃⊗rup∥pGibbs
SC ⊗rGibbs) =

Z̃

(Z + Z̃)
× 1

1 + e−βw
(2.97)

Thus, we conclude that the necessary and sufficient conditions for the state conversion as

−w ≤ −(F − F̃ ) (2.98)
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which is nothing but the second law given in Eq. (2.76). The result presented in Eq. (2.98)
agrees with the fact that work fluctuation becomes negligible in the quasistatic limit, which
indicates that equilibrium transitions can be achieved through single-shot protocols.

2.5 Evolution of coherence under thermal operation

In this chapter and throughout most of this thesis, we examine a specific set of states ρS that
have a block diagonal form in the local energy eigenbasis, meaning that [ρS ,HS ] = 0. We
defined the as energy incoherent states (see definition 24). However, a pertinent question
arises if states possess coherence in the energy eigenbasis between non-degenerate energy
levels. This is a complex question with an unknown general solution, but progress has been
made by considering energy coherence in the framework of resource theory, specifically the
theory of asymmetry [62, 88]. One approach is to view states with energy coherence as
violating a symmetry associated with the time translation operation described in theorem
25. In other words, such states do not remain invariant under the action of time translations.

By adopting the resource theory framework, specifically the theory of asymmetry, one
can identify states that abide by the symmetry associated with time translation, indicating
that they remain unaltered when subjected to time translations. However, determining the
fate of states that exhibit coherence between non-degenerate energy levels remains a thorny
issue without a general solution. Nonetheless, progress has been made in this area, leading
to the establishment of supplementary restrictions that pairs of states with coherence must
fulfil to allow for a transition. These limitations are briefly discussed in several works [83,
89, 90].

• One way to measure the deviation of a quantum state from its dephased version is
to compute a distance between them. A basic example of this is the relative entropy
between an arbitrary quantum state ρ and its dephased version D(ρ).

D(ρ∥D(ρ)) = Tr(ρ log ρ)− Tr(ρ log(D(ρ))), (2.99)

which can only decrease as due to the data processing inequality of the relative en-
tropy under quantum maps i.e., given a thermal operation E , we have

D(ρ∥D(ρ)) ≥ D(E(ρ)∥E(D(ρ))) = D(σ∥D(σ)). (2.100)

Similar monotones can be defined via other Renyi divergences.

• Using the properties of time-translation invariance (see theorem 25) and Gibbs state
preservation, we can derive a bound on the magnitude of coherent terms in a quan-
tum state ρ, represented by ρij when Ei ̸= Ej . The proof of this bound is beyond the
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scope of this section, but we present it here for completeness. Suppose E(ρ) = σ, and
we write ρ =

∑
i,j ρij |Ei⟩⟨Ej |. Then, we have:

|σkl| ≥
∑

i,j,Ei<Ek

|ρij |e−β(Ek−Ei) +
∑

i,j,Ei>Ek

|ρij |, (2.101)

where the sum is over pairs of i, j such that Ei − Ej = Ek − El. It is worth noting
that while the issue of coherence is thermodynamically important, it may not be as
significant in the context of work extraction. In fact, it is known that work cannot
be extracted from coherence unless a reference frame is available, and even then, the
optimal method for extracting work from coherence is unclear.
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Chapter 3
Fluctuation dissipation-like relation in
thermodynamic distillation processes

3.1 Introduction

Thermodynamics has greatly influenced the natural sciences and has played a crucial role
in the development of a wide range of technologies, including cooling systems and space-
ships. The theory, which explains the behaviour of macroscopic systems in equilibrium,
offers a comprehensive comprehension of state transformations allowed by a few macro-
scopic quantities like entropy and work [91, 92]. Nevertheless, the macroscopic depiction
of thermodynamics is limited to average quantities, overlooking the increasingly signifi-
cant fluctuations of these quantities in smaller systems [31, 93]. To address this limitation,
researchers have focused on fluctuations around these averages and their impact on system
dynamics. This line of inquiry dates back to Einstein and Smołuchowski and has resulted
in the well-established concept of the fluctuation-dissipation theorem [94, 95, 96, 97]. This
theorem, validated by experimental evidence, describes a system’s response to an external
perturbation in terms of its fluctuation properties in thermal equilibrium [98, 99].

In contrast to the thermodynamic approach, an alternative approach on comprehend-
ing the behaviour of smaller systems is founded on resource theories [34, 70, 100, 101].
This viewpoint endeavours to expand statistical mechanics beyond the bounds of the ther-
modynamic limit and equilibrium assumptions by taking into account scenarios involving
substantial fluctuations, termed single-shot statistical mechanics [102, 103]. The question
that arises is whether fluctuation-dissipation relations exist in this resource-theoretic frame-
work. Although efforts have been made to establish a connection between information-
theoretic and fluctuation theorem approaches [104, 105], no explicit association with dissi-
pation has been established as yet. Recently, methodologies have been devised to analyze
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free energy dissipation within a resource-theoretic framework by studying the irreversibil-
ity of thermodynamic processes due to finite-size effects [63, 106, 107, 108]. However, these
results were limited to the quasi-classical scenario of energy-incoherent states and did not
account for quantum effects that arise in even smaller systems, where fluctuations around
thermodynamic averages are no longer purely thermal in origin.

Our work advances towards a quantum framework that characterizes optimal thermo-
dynamic state transformations and establishes a connection between fluctuations and free
energy dissipation. We focus on a particular type of the state interconversion processes
known as thermodynamic distillations, where a given initial quantum system is trans-
formed, with some error, into a pure energy eigenstate of the final system. Our investigation
centres on initial systems that consist of a large number of non-interacting subsystems that
are either energy-incoherent and non-identical or pure and identical. Our findings consist
of two theorems that form the core of our research. The first theorem presents the optimal
transformation error as a function of the free energy difference between the initial and tar-
get states, as well as the free energy fluctuations in the initial state. This theorem extends
previously derived results on optimal thermodynamic state transformations. The second
theorem provides a precise relationship between the free energy fluctuations of the initial
state and the minimal amount of free energy dissipated in the optimal thermodynamic dis-
tillation process. This conceptually novel theorem does not extend any previously known
results and represents our main contribution. It should be noted that the second theorem
builds on the first one as one of its fundamental components.

Our research has enabled a rigorous examination of crucial thermodynamic processes.
Firstly, we have extended the analysis of work extraction to cover non-identical incoher-
ent states, as well as pure states. Using our main results, we have derived a second-
order asymptotic expression for the optimal transformation error while extracting a spe-
cific amount of work from the initial system. Additionally, we have verified the accuracy
of this expression by comparing it with the numerically optimized work extraction pro-
cess. Secondly, we have explored the optimal energetic cost of erasing N independent bits
prepared in arbitrary states. In this instance, we have calculated the optimal transforma-
tion error for the erasure process as a function of invested work. Thirdly, we have studied
the optimal thermodynamically-free communication scheme, which involves encoding in-
formation into a quantum system without using any extra thermodynamic resources. Our
theorems have provided us with the optimal number of messages that can be encoded into a
quantum system in a thermodynamically free-way, and we have shown that this result is di-
rectly related to the non-equilibrium free energy of the system. We have also demonstrated
that this finding can be interpreted as the inverse of the Szilard engine. Our results also
establish a link between the fluctuations of free energy and the optimal average decoding
error. Finally, we have developed new tools for analyzing approximate transformations and
corresponding asymptotic interconversion rates. We have extended previous distillation re-
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Box 3.1: Optimal transformation error for thermodynamic distillation processes

The optimal thermodynamic process that aims to transform many independent non-
equilibrium systems into systems without fluctuations of free energy is characterized
by the transformation error ϵ. One of the main results of this chapter aims to show that
the value of ϵ can be determined by the following equation:

ϵ = Φ

(
− ∆F

σ(F )

)
, (3.1)

where ∆F represents the free energy difference between the initial and target state,
σ(F ) represents the free energy fluctuation in the initial state, and Φ denotes the cumu-
lative normal distribution function which is defined as

Φ(x) =
1√
2π

∫ x

−∞
e

−t2

2 dt. (3.2)

These results have been proven for many independent systems that are in arbitrary
incoherent states, as well as for many independent and identical systems in the same
pure state. We conjecture this result holds true for many independent systems present
in arbitrary mixed states.

sults to include non-identical systems and genuinely quantum states in a superposition of
different energy eigenstates.

This Chapter structured as follows. We begin by providing a high-level overview in
section 3.2 that provides insight into our research and conveys the underlying physical in-
tuition to a broad audience without the need for delving into technical details. Following
this, in section 3.3, we review the resource-theoretic approach to thermodynamics and in-
troduce relevant concepts for applications. Our primary results, which include the optimal
transformation error and the fluctuation-dissipation relation for both incoherent and pure
states, are presented in the section 3.4. We discuss the thermodynamic interpretation of
these results and apply them to three thermodynamic protocols: work extraction, informa-
tion erasure, and thermodynamically-free communication. The technical derivation of our
main findings is detailed in the section 3.5. Finally, in section 3.6, we offer a conclusion
and provide a glimpse of future research directions. In this way, we establish a general
fluctuation-dissipation relation for thermodynamic distillation processes
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Box 3.2: Fluctuation-dissipation relation for thermodynamic distillation processes

The dissipated free energy in the optimal thermodynamic process of ϵ-approximate
transformation from multiple independent non-equilibrium systems into systems with
no free energy fluctuations is given by the equation:

Fdiss = a(ϵ)σ(F ), (3.3)

where σ(F ) represents the free energy fluctuation in the initial state. The value of a(ϵ),
which is defined by the equation:

a(ϵ) = −Φ−1(ϵ)(1− ϵ) +
exp

(
−(Φ−1(ϵ))2

2

)
√
2π

, (3.4)

can be used to determine the dissipated free energy. Here, Φ−1(x) denotes the inverse
of the Gaussian cumulative distribution function.

0 0.5 1
0

1

ε

a
(ε
)

This claim has been proved for many independent systems in identical incoherent
states, while it has been demonstrated for many independent systems in identical pure
states that the right-hand side of Eq. (3.3) is a lower bound on the value of the function
Fdiss. We conjecture that many independent systems in arbitrary mixed states exhibit
the equality in Eq. (3.3).

3.2 High-level description

To provide readers with an initial understanding of our investigation, we present a high-
level description of our work before formally outlining the setting in this paper. We seek
to identify the fluctuation-dissipation phenomenon in the context of the resource-theoretic
approach to thermodynamics. This phenomenon was originally described by Einstein and
Smołuchowski and posits that to achieve any ordered motion in a system subjected to ran-
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dom forces, energy proportional to the fluctuations of energy induced by these forces must
be dissipated. In contrast, the resource theory of thermodynamics centers around the ques-
tion of whether one state can be transformed into another state in a thermodynamic manner.
Within our framework, we examine the effect of fluctuations present in the initial state of
the system on the minimum amount of dissipation required during the state transformation
process. We will demonstrate that the appropriate fluctuating and dissipated quantity in
the thermodynamic context is the free energy of the system, as we shall see by the end of
the section.

To begin, we present a simple example as a warm-up, where our objective is to ex-
tract work from a given system. This example can be considered a state transformation,
particularly if we explicitly incorporate an ancillary weight system. We consider a model
system with a continuous, non-degenerate energy spectrum, where the ground state of en-
ergy E0 = 0 is prepared as a probabilistic mixture ρ of different energy eigenstates |E⟩
corresponding to energy E. Mathematically, this can be expressed as

ρ =

∞∫
0

p(E)|E⟩⟨E|dE, (3.5)

where p(E) is a probability density function that describes the distribution of the system
over its energy levels. Our goal is to utilize this model system, which possesses fluctuating
amounts of energy, to produce an almost deterministic change in the energy of another
system. In other words, we aim to perform ϵ-deterministic work W , meaning that we seek
to change the state of an ancillary weight system from one energy eigenstate |W0⟩ to another
energy eigenstate |W0 +W ⟩ with a probability of 1− ϵ.

How can we accomplish this task? If the probability density function p(E) of the energy
eigenstates is zero in the interval [0,W ], we can connect the two systems and transfer exactly
W units of energy between them. This can be done by shifting the entire energy distribution
p(E) down by W while shifting the ancillary weight system up by W , as illustrated in the
top panel of Fig. 3.1. However, if most of the probability density function is concentrated
far from the ground energy state 0, we need to perform a similar protocol, but we will fail
with a probability of

ϵ =

W∫
0

p(E), dE, (3.6)

since the energy eigenstates with E ∈ [0,W ] cannot be lowered by W , as that would re-
quire them to fall below the ground state. Let us use an example to provide further clarity.
Consider a Gaussian distribution p(E) with a mean ⟨E⟩ and standard deviation σ:

p(E) =
1√
2πσ

exp

(
−1

2

(E − ⟨E⟩)2

σ2

)
. (3.7)
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Figure 3.1: Transforming “fluctuating” to “deterministic” energy. Top: Despite fluctu-
ations in energy, it is unlikely to draw a significant amount of work from the lowest oc-
cupied state, as it is far from the ground state. The amount of work that can be drawn,
denoted by W , is deterministic, but much smaller than the system’s average energy con-
tent ⟨E⟩. However, it is possible to extract a deterministic amount of work approaching the
average energy ⟨E⟩ while accepting a probability of failure ϵ. The loss incurred during this
process is proportional to the energy fluctuations σ(E), and the proportionality constant is
determined by ϵ. This extraction process assumes an initial Gaussian distribution with an
average energy of ⟨E⟩ and a standard deviation of σ(E).

This example is particularly relevant to thermodynamics since we are interested in the total
energy distributions of a large number of particles, and the central limit theorem states
that these distributions can be approximated well by Gaussian distributions. Although
the Gaussian distribution is non-zero for energies below the ground state energy 0, we can
ignore this as long as the average energy ⟨E⟩ is far from zero. In the bottom panel of Fig. 3.1,
we demonstrate how shifting down a Gaussian distribution by its mean ⟨E⟩ decreased by
a multiple of standard deviations xσ leads to an error ϵ = Φ(x), where Φ is the cumulative
normal distribution function as given in Eq. (3.2). This shows that in order to extract work
with a fixed success probability, we must dissipate some of the fluctuating energy due to
fluctuations. In other words, we must lose some of the fluctuating energy to transform
it into (almost) deterministic energy. This simple example gives us an intuition for why
fluctuations might be related with dissipation.

The above toy example is limited in its scope and doesn’t capture many important as-
pects of realistic scenarios. For instance, in thermodynamics, we have access not only to
mechanical work but also to a thermal bath that can be utilized to draw even more thermo-
dynamic work. Moreover, when dealing with systems of multiple particles, we don’t have
a non-degenerate spectrum but rather a corresponding density of states for each energy.

66



Chapter 3. Fluctuation dissipation-like relation in thermodynamic distillation processes 3.3. Setting the scene

Thus, simply shifting the distribution down may not be feasible as there may be fewer low-
energy states than high-energy states. Additionally, the example only covers the protocol
of work extraction, which is a specific type of general thermodynamic state transforma-
tion. Finally, since we’re dealing with quantum mechanics, we may encounter coherent
superpositions of states within each degenerate energy subspace that can constructively or
destructively interfere. As a result, the situation becomes even more complicated and ne-
cessitates a formalism that can account for both coherent and incoherent contributions to
fluctuations.

Despite the aforementioned complexities, we show in our work that the original insight
gained from the simple toy example can be extended to general quantum thermodynamic
scenarios with all the features outlined above. The key modification required is the replace-
ment of the concept of average energy and its fluctuations, relevant to mechanical systems,
with the concept of average free energy and its fluctuations, relevant to thermodynamic
scenarios. In order to account for quantum systems prepared in arbitrary non-equilibrium
states, we use the non-equilibrium quantum generalization of the classical expression for
free energy, which allows us to define free energy fluctuations rigorously. With these mod-
ifications in place, we show that one can apply the intuition described above to investigate
general thermodynamic distillation processes. These processes transform generic states
with fluctuations of free energy into states with no free energy fluctuations, that is equiv-
alent of ordered energy states in the toy example. Specifically, we prove that during such a
process, for a fixed success probability of transformation (1− ϵ), the amount of free energy
dissipated is proportional to the initial free energy fluctuations, with the proportionality
constant provided in Eq. (3.4).

3.3 Setting the scene

3.3.1 Thermodynamic distillation processes

In order to formally define the thermodynamic distillation process, we begin with recapit-
ulating the set of thermodynamically-free states and transformations that we have intro-
duced in chapter 2. We defined a state of the system that is in equilibrium with a thermal
environment E at inverse temperature β is a free state. Therefore, for a system described by
a Hamiltonian H , the only free state is given by the thermal Gibbs state

γ =
e−βH

Z
, Z = Tr

(
e−βH

)
. (3.8)
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We have introduced the set of free transformations as thermal operations (See definition 22 of
chapter 2) [33, 34, 70], that act on the system as

E(ρ) = TrE
(
U (ρ⊗ γE)U

†) , (3.9)

where U is a joint unitary acting on the system and the thermal environment E that is
described by a Hamiltonian HE and is prepared in a thermal Gibbs state γE at inverse
temperature β. Moreover, U is commuting with the total Hamiltonian of the system and
bath, [U,H ⊗ 1E + 1⊗HE ] = 0. Now we shall define thermodynamic distillation.

Definition 26 (Thermodynamic distillation). A thermodynamic distillation process is a ther-
mal operation from a general initial system described by a Hamiltonian H and prepared in a
state ρ, to a target system described by a Hamiltonian H̃ and in a state ρ̃ that is an eigenstate
of H̃ .

Definition 27 (ϵ- approximate thermodynamic distillation process). An ϵ-approximate ther-
modynamic distillation process from (ρ,H) to (ρ̃, H̃) is a thermal operation that transforms
the initial system (ρ,H) to the final system (ρfin, H̃) with ρfin being ϵ away from ρ̃ in the
infidelity distance i.e., δ(ρ̃, ρfin) where

δ(ρ1, ρ2) := 1−
(
Tr
√√

ρ1ρ2
√
ρ1

)2

. (3.10)

and ρ̃ is the eigenstate of H̃1.

We have defined (see definition 24) that ρ is energy incoherent if it is a convex combination
of eigenstates of H . In this chapter, we will focus on the distillation process from N inde-
pendent initial systems to arbitrary target systems, e.g., to Ñ independent target systems
as illustrated in Fig. 3.2. In particular, we will be interested in the asymptotic behaviour for
large N . Thus, our distillation setting is specified by a family of initial and target systems
indexed by a natural number N . For each fixed N , the initial system (ρN ,HN ) consists of
N non-interacting subsystems with the total Hamiltonian HN and a state ρN given by

HN =
N∑
n=1

HN
n , ρN =

N⊗
n=1

ρNn , (3.11)

while the target system is described by an arbitrary Hamiltonian H̃N and a state ρ̃N =

|ẼNk ⟩⟨ẼNk |, with |ẼNk ⟩ being an eigenstate of H̃N corresponding to some energy ẼNk . Note
that since H̃N is arbitrary, it does not need to describe N particles; in fact, it can even be a
Hamiltonian of a single qubit.

1In fact, all of our results can be applied to a slightly more general scenario where target states are propor-
tional to the Gibbs state on their support, e.g. for ρ̃ = γ̃k

γ̃k+γ̃l
|Ẽk⟩⟨Ẽk|+ γ̃l

γ̃k+γ̃l
|Ẽl⟩⟨Ẽl|, where |Ẽi⟩ describes the

eigenstate of H̃ and γ̃i is its thermal population.
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Figure 3.2: Thermodynamic distillation process. The presence of a thermal operation is
illustrated by the arrow, that converts N independent initial systems into Ñ independent
target systems. The initial and target systems are indicated by circles and squares respec-
tively, denoting that each subsystem is defined by a unique Hamiltonian and is initialized
in a different state.

An instance of this scenario commonly arises when the original and objective systems
are composed of identical, independent subsystems. In this case, the initial system fam-
ily is denoted by HN , where HN

n = H , and ρN = ρ⊗N . The target system family, on the
other hand, consists of Ñ subsystems, with each subsystem characterized by a Hamiltonian
H̃ and a state |Ẽk⟩⟨Ẽk|. The objective is to identify the optimal distillation rate Ñ/N as N
approaches infinity. However, we will also examine a more general case where the subsys-
tems may differ in both their Hamiltonian and state, provided that the initial state is not
correlated.

3.3.2 Work extraction

We have described the notion of work extraction in the resource theoretic framework at a
length in subsection 2.4.3 of chapter 2. There we have understood that one of the implica-
tions of the second law of thermodynamics is that when a system interacts with a thermal
bath in equilibrium, the maximum work it can perform (or the maximum amount of work
that can be extracted from the system) is limited by the difference ∆F between its initial and
final free energy. Traditionally, free energy F = U − S/β has only been defined for states at
thermal equilibrium, with U representing the internal energy and S denoting the entropy of
the system. However, by considering its operational interpretation, one can broaden its def-
inition to investigate non-equilibrium states as well. We have defined the relative entropy
as

D(ρ∥γ) := Tr (ρ(log ρ− log γ)) , (3.12)

can be interpreted as a non-equilibrium generalisation of the free energy difference between
a state ρ and a thermal state γ. It quantifies the maximum amount of work that can be
extracted on average from the system in an out-of-equilibrium state [109, 110].

We have seen previously (refer to the subsection 2.4.3 of chapter 2) that work extrac-
tion protocols in the resource theoretic framework typically involve altering the external
parameters that define the system’s Hamiltonian [81, 87]. However, in a resource-theoretic
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Figure 3.3: Work extraction process. The extraction of work WN
ext from a collection of N

subsystems, which are in a state ρN and described by the Hamiltonian HN , can be viewed
as a specific instance of a thermodynamic distillation process E , which involves a battery
system B. The battery is represented by a two-level system with energy levels |0⟩B and
|1⟩B, corresponding to energies 0 and WN

ext, respectively. In the starting system, we have
the N subsystems of interest alongside the battery in the ground state |0⟩B , whereas the
target system only comprises the battery in the excited state |1⟩B .

treatment [33, 79], external intervention is avoided, and instead, the ancillary work storage
or battery system B is modelled explicitly. The objective is to convert the battery system
from an initial pure energy state to another pure energy state with a higher energy level, as
shown in Fig. 3.3. The Hamiltonian of work storage is usually continuous, but a discrete
spectrum can also be chosen as long as its energy differences correspond to the amount of
work to be extracted. For convenience, we consider a two-level battery system described by
a Hamiltonian HN

B with eigenstates |0⟩B and |1⟩B , that correspond to energies 0 and WN
ext,

respectively. The possibility of extracting work equal to WN
ext from N subsystems that are

described by a Hamiltonian HN and prepared in a state ρN , is equivalent to the existence
of a thermodynamic distillation process that satisfies

E(ρN ⊗ |0⟩⟨0|B) = |1⟩⟨1|B. (3.13)

This distillation process takesN+1 initial subsystems described by a HamiltonianHN+HN
B

to a target subsystem with a Hamiltonian HN
B . If only an ϵ-approximate distillation with

transformation error ϵN is possible, then ϵN measures the quality of the extracted work
directly. With probability 1 − ϵN , the battery system ends up in an excited state of energy
WN

ext. (It is worth noting that in subsection 2.4.3.2, we have considered this exact scenario
where the final state of the N subsystems transformed to Gibbs state. But this doesn’t affect
the description of work extraction and its analysis.)

3.3.3 Information erasure

The relationship between thermodynamics and information dates back to the inception of
thermodynamic theory, illustrated by Maxwell’s demon [111]. The thought experiment
demonstrated that one could hypothetically decrease the entropy of a gas of particles with-
out investing work by obtaining information about their positions and momenta. Thus,
it results an apparent violation of the second law of thermodynamics. Another example,
the Szilard engine [85] that highlights the thermodynamic significance of information by
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Figure 3.4: Information erasure. In order to erase N bits of information, we consider
N subsystems that are in the state ρN and have a trivial Hamiltonian HN . The erasure
operation is executed by connecting a battery system B that is initially in the excited state
|1⟩B with energy WN

cost, which represents the energetic expense of the erasure. The erasure
procedure resets the state of the N subsystems from ρN to a fixed state |0⟩⊗N and de-excites
the battery system.

converting it into work. Similar to the Maxwell demon, the Szilard engine can also breach
the second law if there is some information about the system’s state. This puzzle reveals
that thermodynamics imposes physical constraints on information processing. In particu-
lar, the second law can be reformulated as a statement that no thermodynamic process can
result solely in the erasure of information. Each information erasure comes with a funda-
mental heat cost, leading to an increase in entropy in the environment [73]. Landauer’s
principle [18] tells us that the erasure process has an unavoidable energetic cost, with the
minimum possible amount of energy required to erase a completely an unknown bit of in-
formation is given by log 2/β. However, in this context a more nuanced view of the Szilard
engine and Landauer’s erasure is presented in [112].

Just like the process of work extraction, the process of erasure can also be seen as a
thermodynamic distillation process. When one wants to erase a set ofN bits of information,
it can be represented by N two-level systems in a state ρN , with a trivial Hamiltonian. In
order to measure the energetic cost of erasure, we add a two-level battery system B, which
is initially in an excited state |1⟩B with energy WN

cost. Then, the erasure process results
resetting the state ρN to a fixed state |0⟩⊗N consumes WN

cost work. The erasure process is
possible if there exists the following distillation process:

E(ρN ⊗ |1⟩⟨1|B) = |0⟩⟨0|⊗N ⊗ |0⟩⟨0|B , (3.14)

with the initial and target Hamiltonians being identical. The transformation error quantifies
the quality of erasure, and the process is illustrated in Fig. 3.4.

3.3.4 Thermodynamically-free communication

The intersection of thermodynamics and information theory also allows for the study of
the thermodynamic aspects of communication. In a classical communication scenario, Al-
ice aims to encode and transmit classical information to Bob over a quantum channel, which
typically involves three steps [113]. Initially, she encodes a message m ∈ 1, ...,M by prepar-
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Figure 3.5: Thermodynamically-free encoding. Thermal encoding of information involves
a thermodynamic distillation process that utilizes N independent subsystems in a state ρN

with a HamiltonianHN as the information carrier. The sender then applies a thermal opera-
tion Em to encode a message m ∈ {1, ...,M} by transforming ρN into nearly distinguishable
states. To decode the original message, the receiver performs a measurement on Em(ρN ).

ing a quantum system in a state ρm. Next, she sends it to Bob through a noisy quantum
channel N . Finally, Bob decodes the original message by performing an optimal measure-
ment on N (ρm). It is important to note that in this standard scenario, both Alice and Bob
have complete freedom to use all encoding and decoding methods without any constraints.
The only thing beyond their control is the noisy channel N .

In the recent work [114, 115], a modification of this scenario has been introduced, en-
abling one to quantify the thermodynamic expenditure of communication in a precise man-
ner. To be more specific, it is presumed that Alice and Bob are connected by an error-free
channel, and Bob’s decoding remains unconstrained. However, Alice is limited to employ
solely thermodynamically-free encodings. It implies that encoded states ρm can only arise from
thermal operations performed on a given initial state ρ, that is recognized as an information
carrier. This signifies that Alice complies with the second law of thermodynamics, where
the encoding channel is restricted to utilize no thermodynamic resources except the ones
that are already present in the information carrier ρ. This process is illustrated in Fig. 3.5.

The central question is: what is the maximum number of messages M(ρ, ϵd) that can be
encoded into ρ in a thermodynamically-free manner, such that the average decoding error
is less than ϵd? In this chapter, we will investigate the scene where the information carrier
constitutes N independent systems in a state ρN , characterized by a Hamiltonian HN as
demonstrated in Eq. (3.11). Equivalently, instead of analyzing M(ρN , ϵd), we can ask about
the optimal encoding rate:

R(ρN , ϵd) :=
log[M(ρN , ϵd)]

N
, . (3.15)

In this regard, we will later explain that the optimal thermodynamically-free encodings
that allows the optimal rateR to be achieved. We shall show optimal thermodynamical free
encoding can be designed by a thermodynamic distillation process. As a consequence, this
will allow us to establish a second-order asymptotic expansion of R(ρN , ϵd) for large N .
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3.3.5 Information-theoretic notions and their thermodynamic interpretation

Before we present the results, let us introduce the crucial information-theoretic quantities
alongside their thermodynamic interpretations. For any d-dimensional quantum state ρ, we
define the relative entropy D between ρ and a thermal Gibbs state γ, along with the relative
entropy variance V and the function Y associated with relative entropy skewness [63, 116,
117, 118]:

D(ρ∥γ) :=Tr (ρ (log ρ− log γ)) , (3.16a)

V (ρ∥γ) :=Tr
(
ρ (log ρ− log γ −D(ρ∥γ))2

)
, (3.16b)

Y (ρ∥γ) :=Tr
(
ρ |log ρ− log γ −D(ρ∥γ)|3

)
. (3.16c)

It is evident from the aforementioned definitions that we are dealing with the mean,
variance, and the absolute third moment of the operator

log ρ− log γ (3.17)

The average of this random variable, D(ρ∥γ), can be construed as the non-equilibrium free
energy of the system since

1

β
D(ρ∥γ) = Tr (ρH)− S(ρ)

β
+

logZ

β
, (3.18)

where

S(ρ) :=− Tr (ρ log ρ) (3.19)

represents the von Neumann entropy. The higher order moments beyond the average can
be interpreted as the fluctuations of the non-equilibrium free energy content of the system.
That can be understood most clearly for pure states ρ = |ψ⟩⟨ψ|, where V describes fluctua-
tions of energy of the system:

1

β2
V (|ψ⟩⟨ψ|∥γ) = ⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2. (3.20)

When ρ = γ′, i.e ρ corresponds to a thermal distribution at a different temperature T ′ ̸= T ,
the expression for V reduces to [63]:

V (γ′∥γ) =
(
1− T ′

T

)2

·
cT ′

kB
, where cT ′ =

∂

∂T ′ Tr(Hγ′), (3.21)

such that cT ′ is the specific heat capacity of the system in a thermal state at temperature T ′,
and kB is the Boltzmann constant. Now, for the initial system (ρN ,HN ), we introduce the
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following notation for free energy and free energy fluctuations:

FN :=
1

β

N∑
n=1

D(ρNn ∥γNn ), (3.22a)

σ2(FN ) :=
1

β2

N∑
n=1

V (ρNn ∥γNn ), (3.22b)

κ3(FN ) :=
1

β3

N∑
n=1

Y (ρNn ∥γNn ). (3.22c)

We also introduce

∆FN :=
1

β

(
N∑
n=1

D(ρNn ∥γNn )−D(ρ̃N∥γ̃N )

)
, (3.23)

which describes the free energy difference between the initial and target states, as well as

FNdiss :=
1

β

(
N∑
n=1

D(ρNn ∥γNn )−D(ρNfin∥γ̃N )

)
, (3.24)

which quantifies the amount of free energy that is dissipated in the distillation process, i.e.,
the free energy difference between the initial and final states.

We would like to make two final technical remarks. Firstly, we will only consider initial
systems for which the limits of σ2(FN )/N and κ3(FN )/N asN → ∞ exist and are non-zero.
Secondly, we will use a shorthand notation throughout the following sections where ≃, ≲,
and ≳ denote equalities and inequalities that hold up to terms of order o(

√
N).

3.4 Results

3.4.1 Optimal distillation error and fluctuation-dissipation relations

We present our first set of main results that focus on the thermodynamic distillation process
from energy incoherent systems. These two theorems establish a connection between the
optimal distillation error and the fluctuations of free energy of the system’s initial state, as
well as the minimum amount of free energy dissipated in the distillation process due to
these fluctuations.

Theorem 26A (Optimal distillation error for incoherent states). In a distillation scenario with
energy incoherent states, the optimal ϵ-approximate distillation process in the asymptotic limit can
be characterized by the transformation error ϵN , which is given by the equation:

lim
N→∞

ϵN = lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
, (3.25)
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where Φ represents the cumulative normal distribution function. Additionally, there exists an ϵ-
approximate distillation process for any N with transformation error ϵN bounded as follows:

ϵN ≤ Φ

(
− ∆FN

σ(FN )

)
+
Cκ3(FN )

σ3(FN )
, (3.26)

Here, C denotes a constant from the Berry-Esseen theorem, which is confined within the bounds:

0.4097 ≤ C ≤ 0.4748. (3.27)

Theorem 26B (Fluctuation-dissipation relation for incoherent states). The minimal free en-
ergy dissipated in the optimal distillation process from identical incoherent states that minimize the
transformation error ϵ, described by the following relation in the asymptotic limit:

FNdiss ≃ a(ϵN )σ(F
N ), (3.28)

Here, a(ϵ) is a function of ϵ given by

a(ϵ) = −Φ−1(ϵ)(1− ϵ) +
exp

(
−(Φ−1(ϵ))2

2

)
√
2π

(3.29)

In the equation, Φ−1 represents the inverse function of the cumulative normal distribution function
Φ.

In section 3.5.2 and section 3.5.3, we will provide the proofs for the above theorems. In
this section, we will briefly discuss the implications and the range of applicability of these
theorems. We start by noting that by combining Eq. (3.25) and Eq. (3.28), one can determine
the optimal amount of free energy as a function of ∆FN and σ(FN ):

FNdiss ≃
(
1− Φ

(
− ∆FN

σ(FN )

))
∆FN +

exp
(
− (∆FN )2

2σ2(FN )

)
√
2π

σ(FN ). (3.30)

Now, for the analysed case of independent initial subsystems, free energy fluctuations
σ(FN ) scale as

√
N . Thus, we can classify three regimes, depending on how the free en-

ergy difference between the initial and target states, ∆FN , behaves with increasing N :

lim
N→∞

∆FN√
N

=


∞,

−∞,

α ∈ R.

