
Characterization of quantum
correlations with strong non-classical

properties
Ph.D. Thesis

By
MAHASWETA PANDIT

Supervisor: Wiesław Laskowski
Co-supervisor: Waldemar Kłobus

Institute of Theoretical Physics and Astrophysics

University of Gdańsk, Poland
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Wieśniak for numerous useful discussions and learning opportunities.

My heartiest gratitude to all my collaborators, who have been part of fruitful research
endeavours that have contributed greatly to the shaping of my academic outlook as an in-
dependent researcher.

I want to thank my friends Souradeep Purkayastha, Ray Ganardi, Palash Pandya and
Chirag Srivastava in particular for proofreading the thesis and providing helpful inputs
throughout its preparation. I also feel grateful to my fellow graduate students, post-graduates
and friends, Bianka Wołoncewicz, Anubhav Chaturvedi, Omer Sakarya, Jacek Aleksander
Gruca, Tanmoy Biswas, Tamoghna Das, Adrian Kołodziejski and Ekta Panwar for countless
useful discussions, coffee breaks, and keeping my motivation up during these difficult pan-
demic times. Also, a very special mention to my dear friend Małgorzata Szczekocka who
has been the kindest and helped me through every administrative tasks and many more.

Finally, I would like to convey my heartiest gratitude and love to my parents Mahitosh
and Nandita Pandit for their eternal love and support.

ii



Streszczenie
Nieklasyczne korelacje w układach wielocząstkowych stanowią złożony problem, który

nie został jeszcze w pełni zbadany. W szczególności interesują nas korelacje pomiędzy wie-
loma układami, które nie są biseparowalne i mogą być określane mianem "silnie niekla-
sycznych".

Pierwszym przykładem układów przejawiających "silną nieklasyczność", który rozpa-
trujemy są N -cząstkowe stany k-jednorodne. Takie stany posiadają cechę bycia maksymal-
nie mieszanymi na podukładach zredukowanych do k cząstek dla wszystkich podziałów
układu i stanowią naturalne uogólnienie stanów maksymalnie splątanych. Prezentujemy
metodę konstrukcji takich stanów. Znajdujemy również N -cząstkowe stany k-jednorodne
o największej możliwej czystości dla przypadków, w których czyste stany k-jednorodne nie
istnieją. Takie stany mają najwyższe wielocząstkowe korelacje spośród wszystkich stanów
o zadanej czystości.

W następnej części prezentujemy teorio-informacyjną wielkość charakteryzującą "silne"
wielocząstkowe korelacje. Wielkość ta, N -współzależność, określa zysk w sensie teorio-
informacyjnym, uzyskiwany na drodze wzajemnej współpracy między różnymi podukła-
dami wielocząstkowego układu. Ta wielkość różni się od miar wielocząstkowych korelacji,
jako że nie spełnia ich wszystkich postulatów. Pokazujemy, że N -współzależność może
mieć różne zastosowania, jak choćby w kwantowym protokole współdzielenia sekretu.

W kolejnym rozdziale rozpartujemy "silną nieklasyczność" pod kątem metrologii kwan-
towej. W tym względzie, prezentujemy metodę estymacji wielofazowej w układach zło-
żonych wykorzystującą 3- i 4-modowe interferometry Macha-Zehndera. Pokazujemy, że
możliwe jest uzyskanie fundamentalnego limitu narzuconego na precyzję pomiaru (tj. li-
mit Heisenberga), uzyskiwanego przez bezszumowe złożone układy kwantowe. Prezen-
tujemy metodę jednoczesnej estymacji d − 1 faz w d-modowym układzie, gdzie pozostały
mod służy w charakterze odniesienia.

W ostatniej części rozpatrujemy inny aspekt "silnej nieklasyczności", który ma duże
znaczenie w kwestii zrozumienia znaczenia efektów świata kwantowego, mianowicie tzw.
prawdziwej wielocząstkowej nielokalności (GMNL). Rozpatrujemy dwa różne ujęcia GMNL
i prezentujemy dowody numeryczne celem zbadania łamania ograniczeń na GMNL dla
różnych kwantowych układów wielocząstkowych. Jako wskaźnik nieklasyczności uży-
wamy dwóch miar: siły nielokalności i prawdopodobieństwa łamania.



Abstract
Non-classical correlations present an wide range of complexity and variation in the multi-

partite setup that is yet to be explored to its full extent. In particular, correlations between
many parties that are not separable in any bipartition can be referred as "strongly" non-
classical. In this dissertation aimed to investigate such strong non-classical correlation es-
pecially in the multipartite scenario.

The first candidate exhibiting such "strong" non-classicality that we consider are the k-
uniform N -partite states. These states are such that it becomes maximally mixed if reduced
to a k-partite state considering any permutation of the subsystems and referred as a natural
generalization of the maximally entangled Bell states. We propose a generator scheme to
construct such states. We also find k-uniform N -partite states with highest possible purity
when one such pure state does not exist. These state possess the most multipartite correla-
tions among all quantum states of the same purity.

Following the construction of the states displaying strong multipartite correlations, we
next propose an information-theoretic quantifier that can address such correlations. This
quantifier, namely N -dependence, quantifies the information gained from the cooperation
among different subsystems about a particular subsystem within a multipartite system.
This quantifier is distinct from measures of multipartite correlations as it does not satisfy
all their postulates. We show that N -dependence can have several applications such as in
symmetric quantum secret sharing.

We next take a step further and provide an metrological aspect of strong non-classicality.
We, in a composite system scenario, propose a multiphase estimation scheme using a setup
consisting of 3-,4-mode Mach-Zehnder interferometer. We show that it is possible to at-
tain the fundamentally imposed limit on measurement precision, i.e., the Heisenberg limit,
achievable by noiseless composite quantum systems. We present a scheme for simultane-
ous estimation of d− 1 phases for a d-mode system.

Lastly, we investigate another notion of strong non-classicality which has major signif-
icance in understanding of the advantages that the quantum world has to offer, namely
genuine multipartite nonlocality (GMNL). We consider two different notion of GMNL and
present numerical evidence to investigate the violations of the constraints corresponding to
these different notions of GMNL by a number of multipartite quantum states. As an indi-
cator of non-classicality, we employ two measures: strength of nonlocality and probability
of violation.
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Introduction

Quantum theory is the basis of modern physics that departs from the long running
"classical lines of thought" [1] which has enabled several advantages in quantum informa-
tion processing and quantum computation. Quantum theory casts aside assumptions such
as determinism of a physical theory and joint measurability of observables. This allowed
quantum theory to uncover different phenomena such as entanglement, uncertainty rela-
tions, Bell nonlocality, contextuality, etc. These are referred as the non-classicality of quan-
tum theory that appears due to the presence of non-classical correlations which do not have
any classical counterpart. In [2], the authors first introduced the distinction between clas-
sical and quantum correlations in bipartite systems. Results also show that quantum cor-
relations can exist in the absence of any classical correlation [3]. Therefore, it is of utmost
importance to investigate and characterize quantum correlations. Numerous works have
been done in this direction so far [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], especially in the bipartite
scenario. However, the knowledge concerning the correlations shared by multi-qubit or
multi-qudit states, i.e., systems involving more than two parties, remains inadequate given
their ubiquity throughout quantum technologies. Therefore, quantification and character-
ization of correlations in multipartite systems [15] is one of the most fundamental tasks in
quantum information theory.

The aim of this thesis is to develop methods that can help characterizing the nature of
the multipartite quantum mechanical systems. In particular, in the following chapters, we
do extensive study of genuine multipartite entanglement and genuine nonlocality which
displays the "strong non-classical" nature of multipartite systems.

This thesis is divided into four chapters, each addressing ways to characterize and quan-
tify strong non-classical correlations from a different perspective. Our investigations and
results especially focus on systems that have three or more number of parties.

In the first chapter, we investigate a special family of states, namely, the k-uniform states,
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Introduction

in order to characterize multipartite entanglement. The k-uniform states are N -partite en-
tangled states such that given N − k number of subsystems are traced out at random, the
reduced state becomes maximally mixed [16]. Such situation can be understood as com-
plete absence of stored information of an N partite quantum state in any subset of k col-
laborating parties. Pure k-uniform states with k = ⌊N/2⌋ are called absolutely maximally
entangled (AME) [17]. These AME states are natural generalization of the maximally en-
tangled Bell States (k = 1) [18] in a sense that it is maximally mixed in any k ≤ ⌊N/2⌋
reduction.. Such states are found to be useful for several quantum information protocols
[19, 20, 21]. However, there are instances, that in certain scenarios AME states which are
pure k-uniform states do not exist. In this chapter, we relax this constrain of purity and
rather try to find the k-uniform states that are of highest possible purity. We reformulate
the notion of k-uniformity in terms of the correlation tensor and propose a new scheme to
construct these states using N -qubit Pauli operators. We present a relation between this
construction scheme and the notion of orthogonal arrays [22, 23]. We also give specific
examples of k-uniform N -qubit states and provide numerical evidence of having highest
purity given specific values of k and N . We present an example of a specific quantum cir-
cuit which enables generating of the respective k-uniform state. We also provide some re-
sults concerning k-uniformN -qudit states that have a higher dimensionality of subsystems.

In the second chapter, we proceed to investigate mutual dependencies between subsys-
tem within a composite multipartite system. We propose a quantifier of their dependencies
which relies on the information advantage that can be gained from cooperation among dif-
ferent parties. This new quantifier highlights the complex nature of multipartite systems
from a different point of view. This quantifier, in turns, captures the degree of dependency
between subsystems of a global system. We refer to this as multipartite dependence, DN . We
discuss the key properties of this quantifier and calculate its value for several relevant ex-
amples. Importantly, we show that this quantifier conforms to some desired postulates that
establish it as a figure of merit of genuine multipartite correlations while being distinct from
the conventional measures of multipartite correlations constructed in terms of the three fun-
damental postulates in Ref. [15, 24]. It does, however, share many of their characteristics.
We show how to use this measure in numerous scenarios, including quantum secret shar-
ing [25, 26, 27, 28] and witnessing entanglement [29, 30, 31]. In addition, we establish and
explain an inequality that characterises the lack of monotonicity of conditional mutual in-
formation under local operations.

In the third chapter, we take a metrological approach in order to investigate multipartite
correlation and its effect on multiphase estimation. Our aim is to make high precision mea-
surements of some unknown parameters using quantum systems and quantum resources.
Our setup consists of generalized 3-,4-mode Mach-Zehnder interferometer that are used to

2



Introduction

perform simultaneous estimation of phases that are encoded into a probe state which is
highly correlated. We assume that the unknown phases are placed in each of the modes in
the interferometer. In this chapter, we provide an estimation scheme and show that it is still
possible to obtain the Heisenberg-like scaling of precision concerning the joint estimation
of any subset of d − 1 phases where d is the total number of modes. In order to do so, we
opt for a completely fixed experimental setup where we use the fixed initial state and set
of measurements. We also show that our estimation scheme can be applied to the task of
quantum-enhanced sensing in three-dimensional interferometric configurations.

In the fourth chapter, we investigate strong nonlocal correlations, i.e., genuine multipar-
tite nonlocality (GMNL). Such correlations are retained by multipartite entangled states and
are also distinguishable from the correlations that are local to some bipartition. We con-
struct linear optimization problem to attain optimal values of two different quantifiers of
GMNL, the strength of nonlocality and probability of violation. Using this linear program-
ming routine, we investigate three particular families of nonlocal correlations who violate
either of the inequalities upon satisfying which a given correlation point p belongs to one of
the following sets: Bell local correlations, Svetlichny-local (S2) correlations and no-signaling
bilocal (NS2) correlations. From the collected numerical evidences we then give observa-
tion of how the amount of nonlocality be effected by parameters line number of settings of
the measurements and dimension of the subsystems.

3



Chapter 1
k-uniform mixed states

Over the years, multipartite entanglement has gained a lot of attention. It has many
applications in the field of quantum information such as quantum teleportation [32, 33], su-
perdense coding [34], quantum key distribution [35, 36, 37], quantum error correcting code
[16] etc. But, despite of much effort, it has been difficult to quantify entanglement among
higher number of parties. However, a very special kind of states has been proven to be very
useful in this matter in recent years. Referred as the k-uniform states, these are N -partite
states such that after tracing out N − k number of subsystems arbitrarily, the remaining k
subsystems become maximally mixed [16].

If the initial state is pure, then the integer number k cannot be more than ⌊N/2⌋ [38].
This is because for k > ⌊N/2⌋ the dimension of the reduced state is larger than that of the
auxiliary space and as a result, a maximally mixed state cannot be attained. The states with
k = ⌊N/2⌋ are called the absolutely maximally entangled states (AME) which are consid-
ered to be the "natural generalisation" of the Bell States (k = 1) [18]. We extend the notion
of being "maximally entangled" in a sense that we now demand any k-partite reduced state
of anN -partite state to be maximally mixed which marks them to be "even more entangled"
and hence "maximally entangled" when k = ⌊N/2⌋, given that for a pure state, such prop-
erty can hold only for k ≤ ⌊N/2⌋. AME states has been proven to be useful to design holo-
graphic quantum codes and perfect tensors [19]. AME states are also have been utilized for
determining threshold quantum secret sharing schemes and teleportation protocols [20, 21].

Several construction methods has been proposed to find such states, among them,
state construction from orthogonal arrays, Latin squares, symmetric matrices, graph states,
quantum error correcting codes [16, 39, 40, 41, 42, 43, 44]. More recently, Acín et al. [45]
has presented a symmetric method to construct the k-uniform and AME states. It has been
shown that for any d ≥ 2 and N ≥ 2, 1-uniform states exist which are the so called GHZ

states and the 2, 3-uniform states exist for almost every N -qudits [44].

4



Chapter 1. k-uniform mixed states 1.1. Correlations of k-uniform states

However, not every AME can be found by any of these construction methods. While
AME states for five and six qubits have been constructed explicitly [16, 46, 47], such states
do not exist for systems consisting of four [48] and seven qubits [49]. These results mo-
tivated us to investigate states that posses similar property, namely the property of k-
uniformity, while attaining highest possible purity. Moreover, it has been shown that there
exist no AME states for systems with a larger number of qubits [50, 51]. Interestingly, if the
local dimension is chosen to be large enough, AME states always exist [52]. For example, it
has been proven that there exist AME states for three and four qudits, for every prime d > 2

[17]. A necessary condition was also provided in [16, 53] for the existence ofN -partite AME
state of arbitrary dimension d,

N ≤

2(d2 − 1) N even,

2d(d+ 1)− 1 N odd.
(1.1)

As described earlier, for many cases, one cannot construct such pure k-uniform states. For
such cases, the next best thing is to find a mixed state of highest possible purity which will
show the same attributes as a pure k-uniform state. In this chapter, we construct k-uniform
states with the highest possible purity for which the corresponding pure k-uniform states
or AME states do not exist.

1.1 Correlations of k-uniform states

1.1.1 Bloch representation of states

Throughout this chapter, we have opted for the Bloch representation to describe any
arbitrary states. In this formalism, an arbitrary state in the Hilbert space of N qubits, i.e.,
H⊗N

2 , can be represented as:

ρ =
1

2N

3∑
µ1,...,µN=0

Tµ1...µN σµ1 ⊗ · · · ⊗ σµN , (1.2)

where σ0 is the indentity operator, σµ are the Pauli matrices and {Tµ1...µN } represent the
correlation tensor. The elements of the correlation tensor are real and given by the correlation
function values for measurements of products of Pauli operators,

Tµ1...µN = ⟨σµ1 ⊗ · · · ⊗ σµN ⟩ρ = Tr(ρ σµ1 ⊗ · · · ⊗ σµN ), (1.3)

5
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which we will refer to as correlations.

1.1.2 Length of correlations

The correlation that an arbitrary state posses plays vital role in characterising k-uniform
states. Let us define the length of correlations, among any r subsystems

Mr(ρ) =
∑
π

3∑
i1,i2,...,ir=1

T 2
π(i1i2...ir)

, (1.4)

where π(i1 . . . ir) stands for all permutations of r non-zero indices on N positions. A k-
uniform state of N particles ρkN does not have any k-partite correlations , as well as correla-
tions between smaller number of parties. Therefore by definition,

Mr(ρ
k
N ) = 0, for 1 ≤ r ≤ k. (1.5)

In other words,
Tπ(i1i2...ir) = 0, for r ≤ k. (1.6)

Whereas, the total length of the non-vanishing part of the correlations are defined as,

M̃N
r =

N∑
r=k+1

Mr(ρ
k
N ). (1.7)

The definition of Mr(ρ) allows us to express the purity of a N -qubit state in the following
form,

Trρ2 =
1

2N

3∑
i1,i2,...,iN=0

T 2
i1i2...iN

=
1

2N

(
1 +

N∑
r=1

Mr(ρ)

)
. (1.8)

Furthermore, because of Eq. (1.5), the sum can be reduced only to the lastN−k−1 elements

Tr(ρkN )
2 =

1

2N

(
1 +

N∑
r=k+1

Mr(ρ)

)
. (1.9)

For a given purity, now one can calculate the total length of correlations,

N∑
r=1

Mr(ρ) = 2NTrρ2 − 1 (1.10)

The amount of the total correlation is constant and state independent. The absence of cor-
relation for r ≤ k results in the fact that all available correlations occur between a large
number of qubits (r > k). This, combined with a relatively high purity, can manifest strong
non-classical properties, for instance the genuine multipartite entanglement.
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1.2 Numerical methods

Numerical methods played a vital role in acquiring preliminary qualitative evidence in
support of the proposed state generation scheme. We ran a non-linear optimization over
the state space and confirmed that the states constructed using the generator method are
of the highest purity. We extend our search based on semidefinite programming to further
strengthen our claim. In this section we discuss these two methods.

1.2.1 PRAXIS optimization routine

To find the k-uniform N -partite mixed states of a high purity, we numerically searched
over the complete set of multipartite quantum states using non-linear optimization. The
calculation was carried out utilizing the Nlopt Package [54] available under the GNU LGPL.

In particular, we implemented PRAXIS (PRincipal AXIS) optimization routine which is
an algorithm for gradient-free local optimization based on Richard Brent’s ‘principal axis
method’ [55], specifically designed for unconstrained optimization. This algorithm mini-
mizes a multivariate function without using derivatives. It is a refinement of Powell’s con-
jugate search method [56] of optimizing quadratic functions which is devised to determine
a set of search directions which are repeatedly updated until they reach a set of conjugate
directions up to a desired number of iterations. Brent modified the the algorithm further to
ensure that the directions remain conjugate by replacing the matrix of the search direction
by its principal axes. And in the last iteration the minimum will be found if the function
was indeed quadratic.
To identify the k-uniform states, we introduce a cost function defined in the following way,

pmax(N, k) = max
ρ

[
M̃N
r − β

k∑
i=1

Mi(ρ)

]
, (1.11)

where pmax is the sum over the lengths of all non-zero correlations, maximized over the
entire state space of N parties. According to the definition of a k-uniform state, the correla-
tions between the subsystems up to total of k subsystems should vanish, whereas the rest is
incorporated in the term M̃N

r , the total length of the non-vanishing part of the correlations.
To ensure that the constraint of vanishing correlations has been satisfied, we associate a re-
gression coefficient β to the lengths of correlations among the k subsystems. To efficiently
determine the global maximum for the cost function one takes the constant β large enough,
for which cost part vanishes, hence β > 2N−1.

7
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1.2.2 Numerical method based on semidefinite programming

Another way to find N -partite k-uniform states, ρkN of the highiest possible purity by
searching over the entire state space is to use an iterative procedure based on semidefinite
programming (SDP) [57]. In this method, we first need to fix the number of parties N , the
number of subsystems k and the dimension d of each local Hilbert spaces. Two important
constraints that are to impose in our case are the vanishing correlations for k or less number
of parties and an arbitrary but same dimension for each subsystems. In addition to that, we
fix the parameter ϵ ∈ [0, 1], which sets the speed of convergence, typically 0.3.

A standard SDP is an convex optimization algorithm that optimizes of a linear function
which is subjected to the constraint that an affine combination of symmetric matrices is
positive semidefinite. A standard algorithm can be defined as follows:

maximize P = Tr(GZ)

subject to Tr(FiZ) = ci i = 1, . . . , p

Z ≥ 0, (1.12)

where the problem variable is the n× n matrix Z and the problem parameters are the n× n

matrices G,Fi and the scalars ci.

The algorithm for this particular work as follows:

1. Generate randomly a k-uniform state ρ ∈ C(dN ).

2. Solve the following semidefinite program:

P = max
σ

Tr(ρ ·σ),
′s.t. ρϵ ≥ 0,Tr(ρϵ) = 1,

σ = (1− ϵ)ρ+ ϵρϵ,

σ is k-uniform, (1.13)

where the optimization is carried out over the set of k-uniform density matrices σ,
and the constraints within the optimization are either linear or semidefinite.

3. Set ρ = σ. Compute purity Tr(ρ2) of the state ρ.

4. Repeat steps 2-4 until convergence of the purity Tr(ρ2) is reached.

Generating N -partite k-uniform states is, however, may not always be an easy task. In
such a case, we can sidestep this issue by generating a random N -party state instead and
setting ϵ = 1 within the very first iteration. Then, from the second step, we ensure that σ
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is k-uniform. Therefore the state that is found in step 3 is also ensured to be k-uniform.
It is worth mentioning that the P that is defined above is a non-decreasing function with
the sequence of iterations. However, the above optimization may still get stuck in local
maxima of the purity. Therefore, we may have to run the above procedure several times
before obtaining global optimal solution.

1.3 State construction scheme

In this section we present a scheme for constructing k-uniform states from particular
sets of N -qubit Pauli matrices. This scheme is comprised of the building blocks that re-
semble with the generators as used within the framework of stabilizer codes [58, 59]. Here,
however, we do not employ stabilizer codes as such. For further convenience, if not stated
otherwise, we will use the simplified notation for multi-qubit Pauli operators as

σ0 ⊗ σ1 ⊗ σ2 ⊗ σ3 ⊗ · · · ≡ 1XY Z . . . . (1.14)

We then assume that there exists a set of N -qubit Pauli operators

G = {G1, . . . , Gm}, (1.15)

where Gi’s are, having the form Gi = σi1 ⊗· · ·⊗σiN , the operators referred as the generators
and m is the total number of such operators required to construct a target k-uniform state.
The requirements to define such operators Gi’s are as follows:

• mutual commutation:
[Gi, Gj ] = 0 for all i and j;

• independence:

Gi11 . . . G
im
m ∼ 12N only for ij = · · · = im = 0 with ij = {0, 1};

and 12N is the identity operator in H⊗N
2 ;

• k-uniformity: Gi11 . . . G
im
m (ij = {0, 1}) results in N -qubit Pauli operator in Eq. (1.14)

containing the identity operators on at most N − k − 1 positions of the form of Gi’s
that is given in Eq. (1.15).

For example, the generators constructing an 2-uniform 5-qubit state as described in

9
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Subsec.1.5.5 have the following form,

G1 = 1XYXY ;

G2 = 1ZXX1;

G3 = XY Y 1Z;

G4 = XZY ZY ;

G5 = ZXZ1X.

As we can see that these generators have the identity operators on at most (N − k − 1) = 2

positions. Hence we can call them 2-uniform generators, and thus they are suitable for con-
struction of a 2-uniform state.

These generators will be the key element for constructing a k-uniform state. To do so,
we need to add all possible products of the elements from G in the following way,

ρ =
1

2N

1∑
j1,..., jm=0

Gj11 . . . Gjmm . (1.16)

The above construction leads to a valid physical state by virtue of the following argument.
Consider a set of m mutually commuting N -qubit Pauli operators G = {G1, ..., Gm}. Let us
rewrite the state in Eq. (1.16) into the form

ρ =
1

2N
(1 +G1)(1 +G2) . . . (1 +Gm). (1.17)

Therefore, we see that the eigenvalues of ρ can be written in the form

λi =
1

2N
(1 + λi1)(1 + λi2) . . . (1 + λim), (1.18)

where λij = ±1 is the i-th eigenvalue of the j-th generator in common eigenbasis of mu-
tually commuting operators from the set G. Now from equation (1.16), we have Trρ = 1,
while λi are either 0 or 2m−N , hence ρ constitutes a physical state with exactly m nonzero
eigenvalues. Naturally, the case m = N corresponds to a pure state with exactly one eigen-
value equal to 1.

Now, the state in Eq. (1.16) has 2m number of non-vanishing correlations equal to ±1

and its purity can be calculated simply as

Trρ2 =
1

2N
2m = 2m−N . (1.19)

Here, for any given N , the larger the set G, i.e., larger the value of m, the higher the pu-
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rity of the resulting state is. We observe that the problem of constructing k-uniform states
is therefore directly related to the problem of finding the largest possible set of generators
G. Consequently, in the case of k =

⌊
N
2

⌋
and m = N the construction leads to an AME state

with purity equal to 1.

Due to the construction method we expect to obtain k-uniform states of high purity.
In all considered cases (up to N = 6) we also have numerical evidence that there are no
k-uniform states of higher purity. For that we have opted nonlinear optimization method
which we have briefly introduced in the previous Sec. (1.2.1).

1.4 Orthogonal arrays

It has been established that orthogonal arrays are often useful for find k- uniform N

qudit states as well as AME states [17]. But it turns out that these orthogonal arrays are also
useful in order to determine the set of generators G. In general, to find such a set, we have
to search the full set of 4N N -qubit operators. However, we observed that it is possible to
construct a set of generators with the help of orthogonal arrays OA(r,N, l, s), which signif-
icantly reduces the initial set of 4N operators.

The orthogonal arrays [22, 23] are combinatorial arrangements, tables with entries sat-
isfying given orthogonal properties. It has several applications in the ground of error-
correcting codes, difference schemes, Latin squares etc. And most importantly, orthogo-
nal arrays are heavily used in statistics and experiment designing. An orthogonal array
OA(r,N, l,s) is a r × N array with entries taken from 0, . . . , l − 1 in such a way that each
subset of s columns contains all possible combination of symbols with the same number
of repetitions. The number of such repetitions is called the index of the OA; if ls = r the
orthogonal array is of index unity. An example of of OA, OA(16, 5, 4, 2) is given in (1.1).

To find G for a k-uniform state ofN qubits one can use an orthogonal array OA(r,N,4, s)
with 4 levels (corresponding to four different Pauli matrices). We treat each row of OA as a
string of indices a1 . . . aN (ai ∈ {0, 1, 2, 3}) where each element in a string specifies a partic-
ular Pauli operator in the Hilbert space of each qubit,N in total forN subsystems. Then, we
construct specific N -qubit Pauli operators of the form A1 . . . AN (Ai ∈ {1, X, Y, Z}) using

11
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0 0 0 0 0
0 1 1 1 1
0 2 2 2 2
0 3 3 3 3
1 0 1 2 3
1 1 0 3 2
1 2 3 0 1
1 3 2 1 0
2 0 2 3 1
2 1 3 2 0
2 2 0 1 3
2 3 1 0 2
3 0 3 1 2
3 1 2 0 3
3 2 1 3 0
3 3 0 2 1

Table 1.1: Orthogonal arrays of strength three, symbolically OA(16,5,4,2).

the standard convention:

ai = 0 → Ai = 1,

ai = 1 → Ai = X,

ai = 2 → Ai = Y,

and ai = 3 → Ai = Z.

Following this we get a set of r operators, from which we have to choose the largest
set G such that its elements meet the conditions (1-2) from Eq. (1.15). By satisfying those
conditions, we guarantee that the desired state is physical and determine its purity. The
parameter k for which the property (3) from Eq. (1.15) holds does not depend explicitly on
the presented construction but rather on a particular example of OA. The maximal number
of 1’s in each row of OA equals to s− 1, which may suggest (N − s)-uniformity of obtained
state. In condition (3), however, we require that the number of 1’s is limited not only for
generators but also for all elements of the form Gi11 . . . G

im
m . In some of the presented ex-

amples (see Secs. 1.5.4, 1.5.6, 1.5.8) the number of 1’s is also limited by s − 1 for all such
elements. Hence the desired states are indeed (N−s)-uniform. In other examples, however,
uniformity of the desired state is slightly smaller than the prediction from the generators.
Although the states obtained from OA of index unity coincide with (N − s)-uniform states,
the precise connection has to be established. In general, the relation between uniformity k
and quantities s and N seems to be irregular.

It has been established in [48] that in the case of four qubits there is no 2-uniform pure
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state. In other words, the AME state for 4-qubit does not exists. However, if we lift the
assumption that desired state is pure, the orthogonal array OA(16, 4, 4, 2) can be utilized to
construct the mixed 4-qubit 2-uniform state. It leads to the following set of operators

0000 → 1111, 0111 → 1XXX,

0222 → 1Y Y Y, 0333 → 1ZZZ,

1012 → X1XY, 1103 → XX1Z,

1230 → XY Z1, 1321 → XZYX,

2023 → Y 1Y Z, 2132 → Y XZY,

2201 → Y Y 1X, 2310 → Y ZX1,

3031 → Z1ZX, 3120 → ZXY 1,

3213 → ZY XZ, 3302 → ZZ1Y.

(1.20)

Within this set we can find m = 3 operators conforming to the properties from Sec. 1.3,
which constitute the set G, e.g.:

G1 = 1Y Y Y,

G2 = XZYX, (1.21)

G3 = Y XZY

and by virtue of Eq. (1.16), leads to the state ρ24 of purity 1/2. This is one example of how
orthogonal arrays can be utilised to efficiently construct k-uniform states.

1.5 Examples

In this section, we present k-uniform states with the highest possible purity for several
cases of k and N that have been constructed using a unique set of generators as shown in
Sec.1.3. We begin with giving a formal declaration of the "purity" constraint that we con-
sider to construct a k-uniform state.

■ An N -qubit state, ρkN , is our desired k-uniform state if the following holds,

Tri1...iN−k
ρkN =

1

dk
1⊗k
2 for any {ij} ⊂ {1, . . . , N}, (1.22)

s.t. Tr(ρkN )
2 = max

S′(H)
Tr(ρ2),
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where S ′(H) ⊂ H⊗N
2 contains only the k-uniform states and ρ ∈ S ′(H).

In the next step, we show how the generator scheme works. Let us consider that m
number of generators are required to construct a particular N -qubit k-uniform state ρkN .
The set of generators are given by,

G1 = A1
1 ⊗ · · · ⊗AN1 ≡ A1

1 . . . A
N
1 ;

...

Gm = A1
m ⊗ · · · ⊗ANm ≡ A1

m . . . A
N
m;

where, Aim ∈ {1, X, Y, Z} for i = 0, 1, 2, 3. The resultant state will then be,

ρkN =
1

2N

1∑
j1,..., jm=0

Gj11 . . . Gjmm . (1.23)

We now present some general schemes followed by some examples which are also
present a summarized version in Fig. 1.

1.5.1 General schemes

As described in Sec. 1.3, the generator scheme needs to satisfy the properties (1–3). And
with increasing number of parties, the verification of these properties becomes computa-
tionally demanding. However, for some particular cases, such difficulties can be overcome
by employing simple schemes for the construction procedure.

1. As presented in [60, 61], protocols can be used to generate a certain k-uniform state if
the other particular (k − 1)-uniform state is known. Importantly, this protocol works
only when (k−1) is even. This method allows us to eliminate all correlations between
odd number of subsystems without changing the remaining even ones.

In this method, we first need to know the notion of ‘antistate’ of any given N -qubit
state ρN ,

ρ̄N = σ⊗Ny conj(ρN )σ
⊗N
y , (1.24)

where the conj(.) denotes the complex conjugation. The state ρ̄N has its N -partite cor-
relations inverted with respect to the ρN .

Given the definition of the ‘antistate’, for any odd number N , if we have a state
|ψ⟩N , then we can construct the corresponding ‘antistate’ |ψ̄⟩N . Thereafter, by evenly
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mixing these two states we get,

ρncψ =
1

2
|ψ⟩⟨ψ|N +

1

2
|ψ̄⟩⟨ψ̄|N . (1.25)

Hence the state ρncψ has no N -partite correlations.

To this end if we evenly mix the original state ρk−1
N with its ‘antistate’:

ρkN =
1

2
(ρk−1
N + ρ̄k−1

N ), (1.26)

where ρ̄k−1
N is the corresponding ‘antistate’. Since k is odd for even k− 1, the k-partite

correlations vanish and the state becomes k-uniform.

2. We can also obtain k-uniform N -qubit states by tracing out some of the subsystems
from a k-uniform state which has a higher number of parties N

′
, i.e., N

′
> N . Given

a N
′
-qubit k-uniform state, a N -qubit k-uniform state is given by,

ρkN = Trj1...jN′−N
ρk
N ′ , (1.27)

where ji ∈ [1, N
′
] with ji ̸= jk.

By the construction of these k-uniform states, there is no correlation among k or
smaller number of parties. Therefore, tracing out one or some of the subparts from a
k-uniform state with a higher number of parties maintains the monotonicity of corre-
lation. Therefore, the resultant state will be a k-uniform (N − 1)-qubit state.

However, in the first method, because of taking equal mixtures, the purity of the result-
ing state is reduced by a half. And the same happens for the second method as the removed
subsystem will be in maximally mixed state with a purity 1

2 . These methods, therefore, do
not guarantee that the obtained states are of the highest possible purity.
Bellow we present several examples which are found using generator scheme.

1.5.2 N arbitrary, k = 1

This is one state which can be easily found regardless of the total number of parties. The
1-uniform state is pure and is turns out to be the N -qubit GHZ state given by,

|GHZ⟩N =
1√
2
(|0...0⟩+ |1...1⟩). (1.28)

15



Chapter 1. k-uniform mixed states 1.5. Examples

The largest number of generators to construct this state is

m = N.

The generators are given by,

G1 = ZX · · ·XX, G2 = XZ · · ·XX,

· · ·

GN−1 = XX · · ·ZX, GN = XX · · ·XZ. (1.29)

The purity of the state is,
Trρ2 = 2m−N = 1. (1.30)

1.5.3 N arbitrary, k = N − 1

When k = N − 1, the only correlations that the state can posses are the N -partite ones.
Now, having an identity operator at one of the sites equivalently means that the corre-
sponding party is not correlated with other parties. Therefore, the generators cannot have
identity operator 1 on any position.
For N odd, it is enough to have only one generator (m = 1) in the set G:

G1 = Z · · ·Z. (1.31)

Therefore the purity of the state is,

Trρ2 = 2N−m = 2N−1. (1.32)

However, for N even, the set G consists of two generators m = 2:

G1 = X · · ·X, G2 = Z · · ·Z. (1.33)

And then the purity of the state is,

Trρ2 = 2N−m = 2N−2. (1.34)

Therefore it can also be noted that the k-uniform mixed state for an even N is of higher
purity than that of for an odd N .

1.5.4 N = 4, k = 2

N = 4, k = 2 stands for a AME state by definition. As mentioned in the introduction,
such a pure state does not exist [48]. Therefore, one cannot have four generators. Hence we
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look for the highest possible purity that can be attained for a 4-qubit state with 2-uniformity.
The largest number of generators to construct this state is

m = 3.

the set G consists of elements:

G1 = XXXX, G2 = Y Y Y Y, (1.35)

G3 = 1XY Z;

then the purity of the state is,

Trρ2 = 2N−m =
1

2
. (1.36)

Interestingly, this particular state can be represented as a symmetric mixture of follow-
ing two pure states:

|φ1⟩ =
1√
2

(
|ϕ1⟩ + |ϕ2⟩

)
, (1.37)

|φ2⟩ =
σ⊗4
x√
2

(
|ϕ1⟩ − |ϕ2⟩

)
,

where

|ϕ1⟩ =
1

2

(
|0010⟩+ |1110⟩+ i|1000⟩ − i|1001⟩

)
,

|ϕ2⟩ =
1

2

(
|1111⟩ − |0011⟩+ i|0100⟩+ i|0101⟩

)
,

and the σx corresponds to a bit-flip (0 ⇐⇒ 1) operation on all particles. We investigate
these states in Eq. (1.37) and determine the

(
4
2

)
number of possible 2-qubit reduced states.

For |φ1⟩ they are given by,

Tr12|φ1⟩⟨φ1| = Tr14|φ1⟩⟨φ1| = Tr23|φ1⟩⟨φ1| = Tr34|φ1⟩⟨φ1| =
1

4
12;

Tr13|φ1⟩⟨φ1| =
1

4


1 −1 0 0

−1 1 0 0

0 0 1 1

0 0 1 1

 ;

Tr24|φ1⟩⟨φ1| =
1

4


1 1 0 0

1 1 0 0

0 0 1 −1

0 0 −1 1

 .
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For |φ2⟩ they are given by,

Tr12|φ2⟩⟨φ2| = Tr13|φ2⟩⟨φ2| = Tr24|φ2⟩⟨φ2| = Tr34|φ2⟩⟨φ2| =
1

4
12;

Tr14|φ2⟩⟨φ2| =
1

4


1 −1 0 0

−1 1 0 0

0 0 1 1

0 0 1 1

 ;

Tr23|φ2⟩⟨φ2| =
1

4


1 1 0 0

1 1 0 0

0 0 1 −1

0 0 −1 1

 .

As evident above, 4 out of these
(
4
2

)
times its reductions to 2 qubits turned out to be max-

imally mixed. This means that they almost have a similar symmetry as a 2-uniform state.
It can be noted that the sum of those two matrices is proportional to 1, which is relevant to
the fact that the mixture of |φ1⟩ and |φ2⟩ is 2-uniform.

1.5.5 N = 5, k = 2

The 5-qubit AME state happens to be pure [16, 47, 46] and hence the largest number of
generators to construct this state is

m = 5.

The set of generators are given by,

G1 = 1XYXY, G2 = 1ZXX1,

G3 = XY Y 1Z, G4 = XZY ZY, (1.38)

G5 = ZXZ1X.

The purity of the state is,
Trρ2 = 2N−m = 1. (1.39)

The generators give ρ25 = |ψ⟩⟨ψ|25 where,

|ψ⟩
2
5=

1√
8

(
|01111⟩+|10011⟩+|10101⟩+|11100⟩

−

(
|00000⟩+ |00110⟩+ |01001⟩+ |11010⟩

))
.
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This state is equivalent to the AME(5,2) state constructed via the link with quantum error
correction codes [62].

1.5.6 N = 5, k = 3

The 5-qubit 3-uniform mixed state can be obtained from OA(16, 5, 4, 2) which is given
in Tab.1.1. We took four of the rays that reproduces the state ρ35. The largest number of
generators to construct this state is

m = 4.

The generators are given by,

G1 = 1XXXX, G2 = 1Y Y Y Y,

G3 = X1XY Z, G4 = Y 1Y ZX. (1.40)

The purity of the state is,

Trρ2 = 2N−m =
1

2
. (1.41)

The corresponding state can again be represented in the form given in Eq.(1.37), i.e., sym-
metric mixture of the two pure states,

|φ1⟩ =
1√
2

(
|ϕ1⟩ + |ϕ2⟩

)
, (1.42)

|φ2⟩ =
σ⊗4
x√
2

(
|ϕ1⟩ − |ϕ2⟩

)
,

with

|ϕ1⟩ =
1

2

(
|00101⟩+ |01010⟩+ i|00110⟩+ i|01001⟩

)
,

|ϕ2⟩ =
1

2

(
|10000⟩+ |11111⟩ − i|10011⟩ − i|11100⟩

)
.

An interesting property of the state is the fact that it contains only four-qubit correlations as
all the correlation matrix elements corresponding to r < 4, i.e., involving identity operation
at any of the sites, are zero.

1.5.7 N = 6, k = 2

The 6-qubit 2-uniform state is a pure state and hence the largest number of generators
to construct this state is

m = 6.
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The generators are given by,

G1 = XXY Y ZZ, G2 = XXZZY Y,

G3 = XZZXXZ, G4 = XY Y X1Z, (1.43)

G5 = Y X1ZXY, G6 = Y Y Y Y 11.

The purity of the state is,
Trρ2 = 2N−m = 1. (1.44)

This state is equivalent to the state presented in [39].

1.5.8 N = 6, k = 3

The 6-qubit AME state, again a pure state, can be obtained from OA(64, 6, 4, 3) similarly
from the rays as shown for the case of ρ35. The largest number of generators to construct this
state is,

m = 6.

The generators are given by,

G1 = 11ZZZZ, G2 = 1XY Z1X,

G3 = 1ZXY 1Z, G4 = XY Z1Z1, (1.45)

G5 = Z1Z1XY, G6 = ZY Y ZZY.

The purity of the state is,
Trρ2 = 2N−m = 1. (1.46)

The state ρ36 = |ψ⟩⟨ψ|36 was explicitly found where,

|ψ⟩36 =
1

4

(
|000110⟩+ |011100⟩+ |100000⟩+ |111010⟩

−|001001⟩ − |010011⟩ − |101111⟩ − |110101⟩

+i|000101⟩+ i|010000⟩+ i|101100⟩+ i|111001⟩

−i|001010⟩ − i|011111⟩ − i|100011⟩ − i|110110⟩
)
.

This state is equivalent to the one found in [17].

1.5.9 N = 6, k = 4

The 4-uniform 6-qubit is a mixed state and the largest number of generators to construct
this state is,

m = 3.
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The generators are given by,

G1 = 1XXXXX, G2 = Y 1Y Y Y Y,

G3 = ZZ1XY Z.

The purity of the state is,

Trρ2 = 2N−m =
1

8
. (1.47)

1.5.10 N = 7, k = 2

The 2-uniform 7-qubit is a pure state and hence the largest number of generators to
construct this state is,

m = 7.

The generators are given by,

G1 = 1XXY Y ZZ, G2 = 1Z11Z1Z,

G3 = XXZXZZX, G4 = Y Y ZY ZZY,

G5 = 11ZXY Y X, G6 = 1Y Y 11Y Y, (1.48)

G7 = Z1Z1Z1Z,

The purity of the state is,
Trρ2 = 2N−m = 1. (1.49)

The state of the following form [39]:

|ψ⟩27 =
1√
8

(
|0000000⟩+ |0110011⟩+ |1011010⟩+ |1101001⟩

−|1111111⟩ − |0111100⟩ − |1010101⟩ − |1100110⟩
)
.

1.5.11 N = 7, k = 3

The 3 uniform 7 qubit state is another AME state which does not exist [49]. Therefore
we cannot specify 7 generators to construct the state. Here, however, we can employ the
scheme for eliminating all the correlations of the rank given by even number. Therefore,
using the 7-qubit 2-uniform state ρ27 mentioned in the previous section, we can construct
7-qubit 3-uniform mixed state ρ37 which indeed is the highest possible purity that can be
attained in this case. The largest number of generators to construct this state is,

m = 6.

21



Chapter 1. k-uniform mixed states 1.5. Examples

The generators are given by,

G1 = Y 1Y XZXZ, G2 = 1XXY Y ZZ,

G3 = ZXY Y XZ1, G4 = ZZ1Y XXY, (1.50)

G5 = Y Y 1Y 11Y, G6 = ZXY Z1Y X.

And the purity of the state is,

Trρ2 = 2N−m =
1

2
. (1.51)

1.5.12 N = 7, k = 5

The 7-qubit 5-uniform mixed state and the largest number of generators to construct
this state is,

m = 3.

The generators are given by,

G1 = 1XXXXXX, G2 = X1XY Y Y Y,

G3 = Y Y Y 1XY Z.

The purity of the state is,

Trρ2 = 2N−m =
1

16
. (1.52)

1.5.13 N > 7, k = N − 2

For 7-qubit and k = N−2 case, only (N−1)-partite correlations are possible. Therefore,
the generators will have the identity operator 1 on at most one position. For either the case
of N being even or odd, at least two generators can be found. Therefore the largest number
of generators to construct these states is,

m = 2.

For N odd, the generators are given by,

G1 = 1X · · ·X, G2 = 1Y · · ·Y, (1.53)

For N even, the generators are given by,

G1 = 1X · · ·X, G2 = X1Y · · ·Y. (1.54)
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The purity of the state is,

Trρ2 = 2N−m =
1

2N−2
. (1.55)

1.5.14 N = 9, k = 5

The 9-qubit 5-uniform mixed state can also be obtained from OA(32, 9, 4, 2). The largest
number of generators to construct this state that are derived from the rays of the corre-
sponding OA is,

m = 4.

The generators are given by,

G1 = XXXXXXXX1, G2 = Y Y Y Y Y Y Y Y 1,

G3 = 1XY Z1XY ZX, G4 = 11ZZY Y XX1. (1.56)

The purity of the state is,

Trρ2 = 2N−m =
1

32
. (1.57)

1.5.15 N = 12, k = 5

Another example that was found by investigating an orthogonal array (OA(4096,12,4,5))
is the 12-qubit 5-uniform state ρ512 and the largest number of generators to construct this
state is,

m = 6.

The generators are given by,

G1 = XY Y 1ZZX11111,

G2 = Y ZZ1XXY 11111,

G3 = 1XY Y 1ZZX1111, (1.58)

G4 = 1Y ZZ1XXY 1111,

G5 = XXXXXXXXXXXX,

G6 = Y Y Y Y Y Y Y Y Y Y Y Y.

The purity of the state is,

Trρ2 = 2N−m =
1

64
. (1.59)
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Figure 1.1: The purity of the states presented in Sec. 1.5. States that can be obtained by one
of two general procedures described in Sec. 1.5.1 are indicated by horizontal (i) and vertical
(ii) arrows. The red boxes corresponds to the pure states and shade of blue darkens with
increasing purity.
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1.6 Characteristics of k-uniform states

1.6.1 Genuine multipartite entanglement

The characterization and detection of genuine multipartite entanglement in many-body
systems has been one of the most important questions in the field of quantum information.
It has relevance in several grounds such as superconducting qubits, optical lattices etc be-
sides being considered as a resource in order to implement information theoretical tasks
such as measurement based quantum computation [63] or high-precision metrology [64].
Therefore it is only relevant to investigate what is the characteristic nature of our k-uniform
N -qubit states with respect to genuine N -partite entanglement.

We calculate an entanglement monotone W for the states given in Ref. [65] to witness
genuine N -partite entanglement. W is an entanglement witness which yields a non-negative
value if the state is biseparable and is negative for at least one entangled state. In multipar-
tite scenario (N > 2), such a witness is called fully decomposable,

∀M : W = PM +QTMM , (1.60)

where M is the subset of all systems for which it is decomposable with respect to a bipar-
tition between M and its complement M̄ . P and QM are positive semidefinite, (P,Q ≥ 0)

and TM is the partial transpose with respect to M .

W is positive on all PPT mixtures. Nonzero value of W indicates genuine multipartite
entanglement for the considered state. The convex optimization method SDP was used to
optimize over all fully decomposable witnesses where for a multipartite state ρ,

min Tr(Wρ)

s.t. Tr(W ) = 1 (1.61)

∀M :W = PM +QTMM , PM ≥ 0, QM ≥ 0. (1.62)

By employing this technique for the k-uniform N -qubit states, we find that most of the
studied states exhibit genuine multipartite entanglement. The values of W for considered
states are presented in Tab. 1.2.

For 7-qubit k-uniform states with k = 1, 2, and 3, we derive the witnesses using the
method designed for the stabilizer states shown in [59, 58]. The witnesses have the follow-
ing form,

W k
7 = αk7 − ρk7, (1.63)
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N k W

2 1 0.5
3 1 0.5

2 0
4 1 0.5

2 0.5
3 0

5 1 0.5
2 0.5
3 0.5
4 0

Table 1.2: W - witness genuine multipartite entanglement (GME) for k-uniform N -qubit
states

where α1
7 = α2

7 = 1/2 and α3
7 = 1/4. And for all considered k, the states turn out to posses

genuine multipartite entanglement.

1.6.2 Fisher information

Quantum fisher information is one of the most important concept in theoretical quan-
tum metrology as it plays significant role in parameter estimation and therefore is useful in
understanding the non-classical nature of a physical state. Below we investigate quantum
fisher information for the k-uniform N - qubit states.

Let us first consider aN -qubit Hamiltonian that allows observers to perform a different
evolution on each particle. The local evolutions are generated by the operators

σ
(j)
n⃗ = n⃗(j) · σ⃗(j) (j = 1, . . . , N), (1.64)

where n⃗ ∈ R3 and σ⃗ = (σ1, σ2, σ3). The Hamiltonian takes the form

H =
1

2

∑
j

σ
(j)
n⃗j
, (1.65)

which is a generalization of a standard collective Hamiltonian for which σ(j)n⃗j
= σ

(j)
n⃗ for all j.

For a pure state ρ = |ψ⟩⟨ψ|, the quantum Fisher information [66] can be easily calculated
as the variance of the Hamiltonian,

F (ρ,H) = 4Tr((∆H)2ρ). (1.66)
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The square of the Hamiltonian is given by

H2 =
N

4
+

1

2

∑
i<j

σ
(i)
n⃗ σ

(j)
m⃗ . (1.67)

Therefore the quantum Fisher information can be expressed in terms of correlation tensor
elements in the following way (see [67] for comparison with a collective case):

F (ρ,H) = 4{Tr(H2ρ)− (Tr(Hρ)2} (1.68)

= N + 2(Tn1n20...0 + Tn10n30...0 + · · ·T0...0nN−1nN )

− (Tn10...0 + T0n20...0 + · · ·+ T0...0nN )
2

Since for k-uniform states (with k ≥ 2) all two- and single-qubit correlation tensor ele-
ments vanish, the quantum Fisher information,

F (ρk≥2
N ,H) = N. (1.69)

Therefore it depends only on the number of qubits. Hence the quantum Fisher information
in Eq.(1.69) does not depend on a particular choice of the vectors n⃗j . This implies that the
quantum Fisher information Favg averaged over all directions n⃗ is also equal to N . As for
all product states Favg < 2N/3 [68, 69], this fact verifies that the states ρk≥2

N always have
some entanglement present.

However, the situation for mixed states is more complicated. For a mixed state of the
form,

ρ =
∑
k

pk|ψk⟩⟨ψk| =
∑
k

pkρk, (1.70)

the quantum fisher information has the form given by

F (ρ,H) = 4 inf
{pk,|ψk⟩}

∑
k

pkTr((∆H)2ρk), (1.71)

where the infimum is over all decompositions of the density matrix. Therefore, in the case
of mixed states, Eq. (1.69) provides only an upper bound on the quantum Fisher informa-
tion. In general it can now be a function of higher order correlations. In spite of this, in
several cases of mixed states we observe similar behavior as for pure states that have been
presented in Tab. 1.3.