(3.31)

Let us consider the implications of the three regimes in more detail. In the first case,
when the free energy of the target state is much smaller than that of the initial state, the
transformation error approaches zero in the asymptotic limit as can be seen from Eq. (3.25).
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In addition, according to Eq. (3.30) the amount of dissipated free energy FNdiss is approxi-
mately equal to the free energy difference between the initial and target states, up to second-
order asymptotic terms. This indicates that one can approach the target state arbitrarily
closely having much less free energy than the initial state. In the second case, when the
free energy of the target state is much larger than that of the initial state, the transformation
error approaches one in the asymptotic limit, and the amount of dissipated free energy FNdiss

approaches zero. This means that it is almost impossible to approach the target state with
much higher free energy than the initial state, and therefore the optimal process is to do
nothing. That is why there is no disspation of free energy.

Finally, the third case that is at the core of theorems 26A and 26B. This regime corre-
sponds to the target state having free energy very close to that of the initial state (again,
the scale is set by the magnitude of free energy fluctuations). Our theorems then pro-
vides the direct correspondence between the optimal transformation error as well as the
minimal amount of dissipated free energy in the process and the free energy fluctuations
present in the initial state of the system. We can comprehend from Eq. (3.25), for two pro-
cesses with the same free energy difference ∆FN , the process involving the initial state with
smaller fluctuations will yield a smaller transformation error. Similarly, since the derivative
of Eq. (3.30) over σ(FN ) for a fixed ∆FN is always positive, states with smaller free energy
fluctuations will lead to smaller free energy dissipation. In particular, consider the exam-
ple of a battery-assisted distillation process, i.e. a thermodynamic transformation from
(ρN ⊗ |1⟩⟨1|B,HN +HB) to (ρ̃N ⊗ |0⟩⟨0|B,HN +HB), where the energy gap of the battery
system B is WN

cost. Now, the quality of transformation from ρN to ρ̃N (measured by trans-
formation error ϵN ) depends on the amount of work WN

cost that we invest into the process.
As expected, to achieve ϵ ≤ 1/2, we need to invest at least the difference of free ener-
gies [D(ρ̃N∥γ̃N ) − D(ρN∥γN )]/β. However, theorem 26A tells us how much more work is
required to reduce the transformation error to a desired level: the more free energy fluctu-
ations there were in ρN , the more work we need to provide.

Let us compare theorem 26A and 26B to the results presented in the article by Chubb et.
al. [63] that focuses on the incoherent thermodynamic interconversion between identical
copies of the initial system, ρ⊗N , and identical copies of the target system, ρ̃⊗Ñ . Though
our results were limited to the case of the target state being an eigenstate of the target
Hamiltonian, our findings demonstrate a significant advancement in multiple directions.

• Firstly, our results apply to general independent systems rather than identical copies
exclusively.

• Secondly, our theorems account for cases where the Hamiltonians of the initial and
target systems can differ, making our work highly applicable to processes such as
work extraction or thermodynamically-free communication.

• Thirdly, we have surpassed the second-order asymptotic result by providing a single-

76



Chapter 3. Fluctuation dissipation-like relation in thermodynamic distillation processes 3.4. Results

shot upper bound on the optimal transformation error, ϵN , which is expressed in
Eq. (3.26) and holds for any finite N . As a result, it is possible to obtain a guarantee
on the transformation error in the finite N regime that approaches the asymptotically
optimal value as N → ∞.

• Finally, we have derived the expression for the actual amount of dissipated free en-
ergy in the optimal process, and related it to the fluctuations of the free energy content
of the initial state.

Our second pair of main results is analogous to the first pair, but concerns thermo-
dynamic distillation process from N identical copies of a pure quantum system. Thus, the
following two theorems connect the optimal distillation error to the free energy fluctuations
of the initial state of the system, and the minimal amount of free energy dissipated in such a
distillation process to these fluctuations. To formally express these theorems, we introduce
a technical notion of a Hamiltonian with an incommensurable spectrum. This Hamiltonian
is such that for any two energy levels, Ei and Ej , the ratio between Ei and Ej can not be
rational. We then have the following results.

Theorem 27A (Optimal distillation error for identical pure states). In a distillation scenario
where N identical initial systems are each in a pure state |ψ⟩⟨ψ| and have the same Hamiltonian H
with incommensurable spectrum, the optimal ϵ-approximate distillation process has a transformation
error ϵN that asymptotically satisfies

lim
N→∞

ϵN = lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
, (3.32)

where Φ represents the cumulative normal distribution function. Additionally, this result remains
valid even if both the initial and target systems are extended by an ancillary system with an arbitrary
Hamiltonian HA, where the initial and target states are eigenstates of HA.

Theorem 27B (Fluctuation-dissipation relation for identical pure states). In the optimal dis-
tillation process that minimizes the transformation error ϵ for N identical pure states, the amount of
free energy dissipated asymptotically satisfies

FNdiss ≳ a(ϵN )σ(F
N ), (3.33)

where a(ϵ) is defined in Eq. (3.29).

In sections 3.5.4 and 3.5.5, we provide the proofs for the aforementioned theorems.
However, we would like to add one comment to the previous discussion. In the case of a
pure state, the free energy fluctuations are equivalent to the energy fluctuations (as demon-
strated in Eq. (3.20)). Moreover, given that all pure states are identical in the scenario we
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Figure 3.6: Optimal work extraction. This diagram compares the asymptotic approxima-
tion, given by Eq.(3.38), with the actual optimal value W (represented by red circles) for the
amount of extracted work WN

ext as a function of transformation error ϵ. To obtain the opti-
mal value, the thermomajorisation conditions were explicitly solved, and details about this
process are available in section 3.5.1. The temperature of the thermal bath is set to β = 1,
and the initial system comprises 100 two-level subsystems. The first 59 subsystems are in
a thermal state of 0.6|0⟩⟨0| + 0.4|1⟩⟨1|, while the remaining 41 subsystems are in a thermal
state of 0.75|0⟩⟨0| + 0.25|1⟩⟨1|. The initial state of the system is composed of 59 copies of
0.9|0⟩⟨0|+ 0.1|1⟩⟨1| and 41 copies of 0.7|0⟩⟨0|+ 0.3|1⟩⟨1|. The non-equilibrium free energy of
the total initial system, FN , is shown as a grey dotted line.

are considering, we can simplify the expression as follows:

1

N
σ2(FN ) = ⟨H2⟩ψ − ⟨H⟩2ψ, (3.34)

where we use the shorthand notation ⟨ · ⟩ψ = ⟨ψ| · |ψ⟩. Similar to the incoherent case, the
optimal transformation error exhibits non-trivial behavior only when ∆FN ≃ α

√
N , and

its value is determined by the ratio

α√
(⟨H2⟩ψ − ⟨H⟩2ψ)

. (3.35)

3.4.2 Optimal work extraction

We will now discuss the first application of our theorems, which focuses on the work extrac-
tion from a collection of N non-interacting subsystems, each of which has a Hamiltonian
HN
n and is in an incoherent state ρNn . This work extraction process is a particular instance of

thermodynamic distillation, as previously described in section 3.3.2. It is important to note
that the pure battery state does not contribute to the fluctuations σ and κ, and that the dif-
ference between the non-equilibrium free energies of the ground and excited battery states
is simply the energy difference WN

ext. Then, theorem 26A tells us that, in the asymptotic
limit, the optimal transformation error for extracting the amount of work WN

ext is
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Figure 3.7: Work quality. Non-equilibrium free energy Fbat of the two-level battery system
calculated for the final (dashed red line) and target (solid black line) state of the optimal
work extraction process. The inverse temperature of the thermal bath is chosen to be β = 1,
and the initial state that the work is extracted from is composed of 100 copies of a state
0.7|0⟩⟨0|+0.3|1⟩⟨1|. Each subsystem is described by the Hamiltonian corresponding to a ther-
mal state 0.6|0⟩⟨0|+0.4|1⟩⟨1| and the non-equilibrium free energy of the total initial system,
FN , is indicated by a grey dotted line.

lim
N→∞

ϵN = lim
N→∞

Φ

(
WN

ext − FN

σ(FN )

)
. (3.36)

The difference (WN
ext − FN ) once again gives rise to three cases. In order for the asymptotic

error to be different from zero and one, the extracted work WN
ext must be in the form

WN
ext ≃ FN − α

√
N, (3.37)

where α is a constant. Substituting this into the previous equation Eq. (3.36) gives us the
second-order asymptotic expression for the extracted work:

WN
ext ≃ FN + σ(FN )Φ−1(ϵ). (3.38)

Thus, for a fixed quality of extracted work measured by ϵ, greater amount of work can
be extracted from states with smaller free energy fluctuations (assuming that the initial free
energy FN is fixed). This is a direct generalisation of the result obtained in [63] to a scenario
with non-identical initial systems and with a clearer interpretation of the error in the battery
system. Here, we present a comparison between our bounds and the numerically optimised
work extraction processes in Fig. 3.6.

Similarly, using theorem 27A, we can calculate the optimal work extraction process from
a group of N non-interacting subsystems having identical Hamiltonians H and each in the
identically same pure state |ψ⟩⟨ψ|. To achieve this, we select the ancillary system A to be
the battery B with energy splitting WN

ext, and having the initial and target states as |0⟩B and
|1⟩B . Since all systems are in identical pure states and described by the same Hamiltonian,
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we have σ(FN ) is specified by Eq. (3.34) and

1

N
FN = ⟨H⟩ψ +

logZ

β
. (3.39)

Therefore, the optimal amount of work that can be extracted fromN pure quantum systems
up to the second-order asymptotic expansion can be expressed as follows:

W ext ≃ N

(
⟨H⟩ψ +

logZ

β
+

⟨H2⟩ψ − ⟨H⟩2ψ√
N

Φ−1(ϵ)

)
. (3.40)

In conclusion, theorem 26B (and to some extent theorem 27B) can be utilized to explore
the meaning of work quality, which is quantified by the transformation error ϵ. So far, we
have evaluated the amount of extracted work as the difference between the free energy of
the initial state of the battery and its target state, which was achieved with a probability
of success of 1 − ϵ. However, as per the aforementioned theorems, the free energy of the
final state of the battery can be precisely determined, providing a more accurate amount of
the extracted work (without any error). Fig. 3.7 illustrates the trend of both measures as a
function of ϵ, indicating that the two concepts coincide when the error ϵ is small.

3.4.3 Optimal cost of erasure

To determine the optimal work cost for erasing N two-level systems that are initially in
incoherent states ρNn , we employ theorem 26A, following a similar approach to the previous
section, but tailored to the situation described in section 3.3.3. As a result, we obtain the
optimal transformation error in the erasure process expressed as:

lim
N→∞

ϵN = lim
N→∞

Φ

(
1
βS(ρ

N )−WN
cost

σ(FN )

)
, (3.41)

Here, S(ρN ) is the von Neuman entropy of the initial state, and WN
cost is the minimum

work cost required. By following a similar rationale to the previous case of work extraction,
we can derive the second-order asymptotics for the cost of erasure:

WN
cost ≃

S(ρN )

β
− σ(FN )Φ−1(ϵ). (3.42)

We would like to make three brief comments regarding the aforementioned result. Firstly,
we only examined the incoherent result, theorem 26A, as in the case of trivial Hamiltonians,
the erasure of a pure state |ψ⟩⟨ψ|⊗N is free (since all unitary transformations will then be
thermodynamically-free). While our results are easily extends to the scenario for non-trivial
Hamiltonians, we believe that the simple case we outlined above is the most informative
and restores the core of Landauer’s original erasure scenario. Secondly, since the maximally
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mixed initial state has zero free energy fluctuations (σ(FN ) = 0), we cannot directly use our
result (which connects fluctuations of initial state with dissipation) to obtain the erasure
cost of N completely unknown bits of information. However, by utilizing the techniques
presented in section 3.5, it is simple to demonstrate that in this scenario, the exact expression
(applicable for all N ) for the erasure cost is given by

WN
cost =

N

β

(
log 2− log(1− ϵ)

N

)
. (3.43)

Thus, if the error is zero, Landauer’s erasure cost is recovered [119]. Thirdly, similar to the
case of work extraction, theorem 26B can also be employed here to examine the significance
of erasure quality, which is determined by ϵ.

3.4.4 Optimal thermodynamically-free communication rate

In this section, we describe how theorems 26A and 27A can be used to determine the op-
timal thermodynamically-free encoding rate for a collection of N identical subsystems in
either incoherent or pure states. To accomplish this, we select the target system consisting
of a single M -dimensional quantum system with a trivial Hamiltonian H̃ = 0, prepared in
any of the degenerate eigenstates of H̃ . It should be noted that the non-equilibrium free
energy of such a target system is expressed by the equation

1

β
D(ρ̃N∥γ̃N ) = 1

β
logM. (3.44)

According to our theorems, in the asymptotic limit, the optimal transformation error ϵ in
the distillation process can be determined by the equation

lim
N→∞

ϵN = lim
N→∞

Φ

(
1
β logM − FN

σ(FN )

)
. (3.45)

Upon rewriting the above equation, we obtain the second-order asymptotic behaviour as
follows:

logM ≃ βFN + βσ(FN )Φ−1(ϵ). (3.46)

Now, the distillation process above can be followed by unitaries that map between M

degenerate eigenstates of H̃ that we will simply denote |1⟩, . . . , |M⟩. It is important to note
that such unitaries are thermodynamically-free because they operate in a fixed energy sub-
space. This protocol enables the encoding of M messages into M states σi, with each state
being ϵ-close in infidelity distance to |i⟩ for i ∈ 1, . . . ,M . Decoding the message involves
performing a measurement in the eigenbasis of H̃ , resulting in the average decoding error
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ϵd satisfying the following relation:

1− ϵd :=
1

M

M∑
i=1

⟨i|σi |i⟩ = 1− ϵ, (3.47)

that implies that ϵd = ϵ

By using the communication protocol described above, we can derive the following
asymptotic lower bound on the optimal thermodynamically-free encoding rate into a state
ρN (as shown in Eq. (3.15)):

R(ρN , ϵd) ≥
β

N
(FN + σ(FN )Φ−1(ϵd)) + o

(
1√
N

)
. (3.48)

The lower bound presented above matches exactly with the upper bound for R(ρN , ϵd) that
was recently derived in [115], albeit for a slightly different scenario. In [115], the lower
and upper bounds were derived for the case when ρNn = ρ and HN

n = H for all n, with
H̃N = HN , and with Gibbs-preserving operations instead of thermal operations. How-
ever, the proof presented in [115] can be easily adapted to the current scenario, keeping
the first restriction that the initial state is ρN = ρ⊗N and all initial subsystems have equal
Hamiltonians. We provide detailed explanation on how to adapt the proof in appendix 6.2.
Furthermore, we also discuss a technical result concerning hypothesis testing relative en-
tropy, which needs to be proven in order to make the proof work when subsystems are not
identical. Here we conclude that

R(ρ⊗N , ϵd)=D(ρ∥γ) +
√
V (ρ∥γ)√
N

Φ−1(ϵd) + o

(
1√
N

)
, (3.49)

where ρ is either a pure or incoherent state.
The above result has a thermodynamic interpretation as the opposite of the Szilard en-

gine. The Szilard engine converts bits of information into work, whereas the protocol we
examine here employs the system’s free energy (i.e., its ability to perform work) to encode
bits of information. Although the asymptotic result was recently established in Ref. [114],
our results demonstrate a deeper relationship, as they link free energy fluctuations to the
optimal average decoding error

3.5 Derivation of the results

The subsequent sections begins with an introduction to the mathematical formalism em-
ployed to investigate the incoherent distillation process. This formalism is subsequently
utilized to establish the proofs of theorems 26A and 26B. Furthermore, we establish the-
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orems 27A and 27B by initially transforming the distillation problem from pure states to
an equivalent incoherent problem, and subsequently utilizing the formalism of incoherent
distillations.

3.5.1 Incoherent distillation process

3.5.1.1 Distillation conditions via approximate majorisation

Firstly, let us recall the concept of energy incoherent states (refer to definition 24). An
energy-incoherent state ρ of a d-dimensional quantum system is defined as one that com-
mutes with the system’s Hamiltonian, resulting in a block-diagonal representation in the
energy eigenbasis. This state can also be represented by a d-dimensional classical state or
probability vector p consisting of the eigenvalues of ρ. The thermal Gibbs state γ is a classic
example of an energy-incoherent state, which can be represented by a classical state of ther-
mal occupations γ. Additionally, a state |Ek⟩⟨Ek| of energy eigenstateEk can be represented
by a sharp classical state sk, where (sk)j = δjk.

To develop the solution to the thermodynamic interconversion for incoherent states, we
shall recapitulate two fundamental concepts that we have introduced in chapter 1: approx-
imate majorisation and embedding. First, given two d-dimensional probability vectors p and
q, we say that p majorises q, and write p ≻ q, if and only if [14]

∀k :
k∑
j=1

p↓j ≥
k∑
j=1

q↓j , (3.50)

where p↓ denotes the vector p rearranged in a decreasing order. Next, we shall introduce a
variant of majorisation called ϵ-post majorisation.

Definition 28 (ϵ-post majorisation [63]). We say that p ϵ-postmajorises q, and write p ≻ϵ q,
if p majorises r which is ϵ-close in the infidelity distance to q, i.e.,

1− F (q, r) ≤ ϵ, F (q, r) :=

 d∑
j=1

√
qjrj

2

. (3.51)

Second, we express the thermal distribution γ as a probability vector with rational en-
tries,

γ =

[
D1

D
, . . . ,

Dd

D

]
, (3.52)

with D and Dk being integers. Now, the embedding map Γγ as we have introduced in
subsection 1.4.2.1 of chapter 1, is defined as a transformation that maps a d-dimensional
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classical state p to a D-dimensional classical state p̂ in the following way [34]:

p̂ =

[
p1
D1

, . . . ,
p1
D1︸ ︷︷ ︸

D1 times

, . . . ,
pd
Dd

, . . . ,
pd
Dd︸ ︷︷ ︸

Dd times

]
. (3.53)

We will refer to the sets of repeated elements above as embedding boxes. Observe that the
embedded version of a thermal state γ is a maximally mixed state over D states,

η :=
1

D
[1, . . . , 1], (3.54)

and the embedded version of a sharp state sk is a flat state fk that is maximally mixed over
a subset of Dk entries, with zeros otherwise:

ŝk = fk :=

[
0, . . . , 0︸ ︷︷ ︸∑k−1

j=1 Dj

, 1 . . . 1︸ ︷︷ ︸
Dk

, 0, . . . , 0︸ ︷︷ ︸∑d
j=k+1Dj

]
. (3.55)

We can now state the crucial theorem based on [34] and concerning thermodynamic
interconversion for incoherent states.

Theorem 28 (Corollary 7 of [63]). For the initial and target system with the same thermal distri-
bution γ, there exists a thermal operation mapping between an energy-incoherent state p and a state
ϵ-close to q in infidelity distance, if and only if p̂ ≻ϵ q̂.

Although we intend to examine the general case of initial and final systems with differ-
ent Hamiltonians, we can still apply the above theorem with some ingenuity. Specifically,
we consider a family of total systems comprising the first N subsystems with initial Hamil-
toniansHN

n , while the remaining part is described by the target Hamiltonian H̃N . The initial
states of the total system for the first N subsystems are chosen to be a general product of in-
coherent states pNn , while the remaining part is prepared in a thermal equilibrium state γ̃N

corresponding to H̃N . Because Gibbs states are thermodynamically free, this setup is ther-
modynamically equivalent to having only the firstN systems with HamiltoniansHN

n and in
states pNn . Moreover, for the target states of the total system, we select thermal equilibrium
states γNn for the first N subsystems and sharp states s̃Nk of the Hamiltonian H̃N for the
remaining part. Once more, this is thermodynamically equivalent to having just the system
with Hamiltonian H̃N and in a state s̃Nk . Thus, employing theorem 28, an ϵ-approximate
distillation process for incoherent states exists if and only if:(

N⊗
n=1

p̂Nn ⊗ ˆ̃γN

)
≻ϵ

(
N⊗
n=1

γ̂Nn ⊗ ˆ̃sNk

)
. (3.56)

This way, using a single fixed Hamiltonian, we can encode transformations between differ-
ent Hamiltonians.
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Let us introduce the following shorthand notation:

P̂N :=
N⊗
n=1

p̂Nn , ĜN :=
N⊗
n=1

γ̂Nn =
N⊗
n=1

ηNn . (3.57)

Therefore, utilizing the previous facts regarding the embedding map, we can assert the
following statement: an ϵ-approximate thermodynamic distillation process can occur from
N systems described with Hamiltonians HN

n in energy-incoherent states pNn to a system
with a Hamiltonian H̃N and in a sharp energy eigenstate s̃Nk if and only if

P̂N ⊗ η̃N ≻ϵ Ĝ
N ⊗ f̃Nk . (3.58)

3.5.1.2 Information-theoretic intermission

We will take a brief intermission to highlight some important remarks regarding the information-
theoretic quantities defined in Eqs. (3.16a)-(3.16c). For incoherent states ρ and γ, which can
be represented as classical states p and γ, these quantities take a simplified classical form,
as follows:

D(p∥γ) :=
∑
i

pi

(
log

pi
γi

)
, (3.59a)

V (p∥γ) :=
∑
i

pi

(
log

pi
γi

−D(p∥γ)
)2

, (3.59b)

Y (p∥γ) :=
∑
i

pi

∣∣∣∣log piγi −D(p∥γ)
∣∣∣∣3 . (3.59c)

Moreover, by doing a simple algebra, one can easily show that the above quantities are in-
variant under embedding, i.e., D(p∥γ) = D(p̂∥η), and the same holds for V and Y . There-
fore

D(p∥γ) =D(p̂∥η) = logD −H(p̂), (3.60a)

V (p∥γ) =V (p̂∥η) = V (p̂), (3.60b)

Y (p∥γ) =Y (p̂∥η) = Y (p̂), (3.60c)

where

H(p) :=
∑
i

pi(− log pi), (3.61a)

V (p) :=
∑
i

pi(log pi +H(p))2, (3.61b)

Y (p) :=
∑
i

pi |log pi +H(p)|3 , (3.61c)
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and note that V (p) = 0 if and only if p is a flat state.

3.5.1.3 Optimal error for a distillation process

To derive an explicit expression for the optimal transformation error from the approximate
majorization condition in Eq. (3.58), we begin with the following theorem proven in [63].

Lemma 29 (Lemma 21 of [63]). Let p and q be distributions with V (q) = 0. Then

min {ϵ|p ≻ϵ q} = 1−
expH(q)∑
i=1

p↓i . (3.62)

Applying the above lemma to Eq. (3.58) leads to the following expression for the optimal
error ϵN :

ϵN = 1−
exp[H(ĜN )+H(f̃N

k )]∑
i=1

(
P̂N ⊗ η̃N

)↓
i
. (3.63)

We can make two observations for an arbitrary classical state p and any flat state f . Firstly,
the size of the support of f is simply exp(H(f)). Secondly, the entries of p⊗f are the copied
and scaled entries of p. Thus, we can express the sum of the l largest elements of p as

l∑
i=1

p↓i =

l exp(H(f))∑
i=1

(p⊗ f)↓i . (3.64)

Inverting the above expression we can write

l∑
i=1

(p⊗ f)↓i =

l exp(−H(f))∑
i=1

p↓i , (3.65)

where the summation with non-integer upper limit x should be interpreted as:

x∑
i=1

pi :=

⌊x⌋∑
i=1

pi + (x− ⌊x⌋)p⌈x⌉. (3.66)

Since η̃ is a flat state, we conclude that

ϵN = 1−
exp[H(ĜN )+H(f̃N

k )−H(η̃N )]∑
i=1

(P̂N )↓i . (3.67)

One can see that the error depends on partial ordered sums as above. In order to deal
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with such a sum, we introduce the function χp defined implicitly by the following relation

χp(l)∑
i=1

p↓i =
∑
i

{pi|pi ≥ 1/l}. (3.68)

In other words χp(l) counts the number of elements of p that are greater than 1/l. Now, we
have the following lemma that will be important in proving our theorems.

Lemma 30. Any d-dimensional probability vector p satisfies the following for all l ∈ {1, . . . , d}
and for all α ≥ 1:

l∑
i=1

p↓i ≥
χp(l)∑
i=1

p↓i , (3.69a)

l∑
i=1

p↓i ≤
χp(αl)/c∑
i=1

p↓i , (3.69b)

where

c =
√
α

χp(αl)∑
i=χp(

√
αl)

p↓i . (3.70)

Moreover, as the probabilities are ordered in the sums given in Eq. (3.69a) and Eq. (3.69b), it simply
follows that

χp(l) ≤ l ≤ χp(αl)/c. (3.71)

Proof. It is simple to demonstrate the first inequality by observing that the number of en-
tries greater than 1/l, which is denoted by χp(l), can be bounded from above l because of
normalization. Moving on to the second inequality, we begin with the following observa-
tion:

χp(
√
αl)∑

i=1

(
p↓i −

1√
αl

)
≥

χp(αl)∑
i=1

(
p↓i −

1√
αl

)
, (3.72)

that results from the fact that all the extra terms on the right-hand side of the above are
negative by definition. By rearranging terms, we arrive at

χp(αl)− χp(
√
αl) ≥ cl, (3.73)

that straight-forwardly implies

l ≤ χp(αl)

c
. (3.74)
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3.5.2 Proof of theorem 26A

We will prove theorem 26A in two parts. In the first part, we will derive an upper bound
for the optimal transformation error ϵN and write it as Eq. (3.26). In the second part, we
will provide a lower bound for ϵN and show that it approaches the upper bound in the
asymptotic limit, thus proving Eq. (3.25).

3.5.2.1 Upper bound for the transformation error

We begin by introducing the following averaged entropic quantities for the total initial dis-
tribution P̂N :

hN :=
1

N
H(P̂N ) =

1

N

N∑
n=1

H(p̂Nn ) =:
1

N

N∑
n=1

hNn , (3.75a)

vN :=
1

N
V (P̂N ) =

1

N

N∑
n=1

V (p̂Nn ) =:
1

N

N∑
n=1

vNn , (3.75b)

yN :=
1

N
Y (P̂N ) =

1

N

N∑
n=1

Y (p̂Nn ) =:
1

N

N∑
n=1

yNn . (3.75c)

Observe that the above vN and yN are, up to rescaling by N/β, incoherent versions of
σ2(FN ) and κ3(FN ) defined in Eqs. (3.22b)-(3.22c). We also define the function l:

l(z) := exp
(
NhN + z

√
NvN

)
. (3.76)

We now rewrite the upper summation limit appearing in Eq. (3.67) employing the above
function:

exp[H(ĜN ) +H(f̃Nk )−H(η̃N )] = l(x), (3.77)

so that

x =
D(P̂N∥ĜN )−D(f̃Nk ∥η̃N )√

V (P̂N )
. (3.78)

This can be transformed further by using the invariance property of relative entropic quanti-
ties under embedding as per Eqs. (3.60a)-(3.60b) that reduces x in Eq. (3.78) in the following
way:

x =

N∑
n=1

D(pNn ∥γNn )−D(s̃Nk ∥γ̃N )(
N∑
n=1

V (pNn ∥γNn )

) 1
2

, (3.79)
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which is precisely the argument of Φ that appeared in the statement of theorem 26A in
Eq. (3.25):

x =
∆FN

σ(FN )
. (3.80)

We conclude that with the above xwe can then rewrite the expression for the optimal trans-
formation error, Eq. (3.67), as

ϵN = 1−
l(x)∑
i=1

(P̂N )↓i . (3.81)

Next, we would like to find an upper bound for the error employing Eq. (3.69a):

ϵN ≤ 1−
χ
P̂N (l(x))∑
i=1

(P̂N )↓i

= 1−
∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

l(x)

}
. (3.82)

In order to evaluate the above sum, consider N discrete random variables Xn taking values
− log(p̂Nn )i with probability (p̂Nn )i, so that

⟨Xn⟩ = hNn , (3.83a)

⟨(Xn − ⟨Xn⟩)2⟩ = vNn , (3.83b)

⟨|Xn − ⟨Xn⟩|3⟩ = yNn , (3.83c)

where the average ⟨ · ⟩ is taken with respect to the distribution p̂Nn . We then have the fol-
lowing

∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

l(x)

}

=
∑

i1,...,iN

{
N∏
n=1

(p̂Nn )in

∣∣∣∣∣
N∏
n=1

(p̂Nn )in ≥ 1

l(x)

}

=
∑

i1,...,iN

{
N∏
n=1

(p̂Nn )in

∣∣∣∣∣−
N∑
n=1

log(p̂Nn )in ≤ log l(x)

}

= Pr

[
N∑
n=1

Xn ≤ NhN + x
√
NvN

]

= Pr

 ∑N
n=1(Xn − ⟨Xn⟩)√∑N
n=1⟨(Xn − ⟨Xn⟩)2⟩

≤ x

 . (3.84)
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Now, the Berry-Esseen theorem [120, 121] tells us that∣∣∣∣∣∣Pr
 ∑N

n=1(Xn − ⟨Xn⟩)√∑N
n=1⟨(Xn−⟨Xn⟩)2⟩

≤ x

−Φ(x)

∣∣∣∣∣∣≤ CyN√
Nv3N

, (3.85)

where C is a constant that was bounded in Refs. [122, 123] by

0.4097 ≤ C ≤ 0.4748. (3.86)

We thus have ∣∣∣∣∣∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

l(x)

}
− Φ(x)

∣∣∣∣∣ ≤ CyN√
Nv3N

, (3.87)

and so we infer that the error ϵN is bounded from above by

ϵN ≤ Φ

(
− ∆FN

σ(FN )

)
+
Cκ3(FN )

σ3(FN )
, (3.88)

that proves the single-shot upper bound on transformation error, Eq. (3.26), presented in
theorem 26A. Also, one should note from Eq. (3.88), that if limN→∞ vn and limN→∞ yn are
well-defined and non-zero (which is our assumption), then

lim
N→∞

ϵN ≤ lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
. (3.89)

3.5.2.2 Lower bound for the transformation error

In order to lower bound the expression for the optimal error in the asymptotic limit, we
choose α = exp(δ

√
N) with δ > 0 in Eq. (3.69b). Therefore, from Eq. (3.71) and Eq. (3.76) we

can write

l(x) ≤
χP̂N (e

δ
√
N l(x))

c
=
χP̂N (l(x+ δ))

c
, (3.90)

where one can calculate c from Eq. (3.70):

c = e
δ
√
N

2

χ
P̂N (l(x+δ))∑

i=χ
P̂N (l(x+δ/2))

(P̂N )↓i

= e
δ
√
N

2

(∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

l(x+ δ)

}

−
∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

l(x+ δ/2)

})
. (3.91)
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Employing Eq. (3.87) one can lower bound the above expression as

c ≥ e
δ
√
N

2

Φ(x+ δ)− Φ(x+ δ/2)− 2CyN√
Nv3N

 . (3.92)

Now, for any finite δ > 0, it is clear that there exists N0 such that for all N ≥ N0 we have
c > 1. Combining with Eq. (3.90), for large enough N we finally have

l(x) ≤
χP̂N (l(x+ δ))

c
≤ χP̂N (l(x+ δ)). (3.93)

Hence, using Eq. (3.93), we have the following lower bound on transformation error

ϵN = 1−
l(x)∑
i=1

(P̂N )↓i ≥ 1−
χ
P̂N (l(x+δ))∑

i=1

(P̂N )↓i

= 1−
∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

l(x+ δ)

}
≥ 1− Φ(x+ δ)− CyN√

Nv3N

, (3.94)

where in the last line we used Eq. (3.87) again. It is thus clear that

lim
N→∞

ϵN ≥ 1− lim
N→∞

Φ(x+ δ) = lim
N→∞

Φ(−x− δ) (3.95)

and, since it works for any δ > 0, we conclude that

lim
N→∞

ϵN ≥ lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
. (3.96)

Combining the above with the bound obtained in Eq. (3.89), we finally get

lim
N→∞

ϵN = lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
, (3.97)

which proves the asymptotic expression for the transformation error, Eq. (3.25), presented
in theorem 26A.

3.5.3 Proof of theorem 26B

To prove theorem 26B, we will break it down into two parts. Initially, we will determine
the embedded version of the optimal final state, which minimizes the dissipation of free
energy FNdiss. We will then derive the expression for FNdiss as a function of the initial state.
Subsequently, we will calculate FNdiss up to the second-order asymptotic terms. We will
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accomplish this by both upper and lower bounding the expression and showing that the
bounds coincide.

3.5.3.1 Deriving optimal dissipation

We begin by presenting an extension of lemma 29 that not only yields the optimal transfor-
mation error for approximate majorisation but also leads to the optimal final state.

Lemma 31. Let p and q be classical state of size d with V (q) = 0 and H(q) = logL. Then, states
r saturating p ≻ϵ q, i.e., such that p ≻ r and F (q, r) = 1 − ϵ with ϵ being the minimal value
specified by lemma 29, are given by Πq∗, where Π is an arbitrary permutation,

q∗ :=

1−ϵ
L for i ≤ L,

Bp′
i−L for i > L,

(3.98)

where B is an arbitrary (d − L) × (d − L) bistochastic matrix, and p′ is a classical state of size
(d− L) with p′i = p↓i+L. Moreover, among all such distributions Πq∗, the entropy is minimised for
the one with B is the identity matrix.

The proof for the lemma mentioned above can be found in appendix 6.3. Here we use it
to analyze the central Eq.(3.58), that outlines the necessary conditions for the ϵ-approximate
thermodynamic distillation process being investigated. This results in the actual total final
state in the embedded picture, F̂N , which is ϵ distance away from the target state ĜN ⊗ f̃Nk ,
as given below (up to permutations):

F̂N =

1−ϵ
K for i ≤ K,

(P̂N ⊗ η̃N )↓i for i > K,
, (3.99)

where
K = exp(H(ĜN ) +H(f̃Nk )). (3.100)

Observe that we have chosen F̂N to minimise entropy since, due to Eq. (3.60a), as it trans-
lates into the real (unembedded) final state FN with maximal free energy, i.e., it leads to
minimal free energy dissipation.

The next step involves moving back to the unembedded picture from the embedded
oneone. It’s worth noting that if a state within the embedded representation is non-uniform
within each embedding box, then unembedding will result in a loss of free energy. How-
ever, we can rearrange the elements of the final state given by Eq. (3.99) to minimize this
loss, as the equation is only valid up to permutations. In appendix 6.6, we show that a per-
mutation exists that transforms F̂N into a state that is uniform within almost all embedding
boxes, leading to exponentially small dissipation of free energy (i.e., no dissipation up to
second-order asymptotics) for the case of identical initial states (i.e., PN = p⊗N ). Therefore,
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employing the definition of dissipated free energy from Eq. (3.24) and the above discussion,
we have

FNdiss =
1

β

(
D(PN∥GN )−D(FN∥GN ⊗ G̃N )

)
≃ 1

β

(
H(F̂N )−H(P̂N )− log D̃

)
. (3.101)

Here, D̃ is the embedding constant as defined by G̃N in Eq. (3.52). Similarly, we will
use D to denote the embedding constant for GN . It is worth noting, however, that these
constants can be selected to be equal since what is important is that G̃Nk = D̃k/D̃ and GNk =

Dk/D. In other words, any changes to D̃ or D can be counterbalanced by a corresponding
modification to D̃k or Dk.

Next, noting that K = DD̃k = D̃D̃k, one can calculate the entropy of F̂N :

H(F̂N ) =−
K∑
i=1

1− ϵ

K
log

(
1− ϵ

K

)
−
∑
i>D̃k

(P̂N )i
↓ log

(P̂N )i
↓

D̃

=− (1− ϵ) log(1− ϵ) + (1− ϵ) logK −
∑
i>D̃k

(P̂N )i
↓ log(P̂N )i

↓ + ϵ log D̃

≃ log D̃ + (1− ϵ) log D̃k −
∑
i>D̃k

(P̂N )i
↓ log(P̂N )i

↓, (3.102)

where we have dropped the term (1 − ϵ) log(1 − ϵ) since it is constant (i.e. it does not scale
with N ). Hence, the amount of dissipated free energy in the optimal distillation process is
simply calculated as

FNdiss ≃
1

β

(1− ϵ) log D̃k +

D̃k∑
i=1

(P̂N )i
↓ log(P̂N )i

↓

. (3.103)

3.5.3.2 Calculating optimal dissipation

We now proceed to prove the bounds for FNdiss. To do so, we first make use of Eq. (3.71) and
the fact that log x is negative for all x ∈ (0, 1) to write

D̃k∑
i=1

(P̂N )i
↓ log(P̂N )i

↓ ≤
χ
P̂N (D̃k)∑
i=1

(P̂N )i
↓ log(P̂N )i

↓. (3.104)
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The right-hand side of the above can then be expressed as follows,

χ
P̂N (D̃k)∑
i=1

(P̂N )i
↓ log(P̂N )i

↓ =
∑
i

{
P̂Ni log(P̂Ni )

∣∣∣∣P̂Ni ≥ 1

D̃k

}

=
∑

i1,...,iN

{
N∏
n=1

(p̂Nn )in

N∑
m=1

log(p̂Nm)im

∣∣∣∣∣
N∏
n=1

(p̂Nn )in ≥ 1

D̃k

}

=
∑

i1,...,iN

{
N∏
n=1

(p̂Nn )in

N∑
m=1

log(p̂Nm)im

∣∣∣∣∣−
N∑
m=1

log(p̂Nm)im ≤ log D̃k

}
. (3.105)

Note that from the definition in Eq. (3.23) we have (here we employ the notation introduced
in Eqs. (3.75a)-(3.75c)):

β∆FN =
N∑
n=1

D(pNn ∥γNn )−D(s̃Nk ∥γ̃N )

= H(f̃Nk )−
N∑
n=1

H(p̂Nn ) = log D̃k −NhN . (3.106)

Next, since for a non-trivial error we require

β∆FN = xβσ(FN ) = x
√
NvN , (3.107)

with some constant x, we can rewrite log D̃k as

log D̃k = NhN + x
√
NvN . (3.108)

Returning back to Eq. (3.105), one can express it by introducingN discrete random vari-
ables {Xn}Nn=1 assuming values − log(p̂Nn )in with probability (p̂Nn )in . Importantly, since the
sum of their averages is NhN and their total variance is NvN , the condition in the summa-
tion in Eq. (3.105) simply reduces to:

YN :=

∑N
n=1(Xn − ⟨Xn⟩)√∑N
n=1⟨(Xn − ⟨Xn⟩)2⟩

≤ x. (3.109)

Thus, we can write Eq. (3.105) in a compact way as follows

χ
P̂N (D̃k)∑
i=1

(P̂N )i
↓ log(P̂N )i

↓ = −
∫
T

N∑
n=1

XNdP, (3.110)

where P is discrete probability measure given by P (i1, . . . , iN ) =
∏N
n=1(p̂

N
n )in and T is a
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region satisfying the constraint YN < x. Observing that

N∑
n=1

Xn =
√
NvnYN +NhN (3.111)

we can further rewrite it as∫
T

N∑
n=1

XNdP =
√
NvN

∫
YN≤x

YNdP +NhN

∫
YN≤x

dP. (3.112)

The second integral on the right-hand side of the above was already calculated and is equal
to 1 − ϵ, where ϵ is the optimal transformation error from theorem 26A. In addition, since
YN is a standarized sum of independent random variables, its distribution approaches to a
normal Gaussian distribution with density denoted by ϕ(x), i.e.,

∫
YN≤x

YNdP ≃
∫ x

−∞
yϕ(y)dy = −e

−x2/2
√
2π

. (3.113)

Therefore, we get:

χ
P̂N (D̃k)∑
i=1

(P̂N )i
↓ log(P̂N )i

↓ ≃
√
NvN

e−x
2/2

√
2π

−NhN (1− ϵ)

=
√
NvN

e−x
2/2

√
2π

− (1− ϵ)(log D̃k − x
√
NvN )

= βσ(FN )

(
e−x

2/2

√
2π

+ x(1− ϵ)

)
−(1− ϵ) log D̃k. (3.114)

Now we shall employ the inequality from Eq. (3.104) and substitute the above to Eq. (3.103)
to obtain:

FNdiss ≲ σ(FN )

(
e−x

2/2

√
2π

+ x(1− ϵ)

)
. (3.115)

Next, using Eq. (3.107) and the expression for optimal transformation error from Theo-
rem 26A, we can re-express x as

x = −Φ−1(ϵ) (3.116)

to finally obtain

FNdiss ≲ σ(FN )

e−(Φ−1(ϵ))2

2

√
2π

− Φ−1(ϵ)(1− ϵ)

 . (3.117)

In order to provide a lower bound of FNdiss given in Eq. (3.103), we simply follow the
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argument we have provided in section 3.5.2.2. From Eq. (3.69b) it easily follows that

D̃k∑
i=1

(P̂N )↓i log(P̂
N )↓i ≥

χ
P̂N (D̃keδ

√
N )

c∑
i=1

(P̂N )↓i log(P̂
N )↓i , (3.118)

where c, as before, can be lower bounded by 1 for large enough N . Hence we obtain

FNdiss ≳
1

β

(1− ϵ) log D̃k +

χ
P̂N (D̃ke

δ
√
N )∑

i=1

(P̂N )↓i log(P̂
N )↓i

. (3.119)

Since the above inequality satisfies for any δ > 0, therefore the limit δ → 0 we get

FNdiss ≳ σ(FN )

e−(Φ−1(ϵ))2

2

√
2π

− Φ−1(ϵ)(1− ϵ)

 . (3.120)

Combining the above with the upper bound from Eq. (3.117), we finally obtain

FNdiss ≃ a(ϵ)σ(FN ), (3.121)

where a(ϵ) is provided by Eq. (3.29).

3.5.4 Proof of theorem 27A

The proof of theorem 27A will be presented in three parts. Firstly, it will be demonstrated
that a thermodynamic distillation procedure from a general state ρ can be reduced to a dis-
tillation process from an incoherent state that represents a dephased form of ρ. Using this
observation, the problem under investigation will be reformulated in terms of approximate
majorisation and thermomajorisation, as explained in section 3.5.1. The second part of the
proof will derive the upper bound for the optimal transformation error ϵN . The third and fi-
nal part will establish a lower bound for ϵN and demonstrate that it approaches the derived
upper bound in the asymptotic limit. Thus, Eq. (3.32) will be proved.

3.5.4.1 Reducing the problem to the incoherent case

The problem being investigated is the thermodynamic distillation, which can be described
as follows: the family initial systems comprises N indistinguishable subsystems, each with
an equivalent Hamiltonian represented by

H =
d∑
i=1

Ei|Ei⟩⟨Ei|, (3.122)
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along with an ancillary system having any Hamiltonian HA. It should be noted that the
dimension of the ancillary system can always be set to 1 to disregard it. The family of initial
states is given by

ρN = ψ⊗N ⊗ |EA0 ⟩⟨EA0 |, (3.123)

where

ψ = |ψ⟩⟨ψ|, |ψ⟩ =
d∑
i=1

√
pie

iϕi |Ei⟩, (3.124)

is an arbitrary pure state and |EA0 ⟩ is an eigenstate of HA with energy EA0 . The family of
target systems is composed of subsystems described by arbitrary Hamiltonians H̃N and a
subsystem described by the Hamiltonian HA. The set of target states is defined as follows:

ρ̃N = |ẼNk ⟩⟨ẼNk | ⊗ |EA1 ⟩⟨EA1 |, (3.125)

where |ẼNk ⟩ denotes an eigenstate of H̃N , and |EA1 ⟩ is an eigenstate of HA having an energy
of EA1 . We are interested to explore a thermal operation E that can approximately accom-
plish the following transformation:

ψ⊗N ⊗ |EA0 ⟩⟨EA0 |
E−→ |ẼNk ⟩⟨ẼNk | ⊗ |EA1 ⟩⟨EA1 |. (3.126)

We now have the following simple, but very useful, lemma.

Lemma 32. If an incoherent state σ achievable from a state ρ via a thermal operation, then it is
also achievable from D(ρ), where D is the dephasing operation that destroys the coherence between
different energy subspaces:

∃E : E(ρ) = σ ⇔ E(D(ρ)) = σ. (3.127)

Proof. Let us consider a general state ρ and an incoherent state σ. Suppose that there exists a
thermal operation E such that E(ρ) = σ. Using the result from proposition 26, which states
that every thermal operation is covariant with respect to dephasing [89], and the property
of incoherent σ invariant under dephasing i.e., D(σ) = σ, we can obtain the following:

E(D(ρ)) = D(E(ρ)) = D(σ) = σ. (3.128)

Conversely, we note that the dephasing operation is itself a thermal operation, and thus the
reverse implication also holds.

Since the target state in our case is energy incoherent, we can employ the above result
in order to restate our problem as the existence of a thermal operation E approximately
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performing the following transformation

D(ψ⊗N ⊗ |EA0 ⟩⟨EA0 |)
E−−→ |ẼNk ⟩⟨ẼNk | ⊗ |EA1 ⟩⟨EA1 |. (3.129)

Since
D(ψ⊗N ⊗ |EA0 ⟩⟨EA0 |) = D(ψ⊗N )⊗ |EA0 ⟩⟨EA0 |, (3.130)

our problem further boils down to understanding the structure of the incoherent state
D(ψ⊗N ). The state D(ψ⊗N ) is block diagonal in the energy eigenbasis and further can be
diagonalized using rotations in a fixed energy subspace. Note that rotations in a fixed en-
ergy subspace considered to be free operations or thermal operations. After applying this
procedure, an incoherent state is obtained, which is described by the probability vector PN

over the multi-index set k. The vector PN is given by the following equation:

PNk =

(
N

k1, ..., kd

) d∏
i=1

pkii , (3.131)

where d is the dimension of the Hilbert space, and pi is the probability of the energy eigen-
state i. It is worth noting that PNk specifies the probability of having k1 systems in energy
state E1, k2 systems in energy state E2, and so on. Moreover, we assume that energy levels
are incommensurable, ensuring that each vector k corresponds to a different total energy
value.

We can simplify the problem of thermodynamic distillation from pure states by reducing
it to thermodynamic distillation from incoherent states. Specifically, we use sAi and fAi to
represent the sharp distributions corresponding to |EAi ⟩ and the corresponding flat states
after embedding, respectively. Likewise, we use s̃Nk and f̃Nk to denote distributions related
to the sharp state |ẼNk ⟩ and its corresponding flat state. The embedded Gibbs state for HN ,
denoted as ĜN , has a more simpler form than in Eq. (3.57) because all the initial systems
have identical Hamiltonians. Similarly, P̂N represents the embedded initial state, and can
be expressed as:

P̂Nk,gk =

(
N

k1, ..., kd

) d∏
i=1

pkii
Dki
i

, (3.132)

where γi = Di/D and gk is an index for the degeneracy resulting from embedding. With
this notation, we can express the distillation problem as:

P̂N ⊗ fA0 ⊗ η̃ ≻ϵ Ĝ
N ⊗ fA1 ⊗ f̃k. (3.133)

3.5.4.2 Upper bound for the transformation error

We start by noting that our target probability vector in Eq. (3.133) is flat, and so
V (ĜN ⊗ fA1 ⊗ f̃k) = 0. Hence, we can use lemma 29 and Eq. (3.65) to obtain the following
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relation for the optimal transformation error:

ϵN = 1−
L∑
j=1

(P̂N )↓j (3.134)

where L is given by

L = exp[H(ĜN ) +H(fA1 ) +H(f̃k)−H(fA0 )−H(η̃)]

= exp[H(ĜN )−D(f̃k∥η̃)− β(EA1 − EA0 )]. (3.135)

Note that in the present case ∆FN , defined in Eq. (3.23), can be expressed as

∆FN =
1

β

(
D(ψ⊗N∥γ⊗N ) +D(|EA0 ⟩⟨EA0 |∥γA)−D(|ẼNk ⟩⟨ẼNk |∥γ̃)−D(|EA1 ⟩⟨EA1 |∥γA)

)
=

1

β

(
ND(ψ∥γ)−D(f̃k∥η̃)−β(EA1 −EA0 )

)
. (3.136)

Employing the above we can then rewrite L as

logL =β∆FN +H(ĜN )−ND(ψ∥γ). (3.137)

Now, using Eq. (3.69a) and Eq. (3.137), we set the upper bound for ϵN :

ϵN ≤ 1−
∑
k,gk

{
P̂Nk,gk

∣∣∣∣P̂Nk,gk ≥ 1

L

}
= 1−

∑
k

{
PNk

∣∣∣∣∣PNk ≥
∏d
i=1D

ki
i

L

}

= 1−
∑
k

{
PNk

∣∣∣∣∣logPNk ≥
d∑
i=1

ki logDi − logL

}

= 1−
∑
k

{
PNk

∣∣∣∣∣ logPNkN
≥

d∑
i=1

ki
N

log γi +D(ψ∥γ)− β

N
∆FN

}
. (3.138)

To simplify the calculation of the upper bound of ϵN , one can rewrite each k as a function
of a vector s such that

k = k(s) = Np+
√
Ns, (3.139)

with
∑d

i=1 si = 0. We then observe that

D(ψ∥γ) = −
d∑
i=1

pi log γi, (3.140)
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Figure 3.8: Standardising the bivariate normal distribution. The bivariate normal distri-
bution with equal probability density points is depicted by a red ellipse centered at the ori-
gin, while the constraining hyperplane is represented by a black dashed line. The maximum
value of ϵN is determined by the probability mass within the shaded area. To compute this
value, we first perform a rotation and scaling transformation that makes the ellipse sym-
metric with respect to the origin. Then, by utilizing the rotational symmetry of the standard
bivariate normal distribution, we can rotate the ellipse such that the hyperplane becomes
parallel to the x2 axis.

and thus the condition in Eq. (3.138) can be expressed as

logPNk(s)

N
≥ 1√

N

d∑
i=1

si log γi −
β

N
∆FN = − β√

N

d∑
i=1

siEi −
β

N
∆FN . (3.141)

As we shall rigorously prove in appendix 6.4, the left-hand side of the above vanishes much
faster than the right-hand side when N → ∞, leading to

lim
N→∞

ϵN ≤ 1− lim
N→∞

∑
s

{
PNk(s)

∣∣∣∣∣
d∑
i=1

siEi ≥ −∆FN√
N

}
. (3.142)

The aim is then to calculate the sum of PNk(s) in the limit N → ∞ constrained by the
following hyperplane

s ·E ≥ −∆FN√
N

, (3.143)

where E is a vector of energies (spectrum of the Hamiltonian H). To do so, we start by
approximating the multinomial distribution PN specified in Eq. (3.131) by a multivari-
ate normal distribution N (µ,Σ) with mean vector µ = Np and covariance matrix Σ =

N(diag (p)− ppT ):

N (µ,Σ)
k(s) =

1√
(2π)d|Σ|

exp

(
−1

2
(k − µ)TΣ−1(k − µ)

)
=

1√
(2π)d|Σ|

exp

(
−1

2
sTNΣ−1s

)
. (3.144)

As we shall show in appendix 6.5, one can always do such an approximation with an error
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approaching 0 as N → ∞. To proceed further, we standardise the multivariate normal
distribution N (µ,Σ) using rotation and scaling transformations:

Σ = ΘT
√
Λ
√
ΛΘ, (3.145)

where Λ is a diagonal matrix with the eigenvalues of Σ and Θ is an orthogonal matrix with
columns given by the eigenvectors of Σ. We depicted this process for a qutrit system (so
described by s1 and s2 since

∑
i si = 0) in Fig. 3.8. This rotation and scaling of co-ordinates

allows us to write N (µ,Σ) as a product of univariate standard normal distribution ϕ(yi):

N (µ,Σ)
k(s(y))=

1√
(2π)d|Σ|

exp

(
−1

2
yTy

)
=

d∏
i=1

ϕ(yi), (3.146)

where
y =

√
N(ΘT

√
Λ)−1s. (3.147)

Then, one can equivalently rewrite the equation specifying the hyperplane, Eq. (3.143),
as

(ΘT
√
Λy) ·E ≥ −∆FN . (3.148)

Note that the standard normal distribution described in Eq. (3.146) maintains rotational
invariance with respect to the origin. Consequently, we can choose a coordinate system
x = x1, . . . , xd by performing an appropriate rotation R on y = y1, . . . , yd such that the
hyperplane specified in Eq. (3.143) becomes parallel to all coordinate axes except for the x1
axis. By doing so, we can express Eq. (3.146) in the following manner:

N (µ,Σ)
k(s(x))=

1√
(2π)d|Σ|

exp

(
−1

2
xTx

)
=

d∏
i=1

ϕ(xi). (3.149)

As we have
x = Ry, (3.150)

we can use it together with Eq. (3.147) to rewrite Eq. (3.143) as

ΘT
√
ΛRTx ·E ≥ −∆FN . (3.151)

In order to determine the right-hand side of the inequality presented in Eq. (3.142) as N
approaches infinity, we must integrate Eq. (3.149) over x1 from negative infinity to dO, and
over any other xi ̸= x1 from negative infinity to positive infinity. Here, dO represents the
signed distance of the hyperplane specified in Eq. (3.151) from the origin, as illustrated in
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Fig. 3.8. The value of dO can be computed explicitly using the following expression:

dO =
∆FN√

E · (R
√
ΛΘ)T (R

√
ΛΘ)E

=
∆FN√
E · (ΣE)

=
∆FN

σ(FN )
, (3.152)

where σ(FN ) is defined in Eq. (3.22b). Thus, the upper bound on ϵN in the limit as N
approaches infinity, as given by Eq. (3.142), can be evaluated in the following manner:

1− lim
N→∞

∫ +∞

−∞
dxdϕ(xd) . . .

∫ +∞

−∞
dx2ϕ(x2)

∫ dO

−∞
dx1ϕ(x1)

= 1− lim
N→∞

Φ(dO) = lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
. (3.153)

3.5.4.3 Lower bound for the transformation error

We begin by writing L from Eq. (3.137) as

L = exp
(
AN + x

√
NvN

)
=: L(x), (3.154)

where

A =H(η)−D(ψ∥γ), x =
∆FN

σ(FN )
. (3.155)

In the previous section, we exactly computed the right-hand side of Eq. (3.138) in the limit
as N approaches to infinity, as shown in Eq. (3.153). By using equations (3.154)-(3.155), we
can also express this result as

lim
N→∞

∑
k,gk

{
P̂Nk,gk

∣∣∣∣P̂Nk,gk ≥ 1

L(x)

}
= lim

N→∞
Φ(x), (3.156)

where x depends on N as described in Eq. (3.155). We will now use the exact expression
from Eq. (3.134) and the inequality presented in Eq. (3.69b) to prove the lower bound for
the transformation error ϵN . Similarly as before, we choose α = exp(δ

√
N) in Eq. (3.69b),

where δ > 0. Thus, employing Eq. (3.71) and Eq. (3.154), we have

L(x) ≤
χP̂N (e

δ
√
NL(x))

c
=
χP̂N (L(x+ δ))

c
, (3.157)
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where c can be computed in a similar manner as before.

c = eδ
√
N/2

χ
P̂N (eδ

√
NL(x))∑

i=χ
P̂N (eδ

√
N/2L(x))

(P̂N )↓i = eδ
√
N/2

χ
P̂N (L(x+δ))∑

i=χ
P̂N (L(x+δ/2))

(P̂N )↓i

= eδ
√
N/2

(∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

L(x+ δ)

}
−
∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

L(x+ δ/2)

})
. (3.158)

Employing Eq. (3.156), we observe that the limiting behaviour of c from Eq. (3.158) can be
written as

lim
N→∞

c = (Φ(x+ δ)− Φ(x+ δ/2)) lim
N→∞

eδ
√
N/2. (3.159)

So, for any finite δ > 0, there certainly exists N0 such that for all N ≥ N0 we have c > 1.
Combining with Eq. (3.157), for large enough N we finally obtain,

L(x) ≤
χP̂N (L(x+ δ))

c
≤ χP̂N (L(x+ δ)). (3.160)

Hence, using Eq. (3.160), we establish the following lower bound on transformation error

lim
N→∞

ϵN ≥ 1− lim
N→∞

χ
P̂N (L(x+δ))∑

i=1

(P̂N )↓i = 1− lim
N→∞

∑
i

{
P̂Ni

∣∣∣∣P̂Ni ≥ 1

L(x+ δ)

}
= 1− lim

N→∞
Φ(x+ δ) = lim

N→∞
Φ(−x− δ), (3.161)

where the first equality in the last line follows from Eq. (3.156). As the above inequality is
true for any δ > 0, taking the limit δ → 0 we conclude that

lim
N→∞

ϵN ≥ lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
. (3.162)

Combining the above with the bound obtain in Eq. (3.153), we finally conclude

lim
N→∞

ϵN = lim
N→∞

Φ

(
− ∆FN

σ(FN )

)
, (3.163)

that completes the proof.

3.5.5 Proof of theorem 27B

We will prove theorem 27B by dividing it into two parts. First, we will identify the embed-
ded version of the optimal final state that reduces the dissipation of free energy FNdiss. Then,
we will deduce the minimum value of FNdiss as a function of the initial state. Finally, we will
calculate this bound including second-order asymptotic terms.
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3.5.5.1 Deriving bound for optimal dissipation

We begin by applying lemma 31 to the central Eq. (3.133) that specifies the conditions for
the concerned ϵ-approximate thermodynamic distillation process. As a consequence, the
actual embedded version of total final state is given by F̂N , which is ϵ away from the target
state ĜN ⊗ fA1 ⊗ f̃k, is given, up to permutations, by

F̂N =

1−ϵ
k for i ≤ k,

(P̂N ⊗ fA0 ⊗ η̃)↓i for i > k,
(3.164)

where
k = exp

(
H(ĜN ) +H(fA1 ) +H(f̃k)

)
. (3.165)

As previously, we chose F̂N with minimal entropy (i.e., we selected the bistochastic map
B from Lemma 31 to be a permutation) to minimise the dissipation of free energy. Since
the final state is only determined up to permutations, it’s possible to rearrange its elements
freely to lower the dissipation of free energy that arises due to unembedding ( such dissi-
pation happens when a state isn’t uniform within every embedding box). However, unlike
the previous scenario, this freedom of permutation doesn’t always enable us to avoid ad-
ditional dissipation. In the previous case, the number of non-uniform embedding boxes
was exponentially small, that results a negligible loss of free energy due to unembedding.
In contrast, the number of non-uniform embedding boxes isn’t exponentially small in this
scenario and could result a finite dissipation of free energy. Thus, in this case, we can only
provide a lower bound on dissipation of free energy as follows:

FNdiss =
1

β

(
D(ψ⊗N∥GN ) +D(|EA0 ⟩⟨EA0 |∥γA)−D(FN∥GN ⊗ γA ⊗ G̃N )

)
≥ 1

β

(
D(P̂N∥ĜN ) +H(PN ) +D(|EA0 ⟩⟨EA0 |∥γA)−D(F̂N∥ĜN ⊗ γ̂A ⊗ ˆ̃GN )

)
, (3.166)

where we have used the fact that

D(ψ⊗N∥GN ) = D(D(ψ⊗N )∥GN ) +D(ψ⊗N∥D(ψ⊗N )) = D(P̂N∥ĜN ) +H(PN ). (3.167)

Next, we recall that H(PN ) = O(logN) (see appendix 6.4 for details), and note that
D(|EA0 ⟩⟨EA0 |∥γA) = − log γA0 . Thus, the inequality from Eq. (3.166) can be simplified as fol-
lows:

FNdiss ≳
1

β

(
D(P̂N∥ĜN )−D(F̂N∥ĜN ⊗ γ̂A ⊗ ˆ̃GN )− log γA0

)
=
1

β

(
H(F̂N )−H(P̂N )−log(D̃DA)−log γA0

)
. (3.168)
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Here, D̃ and DA denotes the embedding constants defined by Eq. (3.52) for G̃N and γA,
respectively. Similarly, we use D to represent the embedding constant for GN . We can
choose D̃ and D to be equal because the only thing that matters is that G̃Nk = D̃k/D̃ and
GNk = Dk/D. Therefore, a change in D̃ or D can be compensated by the appropriate change
in D̃k or Dk. In addition, we note that k = DD̃kD

A
1 = D̃D̃kD

A
1 , which allows us to express

the entropy of F̂N .

H(F̂N ) =−
k∑
i=1

1− ϵ

k
log

(
1− ϵ

k

)
−
∑
i>k

(P̂N ⊗ fA0 ⊗ η̃)↓i log(P̂
N ⊗ fA0 ⊗ η̃)↓i

=− (1− ϵ) log(1− ϵ) + (1− ϵ) log k −
∑
i>k

(P̂N ⊗ fA0 ⊗ η̃)↓i log
( P̂N

D̃DA
0

)↓
i

≃ log k − ϵ logL−
∑
i>L

(P̂N )↓i log(P̂
N )↓i , (3.169)

where in the last step we used the relation thatL = k/(D̃DA
0 ), which comes from Eq. (3.135).

Thus, from Eq. (3.168), the amount of dissipated free energy in the optimal distillation pro-
cess is simply bounded by

FNdiss ≳
1

β

(
L∑
i=1

(P̂N )↓i log(P̂
N )↓i + log

( k

D̃DA

)
− ϵ logL− log γA0

)

=
1

β

(
L∑
i=1

(P̂N )↓i log(P̂
N )↓i + (1− ϵ) logL

)
. (3.170)

Finally, employing the expression forL given in Eq. (3.154), we can express the above bound
as

FNdiss ≳
1

β

(
L∑
i=1

(P̂N )↓i log(P̂
N )↓i + (1− ϵ)

(
AN + x

√
NvN

))
, (3.171)

where A and x are given by Eq. (3.155).

3.5.5.2 Calculating bound for optimal dissipation

Now, we proceed to bound the first term on the right hand side of Eq. (3.171). We begin by
noting that Eq. (3.160) implies that the following holds for any δ > 0:

L(x)∑
i=1

(P̂N )↓i log(P̂
N )↓i ≥

χ
P̂N (L(x+δ))∑

i=1

(P̂N )↓i log(P̂
N )↓i . (3.172)
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Next, from the definition of χP̂N (L(x+ δ)), it follows that

χ
P̂N (L(x+δ))∑

i=1

(P̂N )↓i log(P̂
N )↓i =

∑
i

{
P̂Ni log(P̂Ni )

∣∣∣ P̂Ni ≥ 1

L(x+ δ)

}
=
∑
k,gk

{
P̂Nk,gk log(P̂

N
k,gk

)

∣∣∣∣ P̂Nk,gk ≥ 1

L(x+ δ)

}
=
∑
k

{
PNk log(P̂Nk,1)

∣∣∣∣∣ PNk ≥
∏d
i=1D

ki
i

L(x+ δ)

}

=
∑
k

{
PNk log(PNk )

∣∣∣∣∣ PNk ≥
∏d
i=1D

ki
i

L(x+ δ)

}
−
∑
k

PNk (
d∑
j=1

kj log γj

) ∣∣∣∣∣∣ PNk ≥
∏d
i=1D

ki
i

L(x+ δ)


− (1− ϵ)N logD. (3.173)

Using the parametrization of k as a function of s given in Eq. (3.139), we can modify the
constraint on the summand in Eq. (3.173) as follows:

log(PNk ) ≥
d∑
i=1

ki logDi − log(L(x+ δ)) =
d∑
i=1

(Npi +
√
Nsi) log γi +N logD − logL(x+ δ)

=− β
√
N

d∑
i=1

siEi +N
(
logD −D(ψ∥γ)

)
−N

(
logD −D(ψ∥γ)

)
− (x+ δ)

√
NvN

=− β
√
N

d∑
i=1

siEi − (x+ δ)
√
NvN = −β

(√
Ns ·E + δσ(FN ) + ∆FN

)
, (3.174)

where the second equality in the equation above is obtained using the form ofL given in Eq.
(3.154) and Eq. (3.140). In the final equality, we use the definition σ(FN ) =

√
Nvn/β and

Eq. (3.155), which states that x = ∆FN/σ(FN ). Furthermore, since log(PNk(s)) = O(logN),
we can rewrite the condition from Eq. (3.174) as

√
Ns ·E +∆FN + δσ(FN ) ≳ 0. (3.175)

Coming back, we can now rewrite Eq. (3.173) employing the parametrization of k as a
function of s from Eq. (3.139) and re-expressing the constraint using Eq. (3.175):
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χ
P̂N (L(x+δ))∑

i=1

(P̂N )↓i log(P̂
N )↓i

=
∑
k(s)

{
PNk(s)

(
log(PNk(s))−

√
N

d∑
i=1

si log γi

)∣∣∣∣∣√Ns ·E +∆FN + δσ(FN ) ≥ 0

}

−(1− ϵ)N
(
logD −D(ψ∥γ)

)
≃ β

√
N
∑
s

{
PNk(s)s ·E

∣∣∣∣∣√Ns ·E +∆FN + δσ(FN ) ≥ 0

}
−(1− ϵ)AN, (3.176)

where we used the definition of A from Eq. (3.155).
Our next goal is then to evaluate the sum

∑
s

{
PNk(s)s ·E

∣∣∣∣√Ns ·E +∆FN + δσ(FN ) ≥ 0
}
. (3.177)

We shall progress in a similar manner as before. In order to proceed, we will use a multi-
variate normal distribution N (µ,Σ) to approximate the multinomial distribution PN . The
mean vector of this normal distribution is given by µ = Np and the covariance matrix is
given by Σ = N(diag (p)− ppT ).

N (µ,Σ)
k(s) =

1√
(2π)d|Σ|

exp

(
−1

2
(k − µ)TΣ−1(k − µ)

)
=

1√
(2π)d|Σ|

exp

(
−1

2
sTNΣ−1s

)
. (3.178)

After obtaining the multivariate normal distribution N (µ,Σ) as an approximation to the
multinomial distribution PN , the next step is to standardize it by applying rotation and
scaling transformations as follows:

Σ = ΘT
√
Λ
√
ΛΘ, (3.179)

where Λ is a diagonal matrix with the eigenvalues of Σ and Θ is an orthogonal matrix with
columns given by the eigenvectors of Σ. This rotation and scaling of the axes enable us to
write N (µ,Σ) as a product of univariate standard normal distribution ϕ(yi):

N (µ,Σ)
k(s(y))=

1√
(2π)d|Σ|

exp

(
−1

2
yTy

)
=

d∏
i=1

ϕ(yi), (3.180)

where
y =

√
N(ΘT

√
Λ)−1s, (3.181)
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such that
s =

1√
N

ΘT
√
Λy. (3.182)

From Eq. (3.181) and Eq. (3.182), one can evaluate the sum given in Eq. (3.177) as follows:

∑
y

{
PNk(s(y))

Ẽ ·y√
N

∣∣∣∣Ẽ ·y +∆FN + δσ(FN ) ≥ 0
}
, (3.183)

where we defined Ẽ :=
√
ΛΘE with the normalisation

∥Ẽ∥ =
√

Ẽ · Ẽ =

√
(
√
ΛΘE) · (

√
ΛΘE) =

√
E ·ΘTΛΘE =

√
E ·ΣE = σ(FN ). (3.184)

We can then equivalently write Eq. (3.183) as

σ(FN )√
N

∑
y

{
PNk(s(y))

ˆ̃E ·y
∣∣∣∣ σ(FN ) ˆ̃E ·y +∆FN + δσ(FN ) ≥ 0

}
, (3.185)

where ˆ̃E is unit vector in the direction Ẽ. Now, we choose a rotation R such that

R ˆ̃E = (1, . . . , 0)T (3.186)

and we call Ry = x. Hence, we can re-express Eq. (3.185) as

σ(FN )√
N

∑
y

{
PNk(s(y))R

ˆ̃E ·Ry

∣∣∣∣∣ σ(FN )R ˆ̃E ·Ry +∆FN + δσ(FN ) ≥ 0
}

=
σ(FN )√

N

∑
x

{
PNk(s(x))x1

∣∣∣∣∣ σ(FN )x1 +∆FN + δσ(FN ) ≥ 0
}
. (3.187)

By using the multivariate normal distribution approximation and its isotropy, we can
precisely compute the expression above through an integral over x with the following form:

σ(FN )√
N

(∫ +∞

−∞
dx2ϕ(x2) . . .