1.6.3 Violation of Bell inequality

We investigated considered families of k-uniform states (up to 7 qubits) with a nu-
merical method based on linear programming [70]. The method allows us to reveal non-
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N k F

2 1 Fx = 4 , Fy = 0 , Fz = 4
3 1 Fx = 3, Fy = 3, Fz = 9

2 Fx = 0,Fy = 3,Fz = 3
4 1 Fx = 4, Fy = 4, Fz = 16

2 Fx = Fy = Fz = 4
3 Fx = Fy = Fz = 4

5 1 Fx = Fy = Fz = 25
2 Fx = Fy = Fz = 5
3 Fx = 5, Fy = 4, Fz = 5
4 Fx = 0,Fy = 5,Fz = 5

6 1 Fx = 6, Fy = 6, Fz = 36
2 Fx = Fy = Fz = 6
3 Fx = Fy = Fz = 6
4 Fx = 1, Fy = 6, Fz = 5
5 Fx = Fy = Fz = 6

7 1 Fx = 7, Fy = 7, Fz = 49
2 Fx = Fy = Fz = 7
3 Fx = Fy = Fz = 7

Table 1.3: F - quantum Fisher information, Fi = F (ρ, Ji), where Ji is the collective angular
momentum operator of k-uniform N -qubit states given in Sec. 1.5.

classicality even without direct knowledge of Bell’s inequalities which can be satisfied by
local realistic models, but violated by some quantum predictions for the given problem.
But in the discussed method we calculate the minimal admixture of white noise that is nec-
essary for the quantum correlations to vanish fcrit and the probability of violation of local
realism pv for randomly sampled settings [71] for a given state. fcrit is the critical visibility
of a quantum state. It can be realised in the following way.

With the given N -qubit quantum state ρ, we mix some amount of white noise. The
density matrix obtained by such a process is given by

ρ(f) = fρ+ (1− f)
1

2N
1⊗N , (1.72)

where f is the visibility of the state. f = 0 implies that a local realistic model exits whereas
f = 1 implies that no local realistic model can reproduce the predictions of quantum me-
chanics for the given state. For the states with no corresponding local realistic model, there
exists a critical value fcrit such that for f ≤ fcrit there exists a local realistic probability dis-
tribution for which a local realistic model can be found.

We calculate fcrit for each state and observe that in all non-trivial case fcrit > 0. This
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means that a conflict with local realism is present and that can be resoluted by mixing the
state with white noise. The results are presented in Tab. 1.4.

N k fcrit
2 1 0.293
3 1 0.5

2 0
4 1 0.647

2 0.422
3 0.292

5 1 0.75
2 0.568
3 0.460
4 0

6 1 0.823
2 0.666
3 0.591
4 0.293
5 0.293

7 1 0.875
2 0.785
3 0.644

Table 1.4: fcrit - white noise robustness of k-uniform N -qubit states given in Sec. 1.5.

1.7 Quantum circuits for k-uniform states

Quantum circuits have recently been designed to generate absolutely maximally entan-
gled state [72]. Using their designs, maximally entangled states can be availed to inves-
tigate the strength of multipartite correlations in quantum computers. Therefore, we can
employ a similar scheme in order to generate mixed k-uniform states.

Now we give such an example where a quantum circuit can be used to generate a 4-
qubit 2-uniform state. The circuit comprises of Hadamard gate (H), phase gate (S), nonlocal
CNOT and SWAP operations as described in Fig. 1.2. The definition of the gates and oper-
ations are as defined in Ref. [18]:
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H

H

S
X

Figure 1.2: A scheme for constructing a 2-uniform 4-qubit state. The last transformation
applied at random (i.e. with probability 1

2 ) outputs an equal mixture of two pure states.

H =
1√
2

(
1 1

1 −1

)
,

S =

(
1 0

0 i

)
, (1.73)

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

The output of this quantum circuit upto the SWAP operation is a pure state. However, ρ24
is actually a mixed state. But we know that it can be represented as a symmetric mixture
of two pure states (Sec. 1.5.4). To construct the desired mixed state, we then apply one last
gate on the first two bits at random. It then perform either X̄ = X ⊗ X transformation or
absolutely nothing at random. Hence, the resulting state is an equal mixture of two pure
states given in Eq. (1.37) which, in turns, gives us ρ24.
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1.8 Higher dimensional k-uniform states

The generalization of k-uniform states for higher dimentional subsystems is rather straight-
forward. We have observed that a scheme for higher dimensions can be achieved with the
use of a specific set of generators. Here, instead of N -qubit Pauli operators Gi, we use
N -qudit operators referred as G(d)

i that are composed of d-dimensional Weyl-Heisenberg
matrices given by

S
(d)
kl = (X(d))k(Z(d))l, (1.74)

where,

X(d) =

d∑
i=0

|i⟩⟨i+ 1|; (1.75)

Z(d) =

d∑
i=0

ωi|i⟩⟨i|, (1.76)

with ω = e2iπ/d and k, l = 0, . . . , d− 1. The set of generators G(d) must also satisfy the same
set of properties defined in Sec. 1.3. And the obtained k-uniform N -qudit state is given by

ρ =
1

dN

d−1∑
j1,...,jm=0

(G
(d)
1 )j1 ...(G(d)

m )jm . (1.77)

By construction, this state has a purity dm−N . It is worth noting that if a pure k-uniform
state does not exist, the highest attainable purity for such state is 1/d. And, the purity of
such states are already small for d = 3.

The described scheme can be utilized to construct the so called graph states that include
the 1-uniform N -qudit GHZ-type state which can be obtained from the generator scheme.
In this case, the largest number of generators is given by,

m = N,
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and the generators [73] are given by,

G
(d)
1 = Z(d)X(d) · · ·X(d)X(d),

G
(d)
2 = X(d)Z(d) · · ·X(d)X(d),

... (1.78)

G
(d)
N−1 = X(d)X(d) · · ·Z(d)X(d),

G
(d)
N = X(d)X(d) · · ·X(d)Z(d).

Evidently, the purity of these states is 1.

For four qutrit case, on the contrary to its qubit counterpart, there exists a pure AME(4,3)
state. Therefore it can be determined by m = 4 number of generators and they are given by,

G
(3)
1 = 1(3)Z(3)Z(3)(Z(3))2,

G
(3)
2 = 1(3)X(3)X(3)(X(3))2, (1.79)

G
(3)
3 = Z(3)1(3)Z(3)Z(3),

G
(3)
4 = X(3)1(3)X(3)X(3).

The last example that we provide for the qdit case is the 3-qutrit 2-uniform state. The largest
number of generators to construct is state is,

m = 2.

And the generators are given by,

G
(3)
1 = X(3)X(3)X(3),

G
(3)
2 = Z(3)Z(3)Z(3). (1.80)

And the purity is given by,

Trρ2 = 3N−m =
1

3
. (1.81)

Interestingly, this state can also be expressed as a symmetric mixture of the following three
pure states:

|α1⟩ =
1√
3
(|000⟩+ |111⟩+ |222⟩),

|α2⟩ =
1√
3
(|021⟩+ |102⟩+ |210⟩), (1.82)

|α3⟩ =
1√
3
(|012⟩+ |201⟩+ |120⟩).
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And despite of acquiring a relatively low purity 1/3, this state exhibits genuine mul-
tipartite entanglement (W = 1). Interestingly, the purity of the 3-qutrit 2-uniform state is
higher than that for the corresponding qubit state (Sec.1.5.3), which is equal to 1/4.

To determine the maximal purity of k-uniform qudit states, we used an iterative method
based on semidefinite programming [57] that has been described briefly in Sec.1.2.2. Using
this algorithm, we were able to reproduce all purity values up to N = 6 parties as provided
in Tab. 1.5.

We proceed further and also ran the algorithm for other states with a higher d(d > 2)

values. And for the qutrit scenario, the maximal purity of a (N = 3, k = 2) state was found
to be 1/3 which agrees with Eq. (1.82). Whereas, for d = 4, the purity is 1/4. Also, for the
case (N = 4, k = 3, d = 3), we get the purity to be 1/9. In this particular case the purity
seems to decay with the increase of dimension.

1.9 Threshold values for the number of generators

For a given number of qubits N , the number of generators m decreases while the purity
of the state increases as evident in Tab. 1.5. This observation raises the natural question of
threshold functions for the number of generators; in other words, what are the constraints
on N and k for being able to find m generators? It turns out that the answer to this question
it not straightforward and seems to be the difficult one in its full generality. However, for a
small number of generators we provide an answer.

By combining Examples in Sec. 1.5.3 and Sec. 1.5.13 we get the threshold for two gen-
erators. Indeed, the number of generators m satisfies the following:m = 1 for k = N − 1 and N odd,

m ≥ 2 for k > N − 1 or N even.
(1.83)

For three generators the number of generators m satisfies the following:
m ≤ 2 for k >

6

7
N − 1,

m ≥ 3 for k ≤ 6

7
N − 1.

(1.84)
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For k =
6

7
N − 1 there exist three generators of the following form:

G1 = 1 · · · 1 X · · ·X X · · ·X X · · ·X X · · ·X X · · ·X X · · ·X
G2 = X · · ·X 1 · · · 1 X · · ·X Y · · ·Y Y · · ·Y Y · · ·Y Y · · ·Y
G3 = Y · · ·Y︸ ︷︷ ︸

s

Y · · ·Y︸ ︷︷ ︸
s

Y · · ·Y︸ ︷︷ ︸
s

1 · · · 1︸ ︷︷ ︸
s

X · · ·X︸ ︷︷ ︸
s

Y · · ·Y︸ ︷︷ ︸
s

Z · · ·Z︸ ︷︷ ︸
s

(1.85)

where s = N − k − 1 is equal to the maximal number of 1’s in each non-trivial element of

G. For k <
6

7
N − 1 and N being odd, it is sufficient to remove the relevant number of last

elements in Eq. (1.85). For even N , it is sufficient to remove the relevant number of last
elements from the following generators:

G1 = 1XX 1 · · · 1 X · · ·X X · · ·X X · · ·X X · · ·X X · · ·X X · · ·X
G2 = Y 1Y X · · ·X 1 · · · 1 X · · ·X Y · · ·Y Y · · ·Y Y · · ·Y Y · · ·Y
G3 = ZZ1 Y · · ·Y︸ ︷︷ ︸

s−1

Y · · ·Y︸ ︷︷ ︸
s−1

Y · · ·Y︸ ︷︷ ︸
s−1

1 · · · 1︸ ︷︷ ︸
s−1

X · · ·X︸ ︷︷ ︸
s

Y · · ·Y︸ ︷︷ ︸
s

Z · · ·Z︸ ︷︷ ︸
s

.
(1.86)
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N k purity W M F fcrit pv(%)

2 1 1 0.5 M2 = 3 Fx = 4, Fy = 0, Fz = 4 0.293 28.32
3 1 1 0.5 M3 = 4,M2 = 3 Fx = 3, Fy = 3, Fz = 9 0.5 74.69

2 1/4 0 M3 = 1 Fx = 0, Fy = 3, Fz = 3 0 0
4 1 1 0.5 M4 = 9,M2 = 6 Fx = 4, Fy = 4, Fz = 16 0.647 94.24

2 1/2 0.5 M4 = 3,M3 = 4 Fx = Fy = Fz = 4 0.422 35.11
3 1/4 0 M4 = 3 Fx = Fy = Fz = 4 0.292 0.024

5 1 1 0.5 M5 = 16,M4 = 5,M3 = 10 Fx = Fy = Fz = 25 0.75 99.60
2 1 0.5 M5 = 6,M4 = 15,M3 = 10 Fx = Fy = Fz = 5 0.568 99.96
3 1/2 0.5 M4 = 15 Fx = 5, Fy = 4, Fz = 5 0.460 63.65
4 1/16 0 M5 = 1 Fx = 0, Fy = 5, Fz = 5 0 0

6 1 1 M6 = 33,M4 = 15,M2 = 15 Fx = 6, Fy = 6, Fz = 36 0.823 99.97
2 1 M6 = 10,M5 = 24,M4 = 21,M3 = 8 Fx = Fy = Fz = 6 0.666 > 99.99
3 1 M6 = 18,M4 = 45 Fx = Fy = Fz = 6 0.591 100
4 1/16 M6 = 1,M5 = 2 Fx = 1, Fy = 6, Fz = 5 0.293 < 10−3

5 1/16 M6 = 3 Fx = Fy = Fz = 6 0.293 < 10−6

7 1 1 M7 = 64,M6 = 7,M4 = 35,M2 = 21 Fx = 7, Fy = 7, Fz = 49 0.875 100
2 1 M7 = 15,M6 = 42,M5 = 42,M4 = 21,M3 = 7 Fx = Fy = Fz = 7 0.785 100
3 1/2 M6 = 42,M4 = 21 Fx = Fy = Fz = 7 0.644 99.16

Table 1.5: k-uniform N -qubit states as defined in in Sec. 1.5: purity, W is a genuine multipartite entanglement monotone, M is the
length of correlations, F is the quantum Fisher information, Fi = F (ρ, Ji), where Ji is the collective angular momentum operator,
fcrit is the white noise robustness, and pv is the probability of violation of local realism.
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1.10 Conclusions

In this chapter, we have discussed several aspects of k-uniform states of N qubits, for
which it is known that the corresponding absolutely maximally entangled pure states do
not exist. We find the k-uniform N -qubit states that are the N -qubit states with highest
possible purity such that all its reduction to k subsystems become maximally mixed. The
k-uniform states are distinguished by revealing the highest multipartite correlations among
all quantum states of the same purity.

We present a general scheme to find such states which utilizes generators constructed
using N -qubit Pauli operators to construct the k-uniform mixed states for this system. We
provided several examples upto 6 qubits in the support of our scheme. Furthermore, we
numerically verified that the states that are found using this generator scheme are indeed
of the highest possible purity for that particular number of subsystems.

We also showed that particular mixed k-uniform states can be constructed with the
help of orthogonal arrays, but in different way from the known scheme of utilizing the
notion of OA for constructing pure AME states: in the case of mixed states the key role
is played by the correlation tensor elements instead of ket vectors of the pure AME state
itself. We investigated several characteristics of these states which provide strong evidence
of non-classicality. We provided an example of quantum circuit that can be utilized to find
such states. We also discussed the range of our our scheme in higher dimensional systems.
In this regard, we discussed some instances of k-uniform states of 3- and 4-qudit systems.
Here, however, we observed that the dimensionality of the total system rises much faster
with the number of qudits making the numerical analysis ineffective for high dimensions.
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Chapter 2
Cooperation and dependencies in
multipartite systems

Correlations are among the most elementary notions across all science. In recent years,
the notion quantum correlation has emerged as topic of central importance, especially in
the field of quantum information. In literature, several measures of correlation exist for
bipartite systems among which many carry an operational meaning. The same ground
remains relatively unexplored in the multipartite setting due to the complexity it yields,
a consequence of the unclear notion of multipartite correlations. Natural postulates were
formulated in Ref. [15, 24] in order to characterise the measures of genuinely multipartite
correlations for both classical and quantum scenario. Attempts were made to resolve this
postulates in terms of formulating correlation measures. But it was shown that to-date
quantifiers have not been entirely successful in this matter. In this work, we atempt to
address this problem at least partially and propose a quantifier which emerges from an op-
erational standpoint, and quantify a certain notion of dependencies, even though it is not a
measure of multipartite correlations par se.

In this chapter we introduce an quantifier that identifies and quantifies the mutual de-
pendencies between distinct subsystems in multipartite systems. This quantifier, labeled as
multipartite dependence, highlights the complex nature of multipartite systems from a differ-
ent prospective.

Similar problem of dependence has been previously addressed by several communi-
ties, considering it for both classical and quantum systems. Among them a few are notable
such as neuroscience and genetics where measures of multipartite synergy were put for-
ward [74, 75, 76, 77, 78, 79]. Quantifiers of coordination were introduced in the field of
quantitative sociology. In [80] an information-theoretic approach was taken in order to
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model coordination in human-human interaction and also to measure coordination flows
in a remote collaborative tracking task. The notion of redundancy was introduced in the
generalized information theory to multiple variables in complex systems [81] in order to
quantify the information that a set of sources can posses concerning a variable. Redundancy
therefore quantifies the information that is encoded in a source concerning each possible
outcome of a given variable, averaged over all possible outcomes.

In physics and information processing quantities aimed at characterizing genuine mul-
tiparty correlations were studied in depth [82, 83, 84, 15, 85, 24]. All these former quantifiers
motivated mathematically, keeping the combinatorial aspects of complex systems in mind,
e.g., the synergy is the difference in the information all subsystems have about an additional
system as compared to the total information contained in any subset of the systems. In [82]
a genuine multiparty correlation measure was introduced that can be used for a multiparty
quantum system as the trace norm of the cumulant of the state. The multipartite measure
was proven to be legitimate as satisfies the five basic conditions required for a correlation
measure [86]. In [83] the author proposed a multipartite correlation measure that is able to
obtain the degrees of irreducible multiparty correlations for the multipartite states without
maximal rank. In [84] the authors show that genuine multiparty quantum correlations can
exist in the systems where no genuine multiparty classical correlations was detected and
proved it to be true even in macroscopic systems.

Three postulates for measures of genuine multipartite correlations were proposed in
[15]. Many of these previously introduced quantifiers involve difficult optimizations and
are therefore hard to compute. For example, in [15], in order to compute the extractable
work used to define genuinely multipartite correlations one has to optimise over all pro-
tocols with local unitary operations, local dephasings and classical communication, which
does not admit any computer-friendly parameterisation.

In this chapter, we introduce a quantity named multipartite dependence which is op-
erationally defined, simple and easier to compute. It is defined in terms of information
gain from cooperation when some of the parties cooperate with each other in order to
gain information about some variables concerning to parties that are not involved. We
also show that this quantifier fulfills several criteria for being a genuine multipartite corre-
lation measure, which makes it a significant candidate in the ground of investigating and
understanding multipartite systems. To compute multipartite dependence, DN , it is based
on the consideration of the conditional mutual information between only two subsystems.
With this regard, it is important to mention that the conditional mutual information is al-
ready a well established quantity in quantum information theory and broader physics and
has numerous application in the field of quantum information and communications. For
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example, in [87, 88, 89, 90], conditional mutual information has been used to capture the
communication cost of quantum state redistribution. Importantly, it was proven in [90]
that conditional mutual information provides an upper bound on the regularized relative
entropy distance between a quantum state and its reconstructed version and in [88] an op-
timal “quantum state redistribution” protocol was introduced as the first ever operational
interpretation to quantum conditional mutual information that quantifies the correlation
between two parties from the prospective of a third party. In [91], the author used the struc-
ture of conditionally independent states to present a perturbative analysis of the stability
of topological entanglement entropy [92, 93, 94] which was achieved by using conditional
mutual information intuitively. An entanglement monotone was introduced in [95] for bi-
partite quantum states which is called squashed entanglement and was produced using
the halved minimum quantum conditional mutual information over all tripartite state ex-
tensions. Multipartite dependence, however, present a completely different utilization of
conditional mutual information.

Our quantifier is somewhat related to some other quantifiers. For example, a task con-
ditional quantum one-time pad was introduced in [96] where it has been proved that the
optimal rate of secret communication for the aforementioned task is equal to the condi-
tional quantum mutual information. Similar quantifiers in this context are quantum dis-
cord [97, 98], intrinsic steerability [99], conditional erasure cost of a tripartite state [100, 101].
The quantity dependence that has been introduced here is a relevant quantity in all these
problems if we symmetrize them and look for the worst case scenario.

2.1 Definition of multipartite Dependence

Let us first introduce the most common way to represent statistical independence, i.e.,
in terms of probabilities. Two classical variables α1 and α2 are statistically independent if
their probabilities satisfy the following:

P (α1|α2) = P (α1), and (2.1)

P (α2|α1) = P (α2). (2.2)

Alternatively, the statistical independence can also be defined using entropies.
When two classical variables α1 and α2 are dependent of each other, then mutual infor-

mation quantifies the entropic difference of these two variables α1 and α2 [102] and hence
can act as a measure of dependence among them.

I(α1 : α2) = H(α1)−H(α1|α2), (2.3)
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where H(α) is the Shannon entropy and H(α|β) is called the conditional entropy. Note that
in this chapter, we take the logarithms that are used in defining these entropies considered
to be of base d.

Similarly, for quantum subsystems as well where we use quantum mutual information
[103] and α and β represent the states of their respective subsystems of a given bipartite
state ρ ≡ ραβ =: αβ. By performing partial trace. The quantum mutual information is
given by,

I(α : β) = S(α)ρ − S(α|β)ρ, (2.4)

where S(ρ) is called the von Neumann entropy and S(α|β) is the conditional von Neumann
entropy,

2.1.1 Tripartite dependence

While the two-variable case is pretty straight forward, complexity tends to increase with
the increasing number of variables as they offer different levels of independence. For the
three-variable case, {X1, X2, X3}, provides us with two levels of independence. Firstly, the
one of the variable, say X1, can be completely independent, i.e.,

P (X1|X2X3) = P (X1). (2.5)

The second option is that it is conditionally independent of one of the remaining variables,
e.g.,

P (X1|X2X3) = P (X1|X2). (2.6)

The first kind of dependence can again be quantified using the mutual information I(X1 :

X2X3). The latter, however, can be found by calculating the conditional mutual informa-
tion.

I(X1 : X3|X2) = H(X1|X2)−H(X1|X2X3) (2.7a)

= I(X1 : X2X3)− I(X1 : X2). (2.7b)

I(X1 : X3|X2) quantifies the difference between the information that is accessible about X1

when X2 and X3 considered together vs X2 alone. Therefore, it operationally quantity the
amount of information that can be acquired by exchanging information, in other words, by
cooperation among the remaining parties. More generally, a variable may also be depen-
dent on all other variables and it is possible that different parties cooperate with each other
in different degree. Hence the corresponding conditional mutual informations can differ
from one another. In the case where each of these conditional mutual informations has a
nonzero value, the probability distribution or the global state admits mutual dependencies
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in all possible “cuts". Then the lowest conditional mutual information value corresponds
to the minimum dependence present in the system. Therefore, in the tripartite scenario, we
define a tripartite dependence which can be quantified as the worst case conditional mutual
information,

D3 ≡ min[I(X1 : X2|X3), I(X1 : X3|X2), I(X2 : X3|X1)]. (2.8)

D3 expresses the least gain in information about the first subsystem that the second party
can additionally acquire from cooperating with the third party. For example, in Tab.2.3, we
have calculated tripartite dependence of the probability distributions {Psame}, {Podd} and
states such GHZ and W. We will mention different examples through out the chapter in
order to demonstrate different characteristics of this new quantifier.

Strong subadditivity [18] indicates that the conditional mutual information is non-
negative. Hence,

D3 ≥ 0. (2.9)

The value of D3 for a system can easily be calculated from either of the relations men-
tioned above Eq.(2.7). This above condition is also true for any variable that is not correlated
with the rest of the system. The equality holds if and only if there exists a variable such that
already a subset of the remaining parties contains all available information about it. For
example, we assume that D3 = 0 and the conditional mutual information corresponding to
which it vanishes is I(X1 : X2|X3). Then, by definition, we have

I(X1 : X2|X3) = I(X1 : X2X3)− I(X1 : X2) = 0

=⇒ I(X1 : X2X3) = I(X1 : X2) (2.10)

Eq. (2.10) means that all accessible information about X1 is already available to X2 without
any cooperation from X3. On the other hand, if D3 is positive then any two parties always
gain through cooperation when accessing the knowledge about the remaining subsystem
and D3 gives us the minimal gain over the choice of parties.

For example, we here present D3 of following classical probability distributions:

We take an equal mixture of three correlated binary random variables described by joint
probability distribution, {Psame}, given by,

p(000) = 1
2

p(111) = 1
2 .
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For this probability distribution, we have,

I(Xi : Xj |Xk) = H(Xi|Xk)−H(Xi|XjXk) = 0 (2.11)

Therefore, this distribution admits D3 = 0. One should note that, all the variables here are
however correlated with each other as for a given instance, if the first party’s outcome is 0
(1), then the remaining parties must also produce the outcome 0(1).

Another interesting example in this context is {Peven} which corresponds to the follow-
ing joint probability distribution:

p(000) = 1
4

p(001) = 0
p(010) = 0
p(011) = 1

4

p(100) = 0
p(101) = 1

4

p(110) = 1
4

p(111) = 0.

In this case, we have,

I(Xi : Xj |Xk) = H(Xi|Xk)−H(Xi|XjXk) = 1 (2.12)

Therefore, we have D3 = 1. These examples will be important later in Subsec. 2.2.3.