∫ +∞

−∞
dxdϕ(xd)

∫ dO

−∞
dx1x1ϕ(x1)

)
=
σ(FN )√
2πN

exp

(
−
d2O
2

)
,

(3.188)

where dO is the distance between the hyperplane specified by the constraint given in Eq. (3.187)
and the origin:

dO =
∆FN + δσ(FN )√

Ẽ · Ẽ
=

∆FN

σ(FN )
+ δ. (3.189)
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Thus, finally we obtain the following expression for the desired sum from Eq. (3.177):

∑
s

{
PNk(s)s ·E

∣∣∣∣√Ns ·E +∆FN + δσ(FN ) ≥ 0
}
=
σ(FN )√
2πN

exp

(
−1

2

(
∆FN

σ(FN )
+ δ

)2
)
.

(3.190)

Substituting the above to Eq. (3.176), and the resulting expression to Eq. (3.172), we
obtain the following bound:

L(x)∑
i=1

(P̂N )↓i log(P̂
N )↓i ≳ −(1− ϵ)A+

βσ(FN )√
2π

exp

(
−1

2

(
∆FN

σ(FN )
+ δ

)2
)
, (3.191)

which can be used in Eq. (3.171) to write the following:

FNdiss ≳
σ(FN )√

2π
exp

(
−1

2

(
∆FN

σ(FN )
+ δ

)2
)

+ (1− ϵ)∆FN . (3.192)

Since the above holds for any δ > 0, by taking the limit δ → 0, we finally obtain

FNdiss ≳ (1− ϵ)∆FN +
σ(FN )√

2π
exp

(
− (∆FN )2

2σ(FN )2

)
. (3.193)

Using Eq. (3.163) we have
∆FN = −Φ−1(ϵ)σ(FN ), (3.194)

and so substituting this in Eq. (3.193) we finally arrive at

FNdiss ≳ a(ϵ)σ(FN ), (3.195)

with a given by Eq. (3.29), which completes the proof.

3.6 Outlook

This chapter presents a new version of the fluctuation-dissipation theorem for state inter-
conversion via thermal operations. The optimal transformation error and the amount of free
energy dissipated during the process are related to fluctuations in the initial state’s free en-
ergy. The problem is tackled in two regimes: pure and energy-incoherent initial states, both
of which are transformed into an energy eigenstate. The possibility of altering the Hamilto-
nian during the process is also considered. In the case of several independent, non-identical
energy-incoherent systems, a single-shot upper bound on the optimal transformation error
is presented as a function of free energy fluctuations and average dissipated free energy.
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In the asymptotic regime, the optimal transformation error is obtained up to second-order
asymptotic corrections [63]. This extends previous research to non-identical initial systems
and varying Hamiltonians. Additionally, the asymptotic analysis of the thermodynamic
distillation process from quantum states with coherence in the energy eigenbasis is per-
formed for the first time. The optimal transformation error from identical pure states and
the free energy dissipated during the transformation are expressed as a function of free
energy fluctuations up to second-order asymptotic corrections.

Our work can be naturally extended in the following directions. Firstly, one could gen-
eralise our analysis to arbitrary initial states. We indeed believe that an analogous result
to ours will hold for such general mixed states with coherence. That is because dephas-
ing into fixed energy subspaces leads to free energy change of the order O(logN), which
is negligible compared to the second order asymptotic corrections of the order O(

√
N) that

we focus on. In other words, the contribution of coherence to free energy per copy of the
system vanishes faster with growing N than what we are interested while studying second
order corrections.

Secondly, it would be extremely interesting to generalise the thermodynamic state in-
terconversion problem to arbitrary final states, and see how the interplay between the fluc-
tuations of the initial and target states affects dissipation. For energy-incoherent initial and
final states one can infer from [108] that appropriately tuned fluctuations can significantly
reduce dissipation, however nothing is known for states with coherence. Unfortunately,
since thermal operations are time-translation covariant, such that coherence and athermal-
ity form independent resources [89, 124, 125], it seems unlikely that the current approach
can be easily generalised. Thirdly, one could try to extend our results on pure states to allow
for non-identical systems and to derive a bound working for all N , not only for N → ∞
(i.e., replace the proving technique based on central limit theorem by the one based on a
version of Berry-Esseen theorem).

In our work we have also provided a number of physical applications of our fluctuation-
dissipation theorems by considering several scenarios and explaining how our results can
be useful to describe fundamental and well-known thermodynamic and information-theoretic
processes. We derived the optimal value of extractable work in a thermodynamic distilla-
tion process as a function of the transformation error associated to the work quality. This, to-
gether with the knowledge of the actual final free energy of the battery system provided by
theorem 26B, could potentially be used to clarify the notion of imperfect work [87, 126, 127],
and to construct a comparison platform allowing one to continuously distinguish between
work-like and heat-like forms of energy. We have also shown how our results yield the
optimal trade-off between the work invested in erasing N independent bits prepared in ar-
bitrary states, and the erasure quality measured by the infidelity distance between the final
state and the fully erased state. This can of course be straightforwardly extended to higher-
dimensional systems and arbitrary final erased state (not necessarily the ground state). Fi-
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nally, we have investigated the optimal encoding rate into a collection of non-interacting
subsystems consisting of energy-incoherent or pure states using thermal operations. We
derived the optimal rate (up to second-order asymptotics) of encoding information with a
given average decoding error and without spending thermodynamic resources. This pro-
vides an operational interpretation of the resourcefulness of athermal quantum states for
communication scenarios under the restriction of using thermal operations.

We would also like to point out to some possible technical extensions of our results.
Firstly, we used infidelity as our quantifier of transformation error, but we expect that
similar results could be derived using other quantifiers, e.g., the trace distance. Secondly,
our investigations were performed in the spirit of small-deviation analysis (where we look
for constant transformation error and total free energy dissipation of the order O(

√
N)),

but possibly other interesting fluctuation-dissipation relations could be derived within the
the moderate and large deviation regimes. Thirdly, our result for pure states is limited to
Hamiltonians with incommensurable spectrum, but we believe this is just a technical nui-
sance that one should be able to get rid of. Lastly, within the framework of general resource
theories, it might be possible to derive analogous fluctuation-dissipation relations, but with
free energy replaced by a resource quantifier relevant for a given resource theory.
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Chapter 4
Extraction of ergotropy

4.1 Introduction

The second law of thermodynamics sets a limit on the amount of work that can be done by
macroscopic systems by using the change in free energy. On the other hand, in microscopic
scenarios, the concept of ergotropy plays a similar role. Ergotropy refers to the maximum
amount of energy that can be obtained from a system through a unitary operation. This
energy can then be stored as work in a suitable work storage, or battery. If a state has zero
ergotropy, it means that no energy can be extracted and stored as work, and it is referred
to as a passive state [128]. This concept is crucial in quantum thermodynamics since it sets a
fundamental limit on the average amount of work that can be extracted from a system.

The concept of ergotropy plays a vital role in various fields of quantum thermodynam-
ics. Firstly, it characterizes the optimal energy that can be extracted from quantum batteries,
as evidenced in several studies such as [129, 130, 131, 132, 133]. Recent research has also
linked ergotropy to coherence measures [134] and relative entropy [135]. However, it is
essential to note that ergotropy is not always additive, leading to the notion of complete pas-
sivity. A state is said to be completely passive if the ergotropy of the state, consisting of an
arbitrary number of its copies, is also passive. This concept connects the idea of ergotropy
to the equilibrium state since any completely passive state must have a Gibbs form [136].
Additionally, recent studies have shown that complete passivity is linked to the inability to
extract energy, even in the presence of a catalyst [137].

This chapter aims to investigate how much ergotropy a system can acquire through its
interaction with a heat bath in a thermodynamically free manner. In simpler terms, we
want to induce ergotropy to a system that is in contact with the heat bath through thermal
operation. We have discussed thermal operation in detail in chapter 2 [70, 71, 138]. The
objective is to utilize the heat bath as a source of heat that can be converted into work
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by a microscopic heat engine, which we will explore in the next chapter (refer to chapter 5).
Additionally, since ergotropy measures the degree of population inversion within a system,
non-Markovian evolution is necessary for its extraction. This also justifies the process of
inducing ergotropy to a system using the thermal operation framework.

We have two objectives: first, to establish a connection between the extraction of er-
gotropy and the Second Law of Thermodynamics, and second, to quantitatively character-
ize the process of ergotropy extraction for systems of both finite and infinite dimensions.
We will determine the fundamental limit on the amount of ergotropy that can be extracted
from the bath via thermal operation and express it as the difference of non-equilibrium free
energy. We will also present an example in which this limit is reached when the dimension
of the system’s Hamiltonian approaches infinity.

4.2 Defining work as a change of average energy

The consumption or extraction of work is a central focus of thermodynamics, referring to
the input or output of ordered energy to a system. In chapter 2, section 2.4, we extensively
discussed the concept of work in both equilibrium and non-equilibrium scenarios. In the
context of the resource theory of athermality, we introduced the ideas of single-shot and
deterministic work extraction. As we described, the work done by a system can be envi-
sioned as a result of enhancing its potential energy, such as the potential energy of a hanging
weight that experiences a height difference. It is well-known that work cannot be extracted
solely from a thermal reservoir, but if two reservoirs at different temperatures are available,
it is possible to design protocols to extract work. One common example is a heat engine,
where a machine interacts with two heat baths sequentially, undergoing a cyclic process.

The concept of single shot and deterministic work extraction has been discussed in the
context of the resource theory of athermality (refer to section 2.4.3) where the description
involves representing the work storage as a two-level system. In that scenario work does
not fluctuate. The method of using thermomajorization as an application to obtain work
bounds has limitations since it only works when the energy gap of the two-level work
storage is predetermined. Therefore, this method is unsuitable for non-deterministic work
extraction, which is the main topic of focus in this chapter.

The process of extracting work from a system where the energy change is subject to
random processes, such as thermalization, is known as non-deterministic work extraction.
To model this process, we represent the weight as a quantum system described by a density
matrix ρW that undergoes a change to ρ̃W during the thermodynamic process.

The amount of work extracted is then defined as the difference between the average
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energy of the battery before and after the process, which is given by the following relation:

W := Tr(HW ρ̃W )− Tr(HWρW ), (4.1)

where HW is the Hamiltonian of the battery.
Since the amount of work extracted depends on fluctuating processes, it is treated as

a random variable. It has been shown that, despite the randomness, an optimal amount
of average work can be extracted, which is equal to the free energy of the system [79].
Additionally in [79], it has been shown that the Carnot efficiency can be achieved, which
is the maximum possible efficiency for a heat engine operating between two temperature
reservoirs.

The definition of work provided in Eq. (4.1) is simple, making it easier to analyze.
However, it is important to separately consider the amount of entropy when using this
measure to ensure that contributions from heat to the average energy increase are negligible
or accounted for. This is necessary because thermodynamic processes can produce work
with fluctuations of the same order. These fluctuations are undesirable for two reasons:

1. Firstly, they can impact the battery’s reusability, as the full amount of W may not be
extractable as these fluctuation results dissipation of certain amount of energy.

2. Secondly, the battery may have been used as an entropy sink, which cannot be cap-
tured by the average work. This could result in an apparent violation of the second
law of thermodynamics.

The second problem mentioned above has been addressed recently by a new approach
[79, 139], which constrains the set of allowed operations to satisfy translational invariance
with respect to the battery. This refinement helps to formulate a more precise version of the
second law. We will provide a brief description of the translational invariant model of the
battery in the next section.

Although this approach is a notable progress in justifying the usage of average energy as
a measure of work, there are still various aspects that need improvement. For instance, the
battery models used in this approach presently do not have a ground state, which is only
a sensible assumption when the initial and final states of the battery possess exceedingly
high energy. Therefore, it is crucial to comprehend the corrections that emerge when we
employ physical battery models.

4.3 Translationally invariant model of work storage

In this section, we describe the translationally invariant model of the work storage or bat-
tery. This model is sometimes referred to as weight since this models resembles lifting a
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mass slowly such that work done is given by the change of potential energy. We start with
the definition.

Definition 29 (Ideal weight). A ideal weight in the state ρW is modelled by a Hamiltonian

HW = ϵ
∑
j∈Z

j|j⟩⟨j| (4.2)

where ϵ > 0 and Z is the set of integers. We denote the generator of translation in the energy
referred as shift operator

Γa :=
∑
j∈Z

|j + a⟩⟨j|. (4.3)

First, let us characterize the type of operation that we consider and show that they are
suitably general and implementable to encompass what is commonly considered to be ther-
modynamics.

Lemma 33 (Lemma 2 of [139]). Let HS be finite-dimensional Hilbert space with dimension d and

HS = ϵΣdn=1zn|ψn⟩⟨ψn| (4.4)

is the Hamiltonian of the system in the Hilbert space HS . Let HW is an infinite-dimensional Hilbert
space associated with ideal weight HW as introduced in definition 29. Let LT (HS +HW ) be the set
of all bounded linear operator X acting on HS ⊗HW that X satisfies

1. Energy conservation: [X,HS +HW ] = 0.

2. Translational invariance: ∀a ∈ Z it satisfies [X, IS ⊗ Γa] = 0.

Define the mapping G : L(Hs) → LT (HS +HW )

G(V ) :=
d∑
n,n′

⟨ψn|V |ψn′⟩|ψn⟩⟨ψn′ | ⊗ Γ(zn′−zn), (4.5)

where L(HS) as the set of linear operator acting on HS . The mapping G is a bijective, with the
following properties.

G(αA+ βB) = αG(A) + βG(B)

G(AB) = G(A)G(B)

G(A†) = (G(A))†

G(IS) = IS ⊗ IW (4.6)

Proof. LetG(V ) be a finite sum of bounded linear operators, and assume [Γa,Γa′ ] = 0 for all
a, a′ ∈ Z. It then follows that [G(V ), IS⊗Γa] = 0 for all a ∈ Z, as well as [G(V ),HS+HW ] = 0
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from the relation [HW ,Γa] = ϵaΓa. Therefore, we have G(L(HS)) ⊆ LT (HS + HW ), and
it is straightforward to verify the properties given in Eq. (4.6). To prove that the map G is
bijective, we must show injectivity and surjectivity. To prove injectivity, suppose G(V1) =

G(V2). The orthonormality of |ψn⟩ and the fact that Γa ̸= 0 for all a implies that V1 = V2,
proving injectivity. To prove surjectivity, take any Y ∈ LT (HS +HW ) with [Y,HS +HW ] =

0. From the eigen decomposition of HS + HW , we have HS + HW = ϵ
∑

j∈Z jPj , where
Pj =

∑d
n=1 |ψn⟩⟨ψn| ⊗ |j − zn⟩⟨j − zn|. It then follows that Y =

∑
j∈ZPjY Pj . Hence, we

have
Y =

∑
j

∑
n,n′

⟨ψn|⟨j − zn|Y |ψ′
n⟩|j − zn′⟩|ψn⟩⟨ψn′ | ⊗ |j − zn⟩⟨j − zn′ | (4.7)

Using |j − z′n⟩ = Γj | − zn′⟩ and (IS ⊗ Γ†
j)Y (IS ⊗ Γj) = Y , we obtain

X =
∑

n, n′⟨ψn|⟨−zn|Y |ψ′
n⟩| − zn′⟩|ψn⟩⟨ψn′ |, (4.8)

such that G(X) = Y , proving the lemma.

Using this lemma, we can demonstrate that the set of unitary operations acting on the
Hilbert space HS is equivalent to the unitaries that commute with the Hamiltonian HS +

HW . Therefore, any reduction in the average energy of a system by a unitary operation can
be stored as work in a battery that satisfies translational invariance. This result is essential
for analyzing work extraction and optimizing the performance of quantum heat engines.
In the next section, we will introduce the concept of ergotropy and establish the second law
as an upper limit on the change of ergotropy with respect to free energy.

4.4 Ergotropy and second law

The second law of thermodynamics provides a framework for understanding the transfor-
mations that a thermodynamic system can undergo as it exchanges heat and work with
its environment. These transformations are governed by thermodynamic potentials, which
set fundamental limits on energy conversions in thermodynamic processes, regardless of
the microscopic details. These limits establish upper bounds on power and efficiency. One
such crucial thermodynamic potential is free energy, which we have already encountered
in earlier chapters as it is crucial for describing work bounds. However, for the sake of
convenience, we will define it again here.

Definition 30 (Free energy). We defined the free energy of a system in a state ρ, which is in
contact with a thermal bath.

F (ρ) = E(ρ)− 1

β
S(ρ), (4.9)
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where E(ρ) is the average energy, S(ρ) is von Neumann entropy, and β is the inverse tem-
perature of the bath.

Chapters 1 and 2 offer several physical scenarios that exemplify the reliable forecasting
of equilibrium state transitions by free energy when a system is in contact with a thermal
bath. In the absence of any external driving force, the system always reduces its free energy,
ultimately achieving equilibrium at the minimum. Moreover, if the system can perform
work, the maximum amount of work that can be extracted is determined by the free energy,
as established by the well-known inequality (4.10) in classical thermodynamics (refer to Eq.
(2.76)). The inequality is given by:

W ≥ ∆F. (4.10)

Let us refer to the average work ⟨W ⟩ as W for simplicity. This inequality is powerful
as it establishes a lower bound on the amount of work needed to accomplish a desired
change in free energy. Inequality in Eq. (4.10) has been derived for both weakly [87] and
strongly coupled [140, 141] systems, as well as in the context of thermal operations, where
work storage is explicitly introduced [79, 142]. Interestingly, inequality (4.10) can also be
expressed as the Jarzynski equality when free energy is treated as the fluctuating quantity
[27, 109, 143, 104].

When a thermal system is disconnected from its reservoir or if the reservoir’s size is
finite, it is impossible to attain the maximum value permitted by the inequality (4.10). Con-
sequently, this places a constraint on the quantity of work that can be generated, which is
less than the change in free energy. In order to overcome this limitation, Allahverdyan et al.
[128] proposed the concept of ergotropy as a new thermodynamic potential for an isolated
system that undergoes a cyclic force with identical initial and final Hamiltonians. We define
ergotropy as follows:

Definition 31 (Ergotropy). The ergotropy of a system described by Hamiltonian H in the
state ρ is defined as

R(ρ) = E(ρ)−min
U
E(UρU †) = E(ρ)− E(ρP ), (4.11)

where E( · ) = Tr(H · ) describes the average energy, and the minimum is taken over all
unitary operators U acting on the Hilbert space of the system.

If ρ =
∑d

i=1 pi|i⟩⟨i| and H =
∑d

j=1Ej |Ej⟩⟨Ej | then it is straightforward to see that ρP is
given by

ρP =

d∑
i=1

p↓i |E
↑
i ⟩⟨E

↑
i | (4.12)

where p↓1 ≥ p↓2 ≥ . . . ≥ p↓d and E↑
1 ≤ E↑

2 ≤ . . . ≤ E↑
d . From now on we shall take the
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Hamiltonian with spectrum that satisfies Ed ≥ Ed−1 ≥ . . . E2 ≥ E1.
We refer to the state ρP as the passive state corresponding to the state ρ, and the quantity

E(ρP ) is known as the passive energy of the state ρ. If the state ρ is diagonal, the mini-
mization process can be restricted to the set of permutations [144]. The seminal work by
Allahverdyan et al. [128] established a direct relationship between ergotropy and free en-
ergy.

The concept of ergotropy is closely related to the ideal weight model of energy stor-
age that we introduced in section 4.3. This model was proposed in [79, 139] as a way of
constructing a thermodynamic framework that satisfies the Second Law. Using lemma 4.3,
we demonstrated that any unitary transformation applied to the system corresponds to
an energy-conserving unitary (i.e., one that commutes with the system’s Hamiltonian plus
weight). Therefore, the work required to store a system’s ergotropy can be stored in the
translationally invariant weight.

In [79, 139] demonstrated that the work W required to lift the weight (and increase its
average energy) is always less than the difference of free energy of the quantum state ρ and
thermal state of the system γ in contact with a thermal reservoir.

−W ≤ F (ρ)− F (γβ) =
1

β
S(ρ∥γβ), (4.13)

Here γβ is the Gibbs state at inverse temperature of the bath β and relative entropy S(ρ∥γβ)
is given by

S(ρ∥γβ) = Tr
(
ρ(log ρ− log γ)

)
. (4.14)

This result was later extended to an arbitrary initial state of the weight and system’s
correlation, and the obtained work was formulated as [145]:

W = ∆R = R(σf )−R(σi), (4.15)

where ∆R represents a variation in the ergotropy of the so-called effective control-marginal
state of the system, denoted by σi,f (with subscripts i and f denoting initial and final states,
respectively). The state σi,f contains information regarding coherences and correlations
that influence the process of work extraction [145]. This Eq. (4.15) highlights the correlation
between ergotropy of the system and the translational symmetry of the ideal weight model.
Furthermore, a formulation of the tight second law based on Eq. (4.15) is presented, which
incorporates the ultimate bound stated in Eq. (4.13), but with adjustments that account for
the influences of initial coherences and the size of the heat bath, as described in [146].

Since ergotropy can be understood as work done by the system, it is worth exploring
its relevance in the operation of quantum thermal machines that we shall do in the next
chapter. In the next section we shall explore the relation between free energy and ergotropy.
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4.5 Ergotropy and free energy

We start by describing the established bounds on ergotropy of an isolated system [129] and
system coupled with a bath [146] and their saturation.

The relationship between free energy and ergotropy, defined in Eq. (4.9) and Eq. (4.11),
can be expressed as follows. Since entropy remains unchanged under unitary evolution,
we can see that

R(ρ) = E(ρ)− E(ρP ) = E(ρ)− 1

β
S(ρ) +

1

β
S(ρP )− E(ρP )

= F (ρ)− F (ρP ) =
1

β

(
S(ρ∥γβ)− S(ρP ∥γβ)

)
, (4.16)

where ρP refers to the passive state of the system defined in Eq. (4.11). Moreover, the
relative entropy is defined in Eq. (4.14). It should be noted that the above equation holds
true for any arbitrary value of β.

The Gibbs state that minimizes the average energy among states with fixed entropy.
This can be utilized in Eq. (4.16) to minimize the free energy component. This leads to the
following inequality:

R(ρ) = F (ρ)− F (ρP ) ≤ F (ρ)− F (γβ∗) =
1

β
S(ρ|γβ∗), (4.17)

where the value of the inverse temperature β∗ is uniquely determined by the relation S(ρ) =
S(γβ∗). It is important to note that the bound cannot be achieved in a single-shot scenario if
the spectrum of ρ differs from that of γβ∗ . In such a case, it is impossible to obtain γβ∗ from
ρP through a unitary transformation. However, Alicki and Fannes showed in [129] that this
bound can be achieved by processing asymptotically many number of copies of the state ρ,
i.e.,

lim
N→∞

1

N
R(ρ⊗N ) = F (ρ)− F (γβ∗) =

1

β∗
S(ρ∥γβ∗). (4.18)

In [146] the bound on ergotropy has been established for a scenario where the system
is coupled with a heat bath. To describe this briefly let us consider a system in the state
ρ, which is connected to a thermal bath in the Gibbs state τβ at inverse temperature of β.
The composite state of the system and the bath can be expressed as a product, i.e., ρ ⊗ τβ .
Employing Eq. (4.16), we can establish the upper bound on the ergotropy of ρ ⊗ τβ in the
following manner
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R(ρ⊗ τβ) = F (ρ⊗ τβ)− F ((ρ⊗ τβ)P )

= F (ρ⊗ τβ)− F (γβ ⊗ τβ) + F (γβ ⊗ τβ)− F ((ρ⊗ τβ)P )

=
1

β
S(ρ∥γβ)−

1

β
S((ρ⊗ τβ)P ∥γβ ⊗ τβ)

≤ 1

β
S(ρ∥γβ) = F (ρ)− F (γβ),

(4.19)

where γβ is the Gibbs state of the system with respect to the inverse temperature of the bath
β. We can observe that the bound given in Eq. (4.19) is similar with the bound given in Eq.
(4.17). The only difference is that the inverse temperature β is now fixed and given by the
bath. In the literature, such a bound has been explored in [79, 146], where the saturation
of the bound is achieved for a quasi-reversible process that consists of an infinite number
of steps that conserves the total average energy of the system and bath, and assumes the
existence of an infinitely large heat bath.

4.6 Free energy bound for ergotropy extraction

In the preceding section, we explored the bounds of ergotropy for systems that are either
isolated or linked to an equilibrium bath. These bounds and their attainability establish a
correspondence between a system’s ergotropy and its non-equilibrium free energy, illus-
trated by Eq. (4.17) and Eq. (4.19). Consequently, ergotropy can be viewed as a universal-
ization of free energy for finite-dimensional quantum systems, as described in [146].

Moving on to this section, we will address the question of how much ergotropy can
be extracted through a system’s coupling with a heat bath. In other words, what is the
maximum amount of non-passivity that can be induced in a system via an interaction with
the heat bath? We will begin by defining ergotropy extraction.

Definition 32 (Ergotropy extraction). We define ergotropy extraction for a state ρ that trans-
forms via a CPTP map Φ as the difference of ergotropy between initial and final state, i.e,

R(Φ(ρ))−R(ρ). (4.20)

In this chapter, we will be interested in inducing non-passivity in a system through an
interaction with a single heat bath, and we assume the total energy of the system and bath
to be conserved. As a consequence, we consider CPTP maps Φ to be a thermal operation
[33, 70, 71] as introduced in definition 2.6 i.e.,

Φ(ρ) = TrB(U(ρ⊗ τβ)U
†), (4.21)
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such that [U,HS + HB] = 0, where HS and HB are the Hamiltonian of the system and
the bath, respectively. As mentioned earlier, τβ is the Gibbs state of the bath at inverse
temperature β. Thermal operations constitute a subclass of a bigger set of transformations
called Gibbs-preserving maps, which are defined as follows:

Definition 33 (Gibbs preserving map). Consider a complete positive trace-preserving map
Φ is acting on a d- dimensional quantum system with Hamiltonian HS that is in contact
with a heat bath at inverse temperature β. Φ is said to be a Gibbs preserving map if and
only if

Φ(γS) = γS , (4.22)

where γS is the Gibbs state of the system i.e., γS = e−βHS

ZS
with ZS = Tr(e−βHS ).

The sets of Gibbs preserving maps and thermal operations are the same when their
action is restricted to states ρ that are diagonal in the energy eigenbasis i.e., [ρ,HS ] = 0.
On the other hand, if there is coherence in the state of the system i.e., [ρ,HS ] ̸= 0 they are
not same [147]. In this chapter and the next chapter, we shall deal with the states that are
diagonal in energy eigenbasis i.e., [ρ,HS ] = 0.

Before discussing ergotropy extraction via Gibbs-preserving maps, we will propose
a bound on the extraction of ergotropy for a general CPTP (completely positive, trace-
preserving) map.

Proposition 34. Let us assume an arbitrary state ρ that is evolving via a CPTP map Φ. Then, the
ergotropy of the final state Φ(ρ) can be broken up into three contributions in the following term:

R(Φ(ρ)) =
1

β
S(ρ∥γβ)−

1

β
S(Φ(ρ)P ∥γβ)−

1

β
(S(ρ∥γβ)− S(Φ(ρ)∥γβ)) , (4.23)

where γβ is a Gibbs state of the system at some inverse temperature β.

The formula (4.23) follows from the application of the identities given in Eq. (4.16) :

R(Φ(ρ)) = F (Φ(ρ))− F (Φ(ρ)P ), ;
1

β
S(ρ∥γβ) = F (ρ)− F (γβ). (4.24)

The Eq. (4.23) can be divided into three distinct terms that contributes to the ergotropy
of the final state Φ(ρ). The first term, 1

βS(ρ∥γβ), represents the difference in free energy
between the initial state ρ and the Gibbs state γβ . This equation has already been used in
the derivation of ergotropy bounds (refer to Eq. (4.17) and Eq. (4.19)) and presents the
maximum bound for work extraction from a single heat bath (refer to Eq. (4.13)).

The second term, − 1
βS(Φ(ρ)P ∥γβ), is always non-positive due to the non-negativity of

the relative entropy. This term represents the thermodynamic distance between the final
passive state from equilibrium state. In particular, this term is zero if and only if the final
state Φ(ρ) has the same spectrum as the Gibbs state, so that Φ(ρ)P = γβ .
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The final term can be interpreted as the entropy production for the CPTP map Φ:

1

β
(S(Φ(ρ)∥γβ)− S(ρ∥γβ)) = F (Φ(ρ))− F (ρ). (4.25)

For thermal operations given by Eq. (4.21), the change in the energy of the system can be
described as the amount of heat consumed from the bath i.e., ∆E = Q, and then F (Φ(ρ))−
F (ρ) = Q − 1

β∆S where ∆S denotes the change in the von Neumann entropy. Assuming
the map Φ to be Gibbs-preserving leads to an important corollary.

Corollary 35. Let us consider CPTP map Φ is Gibbs-preserving, i.e., Φ(γ̂β) = γ̂β . The ergotropy
of the final state Φ(ρ̂) is upper-bounded as

R(Φ(ρ̂)) ≤ 1

β
S(ρ̂∥γ̂β). (4.26)

Proof. The corollary can be proven based on two key properties of the relative entropy and
Gibbs-preserving map. Firstly, the non-negativity of the relative entropy, as well as the
monotonicity of the relative entropy under Gibbs-preserving maps, which are given by the
following inequalities:

1

β
S(Φ(ρ)P ∥γβ) ≥ 0, (4.27)

1

β
(S(ρ∥γβ)− S(Φ(ρ)∥γβ)) ≥ 0, (4.28)

By substituting these inequalities into Eq. (4.23), we obtain the bound.

The inequality given in Eq. (4.26) indicates that the amount of ergotropy extracted from
the system cannot exceed the initial thermodynamic resource, which is determined by the
non-equilibrium free energy. This result is consistent with the bound obtained in Eq. (4.13)
[79], that is derived from a model that defines work in terms of changes in the average en-
ergy of a weight. Importantly, when there are no quantum correlations between the ideal
weight and the system, the ergotropy can be related to the maximum change in the average
energy of the weight. In such a scenario, the bound in Eq. (4.26) can be seen as another for-
mulation of the second law of thermodynamics. This result can be extended to encompass
ergotropy extraction for non-passive initial states through Gibbs-preserving maps.

Theorem 36 (Ultimate bound on extraction of ergotropy). The change of the ergotropy of the
state ρ evolving via a Gibbs preserving map Φ (i.e. satisfying Φ(γβ) = γβ) is upper bounded as

R(Φ(ρ))−R(ρ) ≤ 1

β
S(ρP ∥γβ). (4.29)
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Proof. We begin by writing the change in ergotropy using Eq. (4.16) as

R(Φ(ρ))−R(ρ) =
(
F (Φ(ρ))− F (Φ(ρ)P )

)
−
(
F (ρ)− F (ρP )

)
=

(
F (ρP )− F (Φ(ρ)P )

)
−
(
F (ρ)− F (Φ(ρ))

)
≤

(
F (ρP )− F (Φ(ρ)P )

)
=
(
F (ρP )− F (γβ) + F (γβ)− F (Φ(ρ)P )

)
=

1

β

(
S(ρP ∥γβ)− S(Φ(ρ)P ∥γβ)

)
≤ 1

β
S(ρP ∥γβ), (4.30)

where the initial inequality can be deduced from the fact that the free energy is mono-
tonically non-increasing under the Gibbs-preserving map as given in Eq. (4.28), while the
subsequent inequality can be obtained from the non-negative nature of the relative entropy
Eq. (4.27).

It is worth noting that the upper bound given in Eq. (4.29) does not rely on a specific
Gibbs-preserving map Φ, but instead only depends on the initial state ρ. This bound is in
agreement with the previously derived bound in Eq. (4.26), since S(ρP ∥γβ) ≤ S(ρ∥γβ).
When the initial state ρ is already passive, meaning R(ρ) = 0, then the inequality in Eq.
(4.29) reduces to Eq. (4.26). Therefore, Eq. (4.29) can be interpreted as the second law for er-
gotropy extraction that places an upper limit on the amount of ergotropy that can be extracted
through a Gibbs-preserving transformation.

In the next section, we shall construct an example that illustrates how the bound given
in Eq. (4.29) can be saturated for a thermal operation.

4.6.1 The maximal-energy thermal process and saturation of the bound on er-
gotropy extraction

In this section, we present an example of a system that exists in the ground energy state of a
Harmonic oscillator and transforms a thermal operation Φmax, where the limit given in Eq.
(4.29) is saturated. As the ground state of the Hamiltonian is energy incoherent, we shall
employ theorem 22 to characterize this transformation. As per the theorem 22, transforming
an energy-incoherent state through a thermal operation is equivalent to transforming the
classical state constructed from it’s diagonal via a Gibbs stochastic matrix. Thus, we will
construct the Gibbs stochastic matrix TΦmax corresponding to the thermal operation Φmax.

Consider a system in the ground state of a harmonic oscillator system described by
Hamiltonian H =

∑∞
n=0 nω|n⟩⟨n| (we re-scaled the ground state energy of the harmonic os-

cillator to zero and all the other energies accordingly). Then the classical state g constructed
from diagonal of ground energy state |0⟩⟨0 transforms via the Gibbs stochastic matrix TΦmax

which is as follows:
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TΦmax =

(
X Y

Ω 0

)
, (4.31)

where

X :=



0 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
...

...

0 0 0 0 . . . 1


(L−1)×(L−1)

Y :=



1 1 1 1 . . . . . .

0 0 0 0 . . . . . .

0 0 0 0 . . . . . .
...

...
...

...
...

...

0 0 0 0 . . . . . .


(L−1)×∞

,(4.32)

Ω :=
1

Z



1 0 0 0 . . . 0

e−βω 0 0 0 . . . 0

e−2βω 0 0 0 . . . 0

e−3βω 0 0 0 . . . 0
...

...
...

... . . .
...


∞×(L−1)

0 :=



0 0 0 0 . . . . . .

0 0 0 0 . . . . . .

0 0 0 0 . . . . . .
...

...
...

...
...

...

0 0 0 0 . . . . . .


∞×∞

(4.33)

such that
L = 1 +

1

βω
logZ, (4.34)

that takes integer values for 1
βω logZ ∈ N, where Z = Tr(e−βH). It can be seen immediately

that TΦmax is stochastic, and that it preserves the classical state γβ arises from the diagonal
of the Gibbs state i.e.,

γβ =
( 1

Z

e−βω

Z

e−2βω

Z
. . .
)T
. (4.35)

The action of TΦmax on the classical state g = (1 0 . . . 0)T characterizes the transformation of
the ground state |0⟩⟨0| as follows:

Φmax

(
|0⟩⟨0|

)
= G =

1

Z

∞∑
n=L

e−βω(n−L)|n⟩⟨n|. (4.36)

It is worth noting that we can obtain Φmax(|0⟩⟨0|) by placing TΦmaxg on the diagonal compo-
nent as |0⟩⟨0| is energy incoherent. We observe that final state G is the Gibbs state γβ , with
populations displaced by ωL. To compute the ergotropy of the final state, we must first
determine the corresponding passive state ĜP , which is the minimal energy state acquired
by exchanging occupation probabilities. In the case of this infinite-dimensional system,
the passive state is found as the limit where all zeroes occupying the first L energy levels are
"pushed to infinity" (as in the Hilbert’s Hotel paradox). In this scenario, we obtainGP = γβ ,
implying that the passive version of the final state Ĝ is the Gibbs state. However, this tech-
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Figure 4.1: Consider the d-dimensional qudit with frequency ω, initially in the ground state,
subjected to a thermal process at temperature β that maximizes the final energy. The dashed
horizontal lines signify the ergotropy extraction bound given in Eq. (4.29). As the dimen-
sionality of the qudit increases, it becomes evident that the final ergotropy for the maximal-
energy process reaches saturation and approaches the optimal ergotropy as δ → 0.

nique for generating the passive state is not applicable in finite dimension, as the Gibbs
state γβ in such instances does not contain any zeroes within its spectrum.

Putting GP = γβ turns the LHS of the inequality in Eq. (4.29) to

R(G)−R(|0⟩⟨0|) = E(G)− E(GP ) = E(G)− E(γβ) =
1

β
logZ, (4.37)

while the RHS of the inequality is equal to:

1

β
S(|0⟩⟨0|∥γ̂β) =

1

β
logZ. (4.38)

In the case where the harmonic oscillator possesses frequency ω and is in its ground state
at zero temperature, such that 1

βω logZ ∈ N, the ergotropy extraction bound presented in Eq.
(4.29) reaches its maximum limit. The thermal process that achieves this saturation maxi-
mizes the final energy state. This maximization is evident from the fact that the first column
of the Gibbs stochastic matrix TΦmax acting on the ground state |0⟩⟨0| entirely determines the
transformation. The corresponding matrix element for the n-th row of the first column of
Ω is upper bounded by e−βω(L+n−2), since it must be Gibbs-preserving, i.e., TΦmaxγβ = γβ .
It can be demonstrated, however, that this element is equivalent to e−βω(n−1)

Z = e−βω(L+n−2)

using Eq. 4.34. Therefore, the process maximizes the occupation of high energy states while
reducing that of the lowest L− 1 energy levels.

Finally, we conclude this chapter by providing a numerical study about the saturation
of the bound on ergotropy extraction in Eq. (4.29) with dimensionality. In order to do so,
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we introduce the detuning parameter as follows:

δ = min

[
1

βω
logZ − ⌊ 1

βω
logZ⌋, ⌈ 1

βω
logZ⌉ − 1

βω
logZ

]
. (4.39)

The numerical results of the final ergotropy for the d-dimensional system are presented
in Fig. 4.1, with varying frequencies ω, and non-zero values of the detuning parameter δ.
The ergotropy extraction protocol aims to maximize the energy of the final state. As δ ap-
proaches zero, the extractable ergotropy approaches the bound, even for moderate dimen-
sion d, while non-zero detuning parameter prohibits strict saturation, even in the infinite-
dimensional limit. It is worth noting that as β approaches zero, thermal processes become
permutations, and the protocol that maximizes the energy of the final state also maximizes
its ergotropy. Therefore, the numerical outcomes in Fig. 4.1 imply that, for high bath tem-
peratures and a harmonic oscillator initially in the ground state, no thermal operation can
strictly saturate the bound Eq. (4.29) for non-zero detuning δ. In the following chapter, we
shall elaborate on the ergotropy extraction in the finite dimensional scenario and describe
the working of a microscopic heat engine using the tools of thermomajorization.

4.7 Conclusions and Outlook

This chapter introduces a bound on ergotropy extraction and demonstrates its achievability
for infinite dimensional systems. However, for finite dimensional systems, there exists a
discrepancy between the bound and actual extractable ergotropy. To advance our under-
standing of ergotropy extraction, we aim to investigate the role of coherence in the process
by identifying a state σ satisfyingR(σ)−R(ρ) > R(D(σ))−R(D(ρ)), which would provide a
quantum advantage for ergotropy extraction and lead to higher work yields per cycle than
classical engines. Additionally, the relationship between extractable ergotropy, optimized
for all energy conserving operations, and the dimension of the working body is an open
question. Fig. 4.1 illustrates this relationship for a qudit system initialized in the ground
state and transformed by a thermal operation that extracts the maximum energy from the
bath. The bound given in Eq. (4.18) characterizes the ergotropy of a composite system in
the asymptotic limit of copies, with the Gibbs state serving as a completely passive state.
Moreover, investigating the extractable ergotropy for composite systems coupled with a
heat bath will provide insights into how emerging entanglement affects the extractable er-
gotropy. Finally, exploring the possibility of saturating the bound on ergotropy extraction
for finite-dimensional systems using a catalyst is another avenue worth exploring, which
will be discussed in the next chapter.
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Chapter 5
Microscopic heat engine

5.1 Introduction

In this chapter, we will explore the consequences of the finite size of the system on the per-
formance of microscopic heat engines. These engines have garnered significant interest in
recent years, owing to their potential applications in diverse fields, such as information pro-
cessing [79, 84, 148], sensing [149, 150, 151, 152], and energy conversion [153]. A microscopic
heat engine is a thermodynamic device that operates at a microscopic level, converting heat
energy into work. It comprises a working body, which can be a molecule, atom, or a sin-
gle electron, and a heat source and sink [79, 154, 155]. The small size of the working body
means that the operation of microscopic heat engines is governed by quantum mechanics,
and their behaviour can vary substantially from their macroscopic counterparts. Research
on microscopic heat engines has focused on investigating their thermodynamic efficiency
and work production, as well as their limitations and potential applications. This research
is crucial in advancing our understanding of the fundamental laws of thermodynamics at
the nanoscale [79, 87, 146]. There are two main categories of microscopic heat engines based
on their operation:

1. Stroke-based engines: These engines work by interacting with the heat baths, and work
storage via energy-conserving strokes in a specific sequence.

2. Self-contained engines: All components of these engines undergo a transformation that
conserves the engine’s total energy.

The designs of the two engines differ fundamentally. The stroke-based engines as-
sume the existence of an external control that regulates the sequence of strokes, while self-
contained engines require no such external control for their performance. In this chapter, we
will explore both open-cycle engines, which are stroke-based engines, and self-contained
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engines at the smallest possible size. We will develop a thermodynamic framework for both
engines and analyze their performance in terms of work production and efficiency. Regard-
ing self-contained engines, we will demonstrate how their performance can be enhanced
by utilizing a catalyst. Moreover, we will investigate how to model such self-contained en-
gines as autonomous heat engines using the Markovian master equation. We will begin by
examining the functioning of the open-cycle engine that involves extracting ergotropy from
a hot heat bath and storing it as work in the work storage during subsequent strokes.

5.2 The open-cycle heat engines

In this section, we will delve into the concept of an open-cycle heat engine, which is a
stroke-based engine. We will explore the role of extracting ergotropy from the bath as work
that can be stored in an ideal weight battery model presented in section 4.3 [79, 139]. Our
investigation will focus on identifying the optimal performance of this engine and deter-
mining the states in which maximum work production and efficiency can be achieved. We
will concentrate on open cycle engines that resemble the minimal coupling engines intro-
duced in [146], which work by alternately coupling to the heat baths and the battery, much
like traditional stroke-based engines. To describe the workings of open-cycle engines, we
must first introduce a few concepts related to the thermal operation, which we will do in
the following subsection.

5.2.1 Mathematical interlude

In subsection 2.3.2 of chapter 2, we have defined thermal operation as a CPTP map E that
transforms the state of the system ρS as

E(ρS) = TrB
(
U(ρS ⊗ τ)U †

)
(5.1)

where U satisfies the relation [U,HS +HB] = 0 with HS , HB are Hamiltonian of the system
and the bath, and τ = e−βHB

Tr(e−βHB )
is the thermal state of the bath.

If ρS is energy incoherent i.e. [ρS ,HS ] = 0, one can characterize the transformation ρS

under thermal operation E via the action of a Gibbs stochastic matrix T E on the classical
state pS that is generated from the diagonal of ρS (see theorem 22). Therefore, E(ρS) can be
constructed by placing the elements of T EpS on the diagonal i.e.,

E(ρS) =
d∑
i=1

(
T EpS

)
i
|Ei⟩⟨Ei|. (5.2)

Employing the Blackwell’s theorem (see theorem 11) we can say transformation of an en-
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ergy incoherent states ρS via a thermal operation E can be characterized utilizing thermo-
majorization as follows:

ρS → E(ρS) ⇒ (ps,γS) ≻ (qs,γS), (5.3)

where qS is the classical state constructed from the diagonal of E(ρS) and γS is the clas-
sical state generated from the diagonal of the Gibbs state of the system γS = e−βHS

Tr(e−βHS )
.

Conversely, if (ps,γS) ≻ (qs,γS) then one can construct a Gibbs stochastic matrix T

TpS = qS ; TγS = γS . (5.4)

This stochastic matrix T can generate a thermal operation E such that ρS transforms to E(ρS)
that has qS on the diagonal. we put 0 on the off-diagonals, since initial state ρS is energy
incoherent and coherence can not be generated via a thermal operation as can be seen from
proposition 26.

The future thermal cone T (ρS) (introduced in definition 25) for the energy incoherent
state ρS includes all states that can be obtained from ρS through thermal operations. Since
the set of thermal operations is convex (as per theorem 23), the future thermal cone of ρS
is also convex. It can also be described as the set of classical states obtained from pS via
transformation by Gibbs stochastic matrices. To determine the extremal points of T (ρS), the
concept of tight thermomajorization (introduced in [82, 156]) must be employed. We briefly
describe the idea of tight thermomajorization here that involves the concepts of relative
Lorenz curve introduced in definition 15.

Definition 34 (Tight thermomajorization). If all extremal points (or elbows) of the thermo-
majorization curve of LγS (qS) lies on the curve LγS (pS), then pS tightly thermomajorizes
qS . Here γS denotes the classical state constructed from the diagonal of Gibbs state of the
system and by extremal points of the curve we mean those points that can not be written as
the convex sum of points that lies on the curve.

Lemma 37 (Characterizing the extremal points of T (ρ) (Theorem 4 of [156])). Consider a
pair of energy incoherent state ρS and σS with the classical state generated from their diagonal pS
and qS . Then σS is the extremal point of the future thermal cone T (ρS) if and only if pS tightly
thermo-majorizes qS .

Lastly, we introduce the concept of β-ordering before concluding this section.

Definition 35 (β- ordering). Consider a pair of classical states (pS ,γS) where pS is the clas-
sical state generated from the diagonal of ρS and γS is the classical state generated from the
diagonal of the Gibbs state of the system e−βHS

Tr(e−βHS )
with Hamiltonian HS at inverse temper-
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𝑒−𝛽E2 𝑒−𝛽E1

1

𝑍

Figure 5.1: The rescaled thermomajorization diagram illustrates a three-dimensional system
with Hamiltonian H = E1|E1⟩⟨E1| + E2|E2⟩⟨E2|, where E2 > E1. The X-axis is rescaled
to Z, and the elbows of the curves are marked by circles. The curves Lγ(s) and Lγ(q) are
thermomajorized by the curve Lγ(p), while the curve Lγ(p) does not thermomajorize Lγ(r),
nor does Lγ(r) thermomajorize Lγ(p). The curve Lγ(q) is tightly thermomajorized by the
curve Lγ(p). The classical state p and r have β-order (3, 2, 1), while s and q have β-order
(1, 2, 3).

ature β. We define the β- order as the ordering
(
π(1) π(2) . . . π(d)

)
such that

(pS)π(1)

(γS)π(1)
≥

(pS)π(2)

(γS)π(2)
≥ . . . ≥

(pS)π(d)

(γS)π(d)
(5.5)

where π is a permutation acting on the set of indices (1 . . . d).

To understand the concepts of tight thermo-majorization and β-ordering more clearly,
see the Fig. 5.1 where we plot the thermomajorization diagram for three dimensional clas-
sical state. The concept of β-ordering will be crucial to optimize the efficiency and work
produced by the engine as well as to formulate the second law for open cycle engines. We
shall see this shortly. In the next section, we shall describe the open-cycle engine in detail.

5.2.2 Description of the open cycle heat engine

The open cycle engine is composed of two baths, with inverse temperatures denoted as βH
and βC , and a battery. The hot bath has an inverse temperature of βH , while the cold bath
has an inverse temperature of βC , where βH is less than βC . Initially, the working body is
in thermal equilibrium with the cold bath. During successive discrete two-body energy-
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Figure 5.2: This diagram illustrates an open-cycle heat engine that uses a qutrit as its work-
ing body. The engine consists of two baths - a cold bath with inverse temperature βC and
a hot bath with inverse temperature βH - as well as a battery that serves as a work storage.
Initially, the working medium is in thermal equilibrium with the cold bath. In stroke 1, the
working body extracts ergotropy from the hot bath, causing it to become non-passive. In
stroke 2, the ergotropy is stored as work in the battery, resulting in a passive state for the
working body. Finally, in stroke 3, the working body can either be discarded or returned to
thermal equilibrium with the cold bath.

conserving operations, referred to as strokes, the working body couples alternately with the
hot bath and battery. The Fig. 5.2 presents a schematic representation of the design for an
open-cycle engine with a qutrit working body. Similarly to the minimal coupling quantum
heat engines introduced in [145], this engine uses the interaction between the hot bath and
the working body in its initial stroke to extract ergotropy. This extracted ergotropy is then
stored as work on the battery in the second stroke. Finally, the working body is thermalized
with the cold bath or discarded in the last stroke. A detailed description of the engine
follows.

5.2.2.1 Working body thermalized with respect to cold bath.

To start the process, we initialize both of the baths in equilibrium i.e.,

τβH =
e−βHHH

Tr(e−βHHH )
; τβC =

e−βCHC

Tr(e−βCHC )
(5.6)

where HH and HC are Hamiltonians of the hot and cold baths, respectively. It is assumed
that the heat capacities of the baths are infinite, which guarantees that their temperatures
remain stable during the engine’s operation. The working body is a d-dimensional system
that is initially in thermal equilibrium with the cold bath. The Hamiltonian that describes
the working body, can be expressed as follows:

HS =
d∑
i=0

ωi|ϵi⟩⟨ϵi|, (5.7)
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with the state of the working body is expressed as:

ρS =
e−βCHS

Tr(e−βCHS )
. (5.8)

Assuming the components of the engine are initially uncorrelated, the initial state of the
engine can be written as

ρ = ρS ⊗ τβH ⊗ ρB, (5.9)

where ρB is a state of the battery. The free Hamiltonian H0 of the combined system is given
by

H0 = HS +HH +HB, (5.10)

where HS , HH and HB are Hamiltonian of the system, hot bath, and battery respectively.
When the open-cycle engine runs repeatedly, it stores the ergotropy of the working body to
the battery and then thermalizes it again with a cold bath. As a result, the engine is only
influenced by the change in the state of the battery ρB at the start of each run. The role of
the working body is to direct the energy flow from the hot bath to the battery, as outlined
below.

5.2.2.2 Interaction of working body with the hot heat bath and battery via discrete two
body energy conserving strokes.

According to the definition of stroke operations in [145], we restrict interactions to occur
only between two bodies at a time. As a result, the unitary evolution of an engine can be
represented as the product of two unitaries:

U = UBUH , (5.11)

where UH corresponds to the interaction between the working body and the hot bath, and
UB corresponds to the interaction between the system and the battery.

To ensure energy conservation in the engine, we require that the unitaries preserve the
total energy. Thus, we apply the condition

[UH ,HS +HH ] = 0; and ; [UB,HS +HB] = 0. (5.12)

The purpose of utilizing unitaryUH is to extract ergotropy from the hot bath and transfer
it to the working body during the first stroke. Similarly, the unitary UB is used to charge the
battery by converting the extracted ergotropy into work during the second stroke. Hence,
the sequence of unitaries specified in Eq. (5.11) is appropriate.

The unitary UH describes the interaction between the working body and the hot bath,
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and it can also be expressed as a thermal operation EH that transforms the state ρS . Specif-
ically, EH allows for the extraction of ergotropy from the hot bath by converting the initial
state ρS into a new state EH(ρS), where τH is the thermal state of the hot bath. Mathemati-
cally, this transformation can be represented as follows:

ρS → EH(ρS) = TrH [UH(ρS ⊗ τH)U
†
H ], (5.13)

Since the initial state of the working body ρS is Gibbs with respect to the cold bath, as
given in Eq. (5.8), the value of the thermodynamic resource R(ρS) is zero. Therefore, ac-
cording to the ideal weight model presented in section 4.3 as the work storage, the amount
of work stored during the second stroke is equal to the ergotropy obtained during the first
stroke, as shown in [79, 145]:

W (EH(ρS)) = R(EH(ρS)). (5.14)

During the interaction of the working body with the hot bath, heat is transferred from the
hot bath to the working body, leading to an increase in the system’s average energy. The
amount of heat transferred, denoted as Q, is defined as the change in the system’s average
energy due to its interaction with the hot bath, which can be expressed as:

Q(EH(ρS)) = Tr[(HS

(
EH(ρS)− ρS

)
], (5.15)

where EH(ρS) represents the state of the working body after interacting with the hot bath,
and HS is the Hamiltonian of the system.

Clausius’s formulation of the second law of thermodynamics states that, without an ex-
ternal work source, heat will always flow from a hotter object to a colder one. This concept is
reflected in the Eq. (5.15) which ensures that the amount of heat transferred is non-negative:

Lemma 38 (Directionality of heat flow from hot bath to a working body that is thermalized
with cold bath). Suppose we have a state ρS that has been initially thermalized with a cold bath at
temperature βC . If we subject the state ρS to any thermal operation EH in the presence of a hot bath
at temperature βH , the amount of heat exchanged during the process can be determined using Eq.
(5.15). This quantity, denoted byQ(EH(ρS)), is always non-negative, as expressed by the inequality:

Tr(HS

(
EH(ρS)− ρS

)
) ≥ 0. (5.16)

Proof sketch: By exploiting the linearity of the function Q(EH(ρS)), we can establish that the
minimum amount of heat transferred occurs at one of the extremal points in the set T (ρS),
that comprises the states achievable by applying a thermal operation on ρS . Among these
extremal points, the state ρS itself is one such point. To prove that the average energy of
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ρS is not surpassed by that of any other extremal points in T (ρ̂S), we first note that there
is only one extremal element in this set with a β-order (for the definition of β-order, refer
to section in the appendix) of (1, 2, . . . , d). We then demonstrate that for any state with a
different β-order, there exists a thermal operation A that reduces its average energy. As a
result, the average energy of any extremal states in T (ρS), except for ρS , is higher than the
average energy of some other state in T (ρS) (i.e., the state obtained by applying A). Hence,
the minimum amount of heat transferred is attained at ρS , resulting in a value of Q equal
to zero. The complete proof can be found in section 6.7 of the appendix.

In an open-cycle heat engine, the efficiency can be defined as the ratio of the work stored
in the battery to the heat exchanged from the hot bath. This can be represented using the
equation:

η(EH(ρS)) =
W (EH(ρS))
Q(EH(ρS))

=
R(EH(ρS))
Q(EH(ρS))

. (5.17)

The next section will cover the optimal performance of the open cycle heat engine, with a
focus on maximizing the work stored in the battery while achieving the highest possible
efficiency. This goal is synonymous with extracting the maximum ergotropy from the hot
heat bath, as evidenced by Eq. (5.14).

5.2.3 Optimal performance for the open cycle heat engine

Our objective in this analysis is to maximize the work and efficiency, as defined in Eq. (5.14)
and Eq. (5.17), respectively, for the set of states that can be obtained from the initial state of
the working body, ρS , via thermal operations. Since it is clear from a referenced lemma 37
that the set of states achievable from any energy incoherent state using thermal operations
also forms a polytope. We refer to this set as the thermal polytope of the state ρS , denoted as
T (ρS). Our goal, therefore, is to maximize the work and efficiency over all the states within
T (ρS), which can be expressed as:

Wmax = max
σS∈T (ρS)

R(σS) ; ηmax = max
σS∈T (ρS)

η(σS). (5.18)

The theorem below characterises the states in the T (ρS) which lead to optimal work and
efficiency.

Theorem 39 (Optimal work production of open cycle engine). The maximum possible values
of work and efficiency for an open cycle quantum heat engine are achieved at the extremal points of
the set T (ρ̂S).

Proof. To optimize work production we need to maximize ergotropy function over the fu-
ture thermal cone of ρS denoted by T (ρS) (see Eq. (5.18)). From the definition of ergotropy
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given in Eq. (4.11), we can prove the convexity for ergotropy as follows,

R(αρ+ (1− α)σ) = max
U∈ U(d)

Tr
(
H
(
αρ+ (1− α)σ − U(αρ+ (1− α)σ)U †))

= max
U∈ U(d)

Tr
((
αH
(
ρ− UρU †

)
+ (1− α)H

(
σ − UσU †))

≤ α max
U∈ U(d)

Tr
(
H(ρ− UρU †)

)
+ (1− α) max

U∈ U(d)
Tr
(
H(σ − UσU †)

)
= αR(ρ) + (1− α)R(σ), (5.19)

where ρ and σ are any arbitrary states and α ∈ [0, 1]. Using the fact that maxima of convex
function restricted over a polytope, obtained at the extremal points of the polytope. This
implies that the maximum value of work production is achieved at an extremal point of
T (ρS).

To maximize efficiency, we note that an arbitrary state σ ∈ T (ρS) can be written as
σ =

∑
i λiσi, where {σi} are extremal points of T (ρS) and λi ∈ [0, 1] for each i. Thus, one

can write employing Eq. (5.14) and Eq. (5.17) the following

η(σ) =
R(σ)

Q(σ)
=
R(
∑

i λiσi)

Q(
∑

i λiσi)
≤

∑
i λiR(σi)∑
i λiQ(σi)

(5.20)

=
∑
j

( λjQ(σj)∑
i λiQ(σi)

)R(σj)
Q(σj)

≤ max
j

R(σj)

Q(σj)
= max

j
η(σj),

where the first inequality exploits convexity of ergotropy and linearity of the functionQ( · ),
and the second inequality uses lemma 38 that says Q(σj) is non-negative for all extremal
states, and therefore

(
λjQ(σj)∑
i λiQ(σi)

)
∈ [0, 1].

To optimize the work and efficiency of an open-cycle quantum heat engine, it is neces-
sary to optimize over all the extremal points of T (ρS). It is important to note that achieving
maximum values of both work and efficiency simultaneously may not be feasible. The up-
coming sections will focus on analyzing the optimal performance of qubit and qutrit work-
ing bodies in an open cycle heat engine and exploring the process of ergotropy extraction
in low-dimensional systems. To identify the extremal points of the set T (ρS), we will rely
on the results presented in [157].

5.2.3.1 Open cycle heat engine with qubit working body

Let us examine a qubit working body ρS with a Hamiltonian of the form

ω|1⟩⟨1|, (5.21)
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which is in a thermal state at an inverse temperature βC . This state can be expressed as:

ρS =
1

1 + e−βCω

(
1 0

0 e−βCω

)
. (5.22)

Using the idea of tight thermomajorization presented in lemma 37, one can easily charac-
terize T (ρS) as convex hull with two extremal points as follows [33]:

T (ρS) = conv

{
ρS ,

1

1 + e−βCω

(
1 + (e−βCω − e−βHω) 0

0 e−βHω

)}
, (5.23)

where ρS is given in Eq. (5.22). From theorem 39, we optimise the performance of open cycle
heat engine over extremal points of T (ρS) as given in Eq. (5.23). Therefore, we evaluate
work production and efficiency of the engine at

1

1 + e−βCω

(
1 + (e−βCω − e−βHω) 0

0 e−βHω

)
, (5.24)

which is the only extremal point that results non-trivial work production and efficiency. We
calculate the optimal work output defined in Eq. (5.14) as

W = ω
( 2e−βHω

1 + e−βCω
− 1
)
. (5.25)

Therefore, the engine leads to non-zero work production if and only if 2e−βHω − 1 > e−βCω.
In order to calculate the efficiency, we need to calculate the amount of heat exchanged given
in Eq. (5.15) that can be expressed as

Q =
ω

1 + e−βCω
(e−βHω − e−βCω). (5.26)

Therefore, the optimal efficiency is given by

η = 1− (1− e−βHω)

(e−βHω − e−βCω)
. (5.27)

Let us now compare with the more general case of minimal coupling quantum heat engines
from [145], for which we have

Wmc = ω
( 2e−βHω

1 + e−(βC+βH)ω
− 1
)
, (5.28)

ηmc = 1− (1− e−βHω)(
e−βHω − e−(βC+βH)ω

) . (5.29)

Hence, we can conclude that Wmc ≥ W and ηmc ≥ η, and equality is achieved when
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βC → ∞. This outcome results from the understanding that open-cycle engines are min-
imal coupling engines, which means that the working body is restored to its initial state
by thermalizing with the cold bath. Furthermore, by examining Eq. (5.25) and Eq. (5.28),
we observe that minimal coupling heat engines can operate within a broader temperature
range, allowing them to produce non-zero work over a wider range of temperatures. Mov-
ing on, our focus now shifts to the qutrit case of open-cycle heat engines, which has not
been characterized for minimal coupling heat engines to the best of our knowledge.

5.2.3.2 Open cycle heat engine with a qutrit working body

We consider the working body as a qutrit with Hamiltonian

HS = ω1|1⟩⟨1|+ ω2|2⟩⟨2| (5.30)

that is initialized in a thermal state given by

ρS =
1

1 + e−βCω1 + e−βCω2

1 0 0

0 e−βCω1 0

0 0 e−βCω2

 . (5.31)

Employing theorem 39, to optimize the work production and efficiency of a heat engine,
we consider all extremal points of the set T (ρS). In order to characterize the set T (ρS), we
use lemma 1 from [157] that characterize the extremal points of T (ρS). We shall state this
lemma using the following quantities qHij and qCij that are defined as follows:

qHij = e−βH(ωi−ωj), (5.32)

qCij = e−βC(ωi−ωj), (5.33)

with ω0 = 0. We rewrite ρS given in Eq. (5.31) as

ρS =
1

ZC

(
|0⟩⟨0|+ qC10|1⟩⟨1|+ qC20|2⟩⟨2|

)
, (5.34)

where ZC = 1 + qC10 + qC20. The application of [157] (see lemma 2 of appendix for details)
results in the following:

Lemma 1. [Extremal points of the qutrit thermal polytope] The possible states that can be reached
by thermal operation while in contact with a bath at inverse temperature βH , starting from the initial
state ρS as defined in Eq. (5.34), form a convex hull consisting of extremal points. The set of extremal
points can be expressed as follows:

T (ρS) =

 conv {ρS , ρ1S , ρ2S , ρ3S , ρ4S} for βH ≥ β0,

conv {ρS , ρ1S , ρ2S , ρ3S , ρ5S , ρ6S} for βH < β0,
(5.35)
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Here β0 is specified by the relation

e−β0ω1 + e−β0ω2 = 1, (5.36)

and extremal points are defined as

ρ1S =
1

ZC

(
(1− qH10 + qC10)|0⟩⟨0|+ qH10|1⟩⟨1|+ qC20|2⟩⟨2|

)
, (5.37)

ρ2S =
1

ZC

(
(1|0⟩⟨0|+ ((1− qH21)q

C
10 + qC20)|1⟩⟨1|+ qH21q

C
10|2⟩⟨2|

)
, (5.38)

ρ3S =
1

ZC

(
(1− qH20 + qH21q

C
10)|0⟩⟨0|+ ((1− qH21)q

C
10 + qC20)|1⟩⟨1|+ qH20|2⟩⟨2|

)
, (5.39)

ρ4S =
1

ZC

(
(1 + qC10 + qC20 − qH10 − qH20)|0⟩⟨0|+ qH10|1⟩⟨1|+ qH20|2⟩⟨2|

)
, (5.40)

ρ̂5S =
1

ZC

(
((qH01 − qH21)q

C
10 + qC20)|0⟩⟨0|+ qH10|1⟩⟨1|+ (1− qH10 + (1− qH01 + qH21)q

C
10)|2⟩⟨2|

)
,

(5.41)

ρ6S =
1

ZC

(
(qC10(q

H
01 − qH21) + qC20)|0⟩⟨0|+ (1− qH20 + qC10(1− qH01 + qH21))|1⟩⟨1|+ qH20|2⟩⟨2|

)
,

(5.42)

where ZC = 1 + qC10 + qC20.

Optimizing the extremal points of T (ρS) poses a significant challenge as it relies on the
values of βH , ω1, and ω2. In order to determine the amount of work produced by the heat
engine, we utilize Eq. (5.14) and examine the quantity of ergotropy obtained from the hot
bath. The values for βH , ω1, and ω2 are provided in table 5.1, while table 5.2 displays the
heat exchanged with the hot bath for each extremal state. The efficiency of the heat engine
can be computed by dividing the quantity of ergotropy extracted by the corresponding
amount of heat exchanged.

We analyze numerically the optimal work production and efficiency for a qutrit Hamil-
tonian given by

H = |1⟩⟨1|+ ω|2⟩⟨2|. (5.43)

We characterize the optimal protocols for work production, which can be identified by
different states of the working body Eqs. (5.37)-(5.42) obtained by applying a thermal op-
eration to the initial state (see Fig. 5.3). It is important to note that, unlike the infinite-
dimensional that we investigate in chapter 4 for low-dimensional systems, the optimal pro-
tocols for extracting ergotropy may not maximize the energy of the working body.

Fig. 5.4 shows the values of extractable ergotropy and efficiency of the engine. We
observe that the region where ergotropy can be extracted decreases as ω increases. When
ω → ∞ and βC → ∞, the condition βH < log 2 is recovered, which limits the operational
regime of a qubit minimal step engine [145]. For high values of ω, extremal Gibbs stochastic
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Extremal states Amount of ergotropy extracted

ρ1S max
{
0, ω1

ZC

(
2qH10 − 1− qC10

)}
ρ2S max

{
0, 1

ZC
(ω2 − ω1)

(
2qH21q

C
10 − (qC10 + qC20

)}
ρ3S max

{
0, (ω2−ω1)

ZC

(
qH20 − qC20 − (1− qH21)q

C
10

)
, ω2
ZC
qH20 − ω1

ZC

(
(1− qH20) + qH21q

C
10

)
− (ω2−ω1)

ZC

(
(1− qH21)q

C
10 + qC20

)}
ρ4S max

{
0, ω1

ZC

(
2qH10 + qH20 − (1 + qC10 + qC20)

)
, ω1
ZC

(qH10 − qH20) +
ω2
ZC

(
2qH20 + qH10

−(1 + qC10 + qC20)
)}

ρ5S max
{
0, ω1

ZC

(
qH10 − (qH01 − qH21)q

C
10 − qC20)

)
, ω1
ZC

(
qH10 − (1− qH10)

−(1− qH01 − qH21)q
C
10

)
+ ω2

ZC

(
(1− qH10) + (1− qH01 − qH21)q

C
10

−(qH01 − qH21)q
C
10 − qC20

)}
ρ6S max

{
0, ω2−ω1

ZC

(
2qH20 − 1− qC10(1 + qH21 − qH01)

)
, ω1
ZC

(
1− qC20 − qH20

+qC10(1 + 2qH21 − 2qH01)
)
, ω1
ZC

(
qC10(1 + qH21 − qH01) + 1− 2qH20

)
+ ω2
ZC

(
qH20 − qC20 + qC10q

H
21 − qC10q

H
01

)
, ω1
ZC

(
1− qC20 − qH20

+qC10(1 + 2qH21 − 2qH01)
)
− ω2

ZC

(
1− 2qH20

+qC10(1 + qH21 − qH01)
)
, ω2
ZC

(
qH20 − qC20 + qC10(q

H
21 − qH01)

)}

Table 5.1: The amount of ergotropy extracted from various extremal states, subject to differ-
ent permutations.