2.1.2 Multipartite dependence (N > 3)

With increasing number of parties the conditions that needs to be considered increases.
For example, in the case of four-partite scenario, {X1, X2, X3, X4}, we have three levels of
dependence. Firstly, say,X1 can be independent of any other variables. ThenP (X1|X2, X3, X4) =

P (X1). Next, X1 can be dependent to only one of the remaining variable, say X2, giv-
ing P (X1|X2, X3, X4) = P (X1|X2). Dependence can then stretch to two of the remain-
ing parties, say X2 and X3, yielding P (X1|X2, X3, X4) = P (X1|X2, X3). And finally, X3

can depend on all the remaining parties. In each case, the gain from cooperation can be
quantified in terms of the respective mutual information. Therefore, the four-partite de-
pendence, in analogy to the tripartite case, will then be the least information gained by
cooperation among any three parties about the remaining party. Obviously, the four-partite
dependence must be greater than any other kind of cooperation among a subset of the
remaining parties, e.g., I(X1 : X2X3X4) − I(X1 : X2X3) ≥ 0. However, the cooper-
ation between any pair brings information gain about the two remaining variables, e.g.,
I(X1X2 : X3X4)− I(X1X2 : X3) must be positive. When these conditions hold, the system
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exhibits mutual dependence in all possible scenario and for these conditions to be satisfied,
we need, for the former, I(X1 : X4|X2X3) > 0 and I(X1X2 : X4|X3) > 0 for the latter.
Hence, D4 will simply be the minimum of these two conditional mutual informations over
all permutations of subsystems.

DN = min
perm

[I(X2 : X4|X3), I(X1 : X4|X2X3)]

= I(X1 : X4|X2X3), (2.13)

where we use the chain rule for mutual information and its non-negativity. And the min-
imum is taken over all permutations of the subsystems. Therefore, minimization over the
conditional mutual information between two variables is sufficient to compute D4. And
this step simplifies the computation of multipartite dependence significantly.

Following the similar lines, we can define the notion of multipartite dependence for
arbitrary N number of parties which we will call N -partite dependence

DN = min
perm

I(X1 : X2|X3 . . . XN ), (2.14)

where the minimum is taken over all permutations of the subsystems.

Also, let us generalize the multipartite dependence for arbitrary N > 2 in the quantum
scenario. For an arbitrary N -partite state ρ, we have,

DN (ρ) = min
i,j

I(Xi : Xj | {Xk}︸ ︷︷ ︸
N−2

), (2.15)

where, i, j = 1 . . . N and i ̸= j and

{Xk}︸ ︷︷ ︸
N−2

= {X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , XN}.

and

I(Xi : Xj | {Xk}︸ ︷︷ ︸
N−2

)

= S(Xi| {Xk}︸ ︷︷ ︸
N−2

) + S(Xj | {Xk}︸ ︷︷ ︸
N−2

)− S(XiXj | {Xk}︸ ︷︷ ︸
N−2

)

= S(Triρ) + S(Trjρ)− S(Trijρ)− S(ρ). (2.16)

Triρ denotes a partial trace over the subsystem i.
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DN can be calculated by computing and comparing
(
N
2

)
values, i.e., scales polynomially

as N2, whereas for permutationally invariant systems it is straightforward.

2.1.3 Pure states

Multipartite dependence can be significantly simplified when only pure states are con-
sidered. In this case, clearly, S(ρ) = 0. Moreover, from Schmidt theorem we know that,
the non-zero eigenvalues of the reduced states are equal. Therefore, both the subsystems
of a pure state have the same entropy: S(Triρ) = S(ρi) for ρ = |Ψ⟩⟨Ψ|. Then for any pure
quantum state |Ψ⟩, the dependence can be simplified as

DN (|Ψ⟩) = min
i,j

[
S(ρi) + S(ρj)− S(ρij)

]
, (2.17)

where
ρi = Tr1...(i−1)(i+1)...Nρ (2.18)

is the state of the system after removing all but the i-th particle. Hence, DN (|Ψ⟩) is given by
the smallest quantum mutual information of the two-partite subsystems,

DN (|Ψ⟩) = min
i,j

I(ρi : ρj). (2.19)

Its there the trade-off relation between the quantum mutual information for different two-
particle subsystems of a pure global state and the definition of DN where the smallest con-
ditional mutual information is chosen.

2.1.4 Relevant Examples

2.1.4.1 Dependence of GHZ state

The bound for the dependence of pure states can be achieved by theN -qudit GHZ state,

|ψ⟩NGHZ =
1√
d
(|0 . . . 0⟩+ · · ·+ |d− 1 . . . d− 1⟩). (2.20)

The value can easily be calculated using Eq. (2.17).The two-particle subsystems of the GHZ
state are of the form ρ12 =

∑d−1
j=0

1
d |jj⟩⟨jj| and their mutual information equals 1. Because

separable states have non-negative quantum conditional entropy Si|j(ρij) ≥ 0 [104], the
quantum mutual information is bounded by 1 whenever the state ρij is separable. There-
fore, their mutual information will also bounded as,

Ii:j(ρij) = S(ρi)− Si|j(ρij)

≤ S(ρi)

≤ 1 (2.21)
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2.1.4.2 Dependence of Dicke states

Dicke states [105] are key resources in the regime of combinatorial optimization quan-
tum algorithms and also have an widespread application in quantum networking [106],
quantum game theory [107], multiparty quantum communication [108, 109, 110], and quan-
tum metrology [111, 112, 113].
The N -partite Dicke state |De

N ⟩ is an equal-weight superposition of all N qubit states with
e excitations and can be expressed in the following form,

|De
N ⟩ =

(
N

e

)− 1
2 ∑

l

|1⟩⊗e ⊗ |0⟩⊗(N−e), (2.22)

where |0⟩ is the ground state while |1⟩ is the excited state and l denotes the sum over all
possible permutations. Any one-partite reduced density matrix ρi of the state |De

N ⟩ has the
following form,

ρi =

(
N

e

)−1(
e|1⟩⟨1|+ (N − e)|0⟩⟨0|

)
. (2.23)

Therefore, all one-partite reduced density matrices ρi have the two non-zero eigenvalues
given by,

e/N, (2.24a)

(N − e)/N. (2.24b)

And on the other hand, all two-partite reduced states ρij also have a symmetry and reduces
to the following state,

ρij =

(
N

e

)−1

(|00⟩⟨00|+
1∑′

m,t=0

|mt⟩⟨mt|) for e = 1, (2.25)

ρij =

(
N

e

)−1

(|11⟩⟨11|+
1∑′

m,t=0

|mt⟩⟨mt|) for e > 1. (2.26)

and therefore have only at most three non-vanishing eigenvalues,

e(e− 1)/N(N − 1), (2.27a)

2e(N − e)/N(N − 1), (2.27b)

(N − e− 1)(N − e)/N(N − 1). (2.27c)
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Therefore, DN for a Dicke state is given by

DN (D
e
N ) = S(ρi) + S(ρj)− S(ρij)

=

(
N

e

)−1[
−

2(N − 1)! log
(
e
N

)
(e− 1)!(N − e)!

− 2

(
N − 1

e

)
log
(
1− e

N

)
+

(
N − 2

e− 2

)
log

((
N−2
e−2

)(
N
e

) )+ 2

(
N − 2

e− 1

)
log

(
2
(
N−2
e−1

)(
N
e

) )

+

(
N − 2

e

)
log

((
N−2
e

)(
N
e

) ) ]. (2.28)

We can alternatively represent e as a function of the number of parties, e = N/k where
k ∈ R. In the limit of N → ∞, the N -dependence then converges to a finite value,

lim
N→∞

DN (D
e
N ) = 2(k − 1)/k2. (2.29)

The maximally achievable dependence of 1/2 is reached for e = N/2. For an arbitrarily
chosen constant e (e.g., for the W state, e = 1), DN (D

e
N ) vanishes for N → ∞.

A comprehensive list of dependencies within standard classes of quantum states is
given in Tab. 2.3.

2.1.5 k-partite N -Dependence

DN is defined operationally with respect to the information gain from cooperation when
N − 1 parties are divided into two different sets and their goal is to predict the value of the
N th patry. Within the N -partite system, there is also a possibility to exclude one or more
parties, and define a similar cooperation scenario within the remaining subsystems. Hence
we extend the definition of DN further to k-partite dependencies, Dk

N , within an N -partite
system for all 1 ≥ k ≥ N − 3. Dk

N therefore quantifies the dependency among any k-parties
and the definition of Dk

N is driven from the fact that it is DN for any k-partite subsystem.
Dk
N can be expressed as

Dk
N = min

Π
min

perm(i1,...,ik)
I(Xi1 : Xi2 |Xi3 . . . Xik) (2.30)

where the Π is the set of all the strings {ii, . . . , ik}, of length k for k ≤ N − 3 by choosing k
out of N parties in every possible combination. We call k, the rank of multipartite dependence.

It turns out that Dk
N can be non-zero even for the states whose DN vanishes (and also

vice versa). In other words, there are states for which one can not gain any information
about one party by cooperating among all other parties. However, they can gain some
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information if they cooperate in groups of k subsystems. In fact Dk
N is the same as DN

given that N − k number of parties are traced out from the initial N -partite states, of course
considering different permutations over sites that are traced out, and then calculated for
N = k. In Tab. 2.1 we present such examples where DN for the states are zero but Dk

N are
not necessarily so. Such examples are the so called linear cluster and the ring cluster states
and some of the AME states, i.e., the absolutely maximally entangled states which are the
⌊n/2⌋-uniform states of d dimensions [114]. In Tab.2.3 presents all the examples for which
DN and Dk

N were calculated.

N state D3 D4 D5 D6

4 L4 1 0 - -
5 R5 1 1 0 -
5 AME(5,2) 1 1 0 -
6 AME(6,2) 0 2 0 0

Table 2.1: Values of the dependence for several quantum states for which DN do not exist.
Lk and Rk stands for the linear cluster and the ring cluster states of k qubits (in general,
the graph states are defined by the elements of the stabilizer group for a particular linear or
ring graphs, as shown in [115]), andAME(n,k) states are Absolutely Maximally Entangled
states.

2.2 General Properties

2.2.1 Extremal values of dependence

2.2.1.1 Classical Distribution

In this section we present the bounds for DN considering various scenario. First we
consider the classical distributions. In tripartite case, I(X1 : X2|X3) has the form,

I(X1 : X2|X3) = H(X1|X2)−H(X1|X2X3)

≤ H(X1|X2)

= H(X1X2)−H(X2)

≤ H(X1) +H(X2)−H(X2)

≤ H(X1)

≤ 1 (2.31)

Here we have used the fact that H(X1X2) ≤ H(X1) +H(X2). As I(X1 : X2|X3) ≤ H(X1),
the classical mutual information cannot exceed the value of entropy of each variable and
therefore, additional conditioning do not change it. Therefore, the maximum value that can
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be achieved by D is also unity. The same is true for any number of parties and one can think
of X3 as a collection of N parties. Therefore, for classical distributions,

Dclassical
N ≤ 1. (2.32)

The bound presented here is tight and in Tab. 2.3 we present examples where it is shown
that this bound holds for both odd and even distribution.

2.2.1.2 Bounds on mutual N -partite dependence for quantum states

Now we will look at the case of quantum states and derive a bound for DN . We will
begin with pure state and move to mixed states. Interestingly, we will show that the mixed
states’ bound exceeds the pure states’ bound.

2.2.1.3 Bounds for pure states

We know,

DN (|ψ⟩) = min
i,j,k

I(Xi : Xj | Xk︸︷︷︸
N−2

)

= min
i,j

S(ρi) + S(ρj)− S(ρij). (2.33)

Therefore, to find the bound, we need to find the smallest mutual information I(ρi : ρj),
where ρi, ρj are subsystems of the pure state ρ. The sum of such two above-mentioned
mutual informations that have one common subsystem satisfies the following:

I(ρi : ρj) + I(ρj : ρk) = S(ρi) + S(ρj)− S(ρij) + S(ρj) + S(ρk)− S(ρjk)

≤ 2S(ρj)

≤ 2, (2.34)

where the first inequality follows from the strong subadditivity of entropy

S(ρi) + S(ρk) ≤ S(ρij) + S(ρjk). (2.35)

Hence, we find a monogamy relation with respect to mutual information,

I(ρi : ρj) + I(ρj : ρk) ≤ 2 (2.36)

From this relation we can clearly see that minimum of two different mutual information
is bounded by 2 and then the smaller one will necessarily be bounded by 1. As DN is the
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minimum of the mutual information, we have the value of DN for pure states bounded by,

Dpure
N ≤ 1. (2.37)

Having this bound, we may ask the following question what happens if a state for which
DN ≤ 1? Are there any local measurements on the subsystems with classical outcomes hav-
ing conditional mutual information equal to DN? The answer to this question is negative.
We have optimized the conditional informations over local measurements for Dicke states
which do not attain the upper bound to Dpure

N with N = 3, 4 and 0 < e < N , and observed
that the values obtained are always smaller than DN .

2.2.1.4 Bound on mixed states

In order to find the bound of DN for mixed states we first consider subadditivity relation
of quantum entropy for the reduced quantum states. From this we get

S(Trjρ) ≤ S(Trijρ) + S(ρi), (2.38)

S(Triρ)− S(ρi) ≤ S(ρ), (2.39)

where ρi is again the reduced state of the i-th particle. Therefore, we can use the above
inequalities to write the following form of DN

DN (ρ) ≤ S(Triρ)− S(ρ) + S(Trjρ)− S(Trijρ)

≤ S(ρi) + S(ρi)

≤ 2. (2.40)

Therefore,
Dmixed
N ≤ 2. (2.41)

After finding this bound, we can say that, overall, the DN for quantum states is bounded
by,

Dquantum
N ≤ 2. (2.42)

This bound is tight and can be achieved by mixed states mentioned in the next subsec-
tion. It is then worth investigating that for which mixed states does DN attains its quan-
tum bound. Interestingly enough, we find that the states for which this maximal bound is
achievable are the so-called (N − 1)-uniform states. We will prove this statement bellow.

2.2.1.5 Qudit state maximizing DN

We start with the simplest case of d = 2 to determine the optimal states that provides
us with the bound given in Eq. 2.42. The maximum DN is given by the so-called k-uniform
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states, in particular for k = N − 1. Entropy of an N -qubit N − 1-uniform state with even N ,
ρ
(2)
N , is given by,

S(ρ
(2)
N ) = −

2N∑
j=1

ηj log2 ηj

= −2N−2.
1

2N−2
. log2

1

2N−2

= N − 2. (2.43)

For an (N − 1)-uniform state, all reduced density matrices are proportional to identity ma-
trices. Therefore,

S(Triρ
(2)
N ) = N − 1, (2.44a)

S(Tri,jρ
(2)
N ) = N − 2. (2.44b)

Therefore, for N even

DN (ρ
(2)
N ) = S(Triρ

(2)
N ) + S(Trjρ

(2)
N )− S(Tri,jρ

(2)
N )− S(ρ

(2)
N ) = 2. (2.45)

The same argument can be extended to the qudit case. Therefore, to find the maximal
DN for arbitrary d, we consider the N − 1-uniform quantum state of N qudits. For N ≥ 3

and also being a multiple of d, such a state can be defined in terms of common eigenstates
of the following generators,

G
(d)
1 =

N⊗
i=1

X(d), (2.46)

G
(d)
2 =

N⊗
i=1

Z(d). (2.47)

Here, the generators are comprised of the so-called d-dimensional Weyl-Heisenberg matri-
ces given by,

X(d) =
d−1∑
j=0

|j⟩⟨j + 1|, (2.48)

Z(d) =
d−1∑
j=0

ωj |j⟩⟨j|, (2.49)
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where ω = ei2π/d. And the state can then be written as,

ρ
(d)
N =

1

dN

d−1∑
i,j=0

(G
(d)
1 )i(G

(d)
2 )j . (2.50)

The above mentioned states belong to a special class of states which has been thoroughly
discussed in the previous chapter, i.e., the class of k-uniform mixed states defined in chap-
ter 1, where k = N − 1.

For even N , the state ρ(d)N has dN−2 eigenvalues equal to 1
dN−2 . Therefore the entropy

S(ρ
(d)
N ) is equal to

S(ρ
(d)
N ) = −

dN∑
j=1

ηj logd ηj

= −dN−2.
1

dN−2
. logd

1

dN−2

= N − 2. (2.51)

Also, for the states being (N −1)-uniform, all reduced density matrices are proportional
to identity matrices giving

S(Triρ
(d)
N ) = N − 1, (2.52a)

S(Tri,jρ
(d)
N ) = N − 2. (2.52b)

Therefore, for N even

DN (ρ
(d)
N ) = S(Triρ

(d)
N ) + S(Trjρ

(d)
N )− S(Tri,jρ

(d)
N )− S(ρ

(d)
N ) = 2. (2.53)

In the case of N odd, however, the state ρ(d)N has dN−1 eigenvalues equal to 1
dN−1 . Therefore,

S(ρ
(d)
N ) = −

dN∑
j=1

ηj logd ηj

= −dN−1.
1

dN−1
. logd

1

dN−1

= N − 1. (2.54)

And using the values from Eq. (2.52) we get DN for (N − 1)-uniform states with odd N ,

DN (ρ
(d)
N ) = S(Triρ

(d)
N ) + S(Trjρ

(d)
N ) (2.55)

−S(Tri,jρ
(d)
N )− S(ρ

(d)
N ) = 1.
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We will now show that the states achieving the bound for DN must necessarily be of a class of
(N − 1)-uniform states.

To do so, let us recall that the requirement for DN to attain this maximum value is the
following,

DN = I(X1 : X2|X3...XN )

= I(X1 : X2X3...XN )− I(X1 : X3...XN )

= 2, (2.56)

The definition of DN states that we minimize over all permutations. Therefore, the same
equation holds for all permutations of subsystems.

Due to subadditivity, the only way to satisfy (2.56) is to have zero mutual information
corresponding to a N − 1-qudit reduced state, say after reducing the jth subsystem. Then
we have,

I(Xi : X1 . . . Xi−1Xi+1 . . . Xj−1Xj+1 . . . XN ) = 0, (2.57a)

I(Xi : XjX1 . . . Xi−1Xi+1 . . . Xj−1Xj+1 . . . XN ) = 2. (2.57b)

From Eq. (2.57a) we can conclude that the state ρ(d)N is biseparable when the jth party is
removed i.e.,

ρ1...N−1 = ρ1...Xj−1 ⊗ ρXj+1...N , (2.58)

which also holds for all permutation of indices. After tracing out all but the j − 1th and
j + 1th subsystem, we get,

ρred = ρj−1 ⊗ ρj+1, (2.59)

which implies that the bipartite reduced state is a product of the corresponding 1-partite
reduced states. It follows that any N − 1 particle subsystem is described by a simple tensor
product, e.g.,

ρ13...N = ρ1 ⊗ · · · ⊗ ρj−1 ⊗ ρj+1 ⊗ · · · ⊗ ρN . (2.60)

Now, using Eq. (2.57b) we can write

S(Xi)− S(Xi|X1 . . . Xi−1Xi+1...XN ) = 2. (2.61)

Since for the quantum conditional entropy we have

−S(Xi|X1 . . . Xi−1Xi+1...XN ) ≤ S(Xi), (2.62)
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the bound Eq. (2.42) is achieved if

2 = S(Xi)− S(Xi|X1 . . . Xi−1Xi+1...XN )

≤ S(Xi) + S(Xi),

i.e., for S(Xi) = 1. Hence, taking into account (2.60), allN−1 particle subsystems are maxi-
mally mixed, i.e., the total state is (N −1)-uniform. Therefore quantum mutual information
is bounded by 2 and this also serves as the bound on DN optimized over quantum states
which is achieved by the N − 1-uniform states with even N . The optimal states have the
following form:

ρmax =
1

2N

σ⊗N0 + (−1)N/2
3∑
j=1

σ⊗Nj

 , (2.63)

where σj are the Pauli matrices and σ0 is the 2 × 2 identity matrix. ρmax is permutation-
ally invariant and therefore gives rise to perfect correlations or anti-correlations when all
observers measure locally the same Pauli observable. Such states are often called as the
generalized bound entangled Smolin states [116, 117]. These states are useful quantum
resource for multiparty communication schemes [118] and were experimentally demon-
strated in Refs. [119, 120, 121, 122, 123, 124].

2.2.2 Key properties of DN

We will now show what aspects of correlations and mutual dependencies are grasped
by DN . We recall the natural postulates that were formulated in Ref. [15, 24] in order to char-
acterise the measures of genuinely multipartite correlations for both classical and quantum
scenario. We will investigate how DN corresponds to those postulates.

The first postulates corresponds to the question that what happens if an auxiliary sys-
tems is added to the N -partite state under consideration. In case of multipartite correla-
tions, such addition of an auxiliary party in a product state that resulting in anN +1 partite
state does not have genuine n-partite correlations either. The same is true for DN .

Property 1: If DN = 0 and one adds a party in a product state then the resulting (N +1)-party
state has DN = 0.

Proof. The definition of DN states that we are minimizing the conditional mutual informa-
tion over all N -partite subsystems of the total (N + 1)-party state. By assumption, DN is
zero that implies that the minimum value of the conditional mutual information is zero as
well. Therefore, the dependence after adding an auxiliary system also remains zero. In
other words, if the cooperation among N − 1 parties within the N -partite system does not
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help in gaining additional knowledge about any other remaining party, then the coopera-
tion with any additional independent system which was uncorrelated with all of them, will
not add up to the knowledge either.

Next we consider the scenario of splitting one party into two and send one part of the
system to a new party who is not correlated with the remainder of the system.

Property 2: If DN = 0 for an N -partite state and one subsystem is split with two of its parts
placed in different laboratories then the resulting (N + 1)-party state has DN+1 = 0.

Proof. First of all, we consider a tripartite case where D3 = 0. Specifying D3 = 0 however
does not indicate which conditional mutual information in Eq. (2.8) vanishes. Now we
assume that the third party are divided in two parts labeled as X3 and X4, producing a
four-partite system and one of them is sent to a spatially separated laboratory. Now, if the
mutual information that vanishes is where the variables X3 and X4 of the third party enter
in the condition, then this mutual information is also minimizing D4, and hence the latter
vanishes.

I(X1 : X2|X3) = 0

=⇒ I(X1 : X2|X3X4) = 0

Another possibility is that the variables of the third party enter outside the condition,
e.g., the vanishing conditional mutual information could be I(X1 : X3X4|X2). From the
chain rule for mutual information we get,

I(X1 : X4|X2X3) ≤ I(X1 : X3X4|X2) = 0 (2.64)

This rule can easily be followed from the strong subadditivity of quantum entropy:

I(X1 : X4|X2X3) ≤ I(X1 : X3X4|X2)

=⇒ S(X1X2X3) + S(X4X2X3) − S(X1X2X3X4)− S(X2X3)

≤ S(X1X2) + S(X3X4X2) − S(X1X2X3X4)− S(X2)

=⇒ S(X1X2X3)− S(X2X3) ≤ S(X1X2)− S(X2)

=⇒ S(X1X2X3) + S(X2) ≤ S(X1X2) + S(X2X3)

As conditional mutual information is always non-negative, we therefore conclude D4 = 0.
For the N -partite case, same proof is applicable with increasing number of variables in the
conditions.

Lastly, we investigate the property of DN under local operations. In the case of gen-
uine multipartite correlations, local operations and unanimous postselection cannot gener-
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ate any genuine N -partite correlations that was not present in the initial state. We will see
that this monotonicity property does not hold for DN , making it distinctive from a measure
of genuine multipartite correlations. This also has a clear interpretation: local operations
that uncorrelate a given subsystem from the others may lead to information gain when the
less correlated party cooperates with other parties

Property 3: DN can increase under local operations. We denote the quantities computed after
local operations with a bar , e.g., DN , Xi etc. Then the N -partite dependence, DN , is bounded by,

DN ≤ DN + I(X1X2 : X3 . . . XN )− I(X1X2 : X3 . . . XN ), (2.65)

where systems X1 and X2 are the ones minimizing DN before the operations were applied, i.e.,

DN = I(X1 : X2|X3 . . . XN ).

Proof. We consider a N -partite state ρ. Then general local operations (CPTP maps) is per-
formed on the state and the resultant state is ρ. After that we consider the lemma character-
izing the lack of monotonicity of conditional mutual information under local operations. It
states the following:
Lemma 1: The following inequality holds:

I(X1 : X2|X3 . . . XN ) ≤ I(X1 : X2|X3 . . . XN )

+ I(X1X2 : X3 . . . XN )− I(X1X2 : X3 . . . XN ), (2.66)

where bars denote subsystems transformed by arbitrary local CPTP maps. The conditional mutual
information is monotonic under operations on systems not in the condition [125], i.e.,

I(X1 : X2|X3 . . . XN ) ≤ I(X1 : X2|X3 . . . XN ) (2.67)

Now we continue as follows:

I(X1 : X2|X3 . . . XN ) + I(X1X2 : X3 . . . XN )

= I(X1 : X2X3 . . . XN ) + I(X2 : X1X3 . . . XN )− I(X1 : X2)

≤ I(X1 : X2X3 . . . XN ) + I(X2 : X1X3 . . . XN )− I(X1 : X2)

= I(X1 : X2|X3 . . . XN ) + I(X1X2 : X3 . . . XN ),

where the first equation is obtained by manipulating entropies such that the mutual infor-
mations containing barred subsystems come with positive sign, next we used the data pro-
cessing inequality and in the last step we reversed the manipulations on entropies. The data
processing inequality states that for a given set of variable {X,Y, Z} that form a Markov
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Chain given by X → Y → Z, we have

I(X : Y ) ≥ I(X : Z). (2.68)

Therefore the above lemma is proved.

Coming back to the proof of property 3 we now rewrite DN

DN = I(X1 : X2|X3 . . . XN )

≥ I(X1 : X2|X3 . . . XN )− I(X1X2 : X3 . . . XN ) + I(X1X2 : X3 . . . XN )

≥ DN − I(X1X2 : X3 . . . XN ) + I(X1X2 : X3 . . . XN ).