Extremal states Amount of Heat Exchanged

ρ1S
1
ZC
ω1

(
qH10 − qC10

)
ρ2S

1
ZC

(
ω2 − ω1

)(
qC10(q

H
21 − qC21)

)
ρ3S

1
ZC

(
qH20ω2 − qC20(ω2 − ω1)− qC10q

H
21ω1)

)
ρ4S

1
ZC

(
(qH10 − qC10)ω1 + (qH20 − qC20)ω2

)
ρ5S

1
ZC

(
qH10(1− qC10q

H
01)ω1 +

(
qC10q

H
20q

H
01 − qC20 + (1− qC10q

H
01)(1− qH10)

)
ω2

)
ρ6S

1
ZC

(
1− qC10q

H
01)(1− qH20)ω1 + (qH20 − qC20)ω2

)
Table 5.2: The amount of heat exchanged from various extremal states, subject to different
permutations.
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Figure 5.3: Protocols for optimal ergotropy extraction: This diagram represents optimal
protocols for extracting ergotropy from a qutrit Gibbs state with an inverse temperature of
βC , interacting with a thermal bath with an inverse temperature of βH and a Hamiltonian
spectrum of (0, 1, ω). The values of ω considered are: (a) 1.5, (b) 2, (c) 2.1, (d) 2.5, (e) 4.5, and
(f) 101. The region in which ergotropy extraction is not possible is represented by 0. Other
regions are marked by symbols corresponding to the optimal final states, as described by
Eqs. (5.37)-(5.42), along with the subscripts indicating the permutation leading to optimal
ergotropy extraction. A transition between protocols 4 and 5 or 4 and 6 occurs at the point
where 1 = e−βH + e−βHω.
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Figure 5.4: This diagram represents the work production per cycle and efficiencies of the
open-cycle engine for different qutrit spectra, as shown in panels (a) and (b) for ω = 1.01,
panels (c) and (d) for ω = 2, and panels (e) and (f) for ω = 4.5. The dashed line in each
panel represents the operational region in the limit as ω approaches 1.
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matrices acting on a qutrit Gibbs state cannot result in higher population inversion than
those acting on a qubit system (see section 6.8 of the appendix).

The optimal process for maximizing energy is achieved by a process that leads to the
state ρ6S when the limit βH → 0. However, when βH is not equal to zero, the landscape of
optimal protocols becomes very complex. Specifically, when βH approaches critical values
that satisfy 1 = e−βH + e−βHω, the efficiency and extracted work may strongly depend on
βH . This can be attributed to the different structures of the set of extremal Gibbs stochastic
matrices above and below this limit, as explained in [157]. We anticipate that the diversity
of optimal strategies will increase with the dimension of the working body.

5.2.3.3 Open cycle heat engine with qudit working body

In the preceding section, we demonstrated that non-passive state configurations become
increasingly complex when transitioning from two-level to three-level systems. Therefore,
to accurately characterize d-dimensional qudits, we conducted a numerical simulation to
determine optimal work production and efficiency. Our method for computing optimal
quantities relied on thermomajorization. We used a numerical search to identify all ex-
tremal points within the set T (ρS) for a given initial state ρS . Fig. 5.5 shows the results.
However, since the number of extremal points in a thermal polytope increase in factorial
order with dimension, we could not perform these computations for moderate d > 8. Nev-
ertheless, optimization across all possible protocols for ergotropy extraction suggests that
both work production and efficiency increase in tandem with the dimension of the work-
ing body, although the bound in Eq. (4.29) cannot be fully saturated for small dimensions.
These findings are similar to those obtained for a limited class of protocols designed to opti-
mize energy (see Fig. 4.1) and are consistent with the idea that a low-dimensional working
body requires a careful optimization process because it enforces a separation (in terms of
relative entropy) between the Gibbs state and the state resulting from ergotropy extraction,
thus preventing the saturation of the bound.

In the next section we shall focus on the self-contained heat engine.

5.3 Self-contained heat engine

To operate a stroke-based heat engine, discrete stages of external driving are required to reg-
ulate its operation. It’s crucial that during the working process, the working body interacts
with a specific subsystem without interference from others. For example, when the work-
ing body engages with the hot bath, it can’t simultaneously interact with the work storage
or cold bath, and the same applies to later interactions. While it’s theoretically possible to
design such external driving, implementing it experimentally poses a challenge. Further-
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Figure 5.5: The diagram represents the work production and efficiency of an open-cycle en-
gine with a d-dimensional working body having a constant energy gap of ω. The plots were
generated using a fixed initial Gibbs state at a cold (inverse) temperature of βCω = 10 and
for different values of βHω. The left panel shows the work production, which is represented
by the optimal extracted ergotropy βHRmax. The dashed horizontal lines correspond to the
free energy bound as described in Eq. (4.29). The right panel displays the efficiency of the
ergotropy extraction process as defined in Eq. (5.17). The black solid line represents the
Carnot efficiency for βC/βH = 10.

more, the assumption that external driving doesn’t consume energy in minimal coupling
engines is incorrect. This provides motivation for exploring self-contained heat engines that
don’t need external control [154, 158].

5.3.1 Description of self-contained heat engine

The heat engine comprises of two d-level systems that are in equilibrium with separate
heat baths. The first d-level system is referred to as the hot d- level system or hot qudit
and is characterized by the Hamiltonian HH . It is connected to a heat bath with an inverse
temperature βH . The second d-level system is known as the cold d- level system or cold
qudit and is described by Hamiltonian HC . It is connected to a heat bath with an inverse
temperature βC , where βC > βH , which justifies their names. Additionally, the engine
contains work storage or battery that is modelled using a translationally invariant weight,
as discussed in section 4.3.

A self-contained heat engine differs from stroke-based heat engines in that it undergoes
a single, global energy-conserving operation that transforms all of its components, rather
than operating in discrete steps. The name self-contained is justified by this operation, as
it does not require an external control to run the engine as shown in Fig. 5.7. Additionally,
a working body component called a catalyst can assist the self-contained engine in such a
way that the marginal state of the catalyst is preserved at the end of the global energy-
conserving operation, thus closing the cycle. We refer to such an engine as a catalyst-assisted
self-contained engine. Similarly, it is possible to miniaturize a self-contained engine with-
out the catalyst as shown in Fig. 5.6. One of the aims of this chapter is to demonstrate
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Hot d level system Cold d level system

Translationally invariant
  work storage or battery

Figure 5.6: Schematic representation of a self-contained heat engine without a catalyst:
This diagram depicts the construction and operation of a self-contained heat engine. The en-
gine comprises hot and cold d-level systems at temperatures TH and TC , respectively, where
TH > TC . Work storage or battery is modelled using a translationally invariant weight, as
introduced in section 4.3. The total state of the engine is transformed by a unitary that pre-
serves the total energy of the engine, such that [U,HH +HC +HW ] = 0. In order to extract
work, we would like to choose U in such a way that the average energy of the work storage
increases.

that incorporating a catalyst leads to the enhancement of the performance of quantum heat
engines.

The aim of this engine is to increase the average energy of the work storage system after
the global energy-conserving operation. This increase is called work, while the decrease in
the average energy of the hot qudit is referred to as heat. The efficiency of the heat engine is
calculated by determining the ratio of work and heat. In the next section, we formulate the
concept of work and heat more rigorously.

5.3.2 Thermodynamical framework for self-contained heat engine without cat-
alyst

In the start, we assume that all the components of the engines are uncorrelated with hot
and cold d-level systems are thermalized at inverse temperature βH and βC , respectively.
Therefore, the initial state of the engine is given by τ i

HCW := τβH ⊗ τβC ⊗ ρW where

τβH =
e−βHHH

Tr(e−βHHH )
; τβC =

e−βCHC

Tr(e−βCHC )
, (5.44)

with βi and Hi is the inverse temperature and Hamiltonian of ith d-level system with i ∈
{H,C} and ρW is the state of the work storage described by Hamiltonian HW (see in defi-
nition 29 and discussion after that). The combined state of the d-level hot and cold system,
as well as the work storage will be denoted as τ f

HCW . For the self-contained engine, the
presence of the external work source or control is not required, and all possible energy ex-
penditures need to be tracked. Therefore, we assume that the transformation from τ i

HCW to
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Hot d level system Cold d level system

Catalyst

Translationally invariant
  work storage or battery

Figure 5.7: Schematic representation of a self-contained heat engine with a catalyst: This
diagram depicts the construction and operation of a self-contained heat engine that is aided
by a catalyst. The engine comprises hot and cold d-level systems at temperatures TH and
TC , respectively, where TH > TC . Work storage or battery is modelled using a translationally
invariant weight, as introduced in section 4.3. Furthermore, the self-contained heat engine
is aided by a catalyst whose marginal state is preserved after the transformation. The total
state of the engine is transformed by a unitary that preserves the total energy of the engine,
such that [U,HS +HH +HC +HW ] = 0. In order to extract work, we would like to choose
U in such a way that the average energy of the work storage increases.

τ f
HCW occurs through a unitary operation denoted as U , which conserves the total energy

of the engine, i.e.,

τ f
HCW = Uτ i

HCWU
† where [U,HH +HC +HW ] = 0. (5.45)

This ensures that the total energy of the engine is conserved during the transformation.
The work performed by the engine corresponds to the increase in the average energy of

the weight, as expressed by the following equation:

W = Tr
(
HW (τ f

HCW − τ i
HCW )

)
. (5.46)

We assume that this work is independent of the initial state of the work storage, which
means that the unitary U commutes with the generator of the translation operator that
shifts the energy spectrum of the work storage (refer to section 4.3 of chapter 4). Using the
condition [U,HH +HC +HW ] = 0, we can rewrite the expression for the work performed
by the engine as follows:

W = Tr
(
(HH +HC)(τ

i
HC − τ f

HC)
)
, (5.47)

where τ i
HC and τ f

HC represent the initial and final states of the d-level hot and cold system.
This equation basically tells that the drop of energy by the hot and cold qudit will be stored
as work in the battery. The formula given in Eq. (5.47) will make it simpler to analyse work
production as well as the efficiency of the engine.
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The lemma 33 from chapter 4 allows us to infer that τ f
HC = V τ i

HCV
†, where V is a

unitary operator that acts on the hot and cold d-level system. Therefore, we obtain:

W = Tr
(
(HH +HC)(τ

i
HC − V τ f

HCV
†)
)
= Tr

(
(HH +HC)

(
τβH ⊗ τβC − V (τβH ⊗ τβC )V

†)).
(5.48)

In order to characterize the amount of heat exchanged we consider the drop of energy
of the hot d level system. The amount of heat exchanged from the hot heat bath is given by

QH = Tr
(
HHTrCW

(
τ i
HCW − τ f

HCW

))
= Tr

(
HH

(
τβH − TrC(τ f

HC)
))
. (5.49)

Therefore, the efficiency of the engine is given by η where

η =
W

QH
. (5.50)

Now we shall provide two equivalent formulations of the second law in this setting. In
order to do so we need the concepts of entropy non-decreasing transformations which are
a more generic set of transformations that contains any unitary operations.

Definition 36 (Entropy non-decreasing transformation). An entropy non-increasing trans-
formation U is a CPTP map acting on on the set of d-dimensional density matrices S(Hd)

such that
ρ

U−→ σ, (5.51)

that satisfies S(ρ) ≤ S(σ) where S( · ) denotes the von Neumann entropy.

Using the idea of entropy non-decreasing transformation, we shall formulate the second
law for the self contained heat engine without a catalyst which is in parallel to the Planck’s
statement of second law of thermodynamics.

Lemma 40 (Positivity of work done implies positivity of heat exchange). For any entropy
non-decreasing transformation U such that U(τ i

HC) = τ
f
HC where τ i

HC = τβH ⊗ τβC given in Eq.
(5.44) the following relation holds:

W > 0 ⇒ QH > 0. (5.52)

Proof. From the definition of work done by the engine given in Eq. (5.46) we have

W = Tr
(
(HH +HC)(τ

i
HC − τ f

HC)
)
= Tr

(
HH(τ

i
HC − τ f

HC)
)
+ Tr

(
HC(τ

i
HC − τ f

HC)
)

= Tr
(
HHTrC

(
τ i
HC − τ f

HC

))
+ Tr

(
HCTrH

(
τ i
HC − τ f

HC

))
= QH +QC , (5.53)

where QC = Tr
(
HCTrH

(
τ i
HC − τ f

HC

))
can be understood as the amount heat dumped into
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the cold heat bath. Therefore,

W > 0 ⇒ QH +QC > 0. (5.54)

From entropy decreasing property of the transformation U we have, S(τ fHC) = S(τ iHC) + δ

for some δ ≥ 0 Moreover, employing the non-negativity of relative entropy we have the
following:

D(τ f
HC∥τ i

HC) ≥ 0, (5.55)

implies

D(τ f
HC∥τ i

HC) = −S(τ f
HC)− Tr(τ f

HC log τ i
HC) = −S(τ i

HC)− Tr(τ f
HC log τ i

HC)− δ

= Tr
(
(τ i
HC − τ f

HC) log τ
i
HC

)
− δ

= Tr
(
(τ i
HC − τ f

HC)(−βHHH − βCHC)
)
− δ

= −(βHQH + βCQC)− δ ≥ 0. (5.56)

From Eq. (5.56) we have −(βHQH + βCQC) ≥ δ ≥ 0. Thus we can provide the following
bound on QC

−βH
βC

QH ≥ QC . (5.57)

Thus, combining with Eq. (5.54) we have

QH +QC > 0 ⇒ QH

(
1− βH

βC

)
> 0

⇒ QH > 0, (5.58)

since βC > βH . This completes the proof.

Note that from Eq. (5.56) we immediately see

η =
QH +QC

QH
= 1− βH

βC
−
D(τ f

HC∥τ i
HC)

βCQH
< 1− βH

βC
:= ηC . (5.59)

So, from this lemma, we conclude that if the engine produces a positive amount of work, it
implies that the engine had consumed a positive amount of heat and its efficiency is upper
bounded by Carnot efficiency. This will allow us to formulate the second law in another
way in terms of the efficiency of the process that will be stated in the following proposition.

Proposition 41. Consider entropy non-decreasing transformations U1 and U2 acting on τ i
HC =

τβH ⊗ τβC where τβH and τβC given in Eq. (5.44), with U1(τ
i
HC) = τ1HC and U2(τ

i
HC) = τ2HC such
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that

W1 = Tr
(
(HH +HC)(τ

i
HC − τ1HC)

)
> 0

W2 = Tr
(
(HH +HC)(τ

i
HC − τ2HC)

)
< 0

Q2 = Tr
(
HHTrC

(
τ i
HC − τ2HC

))
< 0. (5.60)

Then the following inequality holds:

η1 :=
W1

Q1
≤ W2

Q2
:= η2, (5.61)

where Q1 = Tr
(
HHTrC

(
τ i
HC − τ1HC

))
.

Proof. We shall proof this result using contradiction argument. Note that from lemma 40
we have Q1 > 0. We proceed by assuming η1 > η2 that implies

W1

Q1
>
W2

Q2
⇒ W1Q2 < W2Q1, (5.62)

where we obtain the RHS of ’⇒’ by multiplying the negative term Q1Q2 on both side of
W1
Q1

> W2
Q2

. Consider the following entropy non-increasing transformation U

U =
−Q2

Q1 −Q2
U1 +

Q1

Q1 −Q2
U2, (5.63)

acting on τ i
HC . From the linearity of the function W ( · ) and Q( · ), we calculate work done

and the amount of heat exchanged from the hot bath for such a transformation as follows:

WU = Tr
(
(HH +HC)

(
τ i
HC − U(τ iHC)

))
=

1

Q1 −Q2

(
Q1W2 −Q2W1

)
> 0, (5.64)

QU = Tr
(
HHTrC

(
τ i
HC − U(τ iHC)

))
=

1

Q1 −Q2

(
Q1Q2 −Q2Q1

)
= 0. (5.65)

This result clearly contradicts with lemma 40 that says for any entropy non-increasing trans-
formation positivity of work implies positive amount of heat exchanged from the hot heat
bath. This implies η1 > η2 can not be true which completes the proof.

Optimizing the work production is straightforward as the maximum work that can be
produced by such an engine is given by ergotropy. In the next section, we would proceed
to optimize the efficiency of the self-contained heat engine without a catalyst.

5.3.2.1 Optimal efficiency of the self-contained heat engine without a catalyst

In order to optimize the efficiency, we shall show that among all the unitaries that can act
on τβH and τβC , only permutation can lead to the optimal efficiency.
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Theorem 42. The optimal efficiency of self contained heat engine is achieved when the initial state
of the hot and cold d- level system τ i

HC = τβH ⊗τβC evolves via a permutation that results a positive
amount of work.

Proof. In order to demonstrate the assertion, our approach involves linking a d-dimensional
vector |A⟩ to the d × d matrix A expressed in the eigenbasis of the Hamiltonian HH +HC ,
which is denoted as |Ei⟩ in the following manner:

Given A =
∑
ij

⟨Ei|A|Ej⟩|Ei⟩⟨Ej |,

⇒ |A⟩ = (⟨E1|A|E1⟩, . . . , ⟨Ed|A|Ed⟩)T . (5.66)

Then we can associate the vector |H⟩, |HH⟩ and |HC⟩ with total Hamiltonian H , hot and
cold bath Hamiltonian HH and HC respectively, in above mentioned manner as:

|H⟩ = |Eig(HH)⟩ ⊗ |I⟩+ |I⟩ ⊗ |Eig(HC)⟩,

|HH⟩ = |Eig(HH)⟩ ⊗ |I⟩,

|HC⟩ = |I⟩ ⊗ |Eig(HC)⟩, (5.67)

with

|Eig(HH)⟩ = (EH1 EH2 . . . EH
d )T , |Eig(HC)⟩ = (EC1 EC2 . . . EC

d )
T , |I⟩ = (1 1 . . . 1)T .

(5.68)

Note that initial state τβH ⊗τβC is diagonal in the energy eigenbasis and the final state of the
engine is given by U(τβH ⊗ τβC )U

† where U is unitary. We know from Birkhoff’s theorem
[14] that eigenvalue of a hermitian matrix majorizes it’s diagonal part. Thus, it implies

|Eig(U(τβH ⊗ τβC )U
†)⟩ ≻ |U(τβH ⊗ τβC )U

†⟩, (5.69)

where |Eig( · )⟩ denotes the vector of eigenvalues and | · ⟩ denotes the vector of diagonal
elements. Since applying unitary does not change the spectrum (it can only permute the
eigenvalues), thus we can write

|Eig(U(τβH ⊗ τβC )U
†)⟩ = Π|Eig(τβH ⊗ τβC )⟩ = |τβH ⊗ τβC ⟩, (5.70)

where Π is a permutation, we write the final equality based on the fact initial state τβH ⊗τβC
is diagonal in the energy eigenbasis. Thus Eq. (5.69) boils down to

|Eig(U(τβH ⊗ τβC )U
†)⟩ = Π|Eig(τβH ⊗ τβC )⟩ = |τβH ⊗ τβC ⟩ ≻ |U(τβH ⊗ τβC )U

†⟩. (5.71)

As |τβH ⊗ τβC ⟩ = |τ i
HC⟩ and |U(τβH ⊗ τβC )U

†⟩ = |τ f
HC⟩, employing theorem 9 from chapter
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1, we can write
|τ f
HC⟩ = B|τ i

HC⟩ (5.72)

where B is a bistochastic matrix. Thus the amount of work done by the engine and the
amount of heat exchanged is given by

W = ⟨H|τ i
HC⟩ − ⟨H|B|τ i

HC⟩ ; Q = ⟨HH |τ i
HC⟩ − ⟨HH |B|τ i

HC⟩. (5.73)

Therefore, we can write efficiency η as

η =
⟨H|τ i

HC⟩ − ⟨H|B|τ i
HC⟩

⟨HH |τ i
HC⟩ − ⟨HH |B|τ i

HC⟩
=

⟨H|τ i
HC⟩ − ⟨H|(

∑
i λiΠi)|τ i

HC⟩
⟨HH |τ i

HC⟩ − ⟨HH |(
∑

i λiΠi)|τ i
HC⟩

,

=
∑
j

λj(⟨HH |τ i
HC⟩ − ⟨HH |Πj |τ i

HC⟩)∑
i λi(⟨HH |τ i

HC⟩ − ⟨HH |Πi|τ i
HC⟩)

×
(⟨H|τ i

HC⟩ − ⟨H|Πj |τ i
HC⟩)

(⟨HH |τ i
HC⟩ − ⟨HH |Πj |τ i

HC⟩)
,

=
∑
j

λjQΠj

QH

WΠj

QΠj

=
∑
j

λjQΠj

QH
ηΠj . (5.74)

where we write the second equality using Bikhoff-von Neumann theorem (as proven in
section 6.1 of the appendix). Note that QΠj are non-zero real numbers and λj ∈ [0, 1] ∀j
such that

∑
j

λjQΠj

QH
= 1. We can distinguish the summands appeared in Eq. (5.74) into

three regime.

1. JE := {j :
λjQΠj

QH
> 0 , ηΠj > 0}.

2. JH := {j :
λjQΠj

QH
> 0 , ηΠj < 0}.

3. JC := {j :
λjQΠj

QH
< 0 , ηΠj > 0}.

Note that existence of j such that
λjQΠj

QH
< 0 and ηΠj < 0 satisfies simultaneously, is not pos-

sible since the existence of such a process will leads to positive work done with a negative
amount of heat exchanged with the hot reservoir. This is not allowed by the second law as
given in lemma 40. Let us define ηEΠ∗ as the maximum efficiency in the redime JE i.e.,

ηEΠ∗ := max
j∈JE

ηΠj . (5.75)

Then ∑
j∈JE

λjQΠj

QH
ηΠj ≤

∑
j∈JE

λjQΠj

QH
ηEΠ∗ . (5.76)

It is also obvious to see that ∑
j∈JH

λjQΠj

QH
ηΠj ≤

∑
j∈JH

λjQΠj

QH
ηEΠ∗ , (5.77)
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as for all j ∈ JH we have ηΠj < 0. Furthermore, employing proposition 41 and invoking

the fact that
λjQΠj

QH
ηΠj < 0 for j ∈ JC , we can write

∀j ∈ JC , ηΠj > ηΠ∗ ,∑
j∈JC

λjQΠj

QH
ηΠj ≤

∑
j∈JC

λjQΠj

QH
ηEΠ∗ . (5.78)

Now, we can provide the bound on η as follows:

η =
∑
j

λjQΠj

QH
ηΠj =

∑
j∈JE

λjQΠj

QH
ηΠj +

∑
j∈JH

λjQΠj

QH
ηΠj +

∑
j∈JC

λjQΠj

QH
ηΠj ,

≤ ηEΠ∗

(∑
j

λjQΠj

QH

)
= ηEΠ∗ . (5.79)

This completes the proof.

Since the number of permutations grows very fast with the increase of the size of the
engine, this optimization problem gets quickly intractable. But, since we are dealing with
a microscopic heat engine, we shall employ the above theorem to find the optimal effi-
ciency of the engine where hot and cold systems are qubit. This is the smallest possible
self-contained heat engine introduced in [154].

5.3.2.2 Smallest possible heat engine

In this section, we shall analyze the performance of the smallest possible autonomous heat
engine where the hot and cold d level systems are qubit. The the hot and cold baths are in
equilibrium w.r.t. Hamiltonian HH = ωH |1⟩⟨1| and HC = ωC |1⟩⟨1| and inverse temperature
βH and βC . Therefore, the combined state of hot and the cold bath is given as

|τ iHC⟩ =
1

1 + aH
(1 aH)

T ⊗ 1

1 + aC
(1 aC)

T ,

=
1

(1 + aH)(1 + aC)
(1 aC aH aCaH)

T . (5.80)

where aH = e−βHωH and aC = e−βCωC . The total Hamiltonian is given as H = HH ⊗ I+

I ⊗HC , thus

|H⟩ = (0 ωC ωH ωC + ωH)
T ; |HH⟩ = (0 0 ωH ωH)

T . (5.81)

From the initial state given in Eq. (5.80), we easily see that only one permutation Π leads to
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positive work that is given below:

|τ i
HC⟩ =

1

(1 + aH)(1 + aC)
(1 aC aH aCaH)

T , (5.82)

Π−→ 1

(1 + aH)(1 + aC)
(1 aH aC aCaH)

T := |τ f
HC⟩.

Therefore, the optimal work production is given by

W = Tr
(
H(τ i

HC − τ f
HC)

)
= ⟨H|τ i

HC⟩ − ⟨H|τ f
HC⟩ = (aH − aC)(ωH − ωC). (5.83)

Similarly, the amount of heat exchanged from the hot reservoir can be calculated as

Q = Tr
(
HH ⊗ I(τ i

HC − τ f
HC)

)
= ⟨HH |τ i

HC⟩ − ⟨HH |τ f
HC⟩ = (aH − aC)ωH . (5.84)

For this permutation, efficiency is given by the Otto efficiency

η =
W

Q
= 1− ωC

ωH
, (5.85)

which is the optimal efficiency.

5.3.3 Thermodynamical framework of self-contained heat engine assisted with
a catalyst

This section examines a self-contained heat engine assisted by a catalyst. The engine’s state
is initialized as

τ i
SHCW = ρS ⊗ τβH ⊗ τβC ⊗ ρW , (5.86)

where ρS is the state of the working body or catalyst, τβH and τβC are the states of the hot
and cold d-level systems given in Eq. (5.44), and ρW is the state of the work storage. It is
assumed that the state of the work storage ρW is diagonal. The combined final state of the
engine is denoted by τ f

SHCW , and the total bare Hamiltonian of the system is given by

H = HS +HH +HC +HW , (5.87)

where HS is the Hamiltonian of the catalyst, and HH , HC , HW are the Hamiltonians of the
hot and cold d level systems and work storage, respectively, as described in section 5.3.2.
The system’s transformation is described by some unitary that commutes with the total
Hamiltonian and generator of translation of the energy of the work storage (see section
4.3 of chapter 4). Hence, employing lemma 33 from chapter 4, the transformation can be
characterized equivalently by a unitary that acts on the catalyst, as well as the hot and cold
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d-level systems, as shown below:

τ f
SHC = V τ i

SHCV
†, (5.88)

where ρS ⊗ τ i
SHC = τβH ⊗ τβC . Since the marginal state of the catalyst has to be preserved

which allows us to write

TrHC(τ f
SHC) = TrHC(V τ i

SHCV
†) = ρS . (5.89)

We want to emphasize that by maintaining the marginal state of the catalyst, there is an
opportunity for correlation between the components of the engine. We shall see implicitly
later that allowing correlation among the components increase the work production and
efficiency of such an engine

Like the earlier scenario described in section 5.3.2, we define the work done by the en-
gine

W = Tr
(
HW (τ f

SHCW − τ i
SHCW )

)
, (5.90)

that reduces to

W = Tr
(
(HS +HH +HC)(τ

i
SHC − τ f

SHC)
)
= Tr

(
(HS +HH +HC)(τ

i
SHC − V τ i

SHCV
†)
)

= Tr
(
HS(τ

i
SHC − V τ i

SHCV
†) + Tr

(
(HH +HC)(τ

i
SHC − V τ i

SHCV
†)

= Tr
(
HS(ρS − V τ i

SHCV
†) + Tr

(
(HH +HC)(ρS ⊗ τβH ⊗ τβC − V (ρS ⊗ τβH ⊗ τβC )V

†)

= Tr
(
(HH +HC)

(
ρS ⊗ τβH ⊗ τβC − V (ρS ⊗ τβH ⊗ τβC )V

†) = QH +QC , (5.91)

where we use Eq. (5.88) to write the second equality and Eq. (5.89) use the last equality and
we denote

QH = Tr
(
HH

(
ρS ⊗ τβH ⊗ τβC − V (ρS ⊗ τβH ⊗ τβC )V

†)
QC = Tr

(
HC

(
ρS ⊗ τβH ⊗ τβC − V (ρS ⊗ τβH ⊗ τβC )V

†). (5.92)

Observe the work done by the engine does not depend on the Hamiltonian of the catalyst.
Thus one can assume HS = 0 without loss of generality.

Analogous to the previous scenario discussed in subsection 5.3.2, we describe the amount
of heat exchanged from the hot heat bath given by

QH = Tr
(
HHTrSCW

(
τ i

SHCW − τ f
SHCW

))
= Tr

(
HH

(
τβH − TrSC(τ f

SHC)
))

= Tr
(
HH

(
ρS ⊗ τβH ⊗ τβC − V (ρS ⊗ τβH ⊗ τβC )V

†). (5.93)
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Therefore, the efficiency of the engine is given by η = W
QH

.

Now we shall describe the second law for the self-contained heat engine assisted with a
catalyst.

Lemma 43 (Positivity of work done implies positivity of heat exchange). For any entropy
non-decreasing transformation U such that U(τ i

SHC) = τ
f
SHC where τ i

SHC = ρS ⊗ τβH ⊗ τβC the
following relation holds:

W > 0 ⇒ QH > 0. (5.94)

Proof. Proof of this lemma can be easily done in a similar way to the proof of lemma 40.
Using Eq. (5.91), we have

W > 0 ⇒ QH +QC > 0. (5.95)

From entropy decreasing property of the transformation U we have, S(τ fSHC) = S(τ iSHC)+δ

for some δ ≥ 0. Moreover, employing the non-negativity of relative entropy we have the
following:

D(τ f
SHC∥τ i

SHC) ≥ 0, (5.96)

implies

D(τ f
SHC∥τ i

SHC) = −S(τ f
SHC)− Tr(τ f

SHC log τ i
SHC) = −S(τ i

SHC)− Tr(τ f
SHC log τ i

SHC)− δ

= Tr
(
(τ i
SHC − τ f

SHC) log τ
i
SHC

)
− δ

= Tr
(
(τ i
SHC − τ f

SHC)(−βHHH − βCHC)
)
− δ

= −(βHQH + βCQC)− δ ≥ 0. (5.97)

From Eq. (5.97) we have −(βHQH + βCQC) ≥ δ ≥ 0. Thus we can provide the following
bound on QC

−βH
βC

QH ≥ QC . (5.98)

From the positivity of work W ,

QH +QC > 0 ⇒ QH

(
1− βH

βC

)
> 0

⇒ QH > 0, (5.99)

since βC > βH . This completes the proof.

Proposition 44. Consider entropy non-decreasing transformations U1 and U2 acting on τ i
SHC =

ρS ⊗ τβH ⊗ τβC where τβH and τβC given in Eq. (5.44), with U1(τ
i
SHC) = τ1SHC and U2(τ

i
SHC) =
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τ2SHC such that

W1 = Tr
(
(HH +HC)(τ

i
SHC − τ1SHC)

)
> 0

W2 = Tr
(
(HH +HC)(τ

i
SHC − τ2SHC)

)
< 0

Q2 = Tr
(
HHTrC

(
τ i
SHC − τ2SHC

))
< 0. (5.100)

Proof. Proof can be done easily in a similar manner to proposition 41.

In the next section, we are going to describe the catalytic advantage in the performance
of self-contained heat engines.

5.3.3.1 Catalytic advantage in the performance of self-contained heat engine

In this section, we describe how the presence of a catalyst can provide advantages in the
performance of the self-contained heat engine. We proceed by reviewing a few results in
this direction. In the work of Sparaciari et. al [137], authors showed that it is always possible
to reduce the average energy of a system that is in a non-thermal passive state via a unitary
that acts jointly on the system and a catalyst. We state their results in the following theorem
i.e.,

Lemma 45. [137] Consider a system P in the passive state ρP =
∑d

i=1 pi|Ei⟩⟨Ei| with a Hamil-
tonian HP =

∑d
i=1Ei|Ei⟩⟨Ei| with Ei < Ei+1 and pi ≥ pi+1 for all i with d > 2. There exist

unitary operation U and a catalyst in the state ρS with a trivial Hamiltonian such that

Tr(HPρP ) > Tr
(
HPTrS

(
U(ρP ⊗ ρS)U

†)) with (5.101)

TrP
(
U(ρS ⊗ ρP )U

†) = ρS . (5.102)

Using this lemma we can see straightforwardly that a self-contained engine assisted
with a catalyst has strictly greater work production than a self-contained engine without a
catalyst. Consider the self-contained heat engine without any catalyst. Let us assume the
initial state of hot and cold d level system is τβH ⊗ τβC as given in Eq. (5.44). To extract the
maximal amount of work, τβH ⊗ τβC has to transform via a unitary U such that

U(τβH ⊗ τβC )U
† is passive. (5.103)

Now employing lemma 45, one can further reduce the average energy of the passive state
in presence of a catalyst via a unitary operation. This implies the amount of extracted work
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in

Wmax
without catalyst = Tr

(
(HH +HC)τβH ⊗ τβC

)
− Tr

(
(HH +HC)U(τβH ⊗ τβC )U

†
)

< Tr
(
(HH +HC)ρS ⊗ τβH ⊗ τβC

)
− Tr

(
(HH +HC)χSHC

)
= Wwith catalyst, (5.104)

where χSHC is the joint state of the catalyst, hot and cold d-level system after the action
of unitary transformation mentioned in the lemma 45. Next, we turn our attention to the
efficiency of the engine. In what follows, we would like to show the efficiency of a catalyst
assisted self-contained heat engine is strictly greater compared to the maximal efficiency
that can be attained by a self-contained heat engine without a catalyst. This we prove in the
following theorem.

Theorem 46. Consider a self-contained heat engine having two d-level systems thermalized wrt. to
hot and cold bath at temperature βH and βC such that βC > βH . We denote the initial state of hot
and cold level d-level system τβH and τβC defined in Eq. (5.44). Let us denote the maximal efficiency
of a self-contained engine with d-level system τβH and τβC without a catalyst as ηmax

without catalyst. Then,
there always exists a catalyst assisted self-contained engine with efficiency ηwith catalyst such that

ηwith catalyst > ηmax
without catalyst. (5.105)

Proof. We begin by considering the self contained engine without any catalyst having two
d level systems τβH and τβC as defined in Eq. (5.44). Let us assume that Umax is the unitary
that leads to the optimal efficiency for that heat engine such that

Umax(τβH ⊗ τβC )U
†
max = σHC . (5.106)

Note that TrH(σHC) should be a passive state, otherwise there exist a local unitary that acts
on cold d level system that results a greater efficiency. We shall divide the proof in two cases.
First, σHC is correlated state, second, σHC is product state. We shall proceed by considering
σHC is a correlated state. In order to prove the claim, we employ a results from [159].

Lemma 47. (Theorem 1 of [159]) There exists a catalyst state ρS and a unitary U such that

χSHC = U(ρS ⊗ σHC)U
†, (5.107)

such that

λ
(

TrSH
(
U(ρS ⊗ σHC)U

†)) ≻ λ(TrH(σHC)), (5.108)

TrSC
(
U(ρS ⊗ σHC)U

†) = TrC(σHC), and (5.109)

TrCH
(
U(ρS ⊗ σHC)U

†)) = ρS . (5.110)
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where λ( · ) is the vector constructed from eigenvalues of the matrix · .

From the Eq. (5.108) and using Schur concavity of ordered energy from lemma 48 we
can infer that

Tr(HCTrH(σHC)) > Tr(HCTrSH(χSHC)). (5.111)

This implies that

Wwithout catalyst = Tr
(
(HH +HC)(τβH ⊗ τβC − σHC

)
= Tr

(
HH(τβH − TrC(σHC)

)
+ Tr

(
HC(τβC − TrH(σHC)

)
< Tr

(
HH(τβH − TrSC(χSHC)

)
+ Tr

(
HC(τβC − TrHS(χSHC)

)
= Wwith catalyst. (5.112)

where the inequality in the third line follows from Eq. (5.109) and Eq. (5.111). On the other
hand, the final state of the hot d-level system is the same in both cases of the self-contained
engine with or without catalyst as given in Eq. (5.109). That results in an equal amount of
heat exchanged in both cases which implies

ηwithout catalyst < ηwith catalyst. (5.113)

Next, we consider the scenario where σHC is a product state. The possible form of the
product state that can be taken by σHC are

σHC = V τβHV
† ⊗ Ṽ τβC Ṽ

† or σHC = V τβCV
† ⊗ Ṽ τβH Ṽ

†, (5.114)

where V and Ṽ is some local unitary that acts on the Hilbert space of τβH and τβC . Note
that the initial combined state of the hot and cold d-level system of the engine is given by
τβH ⊗ τβC . Therefore, if σHC = V τβHV

† ⊗ Ṽ τβC Ṽ
† then one can not extract work as average

energy of σHC will be greater than τβH ⊗ τβC .
On the other hand if σHC = V τβCV

† ⊗ Ṽ τβH Ṽ
† then TrH(σHC) = Ṽ τβH Ṽ

†. Since
the spectrum of τβH ̸= τβC implies Ṽ τβH Ṽ

† is a non-thermal passive state with respect to
HamiltonianHC . Therefore for d > 2, one can apply lemma 45 to reduce the average energy
of the cold d level system with the aid of a catalyst. This results in greater work production
with the consumption of equal amounts of heat. For d = 2 lemma 45 doesn’t hold as any
qubit passive state is Gibbs with respect to Hamiltonian HC at some temperature. In the
next section, for d = 2, we shall design a protocol that performs with strictly greater effi-
ciency for a self-contained heat engine compared to all the self-contained engines without
any catalyst.

We finally conclude this section with the result regarding monotonicity of the ordered
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Figure 5.8: d-level catalyst permutation: The permutation that leads to η = 1− ωC
dωH

energy that we have used to prove theorem 46.

Theorem 48 (Schur concavity of ordered energy.). Consider two diagonal states ρ and σ de-
scribed by a Hamiltonian H =

∑d
i=1Ei|Ei⟩⟨Ei| with Ei < Ei+1 for all i ∈ 1, . . . , d− 1. If

λ(ρ) ≻ λ(σ), then the ordered energy of ρ i.e., Tr(Hρ↓) < Tr(Hσ↓) where λ( · ) is the column
vector constructed from the eigenvalues of matrix · and ρ↓ (or σ↓) is the density matrix obtained by
rearranging the eigenvalues of ρ (or σ) in non-increasing order.

Proof. Let us denote the vector constructed from the eigenvalues of H as λ(H) i.e.,

λ(H) = (E1 E2 . . . Ed)
T where ∀i Ei < Ei+1. (5.115)

We can write the following from λ(ρ) ≻ λ(σ):

λ(ρ) ≻ λ(σ) ⇒ λ(ρ) ≻ λ↓(σ) ⇒ Bλ(ρ) = λ↓(σ) ⇒ λ(H)TBλ(ρ) = λ(H)Tλ↓(σ)

⇒ λ(H)Tλ↓(ρ) < λ(H)TBλ(ρ) = λ(H)Tλ↓(σ)

⇒ Tr(Hρ↓) < Tr(Hσ↓), (5.116)

that completes the proof

5.3.3.2 Smallest self-contained heat engine assisted with a d-level catalyst

Similarly as the smallest autonomous heat engine described in subsection 5.3.2.2, the the hot
and cold baths are in equilibrium w.r.t. HamiltonianHH = ωH |1⟩⟨1| andHC = ωC |1⟩⟨1| and
inverse temperature βH and βC . Moreover, we incorporate an auxiliary system or catalyst
S represented in the state ρS described by a trivial Hamiltonian such that:

ρS =

d∑
i=1

pi|i⟩⟨i| (5.117)

158



Chapter 5. Microscopic heat engine 5.3. Self-contained heat engine

Therefore, the initial joint state of the catalyst, a hot and cold bath is

τ i
SHC = ρS ⊗ τβH ⊗ τβC (5.118)

Therefore,
|τ i
SHC⟩ = p⊗ 1

1 + aH
(1 aH)

T ⊗ 1

1 + aC
(1 aC)

T (5.119)

where p = (p1 p2 . . . pd)
T and aα = e−βαωα such that α ∈ {H,C}. We shall apply the

permutation

Πd−swap = Sd,13,1 ◦ Sd−1,d
3,1 . . . S3,4

3,1 ◦ S
2,3
3,1 ◦ S

1,2
3,2 (5.120)

where Sa,b3,1 is a swap between population of level |a10⟩SHC ↔ |b00⟩SHC and Sa,b3,2 is a swap
between population of level |a10⟩SHC ↔ |b01⟩SHC with a, b ∈ {1, . . . , d}. In order to put
this more simply from Fig. 5.8, Sa,bc,d swaps the population between the cth level of ath block
and the dth level of bth block where a, b ∈ {1, . . . , d} and c, d ∈ {1, 2, 3, 4}.

From the condition of preserving the marginal state of the catalyst, we can write the
following:

TrH, C
(
Πd−swapτ

i
SHCΠ

†
d−swap

)
= ρS (5.121)

It is straight-forward to see the above-mentioned condition for cyclicity boils down to con-
serving the population in each block of Fig. 5.8.

Block 1: pdaH − p1 = p1aH − p2aC (5.122)

Block 2: p1aH − p2aC = p2aH − p3 (5.123)

Block 3: p2aH − p3 = p3aH − p4 (5.124)

Block 4: p3aH − p4 = p4aH − p5 (5.125)

Block 5: p4aH − p5 = p5aH − p6 (5.126)
...

...
...

...
...

...
...

Block k: pk−1aH − pk = pkaH − pk+1 (5.127)
...

...
...

...
...

...
...

Block d: pd−1aH − pd = pdaH − p1 (5.128)

Thus we can see that

p1aH − p2aC = p2aH − p3 = . . . = pd−1aH − pd

= pdaH − p1 = K (5.129)
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Then, the work done by the engine in the swap shown in the Fig. 5.8 can be calculated as

W = ⟨H|τ i
SHC⟩ − ⟨H|Πd−swap|τ i

SHC⟩

= (p1aH − p2aC)(ωH − ωC) + (p2aH − p3)ωH + . . .

+ (pd−1aH − pd)ωH + (pdaH − p1)ωH

= dKωH −KωC (5.130)

Similarly one can calculate the amount of heat exchanged from the hot reservoir as:

QH = ⟨HH |τ i
SHC⟩ − ⟨HH |Πd−swap|τ i

SHC⟩

= [(p1aH − p2aC) + (p2aH − p3) + . . . (5.131)

+ (pd−1aH − pd) + (pdaH − p1)]ωH

= dKωH (5.132)

Thus, To have positive work production W that results from a positive amount of heat
exchanged QH , we need to have K > 0. Adding all the equations from Eq. (5.122) to Eq.
(5.128) we have

aH − 1 + p2 − p2aC = Kd (5.133)

⇒ aH − 1 + p2 − p2aC
d

= K (5.134)

In order to have K > 0, one can see from Eq. (5.133), we need to have p2 > 1−aH
1−aC . Then, the

efficiency can be expressed as

η =
W

QH
=
KdωH −KωC

KdωH
= 1− ωC

dωH
(5.135)

From lemma 40, we see that efficiency always have to be less than Carnot bound. Thus

1− ωC
dωH

≤ 1− βH
βC

⇒ ωC
dωH

≥ βH
βC

⇒ βCωC ≥ βHωHd (5.136)

Next, we shall explicitly calculate the work production for such a permutation by explicitly
calculating p2 in terms of aH , and aC . From Eq. (5.133) we have

p2 =
Kd+ 1− aH

1− aC
. (5.137)
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Using this Eq. (5.137) we have

For 3 ≤ x ≤ d, px = ax−3
H

(Kd+ 1− aH
1− aC

)
−K

(1− ax−2
H

1− aH

)
(5.138)

and, p1 =
K

aH
+
(Kd+ 1− aH

1− aC

)aC
aH

. (5.139)

Using the normalization of the probability we have,

d∑
x=3

px = 1− p1 − p2

⇒

(
Kd+ 1− aH

1− aC

)(
1− ad−2

H

1− aH

)
− K

1− aH

(
d− 2− aH

(1− ad−2
H

1− aH

))
= 1−

(
Kd+ 1− aH

1− aC

)

− K

aH
−

(
Kd+ 1− aH

1− aC

)
aC
aH

⇒ K =
X

Y
, (5.140)

where

X = (1− aH)
(
aH
(
(2− aC)a

2
H − (1− aC)aC − aH

)
+ (1− aH)a

d
H

)
,

Y = aH

(
a2C(aH − d+ 1) + aC

(
aH
(
aH(d− 1)− 2

)
+ d− 2

)
+ aH

(
− 2aHd+ aH + d+ 1

)
+ 1

)
+ adH(aH(aC + d− 1)− d). (5.141)

Therefore, work production for this engine given by dKωH −KωC = X
Y (dωH − ωC). Simi-

larly one can calculate the amount of heat exchanged as dKωH = dXY ωH . In the next section,
we are going to explore the dynamical model of the self-contained heat engine with a qubit
catalyst.

5.3.3.3 A Dynamical model of a self-contained heat engine with qubit catalyst

A dynamical model of self-contained engine without a catalyst is discussed in [154]. Based
on the set-up described in [154], we would like to develop the dynamical model of the self
contained heat engine assisted with the catalyst. The heat engine consists of two qubits that
are in contact with heat bath at temperature TH and TC , a working body. Like the discrete
setup, the engine acts by extracting heat from the hot bath and converting it to work. We
imagine that the engine produces the work by pulling up a weight. The weight is isolated
from both the baths. We assume the weight is raised very slowly such that the change in
the potential energy of the weight equalizes amount of extracted work from the engine.
Furthermore, we assume that the weight situated at some equidistant heights, such that
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the difference of energy between two consecutive levels are same. The weight has discrete
energy eigenstates |n⟩ with eigenvalue nδ with δ > 0. Alternatively, we can imagine that
the engine delivers work by changing the average energy of an harmonic oscillator. This
two cases are almost equivalent, but the energy of harmonic oscillator lower boundeded by
zero whereas for the weight there is no lower bound.

We take the Hamiltonian of the qubitH which is in contact with bath of temperature TH
as HH = ωH |1⟩⟨1|. The state of the qubit τH is thermalized at the temperature of the bath,
i.e.

τH =
1

1 + aH

(
1 0

0 aH

)
where aH = e−βHωH (5.142)

with βH = 1/kBTH . The Hamiltonian of the qubit C is given by HC = ωC |1⟩⟨1|. The state
of the qubit τC is thermalized at the temperature of the bath, i.e.,

τC =
1

1 + aC

(
1 0

0 aC

)
where aC = e−βCωC (5.143)

with βC = 1/kBTC . Without loss of generality we take the Hamiltonian of the working
body or catalyst (S) as HS = 0. Thus the total free Hamiltonian is given by

H0 = HH +HC +H
(1)
W +H

(2)
W (5.144)

where

H
(1)
W =

+∞∑
n1=∞

n1E|n1⟩⟨n1| (5.145)

H
(2)
W =

+∞∑
n2=−∞

n2ωH |n2⟩⟨n2| (5.146)

The energies are taken such that
ωH − ωC = E (5.147)

That implies, the energy levels |i, 1, 0, n1+1, n2⟩ and |j, 0, 1, n1, n2⟩ are degenerate for i, j ∈
{1, 2}. Similarly, the energy levels |i, 1, 0, n1, n2⟩ and |j, 0, 0, n1, n2 + 1⟩ are degenerate for
i, j ∈ {1, 2} . Here we write the vector in the following order | · ⟩SCHW1W2 . The engine
operates via doing transitions between these degenerate pair of states.
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The qubit and the weight interacts via the Hamiltonian

Hint =

+∞∑
n1=−∞

+∞∑
n2=−∞

g
(
|1, 1, 0, n1, n2⟩⟨2, 0, 1, n1 + 1, n2|

+ |2, 0, 1, n1 + 1, n2⟩⟨1, 1, 0, n1, n2|

+ |2, 1, 0, n1, n2⟩⟨1, 0, 0, n1, n2 + 1|

+ |1, 0, 0, n1, n2 + 1⟩⟨2, 1, 0, n1, n2|
)

(5.148)

The interaction of the two qubits with their corresponding heat baths is modelled by reset-
ting the qubit in the time interval δt to the corresponding Gibbs state with probability piδt
where i ∈ {H,C}. Thus it updates the state in the following manner due to interaction with
the bath:

piδtτH ⊗ Tri(ρ) + (1− piδt)ρ(t) (5.149)

The overall equation of motion is

dρ

dt
= −i[H0 +Hint, ρ] + pH

(
τH ⊗ TrH(ρ)− τH

)
+ pC

(
τC ⊗ TrC(ρ)− τC

)
(5.150)

This master equation is consistent in the limit where coupling constant g and dissipation
rate with the bath pH and pC are small.

We are interested in the change of average energy of the weight

Tr(HWρ) = Tr(H(1)
W ρ) + Tr(H(2)

W ρ) (5.151)

We would like to show that after a transient period, the average energy will increase con-
stantly, that is we expect that

d

dt
Tr(HWρ) = const > 0 (5.152)

To show that this is the case, we calculate rate of change of average energy of the weight:

d

dt
Tr(HWρ) = −ig

(
E∆1(t) + ωH∆2(t)

)
(5.153)

Here we have

∆1(t) =
∑
n1,n2

(
⟨1, 1, 0, n1, n2|ρ|2, 0, 1, n1 + 1, n2⟩ − ⟨2, 0, 1, n1 + 1, n2|ρ|1, 1, 0, n1, n2⟩

)
∆2(t) =

∑
n1,n2

(
⟨2, 1, 0, n1, n2|ρ|1, 0, 0, n1, n2 + 1⟩ − ⟨1, 0, 0, n1, n2 + 1|ρ|2, 1, 0, n1, n2⟩

)
(5.154)
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To form the complete set of equations we introduce a quantity

∆3(t) =
∑
n1,n2

(
⟨2, 1, 1, n1, n2|ρ|1, 0, 1, n1, n2 + 1⟩ − ⟨1, 0, 1, n1, n2 + 1|ρ|2, 1, 1, n1, n2⟩

)
(5.155)

Here, we ∆1(t), ∆2(t) and ∆3(t) denote the translation amplitude that describes the flow of
populations among the desired level.

To form a complete set of equations we have the following:

d∆1(t)

dt
= +2ig

(
q110(t)− q201(t)

)
− (pH + pC)∆1(t)

d∆2(t)

dt
= +2ig

(
q210(t)− q100(t)

)
− (pH + pC)∆2(t) + pCgC

(
∆2(t) + ∆3(t)

)
d∆3(t)

dt
= pC(1− gC)∆2(t) +

(
pC(1− gC)− (pH + pC)

)
∆3(t)

dq100(t)

dt
= −ig∆2(t)− (pH + pC)q100(t) + pHgH

(
q100(t) + q110(t)

)
+ pCgC

(
q100(t) + q101(t)

)
dq101(t)

dt
= −(pH + pC)q101(t) + pHgH

(
q101(t) + q111(t)

)
+ pCgC

(
q100(t) + q101(t)

)
dq110(t)

dt
= +ig∆1(t)− (pH + pC)q110(t) + pH(1− gH)

(
q100(t) + q110(t)

)
+ pCgC

(
q110(t) + q111(t)

)
dq111(t)

dt
= −(pH + pC)q111(t) + pH(1− gH)

(
q101(t) + q111(t)

)
+ pC(1− gC)

(
q110(t) + q111(t)

)
dq200(t)

dt
= −(pH + pC)q200(t) + pHgH

(
q200(t) + q210(t)

)
+ pCgC

(
q200(t) + q201(t)

)
dq201(t)

dt
= −ig∆1(t)− (pH + pC)q201(t) + pHgH

(
q201(t) + q211(t)

)
+ pC(1− gC)

(
q200(t) + q201(t)

)
dq210(t)

dt
= +ig∆2(t)− (pH + pC)q210(t) + pH(1− gH)

(
q200(t) + q210(t)

)
+ pCgC

(
q210(t) + q211(t)

)
dq211(t)

dt
= −(pH + pC)q211(t) + pH(1− gH)

(
q201(t) + q211(t)

)
+ pC(1− gC)

(
q210(t) + q211(t)

)
(5.156)

In the matrix form we have the following set of equations:

dv
dt

= Av (5.157)

where

v =
(
∆1(t) ∆2(t) ∆3(t) q100(t) q101(t) q110(t) q111(t) q200(t) q201(t) q210(t) q211(t)

)T
(5.158)
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and

A =

 ∆ Int1 Int2
Int3 D 0
Int4 0 D

 (5.159)

. Here

∆ =

−(pH + pC) 0 0

0 pCgC − (pH + pC) pCgC

0 pC(1− gC) pC(1− gC)− (pH + pC)

 (5.160)

Int1 =

 0 0 +2ig 0

−2ig 0 0 0

0 0 0 0

 Int2 =

0 −2ig 0 0

0 0 +2ig 0

0 0 0 0

 (5.161)

Int3 =


0 −ig 0

0 0 0

+ig 0 0

0 0 0

 Int4 =


0 0 0

−ig 0 0

0 +ig 0

0 0 0

 (5.162)

and

D =



pHgH + pCgC pCgC pHgH 0

−(pH + pC)

pC(1− gC) pHgH + pC(1− gC) 0 pHgH

−(pH + pC)

pH(1− gH) 0 pH(1− gH) + pCgC pCgC

−(pH + pC)

0 pH(1− gH) pC(1− gC) pH(1− gH) + pC(1− gC)

−(pH + pC)


(5.163)

and 0 is a block matrix with all the elements equal to 0.
Since we are operating in a weak coupling regime, we expect that the combined state of

the engine reaches a non-equilibrium steady state. This implies that when t → ∞ the LHS
of equation Eq. (5.157) goes to zero i.e.,

0 = Av (5.164)

As a consequence, the transition amplitude ∆1(t), ∆2(t) and ∆3(t) become constant in the
limit t→ ∞ i.e.,

lim
t→∞

∆1(t) = C1 ; lim
t→∞

∆2(t) = C2 ; lim
t→∞

∆3(t) = C3. (5.165)
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The quantity of interest that is the rate of the average energy of the work storage considered
in Eq. (5.153) in the limit t→ ∞:

lim
t→∞

d

dt
Tr(HWρ) = −ig

(
E lim
t→∞

∆1(t) + ωH lim
t→∞

∆2(t)
)
= −ig(EC1 + ωHC2)

= −ig((C1 + C2)ωH − C2ωC), (5.166)

where we put E = ωH − ωC . This implies after a transient period, the average energy will
increase uniformly. In a similar manner, we can define the rate of change of heat for the
master equation in Eq. (5.150) as

dQH
dt

:= pHTr
(
HH(τβH − ρH(t))

)
, (5.167)

where ρH(t) is the state of the hot d level system at time t. In the steady state we have
limt→∞ ρH(t) = ρH then we can reduce the expression given in Eq. (5.167)

lim
t→∞

dQH
dt

= lim
t→∞

pHTr
(
HH(τβH − ρH(t))

)
= Tr

(
HH(τβH − ρH)

)
= pHωH

(
(1− gH)−K1

)
,

(5.168)

where K1 = limt→∞ q110(t) + q111(t) + q210(t) + q211(t). Employing Eq. (5.156) we can write
the following:

0 =
dK1

dt
= lim

t→∞

d

dt

(
q110(t) + q111(t) + q210(t) + q211(t)

)
= lim

t→∞

(
+ ig

(
∆1(t) + ∆2(t)

)
+ pH(1− gH)− pH

(
q110(t) + q111(t) + q210(t) + q211(t)

))
= +ig(C1 + C2) + pH(1− gH)− pHK1. (5.169)

Using the obtained expression in Eq. (5.169), we can write

lim
t→∞

dQH
dt

= (1− gH)pHωH − pHωHK1 = −igωH(C1 + C2). (5.170)

In the limit t→ ∞ the marginal state of the catalyst also reaches the steady state i.e.,

lim
t→∞

ρS(t) = TrHCρ(t) = ρ0. (5.171)

This implies

0 = lim
t→∞

d

dt
ρS(t) = 0 ⇒ lim

t→∞

d

dt

(
q100(t) + q101(t) + q110(t) + q111(t)

)
= lim

t→∞
−ig(∆2(t)−∆1(t))

= −ig(C2 − C1) ⇒ C1 = C2. (5.172)
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Therefore, the efficiency can be expressed as

η =
limt→∞

dW
dt

limt→∞
dQH
dt

=
−igωH(C1 + C2) + igC2ωC

−igωH(C1 + C2)
= 1− C2

C1 + C2

ωC
ωH

= 1− ωC
2ωH

, (5.173)

where we use C1 = C2 to write the last equality. On the other hand, in order to explicitly
calculate the rate of change of average energy stored in the work storage (also referred
as power) from Eq. (5.166), we need to calculate the constants C1 and C2. By solving the
equation for steady state from Eq. (5.164), we obtain

C1 = C2 = ig
a

b
(5.174)

where

a = 2gCpCpH

(
2gC(gH − 1)gH + gC − g2H

)
(pC + pH)(gCpC + pH)

b = pCpH(pC + pH)
2
(
g2CpC − 2gC(gH − 1)pH + gHpH

)
(5.175)

− 2g2(gCpC + pH)
(
− p2H

(
2gC(gH − 1)gH + gC − g2H + gH

)
+ gCp

2
C(gC(4gH − 2)− 2gH − 1) + 2pCpH(2gC(gH − 1)− gH)

)
(5.176)

Therefore the power of the engine is given by

lim
t→∞

d

dt
Tr(HWρ) = −ig((C1 + C2)ωH − C2ωC) = g2

a

b
(2ωH − ωC). (5.177)

This analysis can be extended to a scenario of d level catalyst easily where one can obtain
efficiency η = 1− ωC

dωH
. But the calculation of power in that scenario is not very straightfor-

ward as it requires solving a higher number of equations to reach the steady state solutions.

5.4 Conclusions and outlook

In this chapter, we utilized the concept of ergotropy extraction to develop an open-cycle
engine within the realm of quantum mechanics. The engine is designed to operate during
strokes, and we demonstrated that maximum efficiency and work output can be achieved
by utilizing extreme states of the thermal polytope of the initial state. Analytical means
were used to identify optimal protocols for work production and efficiency in engines op-
erating in two and three dimensions, while higher dimensional scenarios were analyzed
numerically.

We then introduced the self-contained engine in the microscopic regime, which trans-
forms via a global unitary to conserve the total energy of the engine. We established a
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thermodynamic framework to assess the optimal performance of the heat engine and an-
alytically calculated its optimal efficiency. Additionally, we showed how the performance
of a self-contained engine can be enhanced by a catalyst through a constructed protocol,
and provided a dynamical model that simulates the catalytic advantages in the microscopic
heat engine.

There are several interesting open problems that could be further investigated. For in-
stance, we numerically observed that the efficiency of a self-contained engine aided with a
d-dimensional catalyst is optimal when η = 1− ωC

dωH
, and it would be interesting to analyt-

ically prove this. We also simulated a self-contained engine aided with a two-level catalyst
via a dynamical model, but this analysis could be extended for arbitrary d-dimensional cat-
alysts to calculate the power output from the engine. Finally, investigating the time scale
at which the dynamical model produces the same work as that given by self-contained en-
gines would also be an interesting avenue to explore.
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Chapter 6
Appendix

6.1 Proof of Birkhoff von Neumann theorem

In this appendix, we shall provide the proof for the Birkhoff von Neumann theorem.

Theorem 49 (Birkhoff’s theorem). The set of all Bistochastic matrices is convex and The extremal
point of this set are given by permutation matrices. In other words any bistochastic matrices can be
written as convex sum of of permutation matrices i.e.,

T =
d!∑
i

λiΠi (6.1)

where ∀i λi ≥ 0 and
∑d!

i=1 λi = 1.

Proof. It is very straightforward to see that set of all bistochastic matrices forms a convex
set. Taking the convex sum of two bistochastic matricesB1 andB2 one can easily check that
as follows:

d∑
i=1

(
λ(B1)ij + (1− λ)(B2)ij

)
= λ

d∑
i=1

(B1)ij + (1− λ)
d∑
i=1

(B2)ij = 1

d∑
j=1

(
λ(B1)ij + (1− λ)(B2)ij

)
= λ

d∑
j=1

(B1)ij + (1− λ)
d∑
i=1

(B2)ij = 1 (6.2)

We would like to show the extremal points of the set of permutation matrices given by
permutation matrices. We shall prove the claim by contradiction. Let us assume that A is
an extremal point of the set of bistochastic matrices that is not a permutation. Then there is
at least one row of A, say row i1 that contains two non-zero entries. Choosing one non-zero
entry from row i1 which we shall denote by Ai1i2 . Since there are two non-zero entries in
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the row i1 we shall have 0 < Ai1i2 < 1.
From the bistochastisity of the matrix A and employing 0 < Ai1i2 < 1, we can conclude

that there exist at least one element Ai3i2 in the column i2 such that 0 < Ai3i2 < 1 where
i3 ̸= i1. Since 0 < Ai3i2 < 1, there is at least one element Ai3i4 in the row i3 such that
0 < Ai3i4 < 1.

If this process is continued and the successive entries are chosen in this way are marked,
after finitely many steps there will be the first time that an element Aij is chosen that has
previously been chosen. The sequence of elements from the first up to the second occur-
rence of the entry Aij is finite such that each successive entries are in different columns or
rows. We call this sequence J .

Let ϵ be the smallest entry in the sequence J . Let C be a matrix in which +1 appears
in the location of the first element of the sequence J and −1 appears in the location of the
second element on that sequence J . Then +1 appears on the location of the third element
of the sequence and −1 appears on the location of the fourth element of the sequence and
so on. Define

A+ = A+ ϵC ; A− = A− ϵC (6.3)

Note that all the entries of A+ and A− are non-negative since ϵ is the smallest entry in the
sequence J . Thus A+ and A− are bistochastic matrix. Then A is

A =
1

2
A+ +

1

2
A− (6.4)

Therefore, A is not an extremal point of the set of bistochastic matrices.

6.2 Optimality of the communication rate

This derivation closely follows the proof of Lemma 1 of [115]. Consider a system (ρN ,HN ),
where M number of messages can be encoded in a thermodynamically-free manner, such
that the error associated with average decoding is ϵ. This implies that there exists a set
of M encoding thermal operations {Ei}Mi=1 and a decoding POVM Πii = 1M such that the
following equality holds:

1− ϵ =
1

M

M∑
i=1

Tr
(
Ei(ρN )Πi

)
. (6.5)

Note that, the thermal equilibrium state is invariant under any thermal operation Ei that
transforms the initial system (ρN ,HN ) and a target system (ρ̃N , H̃N ) i.e.,

Ei(γN ) = γ̃N . (6.6)
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Now, let us introduce three states in the following manner

τ :=
1

M

M∑
i=1

|i⟩⟨i| ⊗ Ei(ρN ), (6.7a)

ζ :=
1

M

M∑
i=1

|i⟩⟨i| ⊗ γN , (6.7b)

ζ̃ :=
1

M

M∑
i=1

|i⟩⟨i| ⊗ γ̃N . (6.7c)

The hypothesis testing relative entropy Dϵ
H between τ and ζ̃, given by [160, 161, 162]

Dϵ
H(τ∥ζ̃) := − log inf

{
Tr
(
Qζ̃
) ∣∣ 0 ≤ Q ≤ 1,

Tr (Qτ) ≥ 1− ϵ
}
, (6.8)

that satisfies the following relation

Dϵ
H(τ∥ζ̃) ≥ − log Tr

(
Qζ̃
)

(6.9)

for

Q =
M∑
i=1

|i⟩⟨i| ⊗Πi. (6.10)

This is because the above (potentially suboptimal) choice of Q given in Eq. (6.10) clearly
satisfies 0 ≤ Q ≤ 1 and also

Tr (Qτ) =
1

M

M∑
i=1

Tr (Ei(ρ)Πi) ≥ 1− ϵ, (6.11)

due to our assumption in Eq. (6.5). Simultaneously, we have

Tr
(
Qζ̃
)
=

1

M

M∑
i=1

Tr
(
ρ̃NΠi

)
=

1

M
, (6.12)

so that
logM ≤ Dϵ

H(τ∥ζ̃). (6.13)

Next, we define the following encoding channel

F :=
M∑
i=1

|i⟩⟨i| ⊗ Ei, (6.14)
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that satisfies
F(ζ) = ζ̃. (6.15)

Using the data-processing inequality twice, we get the sequence of inequalities as follows:

Dϵ
H(τ∥ζ̃) = Dϵ

H

(
F

(
1

M

M∑
i=1

|i⟩⟨i| ⊗ ρN

)∥∥∥∥F(ζ)

)

≤ Dϵ
H

(
1

M

M∑
i=1

|i⟩⟨i| ⊗ ρN
∥∥∥∥ζ
)

≤ Dϵ
H

(
ρN
∥∥γN). (6.16)

Combining this with Eq. (6.13), we arrive at

logM ≤ Dϵ
H

(
ρN
∥∥γN). (6.17)

Finally, for the case of identical initial subsystems, ρN = ρ⊗N and γN = γ⊗N , one
can use the known second order asymptotic expansion of the hypothesis testing relative
entropy [163],

1

N
Dϵ
H(ρ

⊗N∥γ⊗N ) ≃ D(ρ∥γ) +
√
V (ρ∥γ)
N

Φ−1(ϵ), (6.18)

that leads to

logM

N
≲ D(ρ∥γ) +

√
V (ρ∥γ)
N

Φ−1(ϵ). (6.19)

For the above proof to work also in the case of non-identical subsystems, where one would
need to prove the following asymptotic behaviour of the hypothesis testing relative en-
tropy:

1

N
Dϵ
H

(
N⊗
n=1

ρn

∥∥∥∥ N⊗
n=1

γn

)

≃ 1

N

N∑
n=1

D(ρn∥γn) +

√√√√√ 1
N

N∑
n=1

V (ρn∥γn)

N
Φ−1(ϵ). (6.20)
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6.3 Proof of lemma 31

Proof. Let us assume q̃ to be a classical state that saturates p ≻ϵ q. By definition it implies
that p ≻ q̃ and F (q, q̃) = 1− ϵ. As V (q) = 0 and H(q) = logL, the classical state q contains
exactly L non-zero entries such that each of them is equal to 1/L. Thus,

q↓ =
( 1

L
, . . . ,

1

L︸ ︷︷ ︸
L

, 0, . . . , 0
)
. (6.21)

From the definition of F (q, q̃) given in Eq. (3.51) we can write the following

1− ϵ = F (q, q̃) ≤ F (q↓, q̃↓)

=
1

L

(
L∑
i=1

√
q̃↓i

)2

=
1

L

(
L∑
i=1

√
q̃↓i · 1

)2

≤ 1

L

(
L∑
i=1

q̃↓i

)(
L∑
i=1

1

)
=

L∑
i=1

q̃↓i , (6.22)

where the first inequality follows from the definition of fidelity, while the second one comes
from the Cauchy-Schwarz inequality. Now, from lemma 31, we have

L∑
i=1

p↓i = 1− ϵ. (6.23)

Combining this with Eq. (6.22) we obtain

L∑
i=1

p↓i ≤
L∑
i=1

q̃↓i . (6.24)

On the other hand, p ≻ q̃ gives
L∑
i=1

p↓i ≥
L∑
i=1

q̃↓i , (6.25)

and thus we conclude that
L∑
i=1

p↓i =
L∑
i=1

q̃↓i = 1− ϵ. (6.26)

Next, note that as ϵ = 1 − F (q, q̃) ≥ 1 − F (q↓, q̃↓), we see that to have the minimal
value of error, q̃↓ needs to maximize the fidelity F (q↓, q̃↓) subjected to the constraint given
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in Eq. (6.26). Thus we can write

max
1

L

(
L∑
i=1

√
q̃↓i

)2

such that
L∑
i=1

q̃↓i = 1− ϵ.