Here in the first line we denote the subsystems such that the conditional mutual infor-
mation I(X1 : X2|X3 . . . XN ) gives DN . Then, the first inequality follows from Lemma 2.2.2.
Finally the second inequality comes from the fact that I(X1 : X2|X3 . . . XN ) is bounded by
DN . We also provide an example in Sec. 2.3.1 where given a three-qubit state there exist
local measurements with outcomes producing D3 higher than that of the corresponding
initial quantum states.

2.2.3 Partial extension of classical interpretations

In classical information theory I(Xi : Xj | {Xk}︸ ︷︷ ︸
N−2

) is interpreted as the expected gain in in-

formation about the outcome of a random variableXi by another party when rest of (N−2)

number of parties are cooperating with the latter. The agents could measure their subsys-
tems obtaining some particular outcomes and by analysing both outcomes together they
may infer the outcome of the third agent better that what they would have done individu-
ally (and this information gain is quantified by DN ). This interpretation can be extended to
quantum systems where the DN values do not exceed unity, i.e., for the pure states.

We have also considered to provide an comparison between the classical and quantum
distributions. To do so, we take the example of the joint probability distribution, {Psame}
given in Subsec.2.1.1. As we know, this distribution admits D3 = 0, however, all the vari-
ables here are correlated with each other. In analogy, we take an example in a quantum
scenario, the so-called GHZ state,

|ψ⟩3GHZ =
1√
2
(|000⟩+ |111⟩). (2.69)
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We calculate,

S(|ψ⟩3GHZ) = 0,

S(Tri[|ψ⟩3GHZ ]) = 1 for i ∈ {1, 2, 3},

S(Trij [|ψ⟩3GHZ ]) = 1 for {i, j} ∈ {1, 2, 3}.

=⇒ D3 = 1

The value of dependence is improved here due to quantum coherence. This is because of
the fact that we can measure the GHZ state in a different basis and the classical dataset
that we obtain will gives rise to D3 = 1. The relevant basis is to measure each qubit along
1√
2
(|0⟩ ± |1⟩) directions. By doing the measurement in the appropriate basis, we find the

classical dataset, {Peven} (defined in Subsec. 2.1.1) which indeed leads to D3 = 1.

As another example can be constructed from the classical distribution,

p(100) = 1
3

p(010) = 1
3

p(001) = 1
3 .

This distribution gives rise to D3 = 2
3 . However, if we consider the quantum counterpart,

i.e., the quantum superposition |W ⟩ = 1√
3
(|100⟩ + |010⟩ + |001⟩), then DN has a rather

non-trivial value which is given by D3 = 0.9183. It is important to remark that this result
doesn’t necessarily imply that there exists a set of local measurements on |W ⟩ which yields
a classical distribution with higher dependence. In fact, by optimising the dependence of
local measurement results:∑

i,j,k

P 1
i ⊗ P 2

j ⊗ P 3
k |W ⟩⟨W |P 1

i ⊗ P 2
j ⊗ P 3

k , (2.70)

where, P ki = 1
2(1 + v⃗ · σ⃗) is a single qubit projective measurement, the D3 is found to be

equal to the classical value 2
3 . It is therefore natural to also consider joint measurements on

two parties. Hence, we have therefore computed the post-measurement state∑
j,k

Π12
j ⊗Π3

k|W ⟩⟨W |Π12
j ⊗Π3

k, (2.71)

where Π12
j are the rank-one projectors on the first two particles and correspondingly Π3

k

are for the last qubit. Indeed, when we optimise over these projectors the dependence
of the post-measurement state precisely matches the value computed for the W state, i.e.
D3 = 0.9183. All these dependence values are summarized in Tab. 2.2. These examples may
suggest that perhaps the interpretation of the value of DN for quantum states (whenever
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N state D3 D4 D5 D6

3 {Psame} 0 - - -
3 {Peven} 1 - - -
3 GHZ 1 - - -
3 W 0.9183 - - -

Table 2.2: DN values for different probability distributions and corresponding quantum
states. {Psame} stands for P (000) = P (111) = 1

2 and {Peven} for P (000) = P (110) =
P (101) = P (011) = 1

4 .

not exceeding unity) can be interpreted as the highest dependence of the classical dataset
that can be obtained by performing measurements on the quantum state that include single
party measurements as well as joint party measurements. However, it turns out that this is
not the case. We have found evidences where we show that given a four-qubit state there
exist local measurements with outcomes producing D4 higher than that of the correspond-
ing quantum states.

2.3 Comparison with other quantifiers of correlations

2.3.1 N -dependence versus N -partite correlations

We will now compare between multipartite dependence and a typical measure of multi-
partite correlations. Making a continuation from Subsec. 2.2.3, we provide a simple example
that provides us enough intuition in support to the aforementioned fact. We consider three
classical binary random variables that are described by the joint probability distribution
{Psame}. As we have pointed out previously, these variables are correlated. This can be
proved by using the quantifiers introduced in Refs. [85, 24]. However, the knowledge of,
say, the first party about the third party does not increase if the first observer is allowed to
cooperate with the second one. By examining her data, the first observer knows the vari-
ables of both remaining parties and any cooperation with one of them does not change this.
There is no information gain and hence this distribution has vanishing tripartite depen-
dence.

Another such example can be considered which follows the joint probability distribu-
tion {Peven}. In this case, any two variables in this distribution are completely uncorrelated
in a sense that for a given value of one variable, the other variable can acquire its value at
random. However, any two parties can also perfectly decode the value of the remaining
variable as we notice, given the value of any two variable to be known, we can guess the
value of the third variable with certainty. If two variable has the same outcome, then the
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third variable’s outcome is always 0, whereas if the two variable get two different outcome,
then the third variable will have outcome 1 with certainty. Therefore, the gain from coop-
eration is 1 and so is the value of D3. This quantifier is thus very good for identifying the
suitability of a system for secret sharing, where the secret could be at any party.

In the previous section, we have discussed the general properties of multipartite depen-
dence. Here we show how do they relate to the postulates that any genuine multipartite
correlation measure [15, 24] must satisfy. We will show contradiction to one of postulates
indicating that despite of being a quantifier of certain multipartite feature of a system, DN in
fact does not quantify the multipartite correlation that is defined in terms of the postulates
given in Refs. [15, 24]. Therefore DN cannot be termed as a measure of multipartite cor-
relations. The set of postulates that a quantifier of genuinely N -partite correlation should
satisfy are as follows:

Postulate 1. If an N -partite state does not have genuine N -partite correlations and one
adds a party in a product state, then the resulting N +1 partite state does not have genuine
N -partite correlations.

Postulate 2. If an N -partite state does not have genuine N -partite correlations, then local
operations and unanimous post-selection (which mathematically correspond to the opera-
tion Λ1⊗Λ2⊗· · ·⊗ΛN , whereN is the number of parties and each i is a trace non-increasing
operation acting on the ith party’s subsystem) cannot generate genuine N -partite correla-
tions.

Postulate 3. If an N -partite state does not have genuine N -partite correlations, then if
one party splits his subsystem into two parts, keeping one part for himself and using the
other to create a newN+1st subsystem, then the resultingN+1-partite state does not have
genuine N + 1-partite correlations.

In Subsec. 2.2.2, we show that DN satisfies the first and third postulates as they are
clearly satisfied for having properties (i) and (ii) respectively.

However, DN evidently deviates from postulate 2. The measures of multipartite cor-
relations are additionally expected to be monotonic under local operations. However this
condition is often relaxed in practice, e.g., for quantum discord [103, 126, 127]). For DN ,
the monotonicity property does not hold in general. Although, property (iii) puts a bound
on its maximal violation. For this postulate to hold, we must have DN (ρ) ≤ DN (ρ) where

ρ = Λ1 ⊗ Λ2 ⊗ · · · ⊗ ΛNρ.
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For this constraint to hold, it is necessarily required to be translated to the conditional mu-
tual information, i.e., min I(ρ) ≤ min I(ρ). This is not true in general and here we provide
an example where D3 increases under local operation on the system in the condition.

We consider a classical state,

ρ =
1

2
|000⟩⟨000|+ 1

8
|101⟩⟨101|+ 1

8
|110⟩⟨110|+ 1

4
|111⟩⟨111| (2.72)

has its 3-dependence equals D3(ρ) = I(X2 : X3|X1) = 0.06. This result also imples that the
conditioning on X1 gives the smallest conditional mutual information. Now we pass this
state through an amplitude-damping channel. The channel can be represented in terms of
the Kraus operators [18] given by,

K0 =

(
0 1/

√
2

0 0

)
,

K1 =

(
1 0

0 1/
√
2

)
(2.73)

which applies on subsystem X1 and produces some state denoted by ρ. We then computed
D3 for this state. After passing through the channel, the state has D3(ρ) = I(X1 : X2|X3) =

I(X1 : X3|X2) = 0.19 which, in turns, proves that in this case,

DN (ρ) ≥ DN (ρ).

Therefore, it is proved that postulate 2 does not hold for multipartite dependence in general.
Moreover, it also changes in the conditioned subsystem that minimizes the dependence.
Therefore, it is evident that local operation on X1 has increased the information I(X2 :

X3|X1) above the other two conditional mutual informations. Also, from property (iii) we
see that,

DN ≤ DN + I(X2X3 : X1)− I(X2X3 : X1). (2.74)

This inequality must hold and the value of the right hand side is 3
4 . Therefore this example

also proves the validity of the bound provided in property (iii). Moreover, it also has a clear
interpretation that the local operations that uncorrelate a given subsystem from the others
may lead to information gain when the less correlated party cooperates with other parties.

The conditional mutual information between variables X1 and X2 is monotonic under
local operations on subsystems not in the condition [125]. But we have proved that the
following inequality is satisfied under local operations on arbitrary subsystem (being the
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origin of property (iii)):

I(X1 : X2|X3 . . . XN ) ≤ I(X1 : X2|X3 . . . XN )

+ I(X1X2 : X3 . . . XN )− I(X1X2 : X3 . . . XN ). (2.75)

The last two terms is non-negative all together due to the data processing inequality and
it quantifies how much the local operations have uncorrelated the variables in the condi-
tion X3 . . . XN from the variables X1X2. This sets the upper bound to the lack of mono-
tonicity of the conditional mutual information. This lack of monotonicity under local op-
erations has been discussed in the context of complexity measures for multipartite sys-
tems [128, 129, 130]. The measures introduced in the above mentioned references involve a
different concept of correlation. Such correlations are interpreted in terms of the number of
particles that have to be coupled in the Hamiltonian for which the discussed state is a ther-
mal state. However, these measures are of similar spirit to the dependence as they capture
the improvement in approximating a given distribution when more and more particles are
coupled in the Hamiltonian.

2.3.2 Dependence without correlations

We now investigate the relationship between multipartite dependence and multipartite cor-
relations and it turns out that multipartite dependence can exist in absence of multipartite
correlations and vice versa. The cluster states is one such example where the state give rise
to non-vanishing N -partite correlations which is defined by non-zero N -partite correlation
tensor, while DN vanishes. Therefore N -partite correlations can exist without N -partite de-
pendence.

Conversely, the dependence can also be non-zero even in states with no N -partite cor-
relations. To demonstrate this, we consider the state,

ρnc =
1

2
|D1

N ⟩⟨D1
N |+

1

2
|DN−1

N ⟩⟨DN−1
N |, (2.76)

where, Dk
N is the N -partite Dicke state with k- excitations. This state has a non-vanishing

DN value that has been provided in Tab. 2.3. Interestingly, this state, despite of being gen-
uinely entangled, has noN -partite correlations [84]. This is a proof that multipartite depen-
dence is distinct from multipartite correlations as quantified by the correlation tensor of the
highest rank.

2.3.3 Entanglement without dependence

An intriguing question in the theory of multipartite entanglement is whether entan-
glement can exist without classical multipartite correlations. It is important to note that
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these classical multipartite correlations may not refer to the genuine multipartite correla-
tions that are defined with respect to the postulates in [15]. There are several such examples
of N -party entangled states having vanishing N -party classical correlations in the litera-
ture [131, 132, 133, 134, 135]. However, the corresponding notions of classical correlations
do not satisfy all the postulates of Refs. [15, 24]. In this subsection we address the question
whether there are genuinely multipartite entangled states with no multipartite dependence
or not. The answer to this question is affirmative. Examples can be found even for pure
genuinely multipartite entangled states which have vanishing multipartite dependence.

For example, any N -qudit cluster state including linear, ring, and 2D. which have been
mentioned in the previous chapter with N ≥ 4 have vanishing dependence value. In other
words, cooperating among the subsystems does not have any role in gaining information
about the subsystem under consideration (for k-partite independence when k = N , see
Subsec. 2.1.5). In Ref. [115] it has been shown that all single-particle subsystems are com-
pletely mixed and there exists at least one pair of subsystems in the bipartite completely
mixed state. The corresponding entropies are equal to S(ρi) = 1 and S(ρij) = 2, and lead
to DN = 0, due to Eq. (2.17). Therefore, the information about the subsystem under con-
sideration cannot be increased by bringing the other subsystems together. This fact also
explains the impossibility of the corresponding secret sharing task [136, 137, 138]. It is also
important to note that there exist other subsets of observers who can successfully run secret
sharing using a cluster state.

2.3.4 Connections to the costs of merging and Markov Chains

We know that conditional mutual information can be represented as,

I(X1 : X3|X2) = S(X1|X2) + S(X3|X2)− S(X1X3|X2), (2.77)

where S(Xi|Xj) is defined as the entanglement cost of merging a state Xi with Xj [139].
Therefore conditional mutual information can be interpreted as the extra cost of merging
states one by one (X1 with X2 and X3 with X2) instead of altogether (X1X3 with X2). In
such a scenario, D3 can then be seen as the minimum extra cost of merging parties individ-
ually instead of all together.

Quantum conditional mutual information also appears in the definition of Markov chains
and for a tripartite state ρ123, vanishing I(X1 : X3|X2) = 0 means that there exists a recov-
ery map RX2→X2X3 , such that ρ123 = RX2→X2X3(ρ12). In other words, the global state can
be recovered by applying map from X2 to X2X3 on marginal X1X2 and the global state is
then called a quantum Markov chain. The state RX2→X2X3(ρ12) also has a high fidelity with
ρ123 for all states with a small I(X1 : X3|X2) [140]. Therefore, a small value of D3 implies
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that there exists a subsystem from which the global state can be recovered whereas a large
value of D3 indicates that there is no such subsystem. However, our quantity is s designed
to be sensitive to genuinely multipartite properties of the state only.

2.4 Applications

2.4.1 Quantum secret sharing

Quantum secret sharing (QSS) [25, 26, 27, 28] is a fundamental primitive in the field of
cryptography for creating highly secured multipartite quantum protocols. Hence it has an
important role to play in quantum information theory. In secret sharing protocol, a message
is being split into several parts such that the message cannot be retrieved by any subset of
the parts unless the entire set is accessible. One of the parties initially possess the entire
message which he or she then breaks into parts and shares to the remaining parties. The
parties must collaborate with each other afterwords, in order to retrieve the message.

Multipartite dependence can have an intuitive application in such protocol. DN be-
comes useful when an additional constrain is imposed over the parties that the secret could
be shared by any of them. This situation can be called as the symmetric secret sharing.

In the tripartite scenario, the protocol demands collaboration among two parties to read
out the message conveyed by the sender party. For classical secret sharing, this message
can be interpret as a random variable, e.g., the measurement outcome of, say, the first party,
shared by the sender party, say X1. It is thus required that both the receiving parties has
only little or no information about the secret individually, i.e., I(X1 : X2) and I(X1 : X3) are
small. However, by collaborating with each other, the receiver parties can reveal the secret
message, i.e., I(X1 : X2X3) is large or unity. Therefore, D3 is clearly the relevant figure
of merit as it is a minimization of conditional mutual information over all permutation as
described in Eq.(2.8). For D3 being significantly greater than zero, the conditional mutual
information I(Xi : Xj |Xk) is large for any permutation of parties. Now, given the chain
rule

I(Xi : XjXk) = I(Xi : Xk) + I(Xi : Xj |Xk),

we can conclude that I(Xi : XjXk) is also large or unity. Therefore, the secret can be gener-
ated by any of the parties.

In the quantum version of this protocol, the state ρmax in Eq. (2.63) happens to be a good
choice to perform the task. By sharing this state, the parties admit perfect correlations along
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complementary local measurements. And by following the protocol in [27], the quantum
solution to the secret sharing problem offers additionally security against eavesdropping.
In [96] such security has been quantified in terms of the conditional mutual information.

To demonstrate the relevance of multipartite dependence in a slightly altered scenario
which we now formally define the QSS task below.

We assume that the sender party Alice has a quantum state ρ which contains the secret
message. Alice wants to split the state into n shares in such a way that the secret message
can only be recovered if all the n shares are accessible by one of the receiver party. Then a
QSS scheme in [28] states that there exists a map En : A→ X⊗n such that,

CQ(Trk ◦ En) = 0 (2.78)

where Trk is the partial trace over an arbitrary set of subsystems and CQ(Λ) is the quan-
tum capacity of the channel Λ. In the theory of quantum communication, this quantity
quantifies the highest rate at which quantum information can be communicated over many
independent uses of a noisy quantum channel from a sender to a receiver. Eq. (2.78) im-
plies that if the map is performed over a state, then the rate at which quantum information
can be communicated is zero when a subset of subsystems is traced out. In other words,
this condition ensures that the message is not recoverable by any subset of the shared parts
and hence only possible when all parts are together. Asymptotically, a scheme with rate R
allows sharing quantum secrets of size nR using n copies of the channel.

Now we show that ρmax is likely to be the most suitable choice for the QSS scheme, i.e,
to read out the secret of the sender party which was initially encoded into a state and dis-
tributed among the parties after diving the state into subsystems, by collaborating among
the remaining two parties. Let us assume that in this protocol a single qubit quantum secret
ρ needs to be shared. Alice then use the teleportation protocol with postselection such that
there is no need to perform any correcting measurement on her side with state ρ and one
subsystem of ρmax in her possession. By doing so she performs the encoding map EN−1 to
her qubit which results in the following state for the rest of the parties.

EN−1(ρ) =
1

2N−1

σ⊗N−1
0 + (−1)N/2

3∑
j=1

σ⊗N−1
j Tr

(
σTj ρ

) . (2.79)

In this way Alice prepares n = N − 1 shares of the secret. Let us denote the resultant
state as ρN−1. Since ρmax is an N − 1-uniform state, tracing out any one or more of the
parties results in a maximally mixed reduced state. Interestingly, the state ρN−1 is also
N − 2-uniform. This implies that the secret cannot be retrieved unless we have all shares,
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because
(Trk ◦ EN−1)(ρ) ∝ 1, for any ρ, (2.80)

and the condition in Eq. 2.78 is satisfied.

In the next step, we will show that all the receiver parties can recover the message by
the following “reverse” teleportation scheme. We take an (N − 1)-uniform state ρmax as a
resource and conduct a joint measurement in the basis {(1⊗· · ·⊗1⊗σµ1 ⊗· · ·⊗σµN−1)|Ψ⟩},
where µn = 0, 1, 2, 3 and

|Ψ⟩ = 1√
2N−1

∑
j1...jN−1=0,1

|j1 . . . jN−1⟩ ⊗ |j1 . . . jN−1⟩. (2.81)

This state is a maximally entangled state. We will now perform measurement on the
shares ρN−1 and N − 1 subsystems of ρmax. If the outcome corresponds to the projection
|Ψ⟩⟨Ψ|, then the remaining qubit in ρmax is in the state ρ, otherwise there always exists a
unitary depending on the outcome that transform the single qubit to ρ. Therefore, the state
ρmax enables a perfect QSS protocol among an arbitrary number of parties.

We can now show that any N -partite state ρc with maximally mixed marginals and
non-classical dependence DN (ρc) > 1 is always useful for QSS. We consider the encoding
map Ec : A→ X⊗N−1 with the Choi state given by ρc [141], i.e., (1⊗Ec)(|Φ⟩⟨Φ|) = ρc, where
|Φ⟩ is the maximally entangled state. The rate of quantum secret sharing admits the lower
bound

R = CQ(Ec) (2.82a)

≥ sup
ϕA′A

−SA′|X1...XN−1
((1 ⊗ Ec)(ϕA′A)) (2.82b)

≥ −SA′|X1...XN−1
(ρc) (2.82c)

= I(A′ : X1|X2...XN−1)− S(A′|X2...XN−1) (2.82d)

= I(A′ : X1|X2...XN−1)− 1 (2.82e)

≥ DN (ρc)− 1. (2.82f)

Above, the first ineq. (2.82b) is the result of computing the quantum capacity of a chan-
nel [142, 143, 144, 145, 146, 87] with system A′ being of the same dimension as system
A and where SA′|X1...XN−1

(ρ) is the quantum conditional entropy of state ρ. The second
ineq. (2.82c) follows because the maximally entangled state is a particular choice of ϕA′A,
and from the definition of ρc. Eq. (2.82d) follows from the properties of entropy, and last-
lyeq. (2.82e) follows from the assumption that the state has maximally mixed marginals
for being a N − 1-uniform state. Finally, the dependence bounds conditional mutual in-
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formation from bellow. Similar to the marginals of ρc, the marginals of the encoded state
ρN−1 = Ec(ρ) are maximally mixed. Therefore, no subset of parties can recover the quantum
message alone, yet for all of them together R > 0 holds for DN (ρc) > 1. This lower bound
is tight and can be achieved by using the (N − 1)-uniform states [114]. Therefore, depen-
dence of the Choi state corresponding to the QSS map bounds the rate of the QSS protocol.
Also, we should note that ρmax gives us the highest possible dependence. Therefore, the
dependence of the state shared among the parties also serves as a figure of merit for this
protocol. As a matter of fact, all degradable channels give rise to the equality in (2.82b) and
all symmetric states admit the equality in (2.82f). For pure states, the lower bound for the
rate of QSS scheme is zero. On the other hand, by using GHZ state, one can achieve a unit
rate [27]. As GHZ state gives classically correlated marginals rather than the maximally
mixed state, the conditional entropy in Eq. (2.82d) vanishes and the rate is lower bounded
by the dependence alone, which is 1 for the GHZ state.

From a more practical prospective, we consider the scenario where a subset of k parties
is required to read the message. Analogous to the previous argument, it can be shown that
the dependence Dk can be considered as the figure of merit for sharing the secret among
any k-partite subsystem of N -party state where anyone could be the sender.

2.4.2 Witnessing entanglement

Using the constraint DN > 1, we will now prove that DN can be utilized as an witness
of quantum entanglement. For DN > 1, we know that,

I(X1 : X2X3 . . . XN ) > 1, (2.83)

for all possible permutations of indices. Here, without any loss of generality we have as-
sumed that the smallest difference of mutual informations, i.e., the value of DN , is found
for an arrangement of subsystems such that DN = I(X1 : X2X3 . . . XN )− I(X1 : X3 . . . XN )

yields the minimum value. Now, we write I(X1 : X2X3 . . . XN ) using quantum conditional
entropies.

I(X1 : X2X3 . . . XN ) = S(ρX1)− SX1|X2X3...XN
(ρ) > 1

=⇒ SX1|X2X3...XN
(ρ) < −1 + S(ρX1), (2.84)

for the subsystems who have equal dimensions S(ρ1) ≤ 1. This implies that quantum con-
ditional entropy is necessarily negative in the above equation. Now, according to [104], a
negative quantum conditional entropy is possible only when the state is entangled. How-
ever, this entanglement need not to be necessarily genuinely multipartite. For a negative
value of conditional entropy in a particular cut, e.g., SX1|X2X3...XN

, we know that entan-
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glement is present in the cut X1|X2X3 . . . XN . Eq. (2.63) is an example of a particular state
which violates the bound of 1. This state can be written as a mixture of correlated Bell
states [116] , also known as the Smolin state, and can have the form,

ρs =
4∑
i=1

αi|ψi⟩⟨ψi|⊗N/2, (2.85)

where, |ψi⟩ are the four Bell states. and therefore is biseparable which demonstrates the
fact that entanglements that are not genuine can be detected by this bound. Furthermore,
similar proof can be given for arbitrary number of subsystems k, i.e. whether Dk > 1 any
k-party subsystem is entangled or not. An example of such detection is provided in Tab. 2.3
for the four-party subsystems of absolutely maximally entangled state of 6 qubits.

2.4.3 Data science

Multipartite dependence is also expected to find its applications outside physics. As an
example, we sketch how it can be useful in data science. To do so, we consider the problem
of feature selection. It is concerned with finding a subset or reduced version of an original
features of a dataset, such that the predictions made on the basis of the subset would be the
same as based on the entire set. In other words, we would like to eliminate variables that are
not essential. Such variables can be identified from the conditions of extremal dependence.
This follows from the fact that variables that minimizes the conditional mutual information
and hence provides the dependence value can be ignored because they produce the least
information about the other party. Some other functions of conditional mutual information
were also considered in feature selection [147, 148].

We first analyze the case where DN ≈ 0. Let us assume that the minimizing conditional
information is

I(X1 : X2|X3 . . . XN ) ≈ 0. (2.86)

Therefore either variable X1 or X2 can be eliminated as it does not improve the information
between the remaining variables, e.g., I(X1 : X2X3 . . . XN ) ≈ I(X1 : X3 . . . XN ). Now, the
DN ≈ 1 corresponds to the situation where each variable is independent of the rest, e.g.,
I(X1 : X3 . . . XN ) ≈ 0. And hence at first sight one would have to keep track of all of them),
but from N − 1 variables one can predict the remaining one, e.g. I(X1 : X2X3 . . . XN ) ≈ 1.
Accordingly, one variable can be eliminated. Therefore, DN can be useful in performing
such tasks.
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N state D3 D4 D5 D6

3 {Psame} 0 - - -
3 {Peven} 1 - - -
3 GHZ 1 - - -
3 D1

3 0.9183 - - -
3 D2

3 0.9183 - - -
3 ρnc,3 0.5033 - - -
4 GHZ 0 1 - -
4 D1

4 0.3774 0.62256 - -
4 D2

4 0.5033 0.7484 - -
4 Ψ4 0.4150 0.4150 - -
4 L4 1 0 - -
4 3-uniform 0 2 - -
5 GHZ 0 0 1 -
5 D1

5 0.2490 0.2490 0.4729 -
5 D2

5 0.3245 0.3245 0.6464 -
5 D3

5 0.3245 0.3245 0.6464 -
5 ρnc,5 0.1710 0.6490 0.4729 -
5 L5 0 0 0 -
5 R5 1 1 0 -
5 AME(5,2) 1 1 0 -
6 GHZ 0 0 0 1
6 D1

6 0.1866 0.1634 0.1866 0.3818
6 D2

6 0.2566 0.1961 0.2566 0.5637
6 D3

6 0.2729 0.1961 0.2729 0.6291
6 L6 0 0 0 0
6 R6 0 0 0 0
6 AME(6,2) 0 2 0 0
6 5-uniform 0 0 0 2

Table 2.3: DN values for different quantum states and probability distributions.
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2.5 Conclusions

In this chapter we have introduced multipartite dependence DN as a new tool for the
characterisation of quantum states as well as the classical joint probability distributions.
Multipartite dependence can be seen as the method of choice to determine whether and by
what amount cooperation between any subsystems brings additional information about the
remaining subsystems. We have investigated its characteristics in details and provided key
properties in support. We have discussed these properties in details and we have compared
them with the postulates that need to be satisfied for a quantifier to quantify multipartite
correlations. It turns out that despite of sharing many traits with multipartite correlation
quantifier, multipartite dependence is evidently distinct from them.

We have also provided evidence of the fact that non-vanishing dependence value can
exist where there is no multipartite correlation. In other words This strengthen the argu-
ment of dependence being an unique quantifier of multipartite characteristics. The depen-
dence is directly calculable and has a clear interpretation. We have investigated several as-
pects of this quantity. Importantly, we have seen that entanglement in multipartite systems
can exist despite of having zero DN value. While pure states can only attain the classical
bound 1, we have shown that multipartite dependence attains highest values for mixed
states. This can be highlighted as an interesting feature of mixed states. We also found
the n-qudit state that maximizes multipartite dependence. Interestingly, these states are the
(N − 1)-uniform states.

Finally, several applications of multipartite dependence have also been identified here
such as quantum secret sharing, entanglement witness and data science which clearly indi-
cating its relevance for future studies in quantum communication and elsewhere.
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Chapter 3
Simultaneous multiphase estimation
with Heisenberg scaling

The principal aim of quantum metrology [149, 150, 151, 152, 153, 154, 155, 156] is to make
high precision measurements of given parameters exploiting quantum systems and quan-
tum resources which are not attainable using classical approaches. In recent years, quan-
tum metrology has gained attention due to its wide spread applications in fields such as
the gravitational wavedetection [157], quantum imaging [158, 159], quantum spectroscopy
[160].

Attaining the highest possible precision limit for a given parameter is seemingly a diffi-
cult task when the number of measurements is limited. Lack of sufficient prior information
about the parameter makes the problem "global" in a sense that it requires the cost function
to be minimized over a certain region. Such a situation is usually resolved by minimizing
the mean of the cost function or minimizing the worst case over the region [161, 162, 163].
The problem, however, becomes asymptotically "local" when the number of measurements
is asymptotically large. In that case, a well-behaved cost function can be approximated by
the variance [164] and precision limit can be quantified by the quantum Cramér-Rao bound
[165, 166].

A standard estimation protocol typically includes four major steps as follows:

(1) preparation of the probe state;

(2) encoding of the parameters via evolution;

(3) measurement;

(4) classical estimation.
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We further discuss these steps in Subsec.3.1.1 with more details.One of the problem of
of simultaneous estimation of multiple parameters is the possibility of the occurrence of correla-
tions between the estimators corresponding to different parameters. This complication can
result in decrease in the overall precision of joint estimation [151]. Also, it has been shown
in [167] that the number of simultaneously estimable parameters reduces when an external
reference mode is absent. This is because the absence of external mode causes the immea-
surability of global phases.

Another difficulty arises from the inability of utilizing the most important tool of pa-
rameter estimation, i.e., the quantum Cramér-Rao bound (QCRB). This bound utilizes the
inverse of Quantum Fisher Information (QFI) to provide an upper limit to the variance of
any unbiased estimator of a deterministic parameter. However, for estimating multiple
parameters at a time with utmost precision, one need to incorporate the generalized form
of QFI [168], i.e., the Quantum Fisher Information Matrix (QFIM) [153]. In QFIM, the di-
agonal entries simply produce the QFI. Despite of sharing similar significance in quantum
theory as QFI, QIFM happens to reflect very different properties and behaviors compared to
QFI [150]. For sufficiently uncorrelated parameters, QFIM is non-singular and the inverse
of it bounds the covariance matrix of the estimated parameters from below. This bound
is known to be the multiparameter version of QCRB. The elements of QFIM depend on
the size of the initial probe state. However, in our setup, having highly correlated phases
prevents us from having a QFIM that is invertible and hence making QCRB directly inap-
plicable.

In this chapter we discuss the simultaneous estimation of multiple phases scenario
for 3- and 4-port generalised Mach-Zehnder interferometer [169]. Extensive works can be
found in literature concerning multiphase estimation with symmetric multiports [170, 171,
172, 173, 174]. In this estimation scheme the number of parameters to estimate is d−1, given
the total number of modes to be d. The remaining phase is known and acts as a reference.

In this work, we take a different approach to estimate multiple phases. We take the
following measures that are described in details in this chapter,

• We assume that the phases are placed in each mode of the d-mode interferometer. We
show that there is a possibility of obtaining a precision of order 1/N2, which is the
so-called Heisenberg-like (HL) scaling of precision [175, 176, 177, 178, 179, 180, 181,
182, 183, 184] for simultaneous estimation of any (d− 1)-element subset of the phases
in a completely fixed interferometric setup for d = 3, 4.

• we are not using the methods of QCRB, which in our case would not guarantee
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achievability of the Heisenberg-like scaling with the same fixed setup; instead we
use directly the method of classical Fisher-information-based analysis on the basis of
output probabilities, which does not raise the questions of achievability, as no implicit
optimisation over measurement procedure is included.

• We also assume the input state with arbitrary number of photons which allows di-
rectly for asymptotic scaling discussions.

Besides the primary objective of presenting estimation scheme for 3- and 4-port gener-
alised Mach-Zehnder interferometer, we also show that it is possible to construct a 5-mode
fully symmetric multiport which can be generated by a symmetric Hamiltonian. This result
disproves the previous claims by Zeilinger et. all [185] in this scenario.

3.1 Prerequisites and the Setup

3.1.1 General introduction to multiphase estimation

The description of a standard approach to multiparameter estimation can be found
widely discussed in literature [150, 152, 151]. In this subsection we describe the fundamen-
tal steps of the estimation process in details that we have mentioned in the introduction.

The first step is to prepare a probe state for the estimation setup. Keeping in mind that
the aim is to optimize the setup such that the precision is maximized, we prepare aN -partite
state that is optimal and we introduce this as the initial probe state, ρin. In the next stage,
called as parametrization, the probe state undergoes an evolution which is charaterized by a
quantum channel Λα⃗ and is a CPTP map in general. This evolution is characterized in terms
of a vector of unknown parameters α⃗ = (α1, . . . , αd) whose elements are the key ingredients
to estimate the phases. In other words, this evolution encodes necessary information in the
state ρin that are essential for the estimation. After the evolution, in the third step, single-
particle projective measurements {Π}k are performed. We label the outcomes as k’s with
the use of which we determine the final probability distribution. Therefore the probability
distribution will have the form,

p(k|α⃗) = Tr(Λα⃗(ρin)Πk). (3.1)

After determining the parameter-dependent probability distribution p(k|α⃗), the final task is
to construct a set of estimators, A⃗ = {Ai}, to determine the unknown parameters α⃗ = {αi}.
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3.1.1.1 Cramer-Rao bound

As we are estimating a number of parameters at the same time, we need to estimate
the joint accuracy of these estimators. In order to do so, we introduce a joint measure of
sensitivity of the distribution p(k|α⃗) on the parameters {αi}. In classical estimation theory
such a measure is provided by the Fisher Information Matrix (FIM). FIM is well-established
in the field of statistics and is often considered as a function of sensitivities. It is represented
in terms of the partial derivatives of outputs with respect to faults and uncertainty which,
in turns, indeed quantify the sensitivity of the probability distribution over the parameters.
In the most simple terms, it can be said that FIM is a way of quantifying the information
that a realisation of a random variable carries about an unknown phase. FIM is defined as:

Fij(α⃗) =
∑
k

∂αip(k|α⃗)∂αjp(k|α⃗)
p(k⃗|α⃗)

. (3.2)

As evident from the above expression, FIM is a matrix that is constructed in terms of the
partial derivatives of the probability distribution with respect to the parameters that we
are supposed to estimate. Now, p(k|α⃗) carries the information about the parameters. The
greater value of the derivative, the more precise is the estimation.

The estimators, {Ai}, are called unbiased if their mean values equal to {αi} for the entire
range of α’s. In such a scenario, the F matrix is often invertible [186] which is essential to
formulate the original Cramer-Rao bound. However, one should note that we can have
biased estimators and can still formulate the bound, which is slightly more complicated
than the original bound [187]. Moreover there also exists constrained Cramér–Rao Bound
With a singular FIM [188]. When the parameters are sufficiently uncorrelated, the FIM is
invertible the quality of estimation of {αi} based on distribution p(k|α⃗) is described by the
Cramer-Rao bound [186]:

Cov(A⃗) ≥ F−1

ν
, (3.3)

where Cov(A⃗) is the covariance matrix for the estimators given by

Cov(A⃗)mn = Cov(Am, An) = ⟨(Am − ⟨An⟩)(An − ⟨Am⟩)⟩, (3.4)

and ν is the number of repetitions of the experiment. The quantity covariance is a measure
of the joint variability or sensitivity of two random variables. Hence the covarience is a
d× d matrix each element of which gives the covariance between estimators corresponding
to each pair of parameters in α⃗. Covariance matrix is symmetric and positive semi-definite.
By knowing this quantity, we can then calculate the efficiency of the estimators.
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3.1.1.2 Quantum Cramer-Rao bound

In the case of quantum estimation theory, we are now interested in description of effi-
ciency of estimation of α’s from an evolved quantum state ρout(α⃗) = Λα⃗(ρin) in a way which
assumes optimisation over all possible measurements. Analogous to its classical counter-
part, we will now cosider quantum fisher information matrix (QFIM) to bound the joint
measure of sensitivity. QFIM, defined in an operator-based way, has the following form:

FQ
ij =

1

2
Tr[ρout(α⃗){Li, Lj}], (3.5)

where {Li, Lj} denotes anticommutator of operators between Li and Lj and the operators
Li are defined implicitly by the equation:

1

2
{Li, ρout(α⃗)} = ∂αiρout(α⃗). (3.6)

In the case of pure input state |ψ⟩ and the unitary evolution of the form U = e−iHiαi the
QFIM can be expressed in an explicit and neater form:

FQ
ij = 4⟨covH⟩ψ = 4 (⟨HiHj⟩ψ − ⟨Hi⟩ψ⟨Hj⟩ψ) . (3.7)

Similar to FIM, QFIM is also invertible when the parameters are sufficiently uncorre-
lated. Then the covariance matrix of the estimated parameters is bounded from below by
the inverse of the QFIM and is given by a multiparameter version of the Quantum Cramer-
Rao bound (QCRB) [151],

Cov(A⃗) ≥ (FQ)−1

ν
. (3.8)

Given anN -partite state, the elements of QFIM can depend at most quadratically onN ,
i.e., upto the HL scaling. This precision of multiparameter estimation can be attained using
an entangled state as probe and some measurement strategy, which in principle demands
the use of arbitrary multiports [189, 149, 190, 191, 192, 152]. HL scaling is achievable in
the asymptotic limit for large N . Given a new “quantum" bound on the covariance matrix,
similar to the classical case, we can again estimate the achievable precision of the given
setup.

A relevant bound that concerns multiphase estimation which is also considered as
another version of the Quantum Cramer-Rao bound and does not utilise the QFIM, is
known as the Holevo bound [193, 151, 194]. This bound provides an upper bound on the
information contained in a quantum system that uses a fixed initial state and is expressed
using the notion of a cost matrix, denoted as C. C is a positive matrix providing weights to
the uncertainties related with different parameters. The Holevo bound has the following
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form [151]:
Tr(C Cov({Ai})) ≥ min

Xi

(
Tr(C Re(V))+||

√
C Im(V)

√
C||
)
, (3.9)

where the norm in the RHS od (3.9) is the trace norm and the matrix V is defined element-
wise by the relation

Vij = Tr(XiXjρout(α⃗)). (3.10)

Xi’s are Hermitian matrices constrained by,

Tr({Xi, Lj}ρout(α⃗)) = 2δij , (3.11)

where the operators Li are defined in (3.6).

3.1.1.3 Multiparameter Cramer-Rao bound with additional parameters

In the literature, attempts have been made to show whether the bounds (3.8) and (3.9)
can be saturated by experimentally accessible measurement schemes in order to maximize
the sensitivity of quantum sensors.

We particularly focus on investigating the multiphase estimation process within a fixed
interferometer and a simple fixed measurement scheme consisting of single output mode
measurements that is convenient for our setup as described in 3.1.2. Our approach to eval-
uate the precision of estimation would be based on basic tools in classical estimation theory,
namely on the classical Fisher information matrix techniques. To our advantage, we also do
not need to assume optimisation over all possible measurement strategies (required only
for QFIM). Given that, our concerns comes down to estimate the phases that depend on all
the parameters that are also responsible for the characteristics of the final probability distri-
bution. These multiple phases include both the phases that need to be estimated as well as
the reference phase that is fixed and known. Such a situation in estimation theory has been
discussed extensively in [195, 196].

To estimate multiple phases in our setup we divide the set of phase in two parts, d− 1

number of unknown phases and the reference phase. Given that, two kind of approaches
can be taken: either (i) the additional parameters are fixed and known, or, (ii) the additional
parameters are fixed but unknown (and are called in this context the nuisance parameters).
We consider our reference phase to be fixed and known.

In a general scenario, we assume that all unknown parameters and the additional
known (nuisance) reference parameters are given by a vector (α⃗I , α⃗O) ((α⃗I , α⃗N )). Then
the Fisher Information Matrix and its inverse can be expressed in a block form with re-
spect to the fixed partition of parameters (α⃗I , α⃗O) and (α⃗I , α⃗N ) [196] and can be written
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respectively as:

F(α⃗) =

(
F(α⃗)I,I F(α⃗)I,O

F(α⃗)O,I F(α⃗)O,O

)
(3.12)

(F(α⃗))−1 =

(
G(α⃗)I,I G(α⃗)I,N
G(α⃗)N ,I G(α⃗)N ,N

)
, (3.13)

where we use the notation G(α⃗) for block of inverse of the FIM with nuisance parameters.
Therefore, the Cramer-Rao bound will have the following form for the unknown set of
parameters, for the case in which the additional parameters are fixed and known,

Cov({AI}) ≥
(F(α⃗)I,I)

−1

ν
. (3.14)

In this case, the bounds are reduced to a form concerning only inverse of the submatrix of the
FIM. Whereas for the case where the additional parameters are nuisance parameters it will
be given by,

Cov({AI}) ≥
G(α⃗)I,I

ν
. (3.15)

This bound demands calculating firstly the inverse of the entire FIM and then taking blocks
of the inverse matrix.

3.1.2 Setup for the estimation procedure

In this subsection, we describe the setup that has been considered for our simultane-
ous estimation scheme. The schematic of the setup is presented in Fig [3.1(a)]. Here we
consider a scenario where phases are placed in between each of the internal ports of the
d-mode interferometer and are represented by {α1, . . . , αd}. The unitary part before these
phaseshifts is considered as the preparation procedure of the initial state and the part after
them is treated as an implementation of the measurement. Our aim is to simultaneously
estimate any (d − 1)-element subset of the set {α1, . . . , αd}, whereas the remaining one is
known, and serves as a reference phase.

We, however, approach the scenario as a fixed single unitary operation where the goal
is to investigate the metrological properties of a generalised Mach-Zehnder interferometer
as a whole. Our aim of this project is to show that with the help of having one known phase as
reference, a fixed initial entangled probe state and a fixed interferometer, Heisenberg-like scaling of
precision of simultaneous estimation of any (d − 1)-element subset of the phases can be attained
without making any changes in the setup.
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We calibrate our setup in such a way that a fixed symmetric multiports and an N -
partite entangled probe state is equivalent to feeding a GHZ state [197] each of whose sub-
systems are d-level systems through identical local unitary transformation on each site and
the unitary transformation can be implemented by an additional symmetric multiport. Af-
ter acheiving the probe state, the standard procedure follows. Finally, we perform detailed
analysis of the precision of our estimation scheme as well as develop a description of a
generalised 3- and 4-mode Mach-Zehnder (MZ) interferometer [169]. Such interferometers
can be realized by intertwining two symmetric multiports with single-mode phase shifters
using the Heisenberg-Weyl operators.

Our setup can be presented in terms of two different configurations such that they
are equivalent from the estimation perspective. Firstly, we can think of our setup in a
star-like configuration as presented in Fig [3.1(b)] consisting of N local MZ interferome-
ters. However, we can opt for a more experimentally feasible configuration with a single-
interferometer version of the setup Fig [3.1(a)], which uses the so-called NOON states [198]
as the initial probe states.
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Figure 3.1: a) Schematic of a generalised d-mode Mach-Zehnder (MZ) interferometer con-
sisting of symmetric multiports intertwined with d phaseshifts to be estimated. b) An N -
party configuration of the estimation setup, which consists of a central source of GHZ-path-
entangled photons and N local stations consisting of generalised MZ interferometers from
Figure 1a).
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3.2 Main Results

In this section we illustrate the main results that has been obtained. We give a detailed
description of the analytical interpretation of the multiphase generalised Mach-Zehnder
interferometer that has been considered for the course of out setup. Next we narrate the
precision that has been attained. These results pertain to 2-, 3-, 4-mode Mach-Zehnder
interferometer respectively. We make separate subsections for the single mode and five
mode Mach-Zehnder interferometer for the uniqueness of their results.

3.2.1 Generalised Mach-Zehnder interferometer

In this section, we will provide the analytical description of our experimental setup. The
setup is described in 3.1.2 and the schematic given in Figure (3.1b). It starts with a source
that is producing a N -partite GHZ state of d-level subsystems. In their respective stations,
each party undergoes to the same unitary evolution which is referred as the preparation
symmetric multiport Ud. After this procedure, we get our probe state.

|Ψd⟩N = U⊗N
d |GHZd⟩N

=
1√
d
U⊗N
d (| 0...0︸︷︷︸

N

⟩+ | 1...1︸︷︷︸
N

⟩+ . . .+ | d− 1...d− 1︸ ︷︷ ︸
N

⟩). (3.16)

We will specify Ud later that are specific for each cases. Thereafter, in the next step, the
probe state passes through the next stage of the N measurement stations, each of which
consists of a d-mode interferometer, which is a generalised Mach-Zehnder interferometer
involving d phases. Here, we should remind ourselves that only d − 1 out of the total d
number of phases can be estimated during this process. In this whole process, the probe
state gets encoded with the information about the phases that we want to estimate and also
gets measured in order to determine the probability distribution p(k|α⃗). The generalised
Mach-Zehnder interferometer [169] consists of two symmetric multiports intertwined with
a series of phaseshifts on each of the dmodes linking the multiports that has been described
in Figure (3.1a). Such a symmetric d-mode multiport is a generalized version of balanced
beam splitters where we have d inputs and d outputs. Therefore, it is a d-mode multiport
with the property that a single photon entering by any of the d input modes has a uniform
probability 1

d to be detected in any of the d output modes. The entire procedure can then be
represented by the unitary operator of the following form

Ud = SF (α)S†, (3.17)

where S is the discrete Fourier Transform that represents the role of the symmetric multi-
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ports and F (α) is the phase-imprinting operator.

While dealing with the current problem, it is convenient to describe the interferometer
in the Hamiltonian-like formU = e−ihiαi , with an explicit form of generators corresponding
to phaseshifts. The typical choice for the operator basis in order to find such generators hi is
the set of so called Gell-Mann matrices. In this work and for the particular choice of setup,
we, however, found that it is much more convenient to describe the interferometers based
on symmetric multiports is the Heisenberg-Weyl operator basis given by,

X =
d−1∑
i=0

|i⟩⟨i+ 1|,

Z =
d−1∑
i=0

ωi|i⟩⟨i|,

Y = XZ, (3.18)

where ω = exp(2iπ/d). At this point, we are ready to present explicit form of the generator
scheme that we use to describe the entire estimation procedure to estimate d − 1 number
of phases using d-mode MZ interferometers. We describe the scheme for d = 2, 3, 4 respec-
tively.

3.2.1.1 Two-mode case

For the two-mode case the Heisenberg-Weyl operators (3.18) are equivalent to the basis
comprised of standard Pauli matrices. The operator representing the symmetric two-port
can be expressed in the following form:

S2 = exp

[
1

4
iπX

]
. (3.19)

Next the phase-imprinting part of the interferometer has the following representation:

F2(α⃗) = exp

[
1

2
(1 + Z)iα1 +

1

2
(1 − Z)iα2

]
. (3.20)

Therefore, the evolution of the entire interferometer can be expressed in the following con-
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cise way where we only need the Y operators:

U2 = S2F2(α⃗)(S2)
†

= exp

[
1

4
iπX

]
. exp

[
1

2
(1 + Z)iα1 +

1

2
(1 − Z)iα2

]
. exp

[
−1

4
iπX

]
= exp

[
1

2
(1 + Y )iα1 +

1

2
(1 − Y )iα2

]
.

(3.21)

This evolution, U2, is generated by the following two Hamiltonians,

(α1 angle) h1 =
1

2
(1 + Y ), (3.22)

(α2 angle) h2 =
1

2
(1 − Y ). (3.23)

Clearly, the eigenvalues of these generators are given by, {0, 1}. Hence, U2 can alternatively
represented as,

U2 = exp

[
h1iα1 + h2iα2

]
. (3.24)

3.2.1.2 Three-mode case

The analytical description of the 3-mode multiphase Mach-Zehnder interferometer in
the Heisenberg-Weyl basis is completely analogous to its 2-mode case. We start with the
3-port symmetric multiport which we represent in the following form using generalised X
operators:

S3 = exp

[
2

9
iπ(X +X2)

]
. (3.25)

Next we represent the phase-imprinting part in the similar fashion,

F3(α⃗) = exp

[
1

3
iπ
(
α1(Z + Z2) + α2(ω

2Z + ωZ2) + α3(ωZ + ω2Z2)
) ]
.

(3.26)

Then the entire evolution is again represented in the concise form where it is generated
solely by the generalised Y matrices:

U3 = S3F3(α⃗)(S3)
†

= exp

[
1

3
i
(
α1(ωY + ω2Y 2) + α2(Y + Y 2) + α3(ω

2Y + ωY 2)
) ]
.

(3.27)

Then we go forward and construct generators for U3 that are given by the three following

81



Chapter 3. Simultaneous multiphase estimation with Heisenberg scaling 3.2. Main Results

Hamiltonians:

(α1 angle) h1 =
1

3
(ωY + ω2Y 2),

(α2 angle) h2 =
1

3
(Y + Y 2),

(α3 angle) h3 =
1

3
(ω2Y + ωY 2). (3.28)

The above Hamiltonians fulfill h1+h2+h3 = 0, and their eigenvalues are given by {2/3,−1/3,−1/3}.
It is interesting to note that despite the fact that in the three-mode case the Heisenberg-
Weyl operators (3.18) are no longer Hermitian, their appropriate combinations give rise to
a proper Hermitian Hamiltonians (3.28). Again U3 can alternatively represented as,

U3 = exp

[
h1iα1 + h2iα2 + h3iα3

]
.