(6.27)

The Lagrangian of the above optimization problem given in Eq. (6.27) can be expressed as

L =
1

L

(
L∑
i=1

√
q̃↓i

)2

− λ

(
L∑
i=1

q̃↓i − 1 + ϵ

)
, (6.28)

where λ is a Lagrange multiplier. To find the solution to the problem we calculate

∂L
∂q̃↓j

=
1(

L
√
q̃↓j

) ( L∑
i=1

√
q̃↓i

)
− λ (6.29)

for all j ∈ {1, . . . , L}. By solving ∂L/∂q̃↓j = 0 we obtain

q̃↓j =

(
1

λL

(
L∑
i=1

√
q̃↓i

))2

(6.30)

for all j ∈ {1, . . . , L}. Substituting q̃↓j from Eq. (6.30) to the constraint specified in Eq. (6.26)
gives

λ =
1√

(1− ϵ)L

(
L∑
i=1

√
q̃↓i

)
. (6.31)

Thus, substituting λ from Eq. (6.31) into Eq. (6.30) finally gives

∀i ∈ {1, . . . , L} : q̃↓i =
1− ϵ

L
. (6.32)

Since fidelity is a concave function, and the constraint defined in Eq. (6.27) is linear, this
solution is optimal.

Next, we note that p ≻ q̃ implies Qp↓ = q̃↓ where Q is a bistochastic matrix. Since any
Q can be decomposed as a convex sum of permutations (see theorem 6.1), we can write

Q =
∑
i

αiΠi, (6.33)

where Πi is a permutation matrix and
∑

i αi = 1 with αi ∈ [0, 1] for all i. Let us introduce a
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vector v as
v :=

(
1, . . . , 1︸ ︷︷ ︸

L

, 0 . . . , 0
)
. (6.34)

Using this v, we can write the following

v ·Qp↓ = v · q̃↓ = v ·p↓ = (1− ϵ)

⇒
∑
i

αiv ·Πip↓ = v ·p↓ (6.35)

where we use Eq. (6.26) in the first line, and the convex decomposition of Q from Eq. (6.33)
in the second line. Note that Eq. (6.35) can be equivalently written as∑

i

αi(Π
T
i v) ·p↓ = v ·p↓, (6.36)

where ΠTi is the transpose of the permutation matrix Πi. Since the elements of v and p↓ are
arranged in the decreasing order, the maximum value of (ΠTi v) ·p↓ is v ·p↓. Thus, we see
that equality in Eq. (6.36) holds if and only if v is invariant under (ΠTi ) for all i. Therefore,
Πi can be only of the form

Πi = ΠLi ⊕ΠL
c

i , (6.37)

where ΠLi and ΠL
c

i are the permutations that act trivially for indices i > L and i ∈ {1, . . . , L},
respectively. Thus, we conclude using Eq. (6.33) that Q is a block-diagonal matrix of the
form

Q = B̃ ⊕B, (6.38)

where B̃ and B are L× L and (d− L)× (d− L) bistochastic matrices. Hence,

∀i > L, q̃↓i =
∑
j>L

Bijp
↓
j . (6.39)

Combining Eq. (6.32) and Eq. (6.39) we conclude that q̃↓ = q∗↓ with q∗ defined in Eq. (3.98).
This finally implies q̃ = Πq∗ with Π being some permutation. Finally, it is easy to conclude
that the minimal entropy of q∗ is achieved forB being the identity matrix, since the entropy
is always increasing under the application of any non-trivial bistochastic matrix.

6.4 Eliminating the logarithmic term

We start with the following lemma that will be required to prove our claim.
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Lemma 50. For a fixed value of b > 0 and any s, such that ∥s∥ =
√∑d

i=1 s
2
i ≤ b, we have

logPNk(s) = O(logN), (6.40)

where PNk and k(s) are defined by Eq. (3.131) and Eq. (3.139), respectively.

Proof. We start by using the definition,

PNk(s) =

(
N

k1(s1), ..., kd(sd)

)
p
k1(s1)
1 ...p

kd(sd)
d , (6.41)

to write logPNk(s) as

logPNk(s)=logN !−
d∑
i=1

log ki(si)! +
d∑
i=1

ki(si) log pi. (6.42)

Using the Stirling inequality,

log
√
N +N logN −N

≤ logN ! ≤

1 + log
√
N +N logN −N, (6.43)

we first give a lower bound for logPNk(s) as follows:

logPNk(s) ≥(log
√
N +N logN −N) +

d∑
i=1

ki(si) log pi

−
d∑
i=1

(1+log
√
ki(si)+ki(si) log ki(si)−ki(si))

=−
d∑
i=1

ki(si) log
(ki(si)
Npi

)
− d

+
1

2

(
logN −

d∑
i=1

log ki(si)
)
. (6.44)

Recall that ki(si) = Npi +
√
Nsi, that implies

∑d
i=1 si = 0. In order to simplify the above

further, we lower bound the first term by employing the inequality log(1 + g) < g for g >
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−1 in the following manner:

d∑
i=1

ki(si) log
(ki(si)
Npi

)
=

d∑
i=1

ki(si) log

(
1 +

si√
Npi

)

≤
d∑
i=1

ki(si)
si√
Npi

=
√
N

d∑
i=1

(1 +
si√
Npi

)si

=
d∑
i=1

s2i
pi

≤
d∑
i=1

s2i
pmin

≤ b2

pmin
, (6.45)

where pmin = min {p1, . . . , pd}. Moreover, noting that

logN ≥

(
logN −

d∑
i=1

log ki(si)

)
≥ −(d− 1) logN, (6.46)

we can conclude

logN −
d∑
i=1

log ki(si) = O(logN). (6.47)

Putting it together, one further simplify the bound given in Eq. (6.44) as

logPNk(s) ≥ −d− b2

pmin
− (d− 1)

2
logN = O(logN). (6.48)

Similarly, by employing the Stirling inequality from Eq. (6.43), one can also prove an
upper bound for logPNk(s) as follows

logPNk(s) ≤(1 + log
√
N +N logN −N) +

d∑
i=1

ki(si) log pi

−
d∑
i=1

(
log
√
ki(si) + ki(si) log ki(si)− ki(si)

)
=−

d∑
i=1

ki(si) log
(ki(si)
Npi

)
+ 1

+
1

2
(logN −

d∑
i=1

log ki(si)). (6.49)

177



Chapter 6. Appendix 6.4. Eliminating the logarithmic term

Employing the inequality log(1 + g) ≥ g
1+g for g > −1, we have

d∑
i=1

ki(si) log
(ki(si)
Npi

)
=

d∑
i=1

ki(si) log
(
1 +

si√
Npi

)
≥

d∑
i=1

ki(si)
si

si +
√
Npi

=
√
N

d∑
i=1

si = 0. (6.50)

The above inequality together with Eq. (6.47) imply that logPNk(s) ≤ O(logN) that completes
the proof.

Using lemma 50, we will now be able to prove our claim that is captured by the follow-
ing result.

Lemma 51. The following limits are equal:

lim
N→∞

∑
s

{
PNk(s)

∣∣∣ 1
N

log(PNk(s)) +
β√
N

∑
i

siEi

+ FNdiss ≥ 0
}

= lim
N→∞

∑
s

{
PNk(s)

∣∣∣ β√
N

∑
i

siEi + FNdiss ≥ 0
}
. (6.51)

Proof. We start by introducing the following notation

A(N) :=
∑
s

{
PNk(s)

∣∣∣ 1
N

log(PNk(s)) +
β√
N

∑
i

siEi

+ FNdiss ≥ 0
}
,

A(b,N) :=
∑
s

{
PNk(s)

∣∣∣ 1
N

log(PNk(s)) +
β√
N

∑
i

siEi

+ FNdiss ≥ 0 such that ∥s∥ ≤ b
}
,

B(N) :=
∑
s

{
PNk(s)

∣∣∣ β√
N

∑
i

siEi + FNdiss ≥ 0
}
,

B(b,N) :=
∑
s

{
PNk(s)

∣∣∣ β√
N

∑
i

siEi + FNdiss ≥ 0

such that ∥s∥ ≤ b
}
,

Ω(b,N) :=
∑
s

{
PNk(s)

∣∣∣ such that ∥s∥ ≥ b
}
. (6.52)
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The aim is to show that
lim
N→∞

A(N) = lim
N→∞

B(N). (6.53)

From the definition, it follows that

A(N)− Ω(b,N) ≤ A(b,N) ≤ A(N), (6.54a)

B(N)− Ω(b,N) ≤ B(b,N) ≤ B(N). (6.54b)

In the limit N → ∞ of Eqs. (6.54a) and (6.54b), we have

lim
N→∞

(
A(N)− Ω(b,N)

)
≤ lim

N→∞
A(b,N) ≤ lim

N→∞
A(N), (6.55a)

lim
N→∞

(
B(N)− Ω(b,N)

)
≤ lim

N→∞
B(b,N) ≤ lim

N→∞
B(N). (6.55b)

Now, let us define

lim
N→∞

Ω(b,N) =: ϵ(b). (6.56)

Since the multinomial distribution concentrates around mean for N → ∞, it implies that
limb→∞ ϵ(b) = 0. Therefore, taking the limit b→ ∞ in Eq. (6.55a) we have

lim
N→∞

A(N) ≤ lim
b→∞

lim
N→∞

A(b,N) ≤ lim
N→∞

A(N)

⇒ lim
b→∞

lim
N→∞

A(b,N) = lim
N→∞

A(N). (6.57)

Similarly, taking the limit b→ ∞ in Eq. (6.55b) one can show that

lim
b→∞

lim
N→∞

B(b,N) = lim
N→∞

B(N). (6.58)

Moreover, for any fixed b, by employing lemma 50, we are able to see that 1
N log(PNk(s)) =

O( logNN ), which vanishes as N → ∞. Therefore, we have

lim
N→∞

A(b,N) = lim
N→∞

B(b,N), (6.59)

and so by taking the limit b→ ∞, we arrive at

lim
b→∞

lim
N→∞

A(b,N) = lim
b→∞

lim
N→∞

B(b,N). (6.60)

Combining the above with Eqs. (6.57)-(6.58) we have

lim
N→∞

A(N) = lim
N→∞

B(N), (6.61)

that completes the proof.
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6.5 Central limit theorem for multinomial distribution

Lemma 52. The multinomial distribution with mean µ = Np and a covariance matrix Σ can be
approximated in the asymptotic limit by a multivariate normal distribution N (µ,Σ) with mean µ

and a covariance matrix Σ.

Proof. Let us consider X1 . . .XN are independent and identically distributed random vec-
tors each of them with the following distribution

Prob(X = x) =


∏d
i=1 p

xi
i if x is unit vector,

0 otherwise.
(6.62)

Then, the mean vector of X is p and the covariance matrix 1
NΣ = diag (p) − ppT . Define

SN := X1 + . . .+XN . Then

Prob(SN = k) =

(
N

k1 . . . kd

)
pk11 . . . pkdd . (6.63)

As a result, we can see that a multinomial distribution results from adding together random
variables with independent and identical distributions. In order to conclude the proof, we
use the central limit theorem to show that the distribution of vk approaches the distribution
of N (µ,Σ) arbitrarily well for N → ∞.

6.6 Entropy difference between uniformised and non-uniformised
embedding boxes

In this appendix, we would like to show the existence of a permutation that can convert the
total final state F̂N from Eq. (3.99) into a state that is almost uniformly distributed in all
embedding boxes. This results no dissipation up to higher-order asymptotics. The initial
state comprises N independent systems in identical incoherent states PN = p⊗N , and thus
P̂N ⊗ ˆ̃GN has a polynomial number of distinct entries with exponential degeneracy and
exponentially many embedding boxes. According to Eq. (3.99), the entries of F̂N are essen-
tially given by the entries of P̂N ⊗ ˆ̃GN , with additional equal entries (1− ϵ)/K. Therefore,
F̂N has polynomially many distinct entries with exponential degeneracy and exponentially
many embedding boxes. By utilizing permutational freedom, we can rearrange the entries
of F̂N to obtain a uniform distribution in almost every embedding box, except for poly(N )
of them. The probability distribution over the embedding boxes, denoted by q, is essen-
tially equal to PN⊗, G̃N , while the normalised distribution within the i-th embedding box
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is denoted by r(i)

To proceed further we write the entropy of the embedded total final state as the entropy
of probability distribution over different embedding boxes, H(q), plus the average entropy
of normalised probabilities within each box, H(r(i)),

H(F̂N ) = H(q) +
∑
i

qiH(r(i)). (6.64)

Note that whether we uniformise or not a given box, the entropy H(q) does not change.
Consequently, the entropy of the final state uniformised within each embedding box takes
the form of

H(F̂N
uni) = H(q) +

∑
i

qiH(r
(i)
uni), (6.65)

with r
(i)
uni representing the normalised and uniformised probability within the i-th embed-

ding box. Thus, the entropy difference between the uniformised and non-uniformised dis-
tributions reads

H(F̂N
uni)−H(F̂N ) =

∑
i

qi

(
H(r

(i)
uni)−H(r(i))

)
. (6.66)

Now, note that due to the previous argument, the above sum is performed only over a
polynomial number of boxes. Denoting the set with size poly(N ) as Ω, one can write

H(F̂N
uni)−H(F̂N ) =

∑
i∈Ω

qi

(
H(r

(i)
uni)−H(r(i))

)
≤
∑
i∈Ω

qiH(r
(i)
uni). (6.67)

Let us analyse the right-hand side of the above equation. First, note that qi is exponentially
small, qi ∝ exp(−N); while H(r

(i)
uni) is the entropy of a uniform state over the dimension of

the i-th embedding box (equal to
∏
iD

ki
i ), so it will scale linearly in N :

H(r
(i)
uni) = log

(∏
i

Dki
i

)
∝ O(N) . (6.68)

Therefore, we conclude that the entropy difference vanishes exponentially in N

H(F̂N
uni)−H(F̂N ) ∝ exp(−N). (6.69)
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6.7 Proof of lemma 38

Let us start by rewriting the definition of the amount of heat exchanged with a hot reservoir
given in Eq. (5.15) as follows:

Q(EH(ρS)) = Tr(HS

(
EH(ρS)− ρS

)
), (6.70)

where ρS is the state of the working body that has been thermalized with cold reservoir at
inverse temperature βC as given in Eq. (5.8). We see that function Q( · ) is linear. Therefore,
when we minimise the function Q( · ) over all the states that can be achieved from ρS via
thermal operation i.e.,

min
σS∈T (ρS)

Q(σS) := Q(σ∗S), (6.71)

where the minimum is achieved at an extremal point labelled by σ∗S of the set T (ρS). Thus,
to prove Q(σ∗S) ≥ 0, it suffices to show that σ∗S = ρS . According to definition 35, applying a
thermal operation on the state ρS in the presence of a hot bath at inverse temperature βH is
equivalent to applying a Gibbs stochastic matrix on the classical state pS , where

pS =
(
⟨E1|ρS |E1⟩ . . . ⟨Ed|ρS |Ed⟩

)
. (6.72)

This Gibbs stochastic matrix preserves the classical state γβH where γβH is given as

γβH =
(e−βE1

Z
. . .

e−βEd

Z

)
where Z =

d∑
i=1

e−βEi . (6.73)

. Note that the classical state pS has β-order (12 . . . d) with respect to γβH . From definition
of future thermal cone T (ρS), we see that (pS ,γβH ) ≻ (s∗S ,γβH ) where

s∗S =
(
⟨E1|σ∗S |E1⟩ . . . ⟨Ed|σ∗S |Ed⟩

)
. (6.74)

If s∗S has β-order (12 . . . d) then using lemma 37, immediately gives s∗S = pS . Now consider
the situation when s∗S has β-order (α1 . . . αd) ̸= (12 . . . d). Then, there will be at least two
consecutive entries αk and αl in the β-order (α1 . . . αd) such that αk > αl. Let us call αk = i

and αl = j where i , j ∈ {1, . . . , d}. Since i > j, therefore ϵi > ϵj since conventionally we
take E1 ≤ E2 ≤ . . . Ed. Now we shall construct the following stochastic matrix

A =

(
1− e−βH(Ei−Ej) 1

e−βH(Ei−Ej) 0

)
⊕ IRest, (6.75)
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where IRest is the identity matrix on the subspace orthogonal to the subspace spanned by
{|Ei⟩, |Ej⟩}. It is easy to see that A(γβH ) = γβH . Next, from the definition of β-order, we
can write

⟨Ei|σ∗S |Ei⟩
e−βHEi

>
⟨Ej |σ∗S |Ej⟩
e−βHEj

, (6.76)

since i = αk appears before j = αl in the β-order (α1 . . . αd). Note that we can always
choose αk and αl in such a way that Eq. (6.76) is a strict inequality. If it is not true, this will
lead us to conclude that s∗S = γβH which is not the case, because σ∗S has to be the extremal
point of T (ρS). From Eq. (6.76) we have,

⟨ϵi|σ∗S |Ei⟩ > ⟨Ej |σ∗S |Ej⟩e−βH(Ei−Ej), (6.77)

Applying the stochastic matrix A to the initial classical state sS∗ results in the transforma-
tion of the probabilities for the energy levels |Ej⟩ and |Ei⟩, given by

(As∗S)j = (⟨Ej |σ∗S |Ej⟩+ ⟨Ei|σ∗S |Ei⟩)− ⟨Ej |σ∗S |Ej⟩e−βH(Ei−Ej), (6.78)

(As∗S)i = ⟨Ej |σ∗S |Ej⟩e−βH(Ei−Ej), (6.79)

while leaving the probabilities of other energy levels unchanged. Since Ei > Ej , using Eq.
(6.77), the resulting state has a strictly lower average energy than σ∗S . In other words, using
the Gibbs stochastic matrix A, which acts non-trivially only on the energy levels |Ei⟩ and
|Ej⟩, we have decreased the population of the higher energy level |Ei⟩, and increased the
population of the lower energy level |Ej⟩. This implies that the state with diagonal entries
given by As∗S has strictly less energy than σ∗S . This contradicts the assumption that σ∗S is the
state with the lowest energy in the set T (ρS), and thus we conclude that σ∗S must be equal
to ρS .

6.8 Detailed analysis of open cycle heat engine with qutrit working
body.

This section provides a comprehensive computation of the amount of ergotropy obtainable
from the hot bath using the initial state ρS . The state, denoted by ρS , is given by

ρS = |0⟩⟨0|+ qC10|1⟩⟨1|+ qC20|2⟩⟨2|, where ZC = 1 + qC10 + qC20 (6.80)

and qCij is defined in Eq. (5.32) as qCij = e−βC(ωi−ωj). The classical state obtained from the
diagonal of ρ̂S is expressed as

pS =
1

ZC
(1 qC10 qC20), (6.81)
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where ZC is the normalization constant. The β-order of pS at inverse temperature βH can
be determined from the inequality

1

ZC
≥ qC10
e−βHω1

≥ qC20
e−βHω2

, (6.82)

which implies that the β-order is (123).
We will employ the lemma from [157] to describe the extreme Gibbs stochastic matrixes

that operate on a classical state p having a β-order of (123) and provide the spectrum of the
resulting extremal states of T (ρS).

Lemma 2. [Based on table 1 of [157]] For the inverse temperature βH , the Gibbs stochastic matrices
that produce the spectrum of non-trivial extremal states in T (ρS) for a classical state p having a
β-order of (123) are described by the following:A1, A2, A5, A9 for βH ≥ β0,

A1, A2, A5, A12, A13 for βH < β0,
(6.83)

where β0 is determined by the following equality

e−β0ω1 + e−β0ω2 = 1, (6.84)

and

A1 =

1− qH10 1 0

qH10 0 0

0 0 1

 A2 =

1 0 0

0 1− qH21 1

0 qH21 0

 , (6.85)

A5 =

1− qH20 qH21 0

0 1− qH21 1

qH20 0 0

 A9 =

1− qH10 − qH20 1 1

qH10 0 0

qH20 0 0

 , (6.86)

A12 =

 0 qH01 − qH21 1

qH10 0 0

1− qH10 1− qH01 + qH21 0

 A13 =

 0 qH01 − qH21 1

1− qH20 1− qH01 + qH21 0

qH20 0 0

 .(6.87)

The final β-order of the Gibbs stochastic matrix in Eq. (6.83) for a classical state with a β-order of
(123) is given by:
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Gibbs stochastic matrixes β-order
A1 (213)
A2 (132)
A5 (312)
A9 (231) or (321)
A12 (231)
A13 (321)

By applying this lemma, we will examine the most efficient operation of an open-cycle
heat engine that has an initial state with a spectrum of pS , which involves determining
the maximum ergotropy that can be extracted from the hot bath through Gibbs stochastic
matrix Ai and storing it as work. We will refer to this quantity as RAi(pS) and use it to
calculate the engine’s efficiency.

Using Gibbs stochastic matrix A1, the amount of heat transferred from the hot bath
and the extractable ergotropy from pS can be calculated as follows :

The Gibbs stochastic matrix A1 transforms the initial classical state given in Eq. (6.81) in
the following manner:

1

ZC

1− qH10 1 0

qH10 0 0

0 0 1


 1

qC10
qC20

 =
1

ZC

(1− qH10) + qC10
qH10
qC20

 = Spec(ρ1S), (6.88)

Table 2 provides us with the β-order of the final classical state in Eq. (6.88), which is (213).
Thus,

qH10
ZCqH10

≥ (1− qH10) + qC10

ZC
≥ qC20
ZCqH20

⇒ (1− qH10) + qC10 ≥ qC20
qH20

≥ qC20, (6.89)

where the final inequality follows from the relation that 0 ≤ qH20 ≤ 1. Hence, the population
order that satisfies Eq. (6.89) can be expressed as follows:

(1− qH10) + qC10

ZC
≥ qH10
ZC

≥ qC20
ZC

, (6.90)

qH10
ZC

≥ (1− qH10) + qC10

ZC
≥ qC20
ZC

. (6.91)

If the population order is given by Eq. (6.90), then the final state is passive, and no ergotropy
can be extracted from it. On the other hand, if the order of the population in the final
classical state given by Eq. (6.88) satisfies Eq. (6.91), the amount of ergotropy that can be
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extracted is given by

RA1(pS) = max
{
0,
ω1

ZC

(
2qH10 − 1− qC10

)}
= max

{
0,
ω1

ZC
(2qH10 − 1− qC10)

}
. (6.92)

Therefore, positive extraction of ergotropy is possible if

2qH10 ≥ 1 + qC10. (6.93)

Using Gibbs stochastic matrix A2, the amount of heat transferred from the hot bath
and the extractable ergotropy from pS can be calculated as follows : The Gibbs stochastic
matrix A2 transforms the initial classical state given in Eq. (6.81) in the following manner:

1

ZC

1 0 0

0 1− qH21 1

0 qH21 0


 1

qC10
qC20

 =
1

ZC

 1

(1− qH21)q
C
10 + qC20

qH21q
C
10

 = Spec(ρ2S). (6.94)

Table 2 provides us with the β-order of the final classical state in Eq. (6.88), which is (132).
Thus,

1

ZC
≥ qH21q

C
10

ZCqH20
≥ (1− qH21)q

C
10 + qC20

ZCqH10
, (6.95)

⇒ 1 ≥ qH21q
C
10 and 1 ≥ (1− qH21)q

C
10 + qC20,

where the final inequality follows from the relation that 0 ≤ qH20 ≤ 1. Hence, the population
order that satisfies Eq. (6.95) can be expressed as follows:

1

ZC
≥ (1− qH21)q

C
10 + qC20

ZC
≥ qH21q

C
10

ZC
, (6.96)

1

ZC
≥ qH21q

C
10

ZC
≥ (1− qH21)q

C
10 + qC20

ZC
, (6.97)

If the population order of the final classical state in Equation (6.94) follows Equation (6.96),
then the final classical state is passive and no ergotropy can be extracted. The amount of
ergotropy that can be extracted from the final classical state using thermal operation A2 is
determined by Equation:

RA2(pS) = max
{
0,

1

ZC
(ω2 − ω1)

(
2qH21q

C
10 − (qC10 + qC20

)}
.

(6.98)
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Thus, a condition for positive ergotropy extraction can be expressed as:

2qH21 ≥ 1 + qC21. (6.99)

Using Gibbs stochastic matrix A5, the amount of heat transferred from the hot bath
and the extractable ergotropy from pS can be calculated as follows: The Gibbs stochastic
matrix A5 transforms the initial classical state given in Eq. (6.81) in the following manner:

1

ZC

1− qH20 qH21 0

0 1− qH21 1

qH20 0 0


 1

qC10
qC20

 =
1

ZC

 1− qH20 + qH21q
C
10

(1− qH21)q
C
10 + qC20

qH20

 = Spec(ρ3S).(6.100)

Table 2 provides us with the β-order of the final classical state in Eq. (6.100), which is (312).
Thus, it means

qH20
ZCqH20

≥ 1− qH20 + qH21q
C
10

ZC
≥ (1− qH21)q

C
10 + qC20

ZCqH10
,

⇒ (1− qH21)q
C
10 + qC20 ≥ (1− qH21)q

C
10 + qC20, (6.101)

where we write the final inequality using the relation 0 ≤ qH10 ≤ 1. The order of populations
compatible with Eq. (6.101) is determined by:

1− qH20 + qH21q
C
10

ZC
≥ (1− qH21)q

C
10 + qC20

ZC
≥ qH20
ZC

, (6.102)

1− qH20 + qH21q
C
10

ZC
≥ qH20
ZC

≥ (1− qH21)q
C
10 + qC20

ZC
, (6.103)

qH20
ZC

≥ 1− qH20 + qH21q
C
10

ZC
≥ (1− qH21)q

C
10 + qC20

ZC
. (6.104)

If the population order for the final classical state in Eq. (6.100) follows Eq. (6.102), no er-
gotropy can be extracted as the final classical state is already passive. Non-trivial ergotropy
extraction is possible if the ordering is given by Eqs. (6.103) and (6.104). The amount of
extractable ergotropy is calculated by:

RA5(pS) = max
{
0,

(ω2− ω1)

ZC

(
qH20 − qC20 − (1− qH21)q

C
10

)
,
ω2

ZC
qH20

− ω1

ZC

(
(1− qH20) + qH21q

C
10

)
− (ω2− ω1)

ZC

(
(1− qH21)q

C
10 + qC20

)}
.

(6.105)

Using Gibbs stochastic matrix A9, the amount of heat transferred from the hot bath
and the extractable ergotropy from pS can be calculated as follows: The Gibbs stochastic
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matrix A9 transforms the initial classical state given in Eq. (6.81) in the following manner:

1

ZC

1− qH10 − qH20 1 1

qH10 0 0

qH20 0 0


 1

qC10
qC20

 =
1

ZC

1 + qC10 + qC20 − qH10 − qH20
qH10
qH20

 = Spec(ρ4S).

(6.106)

As qH10 ≥ qH20 holds for any plausible values of βH , the possible population orders are given
by

1 + qC10 + qC20 − qH10 − qH20
ZC

≥ qH10
ZC

≥ qH20
ZC

, (6.107)

qH10
ZC

≥ 1 + qC10 + qC20 − qH10 − qH20
ZC

≥ qH20
ZC

, (6.108)

qH10
ZC

≥ qH20
ZC

≥ 1 + qC10 + qC20 − qH10 − qH20
ZC

. (6.109)

If the population order in the final classical states is described by Eq. (6.107), then no er-
gotropy extraction is possible since the initial state is already passive. However, non-trivial
ergotropy extraction becomes feasible when the population order in the final classical state
given by Eq. (6.106) satisfies Eq. (6.108) and Eq. (6.109). Hence, the amount of extractable
ergotropy can be determined by

RA9(pS) = max
{
0,

ω1

ZC

(
2qH10 + qH20 − (1 + qC10 + qC20)

)
,

ω1

ZC
(qH10 − qH20) +

ω2

ZC

(
2qH20 + qH10 − (1 + qC10 + qC20)

)}
. (6.110)

Using Gibbs stochastic matrix A12, the amount of heat transferred from the hot bath
and the extractable ergotropy from pS can be calculated as follows: The Gibbs stochastic
matrix A12 transforms the initial classical state given in Eq. (6.81) in the following manner:

1

ZC

 0 qH01 − qH21 1

qH10 0 0

1− qH10 1− qH01 + qH21 0


 1

qC10
qC20

 =
1

ZC

 (qH01 − qH21)q
C
10 + qC20

qH10
(1− qH10) + (1− qH01 + qH21)q

C
10

 = Spec(ρ5S),

(6.111)

We can see from the table 2, the β- order of the final classical state in Eq. (6.111) is (231).
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That implies

qH10
ZCqH10

≥ (1− qH10) + (1− qH01 + qH21)q
C
10

ZCqH20

≥ (qH01 − qH21)q
C
10 + qC20

ZC

⇒ qH10 ≥
qH10
qH20

(1− qH10) + (1− qH01 + qH21)q
C
10

≥ (1− qH10) + (1− qH01 + qH21)q
C
10, (6.112)

where the final inequality follows from the relation qH10 ≥ qH20. Hence the ordering of the
populations of the final classical state Eq. (6.111) that are compatible with Eq. (6.112) is
given by

1

ZC

(
(qH01 − qH21)q

C
10 + qC20

)
≥ qH10
ZC

≥ 1

ZC

(
(1− qH10) + (1− qH01 + qH21)q

C
10

)
, (6.113)

qH10
ZC

≥ 1

ZC

(
(qH01 − qH21)q

C
10 + qC20

)
≥ 1

ZC

(
(1− qH10) + (1− qH01 + qH21)q

C
10, (6.114)

qH10
ZC

≥ 1

ZC

(
(1− qH10) + (1− qH01 + qH21)q

C
10

)
≥ 1

ZC

(
(qH01 − qH21)q

C
10 + qC20

)
, (6.115)

If the population ordering of the final classical state in Eq. (6.111) is described by Eq. (6.113),
ergotropy extraction is not possible due to the passivity of the initial state. Hence, non-
trivial ergotropy extraction can only occur if the ordering of the populations in the final
classical state is governed by Eq. (6.114) or Eq. (6.115). The amount of ergotropy that can
be extracted using thermal operation A12 is given by

RA12(pS) = max
{
0,
ω1

ZC

(
qH10 − (qH01 − qH21)q

C
10 − qC20

)
,
ω1

ZC

(
qH10 − (1− qH10)− (1− qH01 − qH21)q

C
10

)
+
ω2

ZC

(
(1− qH10) + (1− qH01 − qH21)q

C
10 − (qH01 − qH21)q

C
10 − qC20

)}
. (6.116)

Using Gibbs stochastic matrix A13, the amount of heat transferred from the hot bath
and the extractable ergotropy from pS can be calculated as follows: The Gibbs stochastic
matrix A13 transforms the initial classical state given in Eq. (6.81) as follows

1

ZC

 0 qH01 − qH21 1

1− qH20 1− qH01 + qH21 0

qH20 0 0


 1

qC10
qC20

 =
1

ZC

 qC10(q
H
01 − qH21) + qC20

1− qH20 + qC10(1− qH01 + qH21)

qH20

 = Spec(ρ6S),

(6.117)

Based on table 2, we observe that the β-ordering of the final classical state corresponds to
(321). It is evident that any ordering of the populations in the final classical state described
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by Eq. (6.117) is consistent with this β-order. Thus ergotropy can be calculated as

RA13(pS) = max
{
0,
ω2 − ω1

ZC

(
2qH20 − 1− qC10

(
1 + qH21 − qH01

))
,
ω1

ZC

(
1− qC20 − qH20

+ qC10

(
1 + 2qH21 − 2qH01

))
,
ω1

ZC

(
qC10

(
1 + qH21 − qH01

)
+ 1− 2qH20

)
+
ω2

ZC

(
qH20 − qC20

+ qC10q
H
21 − qC10q

H
01

)
,
ω1

ZC

(
1− qC20 − qH20 + qC10

(
1 + 2qH21 − 2qH01

))
− ω2

ZC

(
1− 2qH20

+ qC10

(
1 + qH21 − qH01

))
,
ω2

ZC

(
qH20 − qC20 + qC10

(
qH21 − qH01

))}
. (6.118)
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