(3.29)

3.2.1.3 Four-mode case

Unlike the previous two cases, the description of a 4-mode case is rather complicated.
However, the 4-mode symmetric multiport still has analogous and simple form in terms of
generalised X operator given by,

S4 = exp

[
1

4
iπ(X +X2 +X3)

]
, (3.30)

Again, the phase-imprinting part can be presented in terms of Z operators,

F4(α⃗) = exp[iα⃗ · z⃗], (3.31)

where z⃗ has the following form, 
z1

z2

z3

z4

 = K


1

Z

Z2

Z3

 , (3.32)

where Kmn = ω(m−1)(n−1).
The entire evolution is then generated by 4 Hamiltonians:

U4 = S4F4(α⃗)(S4)
† = exp [i(h1 + h2 + h3 + h4)] , (3.33)
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where,

h1 =
1

4
ω
(
Y − Y 2 + Y 3 − η ReY − θ ReY 3

)
,

h2 =
1

4
ω
(
−Y + Y 2 − Y 3 + η ReY + η ReY 3

)
,

h3 =
1

4
ω
(
Y † + (Y 3)∗ − Y 2 − µReY + νReY 3

)
,

h4 =
1

4
ω
(
Y + Y 3 − (Y 2)∗ − µReY + νReY 3

)
, (3.34)

where the star ∗ denotes complex conjugation and for clarity we introduced constants:

η =

√
2

ω
,

θ =
√
2ω,

µ = 2ω

(
1− i√

2ω

)
,

ν = 2ω

(
1− 1√

2ω

)
.

(3.35)

Although the generators still depend only on generalised Y matrices, they have much more
complicated forms compared to the previous cases. The eigenvalues of hi are {3/4,−1/4,−1/4,−1/4}.
In this case also, despite having a non-Hermitian basis, properly defined functions give rise
to the desired Hermitian Hamiltonians.

3.2.2 Precision of the multiphase estimation scheme

In this section we investigate the estimation precision of our proposed scheme. We par-
ticularly consider N -partite initial state for d = 3 and d = 4. We could use QFIM approach
to the setup with the reference phase being known, but we do not do it to avoid the neces-
sity for finding optimal measurements. As we do not allow for tunable measurements, we
cannot utilise the Quantum Cramer-Rao Bound for our joint estimation since we couldn’t
prove its attainibility with our fixed measurements.

First, the precision of joint estimation of several parameters in the presence of fixed and
known additional parameters is specified by the Cramer-Rao bound based on the inverse of
the Fisher Information Submatrix corresponding to the parameters of interest (3.14). There-
fore, to describe the precision of estimation by a single quantity we take the trace of both
sides of the Cramer-Rao bound (3.14) [173]:

Tr(Cov({AI})) ≥
Tr
(
(F(α⃗)I,I)

−1
)

ν
, (3.36)
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where the matrix F(α⃗)I,I is a Fisher Information submatrix corresponding to the subset of
jointly estimated phases as defined in 3.1.1.3.

The next task is to analyse the behaviour of the quantity Tr
(
(F(α⃗)I,I)

−1
)

as a function
of the number of photons N . In this way we will find asymptotic scaling of precision.

Luckily in our setup, we can use a pre-optimized initial state. We should note that this
pre-optimisation has nothing to do with our final precision analysis. It is rather an ad-hoc
procedure which fits to our estimation scheme. The characteristics of the state is that it
is only dependent on the dimension of the local multiport. To get this optimization, we
maximized the mean QFI per parameter. To do so we consider the following inequality:

1

d
TrFQ ≤ 4

d

d∑
i=1

⟨H2
i ⟩ψ, (3.37)

This can be easily derived from (3.7).

TrFQ =

d∑
i=1

FQ
ii

= 4
d∑
i=1

(
⟨H2

i ⟩ψ − ⟨Hi⟩2ψ
)

≤ 4
d∑
i=1

⟨H2
i ⟩ψ.

=⇒ 1

d
TrFQ ≤ 4

d

d∑
i=1

⟨H2
i ⟩ψ.

The LHS of Ineq.[3.37] refers to the mean QFI per parameter. This quantity is treated as an
approximate measure of average estimation performance per parameter. The total collec-
tive Hamiltonian corresponding to the action of N local interferometers is given by,

Hi = hi ⊗ 1 ⊗ ...⊗ 1 + 1 ⊗ hi ⊗ 1 ⊗ ...⊗ 1 + ...+ 1 ⊗ ...⊗ 1 ⊗ hi, (3.38)

where 1 is the identity operator and hi denotes any of the local Hamiltonians from formulas
(3.28) and (3.34).The inequality (3.37) implies that the optimal state can be achieved when
the initial state is an eigenstate of the operator

∑
iH

2
i .

3.2.2.1 Three-mode case

In this subsection we explicitly investigate the d = 3 mode case.
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Optimal state.

The N -qutrit optimal state that maximizes the trace of the QFIM FQ is given by:

|Ψ3⟩N =
1√
3
U⊗N
3 (|0...0⟩+ |1...1⟩+ |2...2⟩), (3.39)

where

U3 =
1√
3

 1 1 1

ω2 1 ω

1 ω2 ω

 . (3.40)

We can now easily prove that the operator U3 simultaneously diagonalises the local
Hamiltonians in Eq.[(3.28)] which will be essential to validate the fact that our initial state is
indeed the optimal one. We know that the operators in Eq[(3.28)] are completely expressible
by the operators Y and Y 2. Moreover, we have,

U †
3Y U3 = Z,

U †
3Y

2U3 = Z2.

Finally, Z and Z2 are diagonal by definition. Consequently, following the action of the col-
lective unitary operation U⊗N

3 , the total collective Hamiltonians Hi (3.38) are diagonal with
the eigenstates |0...0⟩, |1...1⟩ and |2...2⟩. This implies that the operator

∑
iH

2
i is also diago-

nal with the same set of eigenstates.

Achievable Precision.

We will now calculate the precision of of our estimation method using classical Fisher
Information matrix (3.2). In order to do so, we first need to determine the parameter-
dependent probability distribution for measurement outcomes p(k|α⃗). The outcomes are
labeled by the numbers ik ∈ {0, 1, 2} that denote detector clicks in local modes ik in mea-
surement stations k. Therefore the distribution has the form p(i1, . . . , iN |α⃗).

Now we are set to calculate the final probability distribution. Let ik ∈ {0, 1, 2} be the
measurement outcome at k-th station corresponding to detector click in ik-th local mode.
Then the conditional probability distribution for the outcomes conditioned on the values of
the phase shifts is given by
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p(i1, i2, ..., iN |α1, α2, α3)

= |⟨i1 . . . iN | U3(α1, α2, α3)
⊗NU⊗N

3 |GHZ⟩N |2

=
1

3

∣∣∣∣ 2∑
j=0

⟨i1 . . . iN | U3(α1, α2, α3)
⊗NU⊗N

3 | j . . . j︸ ︷︷ ︸
N

⟩
∣∣∣∣2

=
1

3

∣∣∣∣ 2∑
j=0

⟨i1 . . . iN | U3(α1, α2, α3)U3 |j⟩N
∣∣∣∣2

=
1

3

∣∣∣∣∣∣
2∑
j=0

N∏
k=1

⟨ik| U3(α1, α2, α3)U3 |j⟩]

∣∣∣∣∣∣
2

(3.41)

The first simplification that can be made is that the entire local evolution operator U3(α1, α2, α3)U3

can be presented in the following compact matrix form by direct use of the defining formu-
las (3.27) and (3.40):

U3(α1, α2, α3)U3 =
1√
3

 eiα2 eiα3 eiα1

ω2eiα2 eiα3 ωeiα1

eiα2 ω2eiα3 ωeiα1

 e−
1
3
i(α1+α2+α3). (3.42)

Next, we can observe a symmetry in the probability distribution (3.41) that we calculated.
We observe that the probability distribution depends only on the total number of local clicks
in local modes {0, 1, 2}, which we denote by z, j, d respectively. Using this property, we
derive the final form of the probability distribution,

p(0, · · · , 0︸ ︷︷ ︸
z

, 1, · · · , 1︸ ︷︷ ︸
j

, 2, · · · , 2︸ ︷︷ ︸
d

|α1, α2, α3) =
1

3N+1

(
3 + 2 cos

[
2π

3
(d− j) +N(α1 − α2)

]

+ 2 cos

[
2π

3
(j − d) +N(α1 − α3)

]

+ 2 cos

[
4π

3
(j − d) +N(α2 − α3)

])
. (3.43)

Therefore we have p(i1, . . . , iN |α⃗) = p(z, j, d|α⃗). Using this final form of the probability
distribution (3.43) we can now directly derive the compact forms of the elements of the
2 × 2 Fisher Information submatrix (3.2) that corresponds to joint estimation of two of the
three phases {α1, α2} = I, whereas the third phase is set to zero as a reference mode,

[F(α1, α2)I,I ]ij =

N∑
z,j,d=0

(
N

z, j, d

)
∂αip(z, j, d|α1, α2, 0)∂αjp(z, j, d|α1, α2, 0)

p(z, j, d|α1, α2, 0)
, (3.44)
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where the multinomial coefficient counts the number of separate detection situations giving
rise to the total of z, j, d clicks in modes {0, 1, 2}.

However, it is evident that the above Fisher information submatrix does not depend on
the choice of the reference mode due to its symmetry in the final probability distribution
(3.43) with respect to the parameters αi. Therefore the following analysis holds for estima-
tion of subset any two of the 3-mode interferometer.

However, the exact analytical expression for the above defined Fisher information sub-
matrix for arbitrary values of α’s is somewhat complicated. But it is possible to calculate its
inverse and therefore to find the optimal scaling of the following quantity Tr

(
(F(α⃗)I,I)

−1
)

as a function of the number of photons N ,

Tr

((
F(α

opt
1 , α

opt
2 )I,I

)−1
)

=
6 +

√
3

2N2
, (3.45)

and for the optimal values of estimated phases are given by

α
opt
1 = α

opt
2 = π − arctan

(√
6 + 4

√
3

)
≈ 35.2◦. (3.46)

If we take the estimated phases to be equal,i.e., α1 = α2 = α, then the trace of the inverse
Fisher information submatrix has the following form,

Tr
(
(F(α)I,I)

−1
)
=

1

N2
(3 + cos(Nα)− cos(2Nα)) (csc(Nα))2. (3.47)

Next, we plot of the right-hand-side of the Cramer-Rao bound (3.36),i.e., Tr
(
(F(α1, α2)I,I)

−1
)

,
as a function of the jointly estimated phases α1 and α2 for the 3-mode Mach-Zehnder in-
terferometer case considering the number of photons in the initial state set to be N = 8. It
shows the minimal value of Tr

(
(F(α1, α2)I,I)

−1
)

for the optimal values of the estimated

phases reads 6+
√
3

128 ≈ 0.06, whereas the Monte-Carlo-estimated median, where both the
phases were drawn uniformly, reads 0.65. Therefore it gives us a clear picture of the robust-
ness of our strategy for estimation of arbitrary values of the phases. The precision is highly
dependent on the values of the estimated phases themselves as witnessed by the complex-
ity of the plot. Therefore in realistic applications one needs to obtain some prior knowledge
of the phases in order to tune the interferometer in a way that the unknown phases are close
to the optimal values for which the error is the lowest. Even though we do not allow for
optimization of final measurements, we still obtain the Heisenberg-like scaling of precision
of joint estimation for each of the parameters around its optimal values.
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Figure 3.2: Contour plot of Tr
(
(F(α1, α2)I,I)

−1
)

vs α1 vs α2 in a 3-mode Mach-Zehnder
setting for N = 8.

Four-mode case

Optimal state.

Next, in analogy to the three-mode case, we analyse the four mode case using the N -
ququart state. In this case, using the same logic as (3.39), we obtain the state for which the
trace of QFIM attains the maximal value,

|Ψ4⟩N =
1

2
U⊗N
4 (|0...0⟩+ |1...1⟩+ |2...2⟩+ |3...3⟩), (3.48)

where:

U4 =
1

2


−1 −1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 1 1

 . (3.49)

Similar to the three-mode case, U4 simultaneosly diagonalizes local Hamiltonians hi (3.34)
with the eigenstates being the standard basis |0⟩, |1⟩, |2⟩, and |3⟩. Consequently, following
the action of the unitary operation U⊗N

4 , the total collective Hamiltonians Hi (3.38) are di-
agonal with the eigenstates |0...0⟩, |1...1⟩, |2...2⟩, and |3...3⟩, which implies that the operator∑

iH
2
i is also diagonal with the same set of eigenstates.

Achievable Precision.

The estimation of the achievable precision for this case is again analogous to the 3-mode
case. We start by determining the final probability distribution p(k|α⃗) that we write as
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p(i1, . . . , iN |α⃗). It has the following form for d = 4,

p(i1, i2, ..., iN |α1, α2, α3, α4) = |⟨i1 . . . iN | U4(α1, α2, α3, α4)
⊗NU⊗N

4 |GHZ⟩N |2

=
1

4

∣∣∣∣ 3∑
j=0

⟨i1 . . . iN | U4(α1, α2, α3, α4)
⊗NU⊗N

4 | j . . . j︸ ︷︷ ︸
N

⟩
∣∣∣∣2

=
1

4

∣∣∣∣ 3∑
j=0

⟨i1 . . . iN | U4(α1, α2, α3, α4)U4 |j⟩N
∣∣∣∣2

=
1

4

∣∣∣∣∣∣
3∑
j=0

N∏
k=1

⟨ik| U4(α1, α2, α3, α4)U4 |j⟩]

∣∣∣∣∣∣
2

(3.50)

The local evolution operator U4(α1, α2, α3, α4)U4 can be expressed as,

U4(α1, α2, α3, α4)U4 =
1

2


−eiα1 −eiα2 eiα3 eiα4

eiα1 −eiα2 eiα3 −eiα4

eiα1 −eiα2 −eiα3 eiα4

eiα1 eiα2 eiα3 eiα4

 e−
1
4
i(α1+α2+α3+α4). (3.51)

p(k|α⃗) depends only on the total number of clicks in local modes {0, 1, 2, 3} that are denoted
respectively as z, j, d, t and we can write p(i1, . . . , iN |α⃗) = p(z, j, d, t|α⃗).

p(0, · · · , 0︸ ︷︷ ︸
z

, 1, · · · , 1︸ ︷︷ ︸
j

, 2, · · · , 2︸ ︷︷ ︸
d

, 3, · · · , 3︸ ︷︷ ︸
t

|α1, α2, α3, α4)

=
1

4N+1

(
4 + 2 cos [(d+ j)π +N(α2 − α1)] + 2 cos [(d− z)π +N(α3 − α1)]

+ 2 cos [(j − z)π +N(α4 − α1)] + 2 cos [(j + z)π +N(α2 − α3)]

+ 2 cos [(d+ z)π +N(α2 − α4)] + 2 cos [(d− j)π +N(α3 − α4)]
)
. (3.52)

We will now use p(i1, . . . , iN |α⃗) to the classical 3 × 3 Fisher Information submatrix corre-
sponding to joint estimation of the three phases {α1, α2, α3} = I while assuming that the
fourth phase is the reference mode and is set to zero without any loss of generality. The
fisher information matrix will then have the form,

[F(α1, α2, α3)I,I ]ij =
N∑

z,j,d,t=0

(
N

z, j, d, t

)
∂αip(z, j, d, t|α1, α2, α3, 0)∂αjp(z, j, d, t|α1, α2, α3, 0)

p(z, j, d, t|α1, α2, α3, 0)
,

(3.53)
where the multinomial coefficient counts the number of separate detection situations giving
rise to the total of z, j, d, t clicks in modes {0, 1, 2, 3}.

Here also, the form of the Fisher information submatrix is independent of choice of the
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reference mode and hence the following analysis of precision of estimation holds for esti-
mating any triple of phases chosen from all the four ones.

Analogous to the mode-three case we calculated the optimal scaling of the quantity
Tr
(
(F(α⃗)I,I)

−1
)

as a function of the number of photons N and we get,

Tr

((
F(α

opt
1 , α

opt
2 , α

opt
3 )I,I

)−1
)

=
6

N2
, (3.54)

and this is attained for the following optimal values of estimated phases,

α
opt
1 = α

opt
2 = α

opt
3 = 0. (3.55)

Assuming that all the estimated phases are equal, α1 = α2 = α3 = α, the trace of the inverse
Fisher information submatrix scales with the number of photons N as follows,

Tr
(
(F(α)I,I)

−1
)
=

3

2N2
(3 + cos(Nα))

(
sec

(
Nα

2

))2

. (3.56)

Here we also obtain the Heisenberg-like scaling of precision of joint estimation of any triple
of the phases around their optimal values.

3.2.3 Optical implementation of Single-interferometer

In this section we discuss the practicality of our proposed scheme. The main difficulty
of implementation of this scheme is to produce the multiphoton d-level GHZ state which
remains an experimental challenge for higher number of subsystems. With a feasible fix
for this problem, we can directly implement the scheme using optical interferometry. In
order to resolve our problem, we simplify our scheme in the following way which is then
absolutely feasible within current optical technology. To do so we perform a second quan-
tization of the scheme. We recall that the final states in our setup are symmetric states of
photons which are distinguishable by path degree of freedom given by,

|Ψ3
out⟩N = U⊗N

3 U⊗N
3 |GHZ3⟩N

|Ψ4
out⟩N = U⊗N

4 U⊗N
4 |GHZ4⟩N. (3.57)

We can write a second-quantized version of the above states by assuming that a state of
N indistinguishable photons is send to a single d-mode interferometer. Then the states can
be expressed in the following form,

|Ψ3
out⟩ = U3U3|NOON3⟩N

|Ψ4
out⟩ = U4U4|NOON4⟩N, (3.58)
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where the |NOONd⟩N states are given by,

|NOONd⟩N =
1√
d
(|N0...0︸ ︷︷ ︸

d

⟩+ | 0N...0︸ ︷︷ ︸
d

⟩+ . . .+ | 0...0N︸ ︷︷ ︸
d

⟩). (3.59)

The new detection probabilities for the this simplified scheme are identical to the ones for
the original scheme (3.43), (3.52) with a minor change incorporated. In this new detection
scheme, the meaning of the detection events is now the numbers z, j, d, t denoting the pho-
ton counts in modes {0, 1, 2, 3} for their respective case. The probability distribution found
in this method is completely equivalent to the probability distribution associated with the
original scheme as at the level of probabilities in (3.43) and (3.52), we do not distinguish in
which of the N stations there was a click in a given mode. Therefore the quantity solely
depends on the total number of clicks in given modes across all the labs.

This experiment can now be realized in terms of a single interferometer consisting of the
initial-state-correcting multiports U3 (3.40) (or U4 (3.49)) and the generalised Mach-Zehnder
interferometer U3 (3.27) (or U4 (3.33)) that uses a NOON state as an input which is a feasible
experiment for higher values of N [198]. Several other interesting experimental advance-
ments can be found in literature in this regard [170, 171, 172, 174, 173].

3.2.4 Symmetric 5-mode multiport

In this final subsection of our results, we investigate symmetric multiports with d = 5, 6.
Analogous to the previous cases, these multiports can also be represented in terms of the
powers of generalised X and are given by,

S5 = exp

[
4
√
5

25
iπ(X −X2 −X3 +X4)

]
, (3.60)

S6 = exp

[
iπ

(
1

3
X +

1

9
X2 +

1

12
X3 +

1

9
X4 +

1

3
X5

)]
.

(3.61)

We now try to analyse the optical multiports from the Hamiltonian perspective [185]. In
the second quantisation description, the symmetric Hamiltonian for d-mode optical instru-
ment can be represented in the following form:

Hsym =
∑
i<j

eiφij (a†
iaj + a†

jai), (3.62)

This is a generalized version of the Hamiltonian that is provided in [185] that additionally
incorporates phases. The Hamiltonian of the form (3.62) cannot generate evolution of a
symmetric multiport for d > 4 [185] . However, it can be easily seen that the evolution
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(3.60) of a symmetric 5-port is in fact generated by such a Hamiltonian. We know that the
Hamiltonian of the symmetric multiport in (3.60) reads up to the following constant factor,

H5 = X −X2 −X3 +X4. (3.63)

Here we utilize the Jordan–Schwinger map that maps a set of matrices M in Cd into second-
quantised operators on d-mode Fock space. This map can be represented in the following
way,

M 7→M ≡
d∑

i,j=1

a†
iMijaj , (3.64)

This map is a Lie algebra isomorphism, ensuring that the operatorsM satisfy the same com-
mutation relations as the matrices M. We obtain that H5 has the symmetric representation
(3.62) with the following phases:

φ12 = φ15 = φ23 = φ34 = φ45 = 2π

φ13 = φ14 = φ24 = φ25 = φ35 = π. (3.65)

On the other hand the Hamiltonian for the 6-mode symmetric multiport has the following
form,

H6 =
1

3
X +

1

9
X2 +

1

12
X3 +

1

9
X4 +

1

3
X5 (3.66)

Unfortunately, generating the evolution of the 6-mode symmetric multiport (3.61) does not
have symmetric representation as (3.62). Instead it has the following form,

H6 =
∑
i<j

αij(a
†
iaj + a†

jai), (3.67)

and the amplitudes are given by,

α12 = α16 = α23 = α34 = α45 = α56 =
1

3

α13 = α15 = α24 = α26 = α35 = α46 =
1

9
,

α14 = α25 = α36 =
1

12
. (3.68)
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3.3 Conclusion

In this chapter we investigated metrological properties of multimode generalized Mach-
Zehnder interferometer and its importance in simultaneous multiphase estimation task. We
thoroughly discussed our finding for m = 2, 3, and 4. We discussed our setup in details
which comprises of a N -qdit state generator source that produces an initial state, a setup to
perform identical local unitary evolution on the initial state to provide the probe state, and
finally the standard and fixed measurement setup to generate the probability distribution.
Using this setup we investigated possibilities to estimate d − 1 out of d phases that are
placed in arbitrary configuration across the modes where one remaining phase is known
and acts as an reference mode. We calculated the achievable precision of our estimation
setup and compare it with the so called Heisenberg-limit. We represented our setup of
generalised Mach-Zehnder interferometer using a generator scheme constructed in terms of
the Heisenberg-Weyl operators. Using this approach, we were able to calculate the inverse
of the submatrix of a FIM related with each of the subsets of parameters of interest, which, in
contrast to methods implicitly involving optimisation over measurement strategies based
on Quantum Cramer-Rao or Holevo bounds, provides a factual limit for the efficiency of
estimation within assumed concrete measurement setup. We therefore showed that even
though we used the same initial state and the same measurement for estimation of all the
subsets of phases, we were still able to obtain the Heisenberg-like scaling of precision of
estimation of each of the subset. In the final section we investigated symmetric multiports
with d = 5, 6 and showed that while the 5-mode symmetric multiport can be expressed in
terms of the symmteric Hamiltonian, the same is, however, not true for 6-mode symmtric
multiport.
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Chapter 4
Optimal tests of genuine multipartite
nonlocality

One of the most important signature of non-classicality exhibited by quantum system
is the notion of Bell nonlocality. Nonlocal correlations can be interpreted as correlations that
arise from the outcomes of measurements performed on sub-parts of a bipartite system
which are situated in spatially separated labs and cannot be explained by classical theory.
One can detect such correlations by violating suitable Bell inequality [199, 200, 201, 202].
Besides entanglement, nonlocal correlations also proven to be a crucial resource, "alter-
native to entanglement and necessary for device-independent quantum information pro-
tocols" [203]. However, it can be inferred that these two concepts are intimately related.
Despite that, it has been proved that nonlocality and entanglement are indeed two distinct
concepts and two inequivalent resources [204] given the facts such as there exist entangled
state which are locally realisable [205, 206, 207] and a maximally nonlocal states are not
maximally entangled in general [208].

A natural extension to this study is to investigate the structure of nonlocality in the
composite quantum systems, referred as multipartite nonlocality. Analogous to multipartite
entanglement, in this generalized scenario, nonlocality can be shared between all or a sub-
set of parties. Characterizing such correlations, however, is an increasingly demanding task
given that the complexity of the possible states and sets of correlations grow exponentially
with increasing number of parties. Among all nonlocal multipartite correlations, genuine
multipartite nonlocality (GMNL) is considered to be the most fundamental non-classical
feature. GMNL is the subclass of multipartite nonlocality that requires all the parties to be
correlated with each other non-classically. In fact, different "genuine" non-classical correla-
tions, namely, genuine multipartite total correlations (GMT), genuine multipartite discord
(GMD), genuine multipartite entanglement (GME), genuine multipartite steering (GMS)
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and GMNL form the following hierarchy [209, 210, 211, 207, 212, 213]:

GMT ⊇ GMD ⊇ GME ⊇ GMS ⊇ GMNL. (4.1)

GNML is a strongly non-classical correlation in a sense that it is distinct from the corre-
lations that are local to some bipartition. The very first tool to detect GMNL, the Svetlichny
inequality, was introduced in [214] for three parties. It was then generalized in [215] by con-
structing N -particle Bell-type inequalities under the assumption of partial separability and
later for the most general separability condition [216]. Svetlichny’s approach to detect is
however inconsistent with more recently introduced operational framework [203]. Further
relevant works can be found in Refs. [216, 217, 218, 219].

Therefore, classification of states in terms of GMNL is an appealing task and has been
carried out extensively in literature. Notably, it was found that any one-way entanglement
distillable state [220] is a nonlocal resource [221]. Interestingly, it was proved that multi-
partite entangled pure states are never fully local [222, 223] and all pure N -qubit states that
are GME, are also GMNL [224]. However, in the case of mixed states, it was found that
there exist several examples of genuinely entangled N -partite states [204, 225] that are not
genuinely nonlocal with respect to the Svetlichny and the recent operational definitions of
nonlocality [203, 226] and some of which are even fully local [227]. It was also shown that lo-
cal operators applied prior to measurements can activate "hidden nonlocality" in the states
that are initially entangled but local [227, 228, 229, 230, 231, 232]. This was later exploited in
[233] to extend the equivalence of GME and GMNL for three parties beyond qubits. Also,
the violations of local realism by families of multipartite quantum states has been analysed
numerically in [234] and it has been proven that the probability of violation can also serve
as a witness of genuine multipartite entanglement that increases with the number of parties
or settings.

Multipartite correlations are commonly tested and assigned to models that concern
to different physical resources such as classical, quantum or post-quantum correlations
[214, 203, 219, 226]. Ref. [226] provides us with an operational definition of genuine multi-
partite nonlocality. Here, models of non-classical correlation resources are considered that
are hybrids of classical and non-classical correlations such that a subset of parties share
non-classical correlation while the remaining parties only share classical correlation with
each other. This family of models, equipped with a series of Bell-type inequalities, range
from completely classical to genuinely multipartite, providing us with a rich structure of
the multipartite scenario. [226] gives us two alternative definitions of genuine n-partite
nonlocality that are strictly weaker than the Svetlichny’s version.
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4.1 Definitions and Methodology

4.1.1 Bell nonlocality

In the simplest Bell scenario, we consider that a bipartite state is shared between two
observers, Alice and Bob, located in spatially separated labs. The observers perform local
measurements and Alice obtain the outcome a and Bob obtain the obtain b. We represent the
joint probability of the outcome as P (a, b|x, y) where x is the measurement conducted by
Alice and y is the measurement conducted by Bob. According to Local causality statement,
spatially separated events are independent of each other regardless of their past interaction.
Then, there exists a more complete description λ for the global system and we refer to λ as
a hidden variable. Then we have,

Pλ(a, b|x, y) = Pλ(a|x)Pλ(b|y). (4.2)

A correlation that satisfy the above equation is said to be a local state and there always exists
a local hidden variable model that will reproduce this correlations. The joint probability of
the outcomes are then represented as:

P (a, b|x, y) =
∑
λ

qλPλ(a|x)Pλ(b|y), (4.3)

where qλ ≥ 0,
∑

λ qλ = 1, and Pλ(a|x) and Pλ(b|y) are referred as the marginal probabili-
ties for Alice to obtain outcome a corresponding to the measurement setting x and Bob to
obtain outcome b corresponding to the measurement setting y. However, if some correla-
tions P (a, b|x, y) violate a suitable Bell inequality, then they cannot be realized using a local
hidden variable model given in the form of Eq. (4.3) and such correlations are referred as
nonlocal correlations.

4.1.2 Tripartite nonlocality

With increasing number of parties, i.e., for three or more subsystems, nonlocal corre-
lations can be qualitatively different. We begin with a tripartite Bell-type scenario. Three
observers, assumed to be in their spatially separated labs, share a quantum state ρ. The
observers act locally on their shared part of the system and there is no communication is
allowed between them during the coarse of the experiment. We label each of the observers
as i = {1, 2, 3}. The observers have access to m number of local measurement choices, i.e.,
m measurement settings which are labeled as {M j

i }mj=1. Then the probability distribution
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arising from the correlations between measurement outcomes can be expressed as,

p(r1, r2, r3|M i1
1 ,M

i2
2 ,M

i3
3 ) = Tr

(
Πr1
M

i1
1

⊗Πr2
M

i2
2

⊗Πr3
M

i3
3

ρ
)
, (4.4)

where, Πrj
M

ii
j

is the projection operator corresponding to the outcome rj .

As discussed earlier, the correlations that the three subsystems share can now be distin-
guished at a qualitative level. Here we introduce different notions of multipartite nonlocal
correlations for a tripartite system. In particular, we investigate correlations belong to the
following three sets, namely, Bell local (L), Svetlichny-local (S2) and No-signaling bilocal
(NS2). We should note that the inclusion relations between these sets [226] are the follow-
ing:

L ⊊ NS2 ⊊ S2. (4.5)

In this work, we consider the operational framework presented in Refs. [226, 203] and
show that given correlation point, p = {P (a, b, c|x, y, z)}, determining whether this correla-
tion lies in one of the above mentioned sets is computationally feasible problem using linear
programming. We use the notation r1 = a, r2 = b, r3 = c and M i1

1 = x, M i2
2 = y, M i3

3 = z in
Eq. (4.4). In other words, three observers, Alice, Bob and Charlie performs dichotomic mea-
surements corresponding to measurement settings x, y, z and obtain outcomes a, b, c. Given
the total number of measurement settings m, we have x = (1, 2, . . . ,m), y = (1, 2, . . . ,m)

and z = (1, 2 . . . ,m) while the outcomes are a = (0, 1), b = (0, 1) and c = (0, 1).

Bell local (L)

Analogous to the bipartite scenario, if the joint probability distribution can be written in
the following form,

P (a, b, c|x, y, z) =
∑
λ

qλPλ(a|x)Pλ(b|y)Pλ(c|z), (4.6)

with 0 ≤ qλ ≤ 1 and
∑

λ qλ = 1, then p is inside the set L and is referred as Bell local or
classical. If the probability distribution does not admit the decomposition Eq. (4.6), then
the correlation p is Bell nonlocal or non-classical. We refer to the non-classicality of such
correlations as standard nonlocality (NL) in our work.

Svetlichny-local (S2)

Next, we consider the correlations for which a locally causal theory is not attainable. In
[214], some correlations that p ̸∈ L, can be defined in a hybrid local-nonlocal form. Such
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correlation has the following joint probability distribution,

P (a, b, c|x, y, z) =
∑
λ1

qλ1Pλ1(a, b|x, y)Pλ1(c|z) +
∑
λ2

qλ2Pλ2(a, c|x, z)Pλ2(b|y)

+
∑
λ3

qλ3Pλ3(b, c|y, z)Pλ3(a|x), (4.7)

where 0 ≤ qλi ≤ 1 for i = 1, 2, 3 and∑
λ1

qλ1 +
∑
λ2

qλ2 +
∑
λ3

qλ3 = 1.

Correlations satisfying Eq. (4.7) will be referred as Svetlichny-local or S2 correlations and will
belong to set S2. Each of the terms in the corresponding join probability distribution can
be factorized such that they comprises of a probability concerning one of the three parties’
outcome alone, and a joint probability concerning the two remaining parties. No restrictions
are imposed on the joint probability distributions, i.e., they can be either local or nonlocal.
Moreover, they can also allow signaling, in principle. If correlations P (a, b, c|x, y, z) cannot
be written in the above mentioned form, then it must appear in the decomposition which
indicates the presence genuine tripartite nonlocality.

No-signaling bilocal (NS2)

The last set of correlation that we consider, are referred as no-signaling bilocal (NS2). It
is yet another example of a case where the hidden state λ is not local. In this case, tripartite
correlation that resides in NS2 admits the following decomposition:

P (a, b, c|x, y, z) =
∑
λ1

qλ1P
NS
λ1

(a, b|x, y)Pλ1(c|z)

+
∑
λ2

qλ2P
NS
λ2

(a, c|x, z)Pλ2(b|y)

+
∑
λ3

qλ3P
NS
λ3

(b, c|y, z)Pλ3(a|x), (4.8)

where the bipartite correlations, PNS
λ1

(a, b|x, y)) for instance, obeys the no-signaling condi-
tion, i.e., the observers gains no information about a spatially separated party’s measure-
ment choice by observing his/her own outcome. In other words, the marginal probabilities
corresponding to a certain outcome of Alice is independent of Bob or Charlie’s measure-
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ment choices. Hence, we can write,∑
a

PNS
λ1

(a, b|x, y) =
∑
a

PNS
λ1

(a, b|x′, y) ∀x, x′, y, b, λ1 (4.9a)∑
b

PNS
λ1

(a, b|x, y) =
∑
b

PNS
λ1

(a, b|x, y′) ∀y, y′, x, a, λ1. (4.9b)

The same is applicable for every bipartite correlations obtained from different permuta-
tions of the parties. Violating any of the no-signaling constrains implies signaling allowed
between the corresponding observers and each of their outcomes carries non-vanishing in-
formation about the other observer’s measurement choice.

Considering the scenario concerning Eq. (4.9), say, if Eq. (4.9a) is satisfied but Eq. (4.9b)
is violated, then Alice can signal superluminally to Bob. This signalling refers to instanta-
neous change of the one’s outcome just by changing measurement choice of the other. This
is the scenario where λ1 is one-way signaling and for both Eqs. (4.9a) and (4.9b) violating, λ1
is said to be two-way signaling. All these no-signaling constraints are linear function of the
probabilities.

4.1.3 Indicators of genuine multipartite nonlocality

In our work, we consider two indicators of genuine multiparticle nonlocality, namely,
the strength of nonlocality and probability of violation of local realism [235].

The maximal strength of nonlocality

The strength of nonlocality S, considered to be good candidate for measuring nonlocal
correlations, is defined in terms of the robustness with respect to the effects of admixing
white noise.

S can be quantified in terms of the amount of white noise that is required to be added in
a convex mixture with a state ρ that is initially non-classical, in order to completely suppress
the non-classicality it posses. The resultant state can be expressed as

ρ(v) = vρ+ (1− v)
1
dN

, (4.10)

where v is called the visibility of the state, d is the dimension of each subsystem and N

is the total number of systems. For a given state corresponding to a particular choice of
observables, there always exists a critical visibility vcrit such that for any visibility value
lower than vcrit results in a state that is realizable using a local hidden variable model. In
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other words, vcrit quantifies the noise resistance of a given quantum state. The strength of
nonlocality, S , is then defined as the smallest admixture of white noise for which the state
becomes local for a fixed set of observables,

S = 1− vcrit. (4.11)

We optimize the value vcrit over all possible measurement settings to determine the
minimal critical visibility required for a given state, referred as vmincrit . Then the maximal
strength of nonlocality is given by,

Smax = 1− vmincrit . (4.12)

Probability of violation

The second quantifier under consideration is referred as the probability of violation,
denoted by PV , tells us how many sets of measurements settings lead to violation of the
models prescribed above. PV , while not providing any information about the strength of
nonlocality, allows us to investigate the non-classical correlations under random measure-
ments [235]. As in the case of maximum strength of nonlocality, the probability of violation
was successfully used to quantify the standard nonlocality [236], and we will now use it to
describe the genuine multiparticle nonlocality (S2,NS2).

PV is defined as

PV (ρ) =
∫
f(ρ,Ω) dΩ, (4.13)

where the integration is over all parameters that vary within the Bell scenario and

f(ρ,Ω) =


1, if settings lead to violations

of L/ S2/NS2 model,

0, otherwise.

(4.14)

4.1.4 Linear Programming for tripartite nonlocality

The quantities mentioned above can be obtained by employing linear programming
methods. The method, despite being numerical, can give us results that are equivalent of
using a complete set of Bell-type inequalities, i.e., the Bell-Pitovsky polytope [237]. There-
fore it is reasonable to call our method an optimal GMNL test. We now formulate the cor-
responding linear programming (LP) task. For a given correlation point p, we will present
LP algorithm to detect whether the point p is inside the sets L, NS2, and S2 or not.
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We first present a standard structure of a linear optimization program. This is com-
prised of a linear objective function that is subjected to linear equality and/or inequality
constraints. The algorithm then finds an optimal point in the feasible region which forms a
convex polytope. The algorithm has the following structure:

maximize cTx

subject to Ax ≥ b

and x ≥ 0,

where the x is the variable to be determined for a given c, b and matrix A.

For the optimization scheme specific to our problem, we first take into account the fact
that any randomness present in either the two-party or one-party probabilities, namely
Pλ, Pλi , P

NS
λi

for i = 1, 2, 3 in Eqs. (4.6,4.7,4.8), acting as response functions, can always be
incorporated in the shared random variables λ and λi, i = 1, 2, 3 as these response func-
tions are mathematical functions of those shared random variables and plays defining role
in constructing the criterion to evaluate a numerical solution to the problem. Given the
aforementioned fact, we then assume that these functions can be realized as deterministic
functions of the inputs x, y and z. In other worlds, each shared random variable λ, λi for
i = 1, 2, 3 refers to the assignment of one of the possible outputs to each input. There is only
a finite number of such assignments. We name them asDL

λ(a|x),DS
λi
(a, b|x, y),DNS

λi
(a, b|x, y)

for i = 1, 2, 3. Similar functions that are deterministic with respect to the inputs, are defined
for the other two possible bipartitions: (AC|B) and (BC|A). Therefore, without any loss of
generality, we can assume that in Eqs. (4.6,4.7,4.8) the functions are the above deterministic
functions. For instance, equation (4.6) can now be equivalently written in terms of these
deterministic functions,

P (a, b, c|x, y, z) =
∑
λ

qλD
L
λ(a|x)DL

λ(b|y)DL
λ(c|z). (4.15)

For simplicity, let dλ be a product of these deterministic functions. For example, in
Eq. (4.15), we have

dL
λ = DL

λ(a|x)DL
λ(b|y)DL

λ(c|z). (4.16)

Then a correlation point p ∈ L if it can be written as a convex combination of determin-
istic functions dλ, that is

p =
∑
λ

qλd
L
λ, (4.17)

where qλ ≥ 0 and ∑
λ

qλ = 1.
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Similarly, for Svetlichny-local correlations S2 we will have

p =
∑
λ1

qλ1d
S
λ1

+
∑
λ2

qλ2d
S
λ2

+
∑
λ3

qλ3d
S
λ3

(4.18)

where qλ1 , qλ2 , qλ3 ≥ 0,

dS
λ1

= Pλ1(a, b|x, y)Pλ1(c|z), (4.19)

dS
λ2

= Pλ2(a, c|x, z)Pλ1(b|y), (4.20)

dS
λ3

= Pλ3(b, c|y, z)Pλ3(a|x), (4.21)

and ∑
λ

qλ1 +
∑
λ

qλ2 +
∑
λ

qλ3 = 1 .

Lastly, for no-signaling bilocal correlations NS2 we will have

p =
∑
λ1

qλ1d
NS
λ1

+
∑
λ2

qλ2d
NS
λ2

+
∑
λ3

qλ3d
NS
λ3

(4.22)

where qλ1 , qλ2 , qλ3 ≥ 0,

dNS
λ1

= PNS
λ1

(a, b|x, y)PNS
λ1

(c|z), (4.23)

dNS
λ2

= PNS
λ2

(a, c|x, z)PNS
λ1

(b|y), (4.24)

dNS
λ3

= PNS
λ3

(b, c|y, z)PNS
λ3

(a|x), (4.25)

and ∑
λ

qλ1 +
∑
λ

qλ2 +
∑
λ

qλ3 = 1 .

After introducing all our inequalities in this simpler representation, the next step is to
determine whether there exist weights λ in Eq. (4.17) and weights λi, i = 1, 2, 3 in Eq (4.22)
which satisfy the given linear constraints. From here, we are able to frame the task as a
linear programming problem. There are several efficient solvers to run such linear pro-
gramming which run in polynomial time in the number of variables [238].

We now turn the feasibility problems presented in (4.17) and (4.22) into a task of finding
the critical visibility of a correlation point p such that the noisy distribution has the form,

pv = vp+ (1− v)piso, (4.26)
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where piso is the isotropic distribution defined by Piso(a, b, c|x, y, z) = 1/23 for all a, b, c and
x, y, z. This noisy distribution is such that it can be still be described within the respective
sets of L, S2 and NS2. Then finding vcrit is a membership problem.

For the Bell local set L, this problem translates to the following LP task:

vcrit = max v

s. t. pv =
∑
qλ

qλd
L
λ

with qλ ≥ 0,

and
∑
λ

qλ = 1 . (4.27)

For the Svetlichny-local set S2 we have,

vcrit = max v

s. t. pv =
∑

i=1,2,3

∑
qλi

qλid
S
λi

with qλi ≥ 0,

and
∑

i=1,2,3

∑
λi

qλi = 1 . (4.28)

For no-signaling bilocal set NS2 we have,

vcrit = max v

s. t. pv =
∑

i=1,2,3

∑
qλi

qλid
NS
λi

with qλi ≥ 0,

and
∑

i=1,2,3

∑
λi

qλi = 1 . (4.29)

The feasible region of the above LP tasks, i.e., the sets L, S2 and NS2 are the convex
hull of a finite number of points, therefore each defining a polytope. The local determin-
istic points dλ correspond to the vertices, or extreme points, of the polytope. We can also
transform these problems (4.27) and (4.28) into their dual formulation to get a hyperplane
(defined by the normal plane S and a constant S), which separates the point p from the re-
spective polytope. This way by solving the dual LP we obtain a linear inequality S ·dλ ≤ S

satisfied by all the vertices dλ, but violated by the correlation point p(v) such that

S ·p(v) ≥ S for v > vcrit. (4.30)
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In order to determine the probability of violation, we repeat the LP procedure for ran-
domly sampled set of settings (according to the Haare measure) andcount how many times
we observe violation of the models, L, S2 and NS2, for vcrit < 1.0. For sufficiently high
statistics, the frequency approaches the probability.

4.2 Results

4.2.1 Qubits

Now we apply the optimization method to investigate different tripartite states. For this
we consider the following three states which are well known and often considered as very
crucial resource in quantum information processing protocols:

(i) Greenberger-Horne-Zeilinger state [197]:

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) (4.31)

(ii) W state [239]:

|W⟩ = 1√
3
(|001⟩+ |010⟩+ |001⟩), (4.32)

(iii) A state in (3, 2, 2) scenario given [240] showing significant L violation:

|ψs⟩ =
1√
6
(|001⟩+ |010⟩ − |100⟩) + 1√

2
|111⟩. (4.33)

In Tab. (4.2) we present numerical results containing probabilities of violation PV and
the maximal nonlocality strengths Smax for an increasing number of measurement settings
per site and different nonlocality scenarios: L, S2, NS2. From the numerical evidences we
make the following observations.

(1) It is evident that the probability of violation PV steadily increases with m. In case of
L scenario, we observe almost certain violations once the number of settings m > 2 for each
state has been considered. For m > 3 the probability of violation is also very high, greater
than 99.99%. However, the trait seems to be slightly weaker in the NS2 scenario. Form = 2,
Pv values are significantly smaller for NS2 than for L. Although, starting from m = 4 they
start to become closer together for the GHZ state and the same is noticed at m = 5 for the
W and ψ2 states. However, in the case of S2, the percentage remains considerably small, es-
pecially for the W state, even for m = 6. In other words, according to numerical evidences,
increasing number of settings does not increase the probability of violation for with respect
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to Svetlichny-local constraint.

(2) It also appears that vcrit practically depends on the number of settings only for the
W state and L problem. For other cases, either we do not observe any dependence up to
6 decimal places (GHZ: S2,NS2;) or we see slight improvement on the 4th of 5th decimal
place (GHZ: L; W: S2, NS2; ψ2: L) which is not conclusive. One should note that the above
improvements are a real effect and not the result of numerical inaccuracy.

Asymmetric GHZ state

For the tripartite qubit systems, we also investigate nonlocal feature of the asymmetric
GHZ state which has the form,

|ψGHZ(α)⟩ = cosα|000⟩+ sinα|111⟩ (4.34)

We calculate probability of violation PV for no-signaling bilocal scenario (NS2). The nu-
merical results are presented in Tab. 4.1. Interestingly, dependency can be observed con-
cerning changes in the probability of violation with increasing α. For m = 2, 3, 4 we ob-
serve expected monotonic increase of with α. However, this monotonicity is disrupted for
m = 4, 5 where there is a local decrease of (minimum) around α = 40o. Although the effect
manifests itself at the 4th decimal place, it is not due to numerical inaccuracies. It is worth
noting that a similar effect is not observed for the standard nonlocality problem (NL).

m ψGHZ(10o) ψGHZ(20o) ψGHZ(30o) ψGHZ(40o) ψGHZ(45o)
2 0.0097 0.0413 0.0852 0.1127 0.1157
3 0.1364 0.4162 0.6361 0.7052 0.7081
4 0.4383 0.8473 0.9581 0.9684 0.9672
5 0.7249 0.9807 0.9979 0.9980 0.9977
6 0.8829 0.9985 0.99993 0.99990 0.99987

Table 4.1: Probability of violation for asymmetric GHZ state (ψGHZ(α)) determined from
107 (m = 2) and 106 (m > 2) random samples for NS2 model.

4.2.2 Qutrits

In this section, we investigate nonlocal properties of qutrit systems. However, we limit
our research to the violation of L and NS2 constraint.

We investigate probabilities of violation and maximal nonlocality strengths for m = 2

and m = 3 measurement settings and for the following three qutrit states:
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Standard nonlocality Genuine multipartite nonlocality
N State m L S2 NS2

PV Smax PV Smax PV Smax
3 GHZ 2 74.69 0.5 0.5413 0.2929 11.57 0.2929

3 99.54 0.5 6.6282 0.2929 70.81 0.2929
4 > 99.99 0.50301 23.255 0.2929 96.73 0.2929
5 > 99.99 - 46.01 - 99.77 -
6 > 99.99 - 66.67 - 99.99 -

3 W 2 54.89 0.3558 0.0085 0.082107 3.73 0.19912
3 97.80 0.395 0.01951 0.082107 41.29 0.1992
4 > 99.99 0.3985 1.3797 0.082107 86.69 0.80014
5 > 99.99 - 5.49 - 98.71 -
6 > 99.99 - 14.33 - 99.93 -

3 |ψs⟩ 2 64.38 0.46445 0.2019 - 6.8637 -
3 99.03 0.46455 2.9871 - 58.9212 -
4 > 99.99 0.4669 12.3838 - 94.55 -
5 > 99.99 0.46699 28.91 - 99.6594 -
6 > 99.99 0.46747 48.32 - - -

Table 4.2: Probabilities of violation PV and the maximal nonlocality strengths Smax for an
increasing m per site and different nonlocality scenarios: L, S2, NS2.

(i) 3-qutrit GHZ-type state

|GHZ⟩ = 1√
3
(|000⟩+ |111⟩+ |222⟩). (4.35)

(ii) 3-qutrit GHZ-type state reduced to qubit subspace, i.e., rank-2 state

|rank− 2⟩ = 1√
2
(|000⟩+ |111⟩). (4.36)

(iii) 3-qutrit Dicke states [241]

|D1
3⟩ =

1√
3
(|001⟩+ |010⟩+ |100⟩), (4.37)

|D2
3⟩ =

1√
15

(|002⟩+ |020⟩+ |200⟩+ 2(|011⟩+ |101⟩+ |110⟩)), (4.38)

|D3
3⟩ =

1√
10

(|012⟩+ |021⟩+ |102⟩+ |120⟩+ |201⟩+ |210⟩+ 2|111⟩). (4.39)

(iv) 3-singlet state [242, 243]

|Aharonov⟩ =
1√
6
(|012⟩ − |021⟩ − |102⟩+ |120⟩+ |201⟩ − |210⟩). (4.40)

106



Chapter 4. Optimal tests of genuine multipartite nonlocality 4.3. Conclusion

State m L NS2

GHZ 2 81.1435 0.5516
3 16.5618

rank-2 2 33.1366 0.1854
3 3.2805

D1
3 2 17.2009 0.0190

3 0.3483
D2

3 2 39.3363 0.0506
3 1.2658

D3
3 2 42.5216 0.0807

3 2.0036
Aharonov 2 68.7038 0.0056

3 0.1643

Table 4.3: Probabilities of violation (in %) obtained for qutrit states from 106 random sam-
ples for L and NS2 models.

The results are presented Tab. 4.3. It is interesting to observe that the probability of
revealing genuine multipartite nonlocality (NS2) is negligible. The only case for which
a considerable value can be observed is the GHZ state with three measurement settings
(m = 3), i.e., 16.56%. For three measurement settings if we compare these probabilities of
violation with the values for the case of standard nonlocality (L), it turns out that they are
smaller by two (GHZ, rank-2), three (D1

3, D2
3, D3

3) and even five (Aharonov) orders of mag-
nitude.

The probability of violation for the NS2 problem increases from 17-30 times depending
on the state when the number of settings is increased tom = 3. We recall that, for qubits, the
increment was smaller and varies in the range 6-11 times. These two cases, however, are not
necessarily comparable due to the fact that different states were considered to investigate
both the cases. But, if we limit ourselves to comparing only the family of the GHZ states
then in the case of qubits the increment was 6.12 times, while for qutrits it is 30.02 times.
This implies that the probability of violation tend to increase with increasing dimension of
the subsystems.

4.3 Conclusion

In this chapter we have proposed linear programming scheme to investigate different
kind of genuinely multipartite nonlocal correlations. For this task, we have considered three
families of correlations, namely, Standard nonlocal L correlations, Svetlichny-nonlocal cor-
relations and no-signaling non-bilocal correlations. To witness GMNL, we have used two
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quantifiers, namely, the strength of nonlocality and probability of violation and ran exten-
sive optimization code to generate statistics for several states that are often considered as
crucial resource in several quantum information processing tasks. Due to the increasing
complexity of the task, we limited our numerical search for tripartite qubit and qutrit sys-
tems. From the numerical evidences we tried to judge the dependencies that genuinely
multipartite nonlocal correlations may have on different key parameters of the construc-
tion of the experiment such as number of settings of the measurements and dimension of
the subsystems. We also compared how the states behave for different kind of genuinely
multipartite nonlocal correlations.
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